

Professional C#

Third Edition

Simon Robinson
Christian Nagel

Jay Glynn
Morgan Skinner

Karli Watson
Bill Evjen

01 557599 FM.qxd 4/29/04 11:32 AM Page iii

01 557599 FM.qxd 4/29/04 11:32 AM Page ii

Professional C#

Third Edition

01 557599 FM.qxd 4/29/04 11:32 AM Page i

01 557599 FM.qxd 4/29/04 11:32 AM Page ii

Professional C#

Third Edition

Simon Robinson
Christian Nagel

Jay Glynn
Morgan Skinner

Karli Watson
Bill Evjen

01 557599 FM.qxd 4/29/04 11:32 AM Page iii

Professional C#, Third Edition
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2004 by Wiley Publishing, Inc., Indianapolis, Indiana. All rights reserved.

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted
under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission
of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clear-
ance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the
Publisher for permission should be addressed to the Legal Department, Wiley Publishing, Inc., 10475 Cross-
point Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447, E-mail: permcoordinator@wiley.com.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE
NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS
OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND
STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS
SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING
LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS
REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT.
NEITHER THE PUBLISHER NOT THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HERE-
FROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A
CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT
THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR
WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD
BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAP-
PEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services please contact our Customer Care Department
within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley Publishing logo, Wrox, the Wrox logo, and Programmer to Programmer are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates. All other trademarks
are the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or
vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic books.

Library of Congress Control Number: 2004103177

ISBN: 0-7645-5759-9

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

01 557599 FM.qxd 4/29/04 11:32 AM Page iv

About the Authors

Simon Robinson
Simon Robinson is the editor-in-chief of ASP Today, one of the leading sites
related to Web programming on the Windows platform.

Simon’s first experience of commercial computer programming was in the
early 1980s, when a computer project he was working on at college became
the school’s student timetabling program, running on the BBC Micro. Later
he studied for a Ph.D. in physics and subsequently spent a couple of years
working as a university physics researcher. From there he moved on to work-
ing as a computer programmer, then writing books about programming, and
finally on to his present job at ASP Today.

He has an extremely broad experience of programming on Windows. These days his core specialty is .NET
programming. He is comfortable coding in C++, C#, VB, and IL, and has skills ranging from graphics and
Windows Forms to ASP.NET to directories and data access to Windows services and the native Windows API.

Simon lives in Lancaster, UK. His outside interests include theater, dance, performing arts, and politics.
You can visit Simon’s Web site, http://www.SimonRobinson.com.

Christian Nagel
Christian Nagel is an independent software architect and developer who
offers training and consulting on how to design and develop Microsoft .NET
solutions. He looks back to more than 15 years’ experience as a developer
and software architect. Christian started his computing career with PDP 11
and VAX/VMS platforms, covering a variety of languages and platforms.
Since the year 2000—when .NET was just a technology preview—he has
been working with various .NET technologies to build distributed solutions.
With his profound knowledge of Microsoft technologies, he has also written
numerous .NET books; is certified as Microsoft Certified Trainer (MCT),
Solution Developer (MCSD), and Systems Engineer (MCSE); and is the

Microsoft Regional Director for Austria. Christian is a speaker at international conferences (TechED,
DevDays, VCDC) and is the regional manager of INETA Europe (International .NET User Group
Association) supporting .NET user groups. You can contact Christian via his Web site,
http://www.christiannagel.com.

Jay Glynn
Jay Glynn started writing software nearly 20 years ago, writing applications
for the PICK operating system using PICK basic. Since then, he has created
software using Paradox PAL and Object PAL, Delphi, VBA, Visual Basic, C,
C++, Java, and of course C#. He is currently a Project coordinator and
Architect for a large financial services company in Nashville, Tennessee,
working on software for the TabletPC platform. He can be
contacted at jlsglynn@hotmail.com.

01 557599 FM.qxd 4/29/04 11:32 AM Page v

Morgan Skinner
Morgan Skinner began his computing career at a tender age on a Sinclair
ZX80 at school, where he was underwhelmed by some code a teacher had
written and so began programming in assembly language. After getting
hooked on Z80 (which he believes is far better than those paltry 3 registers on
the 6502), he graduated through the school’s ZX81s to his own ZX Spectrum.

Since then he’s used all sorts of languages and platforms, including VAX
Macro Assembler, Pascal, Modula2, Smalltalk, X86 assembly language,
PowerBuilder, C/C++, VB, and currently C#. He’s been programming in

.NET since the PDC release in 2000, and liked it so much, he joined Microsoft in 2001. He now works in
Premier Support for Developers and spends most of his time assisting customers with C#.

You can reach Morgan at http://www.morganskinner.com.

Karli Watson
Karli Watson is a freelance author and the technical director of 3form Ltd
(http://www.3form.net). Despite starting out by studying nanoscale
physics, the lure of cold, hard cash proved too much and dragged Karli into
the world of computing. He has since written numerous books on .NET and
related technologies, SQL, mobile computing, and a novel that has yet to see
the light of day (but that doesn’t have any computers in it). Karli is also
known for his multicolored clothing, is a snowboarding enthusiast, and still
wishes he had a cat.

Bill Evjen
Bill Evjen is an active proponent of the .NET technologies and community-
based learning initiatives for .NET. He has been actively involved with .NET
since the first bits were released in 2000 and has since become president of
the St. Louis .NET User Group (http://www.stlusergroups.org). Bill is
also the founder and executive director of the International .NET ssociation
(http://www.ineta.org), which represents more than 125,000 members
worldwide. Based in St. Louis, Missouri, USA, Bill is an acclaimed author
and speaker on ASP.NET and XML Web services. He has written XML Web
Services for ASP.NET, Web Services Enhancements: Understanding the WSE for
Enterprise Applications, Visual Basic .NET Bible, and ASP.NET Professional
Secrets (all published by Wiley). Bill is a Technical Director for Reuters, the

international news and financial services company. He graduated from Western Washington University
in Bellingham, Washington, with a Russian language degree. You can reach Bill at evjen@yahoo.com.

Contributor

Allen Jones
Allen Jones has a career spanning 15 years that covers a broad range of IT disciplines, including enter-
prise management, solution and enterprise architecture, and project management. But software develop-
ment has always been Allen’s passion. Allen has architected and developed Microsoft Windows–based
solutions since 1990, including a variety of e-commerce, trading, and security systems.

Allen has co-authored four popular .NET books including the C# Programmer's Cookbook (Microsoft
Press) and Programming .NET Security (O’Reilly), and he is actively involved in the development of
courseware for Microsoft Learning covering emerging .NET technologies.

01 557599 FM.qxd 4/29/04 11:32 AM Page vi

Credits

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Bob Ipsen

Vice President and Publisher
Joseph B. Wikert

Executive Editorial Director
Mary Bednarek

Acquisitions Editors
Sharon Cox
Katie Mohr

Editorial Manager
Kathryn A. Malm

Development Editor
Sharon Nash

Production Editor
Eric Newman

Text Design & Composition
Wiley Indianapolis Composition Services

01 557599 FM.qxd 4/29/04 11:32 AM Page vii

01 557599 FM.qxd 4/29/04 11:32 AM Page viii

Contents

Introduction xxvii

Part I: The C# Language 1

Chapter 1: .NET Architecture 3

The Relationship of C# to .NET 4
The Common Language Runtime 4

Advantages of Managed Code 4
A Closer Look at Intermediate Language 7

Support for Object Orientation and Interfaces 8
Distinct Value and Reference Types 9
Strong Data Typing 9
Error Handling with Exceptions 16
Use of Attributes 17

Assemblies 17
Private Assemblies 18
Shared Assemblies 19
Reflection 19

.NET Framework Classes 19
Namespaces 21

Creating .NET Applications Using C# 21
Creating ASP.NET Applications 21
Creating Windows Forms 24
Windows Services 24

The Role of C# in the .NET Enterprise Architecture 24
Summary 26

Chapter 2: C# Basics 29

Before We Start 30
Our First C# Program 30

The Code 30
Compiling and Running the Program 31

01 557599 FM.qxd 4/29/04 11:32 AM Page ix

x

Contents

A Closer Look 31
Variables 34

Initialization of Variables 34
Variable Scope 35
Constants 38

Predefined Data Types 39
Value Types and Reference Types 39
CTS Types 40
Predefined Value Types 41
Predefined Reference Types 44

Flow Control 47
Conditional Statements 47
Loops 51
Jump Statements 54

Enumerations 55
Arrays 57
Namespaces 58

The using Statement 59
Namespace Aliases 60

The Main() Method 61
Multiple Main() Methods 61
Passing Arguments to Main() 62

More on Compiling C# Files 63
Console I/O 65
Using Comments 67

Internal Comments Within the Source Files 67
XML Documentation 68

The C# Preprocessor Directives 70
#define and #undef 70
#if, #elif, #else, and #endif 71
#warning and #error 72
#region and #endregion 72
#line 72

C# Programming Guidelines 73
Rules for Identifiers 73
Usage Conventions 74

Summary 81

Chapter 3: Objects and Types 83

Classes and Structs 84
Class Members 85

Data Members 85
Function Members 85

01 557599 FM.qxd 4/29/04 11:32 AM Page x

xi

Contents

readonly Fields 99
Structs 101

Structs Are Value Types 102
Structs and Inheritance 103
Constructors for Structs 103

The Object Class 104
System.Object Methods 104
The ToString() Method 105

Summary 107

Chapter 4: Inheritance 109

Types of Inheritance 109
Implementation Versus Interface Inheritance 109
Multiple Inheritance 110
Structs and Classes 110

Implementation Inheritance 111
Virtual Methods 112
Hiding Methods 113
Calling Base Versions of Functions 114
Abstract Classes and Functions 115
Sealed Classes and Methods 115
Constructors of Derived Classes 116

Modifiers 122
Visibility Modifiers 122
Other Modifiers 123

Interfaces 123
Defining and Implementing Interfaces 125
Derived Interfaces 128

Summary 130

Chapter 5: Operators and Casts 131

Operators 131
Operator Shortcuts 133
The Ternary Operator 134
The checked and unchecked Operators 134
The is Operator 135
The as Operator 136
The sizeof Operator 136
The typeof Operator 136

01 557599 FM.qxd 4/29/04 11:32 AM Page xi

xii

Contents

Operator Precedence 137
Type Safety 137

Type Conversions 138
Boxing and Unboxing 141

Comparing Objects for Equality 142
Comparing Reference Types for Equality 142
The ReferenceEquals() Method 142
The virtual Equals() Method 143
The static Equals() Method 143
Comparison Operator (==) 143
Comparing Value Types for Equality 143

Operator Overloading 144
How Operators Work 145
Operator Overloading Example: The Vector Struct 146
Which Operators Can You Overload? 153

User-Defined Casts 154
Implementing User-Defined Casts 155
Multiple Casting 161

Summary 165

Chapter 6: Delegates and Events 167

Delegates 167
Using Delegates in C# 169
SimpleDelegate Example 172
BubbleSorter Example 174
Multicast Delegates 177

Events 179
The Receiver’s View of Events 180
Generating Events 182

Summary 186

Chapter 7: Memory Management and Pointers 187

Memory Management under the Hood 187
Value Data Types 188
Reference Data Types 190
Garbage Collection 192

Freeing Unmanaged Resources 193
Destructors 193
The IDisposable Interface 195

01 557599 FM.qxd 4/29/04 11:32 AM Page xii

xiii

Contents

Implementing IDisposable and a Destructor 196
Unsafe Code 197

Pointers 198
Pointer Example: PointerPlayaround 207
Using Pointers to Optimize Performance 212

Summary 216

Chapter 8: Strings and Regular Expressions 217

System.String 218
Building Strings 219
Format Strings 223

Regular Expressions 229
Introduction to Regular Expressions 229
The RegularExpressionsPlayaround Example 230
Displaying Results 233
Matches, Groups, and Captures 234

Summary 237

Chapter 9: Collections 239

Examining Groups of Objects 239
Array Lists 240
Collections 241
Dictionaries 245

Summary 256

Chapter 10: Reflection 257

Custom Attributes 258
Writing Custom Attributes 258
Custom Attribute Example: WhatsNewAttributes 262

Reflection 265
The System.Type Class 266
The TypeView Example 268
The Assembly Class 271
Completing the WhatsNewAttributes Sample 272

Summary 276

01 557599 FM.qxd 4/29/04 11:32 AM Page xiii

xiv

Contents

Chapter 11: Errors and Exceptions 277

Looking into Errors and Exception Handling 277
Exception Classes 278
Catching Exceptions 280
User-Defined Exception Classes 290

Summary 297

Part II: The .NET Environment 299

Chapter 12: Visual Studio .NET 301

Working with Visual Studio .NET 2003 301
Creating a Project 304
Solutions and Projects 311
Windows Application Code 314
Reading in Visual Studio 6 Projects 314
Exploring and Coding a Project 315
Building a Project 326
Debugging 331

Other .NET Tools 334
The ASP.NET Web Matrix Project 335
WinCV 335

Summary 337

Chapter 13: Assemblies 339

What Are Assemblies? 339
The Answer to DLL Hell 340
Features of Assemblies 341
Application Domains and Assemblies 341

Assembly Structure 344
Assembly Manifests 346
Namespaces, Assemblies, and Components 346
Private and Shared Assemblies 347
Viewing Assemblies 347
Building Assemblies 348

Cross-Language Support 353
The CTS and the CLS 353
Language Independence in Action 354
CLS Requirements 364

01 557599 FM.qxd 4/29/04 11:32 AM Page xiv

xv

Contents

Global Assembly Cache 366
Native Image Generator 366
Global Assembly Cache Viewer 367
Global Assembly Cache Utility (gacutil.exe) 368

Creating Shared Assemblies 369
Shared Assembly Names 369
Creating a Shared Assembly 371

Configuration 376
Configuration Categories 376
Versioning 377
Configuring Directories 387

Summary 390

Chapter 14: .NET Security 391

Code Access Security 392
Code Groups 393
Code Access Permissions and Permissions Sets 399
Policy Levels: Machine, User, and Enterprise 403

Support for Security in the Framework 405
Demanding Permissions 406
Requesting Permissions 407
Implicit Permission 410
Denying Permissions 411
Asserting Permissions 412
Creating Code Access Permissions 414
Declarative Security 414

Role-Based Security 415
The Principal 415
Windows Principal 416
Roles 417
Declarative Role-Based Security 418

Managing Security Policy 419
The Security Configuration File 419
Managing Code Groups and Permissions 423
Turning Security On and Off 423
Resetting Security Policy 423
Creating a Code Group 423
Deleting a Code Group 424
Changing a Code Group’s Permissions 424
Creating and Applying Permissions Sets 425
Distributing Code Using a Strong Name 427

01 557599 FM.qxd 4/29/04 11:32 AM Page xv

xvi

Contents

Distributing Code Using Certificates 429
Managing Zones 435

Summary 437

Chapter 15: Threading 439

Threading 439
Applications with Multiple Threads 441
Manipulating Threads 441
The ThreadPlayaround Sample 444
Thread Priorities 448
Synchronization 449

Summary 453

Chapter 16: Distributed Applications with .NET Remoting 455

What Is .NET Remoting? 456
Application Types and Protocols 456
CLR Object Remoting 457

.NET Remoting Overview 457
Contexts 460

Activation 461
Attributes and Properties 461
Communication between Contexts 462

Remote Objects, Clients, and Servers 462
Remote Objects 462
A Simple Server 464
A Simple Client 465

.NET Remoting Architecture 466
Channels 466
Formatters 470
ChannelServices and RemotingConfiguration 471
Object Activation 472
Message Sinks 476
Passing Objects in Remote Methods 476
Lifetime Management 481

Miscellaneous .NET Remoting Features 484
Configuration Files 484
Hosting Applications 494
Classes, Interfaces, and SoapSuds 495
Asynchronous Remoting 498
Remoting and Events 499
Call Contexts 505

Summary 507

01 557599 FM.qxd 4/29/04 11:32 AM Page xvi

xvii

Contents

Chapter 17: Localization 509

Namespace System.Globalization 510
Unicode Issues 510
Cultures and Regions 511
Cultures in Action 516
Sorting 520

Resources 522
Creating Resource Files 522
ResGen 523
ResourceWriter 523
Using Resource Files 524
The System.Resources Namespace 527

Localization Example Using Visual Studio .NET 527
Outsourcing Translations 533
Changing the Culture Programmatically 534
Using Binary Resource Files 536
Using XML Resource Files 537
Automatic Fallback for Resources 539

Globalization and Localization with ASP.NET 539
A Custom Resource Reader 540

Creating a DatabaseResourceReader 541
Creating a DatabaseResourceSet 542
Creating a DatabaseResourceManager 543
Client Application for DatabaseResourceReader 544

Summary 544

Chapter 18: Deployment 545

Designing for Deployment 545
Deployment Options 546

Xcopy 546
Copy Project 546
Deployment Projects 546

Deployment Requirements 546
Simple Deployment 547

Xcopy 548
Xcopy and Web Applications 548
Copy Project 550

Installer Projects 551
What Is Windows Installer? 551
Creating Installers 552
Advanced Options 562

Summary 569

01 557599 FM.qxd 4/29/04 11:32 AM Page xvii

xviii

Contents

Part III: Windows Forms 571

Chapter 19: Windows Forms 573

Creating a Windows Form Application 574
Control Class 579

Size and Location 580
Appearance 580
User Interaction 580
Windows Functionality 582
Miscellaneous Functionality 582
Class Hierarchy 582

Standard Controls and Components 584
Forms 598

Form Class 599
Multiple Document Interface (MDI) 607
Custom Controls 610
Summary 622

Chapter 20: Graphics with GDI+ 623

Understanding Drawing Principles 624
GDI and GDI+ 624
Drawing Shapes 626
Painting Shapes Using OnPaint() 629
Using the Clipping Region 630

Measuring Coordinates and Areas 632
Point and PointF 632
Size and SizeF 634
Rectangle and RectangleF 635
Region 636

A Note about Debugging 637
Drawing Scrollable Windows 638

World, Page, and Device Coordinates 644
Colors 645

Red-Green-Blue (RGB) Values 645
The Named Colors 646
Graphics Display Modes and the Safety Palette 646
The Safety Palette 647

Pens and Brushes 648
Brushes 648
Pens 649

01 557599 FM.qxd 4/29/04 11:32 AM Page xviii

xix

Contents

Drawing Shapes and Lines 650
Displaying Images 652

Issues When Manipulating Images 655
Drawing Text 655

Simple Text Example 656
Fonts and Font Families 657
Example: Enumerating Font Families 659
Editing a Text Document: The CapsEditor Sample 661

The Invalidate() Method 666
Calculating Item Sizes and Document Size 667
OnPaint() 668
Coordinate Transforms 670
Responding to User Input 671

Printing 675
Implementing Print and Print Preview 676

Summary 680

Part IV: Data 683

Chapter 21: Data Access with .NET 685

ADO.NET Overview 685
Namespaces 686
Shared Classes 686
Database-Specific Classes 687

Using Database Connections 688
Using Connections Efficiently 689
Transactions 692

Commands 693
Executing Commands 694
Calling Stored Procedures 698

Fast Data Access: The Data Reader 701
Managing Data and Relationships: The DataSet Class 704

Data Tables 704
Data Columns 705
Data Relationships 711
Data Constraints 713

XML Schemas 715
Generating Code with XSD 716

Populating a DataSet 721
Populating a DataSet Class with a Data Adapter 722
Populating a DataSet from XML 723

01 557599 FM.qxd 4/29/04 11:32 AM Page xix

xx

Contents

Persisting DataSet Changes 723
Updating with Data Adapters 724
Writing XML Output 726

Working with ADO.NET 728
Tiered Development 728
Key Generation with SQL Server 730
Naming Conventions 732

Summary 734

Chapter 22: Viewing .NET Data 735

The DataGrid Control 735
Displaying Tabular Data 735
Data Sources 738
DataGrid Class Hierarchy 746

Data Binding 750
Simple Binding 750
Data-Binding Objects 751

Visual Studio.NET and Data Access 757
Creating a Connection 758
Selecting Data 759
Generating a DataSet 762
Updating the Data Source 763
Building a Schema 764
Other Common Requirements 770

Summary 778

Chapter 23: Manipulating XML 781

XML Standards Support in .NET 782
Introducing the System.Xml Namespace 782
Using MSXML in .NET 783
Using System.Xml Classes 786
Reading and Writing Streamed XML 786

Using the XmlTextReader Class 787
Using the XmlValidatingReader Class 791
Using the XmlTextWriter Class 794

Using the DOM in .NET 795
Using the XmlDocument Class 797

Using XPath and XSLT in .NET 802
The System.Xml.XPath Namespace 803
The System.Xml.Xsl Namespace 807

01 557599 FM.qxd 4/29/04 11:32 AM Page xx

xxi

Contents

XML and ADO.NET 812
Converting ADO.NET Data to XML 812
Converting XML to ADO.NET Data 820
Reading and Writing a DiffGram 822

Serializing Objects in XML 825
Serialization without Source Code Access 833

Summary 836

Chapter 24: Working with Active Directory 837

The Architecture of Active Directory 838
Features 838
Active Directory Concepts 839
Characteristics of Active Directory Data 843
Schema 843

Administration Tools for Active Directory 845
Active Directory Users and Computers 845
ADSI Edit 846

Active Directory Service Interfaces (ADSI) 847
Programming Active Directory 848

Classes in System.DirectoryServices 849
Binding 849
Getting Directory Entries 854
Object Collections 855
Cache 857
Creating New Objects 857
Updating Directory Entries 858
Accessing Native ADSI Objects 859
Searching in Active Directory 860

Searching for User Objects 864
User Interface 864
Get the Schema Naming Context 864
Get the Property Names of the User Class 866
Search for User Objects 867

Summary 869

Part V: Web Programming 871

Chapter 25: ASP.NET Pages 873

ASP.NET Introduction 874
State Management in ASP.NET 875

01 557599 FM.qxd 4/29/04 11:32 AM Page xxi

xxii

Contents

ASP.NET Web Forms 875
ASP.NET Server Controls 880

ADO.NET and Data Binding 892
Updating the Event-Booking Application 893
More on Data Binding 901

Application Configuration 906
Summary 907

Chapter 26: Web Services 909

SOAP 910
WSDL 911
Web Services 913

Exposing Web Services 913
Consuming Web Services 916

Extending the Event-Booking Example 918
The Event-Booking Web Service 919
The Event-Booking Client 922

Exchanging Data Using SOAP Headers 924
Summary 929

Chapter 27: User Controls and Custom Controls 931

User Controls 932
A Simple User Control 932

Custom Controls 939
Custom Control Project Configuration 940
Basic Custom Controls 944
Creating a Composite Custom Control 949

A Straw Poll Control 951
The Candidate Controls 953
The StrawPoll Control Builder 954
Straw Poll Style 955
The Straw Poll Control 956

Summary 962

Part VI: Interop 963

Chapter 28: COM Interoperability 965

.NET and COM 966
Metadata 966
Freeing Memory 966

01 557599 FM.qxd 4/29/04 11:32 AM Page xxii

xxiii

Contents

Interfaces 967
Method Binding 969
Data Types 969
Registration 969
Threading 969
Error Handling 971
Event Handling 972

Marshaling 972
Using a COM Component from a .NET Client 973

Creating a COM Component 973
Creating a Runtime Callable Wrapper 977
Threading Issues 980
Adding Connection Points 980
Using ActiveX Controls in Windows Forms 982
Using COM Objects from within ASP.NET 985

Using a .NET Component from a COM Client 985
COM Callable Wrapper 986
Creating a .NET Component 986
Creating a Type Library 987
COM Interop Attributes 989
COM Registration 992
Creating a COM Client 993
Adding Connection Points 995
Creating a Client with a Sink Object 996
Running Windows Forms Controls in Internet Explorer 997

Summary 998

Chapter 29: Enterprise Services 999

Overview 999
History 999
Where to Use Enterprise Services? 1000
Contexts 1001
Automatic Transactions 1001
Distributed Transactions 1001
Object Pooling 1002
Role-based Security 1002
Queued Components 1002
Loosely Coupled Events 1002

Creating a Simple COM+ Application 1003
Class ServicedComponent 1003
Application Attributes 1003
Creating the Component 1004

01 557599 FM.qxd 4/29/04 11:32 AM Page xxiii

xxiv

Contents

Deployment 1005
Automatic Deployment 1005
Manual Deployment 1005

Component Services Admin Tool 1006
Client Application 1008
Transactions 1009

ACID Properties 1009
Transaction Attributes 1009
Transaction Results 1010
Sample Application 1011

Summary 1021

Part VII: Windows Base Services 1023

Chapter 30: File and Registry Operations 1025

Managing the File System 1026
.NET Classes That Represent Files and Folders 1027
The Path Class 1029
Example: A File Browser 1030

Moving, Copying, and Deleting Files 1035
Example: FilePropertiesAndMovement 1035

Reading and Writing to Files 1039
Streams 1040
Reading and Writing to Binary Files 1042
Reading and Writing to Text Files 1047

Reading and Writing to the Registry 1054
The Registry 1055
The .NET Registry Classes 1057
Example: SelfPlacingWindow 1059

Summary 1066

Chapter 31: Accessing the Internet 1067

The WebClient Class 1068
Downloading Files 1068
Basic Web Client Example 1068
Uploading Files 1070

WebRequest and WebResponse Classes 1070
Other WebRequest and WebResponse Features 1071

Displaying Output as an HTML Page 1074
The Web Request and Web Response Hierarchy 1075

01 557599 FM.qxd 4/29/04 11:32 AM Page xxiv

xxv

Contents

Utility Classes 1077
URIs 1077
IP Addresses and DNS Names 1079

Lower-Level Protocols 1082
Lower-Level Classes 1083

Summary 1088

Chapter 32: Windows Services 1091

What Is a Windows Service? 1091
Windows Services Architecture 1093

Service Program 1093
Service Control Program 1095
Service Configuration Program 1095

System.ServiceProcess Namespace 1095
Creating a Windows Service 1096

A Class Library Using Sockets 1096
TcpClient Example 1100
Windows Service Project 1102
Threading and Services 1107
Service Installation 1107
Installation Program 1108

Monitoring and Controlling the Service 1113
MMC Computer Management 1114
net.exe 1114
sc.exe 1115
Visual Studio .NET Server Explorer 1116
ServiceController Class 1116

Troubleshooting 1122
Interactive Services 1123
Event Logging 1123
Performance Monitoring 1130

Power Events 1135
Summary 1135

At www.wrox.com
Appendix A: Principles of Object-Oriented Programming 1137
Appendix B: C# for Visual Basic 6 Developers 1177
Appendix C: C# for Java Developers 1225
Appendix D: C# for C++ Developers 1253

Index 1307

557599 FM.qxd 4/29/04 6:57 PM Page xxv

01 557599 FM.qxd 4/29/04 11:32 AM Page xxvi

Introduction

If we were to describe the C# language and its associated environment, the .NET Framework, as the
most important new technology for developers for many years, we would not be exaggerating. .NET is
designed to provide a new environment within which you can develop almost any application to run on
Windows, while C# is a new programming language that has been designed specifically to work with
.NET. Using C# you can, for example, write a dynamic Web page, an XML Web service, a component of a
distributed application, a database access component, or a classic Windows desktop application. This
book covers the .NET Framework 1.1, the second release of the framework, though most of this book
also applies to .NET Framework 1.0. If you are coding using version 1.0, then you might have to make
some changes, which we try to note throughout the book.

Don’t be fooled by the .NET label. The NET bit in the name is there to emphasize Microsoft’s belief that
distributed applications, in which the processing is distributed between client and server, are the way
forward, but C# is not just a language for writing Internet or network-aware applications. It provides a
means for you to code up almost any type of software or component that you might need to write for the
Windows platform. Between them, C# and .NET are set both to revolutionize the way that you write
programs, and to make programming on Windows much easier than it has ever been.

That’s quite a substantial claim, and it needs to be justified. After all, we all know how quickly computer
technology changes. Every year Microsoft brings out new software, programming tools, or versions of
Windows, with the claim that these will be hugely beneficial to developers. So what’s different about
.NET and C#?

The Significance of .NET and C#
In order to understand the significance of .NET, it is useful to remind ourselves of the nature of many of
the Windows technologies that have appeared in the past ten years or so. Although they may look quite
different on the surface, all of the Windows operating systems from Windows 3.1 (introduced in 1992)
through Windows Server 2003 have the same familiar Windows API at their core. As we’ve progressed
through new versions of Windows, huge numbers of new functions have been added to the API, but this
has been a process of evolving and extending the API rather than replacing it.

The same can be said for many of the technologies and frameworks that we’ve used to develop software
for Windows. For example, COM (Component Object Model) originated as OLE (Object Linking and
Embedding). At the time, it was, to a large extent, simply a means by which different types of Office
documents could be linked, so that for example you could place a small Excel spreadsheet in your Word
document. From that it evolved into COM, DCOM (Distributed COM), and eventually COM+—a
sophisticated technology that formed the basis of the way almost all components communicated, as well
as implementing transactions, messaging services, and object pooling.

Microsoft chose this evolutionary approach to software for the obvious reason that it is concerned about
backward compatibility. Over the years a huge base of third-party software has been written for
Windows, and Windows wouldn’t have enjoyed the success it has had if every time Microsoft intro-
duced a new technology it broke the existing code base!

01 557599 FM.qxd 4/29/04 11:32 AM Page xxvii

xxviii

Introduction

While backward compatibility has been a crucial feature of Windows technologies and one of the
strengths of the Windows platform, it does have a big disadvantage. Every time some technology
evolves and adds new features, it ends up a bit more complicated than it was before.

It was clear that something had to change. Microsoft couldn’t go on forever extending the same develop-
ment tools and languages, always making them more and more complex in order to satisfy the conflict-
ing demands of keeping up with the newest hardware and maintaining backward compatibility with
what was around when Windows first became popular in the early 1990s. There comes a point where
you have to start with a clean slate if you want a simple yet sophisticated set of languages, environ-
ments, and developer tools, which make it easy for developers to write state-of-the-art software.

This fresh start is what C# and .NET are all about. Roughly speaking, .NET is a new framework—a new
API—for programming on the Windows platform. Along with the .NET Framework, C# is a new lan-
guage that has been designed from scratch to work with .NET, as well as to take advantage of all the
progress in developer environments and in our understanding of object-oriented programming princi-
ples that have taken place over the past 20 years.

Before we continue, we should make it clear that backward compatibility has not been lost in the pro-
cess. Existing programs will continue to work, and .NET was designed with the ability to work with
existing software. Communication between software components on Windows presently almost entirely
takes place using COM. Taking account of this, .NET does have the ability to provide wrappers around
existing COM components so that .NET components can talk to them.

It is true that you don’t need to learn C# in order to write code for .NET. Microsoft has extended C++,
provided another new language called J#, and made substantial changes to Visual Basic to turn it into
the more powerful language Visual Basic .NET, in order to allow code written in either of these lan-
guages to target the .NET environment. These other languages, however, are hampered by the legacy of
having evolved over the years rather than having been written from the start with today’s technology
in mind.

This book will equip you to program in C#, while at the same time provide the necessary background in
how the .NET architecture works. We will not only cover the fundamentals of the C# language but also
go on to give examples of applications that use a variety of related technologies, including database
access, dynamic Web pages, advanced graphics, and directory access. The only requirement is that you
be familiar with at least one other high-level language used on Windows—either C++, Visual Basic, or
J++.

Advantages of .NET
We’ve talked in general terms about how great .NET is, but we haven’t said much about how it helps to
make your life as a developer easier. In this section, we’ll discuss some of the improved features of .NET
in brief.

❑ Object-Oriented Programming—both the .NET Framework and C# are entirely based on
object-oriented principles right from the start.

❑ Good Design—a base class library, which is designed from the ground up in a highly intuitive
way.

01 557599 FM.qxd 4/29/04 11:32 AM Page xxviii

xxix

Introduction

❑ Language Independence—with .NET, all of the languages Visual Basic .NET, C#, J#, and man-
aged C++ compile to a common Intermediate Language. This means that languages are inter-
operable in a way that has not been seen before.

❑ Better Support for Dynamic Web Pages—while ASP offered a lot of flexibility, it was also ineffi-
cient because of its use of interpreted scripting languages, and the lack of object-oriented design
often resulted in messy ASP code. .NET offers an integrated support for Web pages, using a new
technology—ASP.NET. With ASP.NET, code in your pages is compiled, and may be written in a
.NET-aware high-level language such as C#, J#, or Visual Basic .NET.

❑ Efficient Data Access—a set of .NET components, collectively known as ADO.NET, provides
efficient access to relational databases and a variety of data sources. Components are also avail-
able to allow access to the file system, and to directories. In particular, XML support is built into
.NET, allowing you to manipulate data, which may be imported from or exported to non-
Windows platforms.

❑ Code Sharing—.NET has completely revamped the way that code is shared between applica-
tions, introducing the concept of the assembly, which replaces the traditional DLL. Assemblies
have formal facilities for versioning, and different versions of assemblies can exist side by side.

❑ Improved Security—each assembly can also contain built-in security information that can indi-
cate precisely who or what category of user or process is allowed to call which methods on
which classes. This gives you a very fine degree of control over how the assemblies that you
deploy can be used.

❑ Zero Impact Installation—there are two types of assembly: shared and private. Shared assem-
blies are common libraries available to all software, while private assemblies are intended only
for use with particular software. A private assembly is entirely self-contained, so the process of
installing it is simple. There are no registry entries; the appropriate files are simply placed in the
appropriate folder in the file system.

❑ Support for Web Services—.NET has fully integrated support for developing Web services as
easily as you’d develop any other type of application.

❑ Visual Studio .NET 2003—.NET comes with a developer environment, Visual Studio .NET,
which can cope equally well with C++, C#, J#, and Visual Basic .NET, as well as with ASP.NET
code. Visual Studio .NET integrates all the best features of the respective language-specific envi-
ronments of Visual Studio 6.

❑ C#—C# is a new object-oriented language intended for use with .NET.

We will be looking more closely at the benefits of the .NET architecture in Chapter 1.

What’s New in the .NET Framework 1.1
The first version of the .NET Framework (1.0) was released in 2002 to much enthusiasm. The latest ver-
sion, the .NET Framework 1.1, was introduced in 2003 and is considered a minor release of the frame-
work. Even though this is considered a minor release of the framework, there are some pretty
outstanding new changes and additions to this new version and it definitely deserves some attention.

With all the changes made to version 1.1 of the framework, Microsoft tried to ensure that there were
minimal breaking changes to code developed in using version 1.0. Even though the effort was there,

01 557599 FM.qxd 4/29/04 11:32 AM Page xxix

xxx

Introduction

there are some breaking changes between the versions. A lot of these breaking changes were made in
order to improve security. You will find a comprehensive list of breaking changes on Microsoft’s
GotDotNet Web site at http://www.gotdotnet.com.

The following details some of the changes that are new to the .NET Framework 1.1 as well as new addi-
tions to Visual Studio .NET 2003—the development environment for the .NET Framework 1.1.

Mobility
When using the .NET Framework 1.0 and Visual Studio .NET 2002, to be able to build mobile applica-
tions you had to go out and download the Microsoft Mobile Internet Toolkit (MMIT). Now, with the
.NET Framework 1.1 and Visual Studio .NET 2003, this is built right in and therefore no separate down-
load is required.

This is all quite evident when you create a new project using Visual Studio .NET 2003. For instance,
when you look at the list of available C# project types you can create, you will find ASP.NET Mobile
Web Application and Smart Device Application. You would use the ASP.NET Mobile Web Application
project type to build Web-based mobile applications (as the name describes). Building a Smart Device
Application allows you to create applications for the Pocket PC or any other Windows CE device. The
thick-client applications built for a Windows CE device utilize the Compact Framework, a trimmed-
down version of the .NET Framework.

Opening one of these mobile project types, you will then be presented with a list of available mobile
server controls in the Visual Studio .NET Toolbox that you can then use to build your applications.

New Data Providers
Another big area of change in the framework is to ADO.NET. ADO.NET, the .NET way of accessing and
working with data, now has two new data providers—one for ODBC and another for Oracle.

An ODBC data provider was available when working with the .NET Framework 1.0, but this required a
separate download. Also, once downloaded, the namespace for this data provider was
Microsoft.Data.Odbc.

With the .NET Framework 1.1, the ODBC data provider is built right in, and no separate download is
required. You will now be able to work with ODBC data sources through the System.Data.Odbc
namespace. This also gives you access to ODBC data connection, data adapter, and data reader objects.

The other new data provider is for working with Oracle databases. This database is quite popular in the
enterprise space, and the lack of an Oracle data provider often times was a big barrier for .NET to enter
this space. To work with this new data provider, you will need to make a reference to the System.Data
.OracleClient namespace in your project.

Make sure that you create a staging server to completely test the upgrade of your
applications to the .NET Framework 1.1 as opposed to just upgrading a live
application.

01 557599 FM.qxd 4/29/04 11:32 AM Page xxx

xxxi

Introduction

A New Language: Visual J#
When you install Visual Studio .NET 2003, you will notice that a new language is available to you for
building .NET applications—J#. Prior to this, when using Visual Studio .NET 2002, you were forced to
install the language as a separate download.

Visual J#, or simply J# (pronounced J-sharp), is the next version of the Visual J++ language. You will find
that it is very similar to the Java language. The hope with this language is that Java developers will find
it an easy transition to .NET. A J# developer will use the .NET class libraries in place of the Java runtime
libraries.

J# developers will have access to much of the same capabilities as a C# developer on the .NET platform.
Using J#, it is just as possible to build .NET classes, Windows Forms applications, ASP.NET Web applica-
tions, and XML Web services. In addition, you can use J# in the same cross-language ways that you can
use other .NET-compliant languages. For instance, you can build a J# class and use this class in your C#
application or vice versa.

Also like the other languages, there is a built-in compiler for J# now in the .NET Framework. To find any
of the compilers, you will see them at C:\Windows\Microsoft.NET\Framework\v1.1.xxxx. The C#
compiler is csc.exe, the Visual Basic .NET compiler is vbc.exe, and the J# compiler is vjc.exe.

Side-by-Side Execution
Side-by-side execution is the ability to run multiple versions of an application on the same server where
different application versions target different runtime versions. This was always promised to us as
developers, but it was always hard to visualize as only one version of the framework was available.
With the release of a second version of the framework (.NET Framework 1.1), we can actually see that it
is possible to have this capability. Therefore, you can build new versions of your .NET applications that
target this latest .NET Framework version release, but at the same time you can allow the older versions
of your application that target the .NET Framework 1.0 to continue to work just as they always have.

Support for Internet Protocol Version 6 (IPv6)
Presently, much of the Internet runs using IP version 4, also referred to as IPv4. IPv4 gives us IP
addresses such as 255.255.255.255. The .NET Framework 1.1 now supports IPv6, which was created
in 1995 to address many of the problems that the world was facing with IPv4. Most of the problems deal
with the fact that by the world’s continual use of IPv4, we are rapidly running out of available IP
addresses.

IPv6 is supported in the .NET Framework 1.1 through the System.Net namespace as well as in
ASP.NET and XML Web services.

Visual Studio .NET 2003 Enhancements
Along with the upgrade to the .NET Framework, Visual Studio .NET itself has also undergone an
upgrade. You will notice that there are some new graphics on the Start Page available and that things on
this page are organized a little differently. Besides that, the biggest thing to notice with this new IDE is
that once installed, it does not simply upgrade Visual Studio .NET 2002 to Visual Studio .NET 2003.

01 557599 FM.qxd 4/29/04 11:32 AM Page xxxi

xxxii

Introduction

Instead, it installs a completely new version of the IDE, and if you already have VS.NET 2002 on your
machine, then you will have two complete VS.NET IDEs on your box. The reason for this is so that if you
want to build and work with applications that target the .NET Framework version 1.0, then you will use
VS.NET 2002, and if you want to build and work with applications that target the .NET Framework ver-
sion 1.1 then you will use VS.NET 2003.

You should also be aware that when you open a project that was built using VS.NET 2002, you will be
asked if you want to upgrade the project to be a VS.NET 2003 project. Doing this will then cause the pro-
ject to be re-targeted at the .NET Framework 1.1. Be careful about doing this as it is an irreversible process.

Besides these big changes, you will find that VS.NET 2003 is a better IDE with smarter Intellisense and
code completion. This version of the IDE is the IDE that is used throughout the examples of this book.

Where C# Fits In
In one sense, C# can be seen as being the same thing to programming languages as .NET is to the
Windows environment. Just as Microsoft has been adding more and more features to Windows and the
Windows API over the past decade, Visual Basic and C++ have undergone expansion. Although Visual
Basic and C++ have ended up as hugely powerful languages as a result of this, both languages also suf-
fer from problems due to the legacies of how they have evolved.

In the case of Visual Basic 6 and earlier, the main strength of the language was the fact that it was simple
to understand and didn’t make many programming tasks easy, largely hiding the details of the
Windows API and the COM component infrastructure from the developer. The downside to this was
that Visual Basic was never truly object-oriented, so that large applications quickly become disorganized
and hard to maintain. As well as this, because Visual Basic’s syntax was inherited from early versions of
BASIC (which, in turn, was designed to be intuitively simple for beginning programmers to understand,
rather than to write large commercial applications), it didn’t really lend itself to well-structured or
object-oriented programs.

C++, on the other hand, has its roots in the ANSI C++ language definition. It isn’t completely ANSI-
compliant for the simple reason that Microsoft first wrote its C++ compiler before the ANSI definition
had become official, but it comes close. Unfortunately, this has led to two problems. First, ANSI C++ has
its roots in a decade-old state of technology, and this shows up in a lack of support for modern concepts
(such as Unicode strings and generating XML documentation), and in some archaic syntax structures
designed for the compilers of yesteryear (such as the separation of declaration from definition of mem-
ber functions). Second, Microsoft has been simultaneously trying to evolve C++ into a language that is
designed for high-performance tasks on Windows, and in order to achieve that they’ve been forced to
add a huge number of Microsoft-specific keywords as well as various libraries to the language. The
result is that on Windows, the language has become a complete mess. Just ask C++ developers how
many definitions for a string they can think of: char*, LPTSTR, string, CString (MFC version),
CString (WTL version), wchar_t*, OLECHAR*, and so on.

Now enter .NET—a completely new environment that is going to involve new extensions to both lan-
guages. Microsoft has gotten around this by adding yet more Microsoft-specific keywords to C++, and
by completely revamping Visual Basic into Visual Basic .NET, a language that retains some of the basic
VB syntax but that is so different in design that we can consider it to be, for all practical purposes, a new
language.

01 557599 FM.qxd 4/29/04 11:32 AM Page xxxii

xxxiii

Introduction

It’s in this context that Microsoft has decided to give developers an alternative—a language designed
specifically for .NET, and designed with a clean slate. Visual C# .NET is the result. Officially, Microsoft
describes C# as a “simple, modern, object-oriented, and type-safe programming language derived from
C and C++.” Most independent observers would probably change that to “derived from C, C++, and
Java.” Such descriptions are technically accurate but do little to convey the beauty or elegance of the lan-
guage. Syntactically, C# is very similar to both C++ and Java, to such an extent that many keywords are
the same, and C# also shares the same block structure with braces ({}) to mark blocks of code, and semi-
colons to separate statements. The first impression of a piece of C# code is that it looks quite like C++ or
Java code. Behind that initial similarity, however, C# is a lot easier to learn than C++, and of comparable
difficulty to Java. Its design is more in tune with modern developer tools than both of those other lan-
guages, and it has been designed to give us, simultaneously, the ease of use of Visual Basic, and the high-
performance, low-level memory access of C++ if required. Some of the features of C# are:

❑ Full support for classes and object-oriented programming, including both interface and imple-
mentation inheritance, virtual functions, and operator overloading.

❑ A consistent and well-defined set of basic types.

❑ Built-in support for automatic generation of XML documentation.

❑ Automatic cleanup of dynamically allocated memory.

❑ The facility to mark classes or methods with user-defined attributes. This can be useful for doc-
umentation and can have some effects on compilation (for example, marking methods to be
compiled only in debug builds).

❑ Full access to the .NET base class library, as well as easy access to the Windows API (if you
really need it, which won’t be all that often).

❑ Pointers and direct memory access are available if required, but the language has been designed
in such a way that you can work without them in almost all cases.

❑ Support for properties and events in the style of Visual Basic.

❑ Just by changing the compiler options, you can compile either to an executable or to a library of
.NET components that can be called up by other code in the same way as ActiveX controls
(COM components).

❑ C# can be used to write ASP.NET dynamic Web pages and XML Web services.

Most of the above statements, it should be pointed out, do also apply to Visual Basic .NET and Managed
C++. The fact that C# is designed from the start to work with .NET, however, means that its support for
the features of .NET is both more complete, and offered within the context of a more suitable syntax than
for those other languages. While the C# language itself is very similar to Java, there are some improve-
ments: in particular, Java is not designed to work with the .NET environment.

Before we leave the subject, we should point out a couple of limitations of C#. The one area the language
is not designed for is time-critical or extremely high performance code—the kind where you really are
worried about whether a loop takes 1,000 or 1,050 machine cycles to run through, and you need to clean
up your resources the millisecond they are no longer needed. C++ is likely to continue to reign supreme
among low-level languages in this area. C# lacks certain key facilities needed for extremely high perfor-
mance apps, including the ability to specify inline functions and destructors that are guaranteed to run
at particular points in the code. However, the proportions of applications that fall into this category are
very low.

01 557599 FM.qxd 4/29/04 11:32 AM Page xxxiii

xxxiv

Introduction

What You Need to Write and Run C# Code
.NET will run on Windows 98, 2000, XP, and 2003. In order to write code using .NET, you will need to
install the .NET SDK unless you are using Windows Server 2003, which comes with the .NET
Framework 1.0 and 1.1 already installed. Unless you are intending to write your C# code using a text
editor or some other third party developer environment, you will almost certainly also want Visual
Studio .NET 2003. The full SDK isn’t needed to run managed code, but the .NET runtime is needed. You
may find you need to distribute the .NET runtime with your code for the benefit of those clients who do
not have it already installed.

What This Book Covers
In this book, we start by reviewing the overall architecture of .NET in the next chapter in order to give us
the background we need to be able to write managed code. After that the book is divided into a number
of sections that cover both the C# language and its application in a variety of areas.

Part I: The C# Language
This section gives us a good grounding in the C# language itself. This section doesn’t presume knowl-
edge of any particular language, although it does assume you are an experienced programmer. We start
by looking at C#’s basic syntax and datatypes, and then discuss the object-oriented features of C# before
moving on to look at more advanced C# programming topics.

Part II: The .NET Environment
In this section, we look at the principles of programming in the .NET environment. In particular, we look
at Visual Studio .NET, security, threading deployment of .NET applications, and how to generate your
own libraries as assemblies.

Part III: Windows Forms
This section focuses on building classic Windows applications, which are called Windows Forms in
.NET. Windows Forms are the thick-client version of applications, and using .NET to build these types of
applications is a quick and easy way of accomplishing this task. In addition to looking at Windows
Forms, we will take a look at GDI+, which is the technology we will use for building applications that
include advanced graphics.

Part IV: Data
Here we look at accessing databases with ADO.NET, and at interacting with directories and Active
Directory. We also extensively cover support in .NET for XML and on the Windows operating system side.

Part V: Web Programming
In this section, we cover writing components that will run on Web sites, serving up Web pages. This cov-
ers both ASP.NET and the writing of XML Web services.

01 557599 FM.qxd 4/29/04 11:32 AM Page xxxiv

xxxv

Introduction

Part VI: Interop
Backward compatibility with COM is an important part of .NET. Not only that, but COM+ is not strictly
legacy—it will still be responsible for transactions, object pooling, and message queuing. In this section
we’ll look at the support .NET offers for working with COM and COM+, as well as discussing how to
write C# code that interacts with these technologies.

Part VII: Windows Base Services
This section, the concluding part of the main body of the book, covers accessing the file and registry,
accessing the Internet through your applications, and working with Windows Services.

Part VIII: Appendices (Web Site Only)
This section includes several appendices detailing the principles of object-oriented programming as well
as programming language–specific information about C#. These appendices are available as PDFs on the
Web site accompanying this book (http://www.wrox.com).

Conventions
We have used a number of different styles of text and layout in the book to help differentiate between
the different kinds of information. Here are examples of the styles we use and an explanation of what
they mean:

Bullets appear indented, with each new bullet marked as follows:

❑ Important Words are in a bold type font.

❑ Words that appear on the screen in menus like the File or Window are in a similar font to the
one that you see on screen.

❑ Keys that you press on the keyboard, like Ctrl and Enter, are in italics.

Code appears in a number of different ways. If it’s a word that we’re talking about in the text—for exam-
ple, when discussing the if...else loop—it’s in this font. If it’s a block of code that you can type in
as a program and run, then it’s also in a gray box:

public static void Main()
{

AFunc(1,2,”abc”);
}

Sometimes you’ll see code in a mixture of styles, like this:

// If we haven’t reached the end, return true, otherwise
// set the position to invalid, and return false.
pos++;
if (pos < 4)

return true;

01 557599 FM.qxd 4/29/04 11:32 AM Page xxxv

xxxvi

Introduction

else {
pos = -1;
return false;

}

The code with a white background is code we’ve already looked at and that we don’t wish to examine
further.

Advice, hints, and background information come in an italicized, indented font like this.

We demonstrate the syntactical usage of methods, properties (and so on) using the following format:

Regsvcs BookDistributor.dll [COM+AppName] [TypeLibrary.tbl]

Here, italicized parts indicate object references, variables, or parameter values to be inserted; the square
braces indicate optional parameters.

Source Code
As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is avail-
able for download at http://www.wrox.com. Once at the site, simply locate the book’s title (either by
using the Search box or by using one of the title lists) and click the Download Code link on the book’s
detail page to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is
0-7645-5759-9.

Once you download the code, just decompress it with your favorite compression tool. Alternately,
you can go to the main Wrox code download page at http://www.wrox.com/dynamic/books/
download.aspx to see the code available for this book and all other Wrox books.

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one is per-
fect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata you may save another
reader hours of frustration, and at the same time you will be helping us provide even higher quality
information.

Important pieces of information come in boxes like this.

01 557599 FM.qxd 4/29/04 11:32 AM Page xxxvi

xxxvii

Introduction

To find the errata page for this book, go to http://www.wrox.com and locate the title using the Search
box or one of the title lists. Then, on the book details page, click the Book Errata link. On this page you
can view all errata that have been submitted for this book and posted by Wrox editors. A complete book
list including links to each book’s errata is also available at http://www.wrox.com/misc-pages/
booklist.shtml.

If you don’t spot “your” error already on the Book Errata page, go to http://www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We’ll check the
information and, if appropriate, post a message to the book’s errata page and fix the problem in subse-
quent editions of the book.

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based sys-
tem for you to post messages relating to Wrox books and related technologies and to interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

At http://p2p.wrox.com you will find a number of different forums that will help you not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Supply the required information to join as well as any optional information you wish to provide
and click Submit.

You will receive an e-mail with information describing how to verify your account and complete the
joining process.

You can read messages in the forums without joining P2P, but you must join in order to post your own
messages.

Once you join, you can post new messages and respond to other users’ posts. You can read messages at
any time on the Web. If you would like to have new messages from a particular forum e-mailed to you,
click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to ques-
tions about how the forum software works as well as many common questions specific to P2P and Wrox
books. To read the FAQs, click the FAQ link on any P2P page.

01 557599 FM.qxd 4/29/04 11:32 AM Page xxxvii

01 557599 FM.qxd 4/29/04 11:32 AM Page xxxviii

Part I: The C# Language

Chapter 1: .NET Architecture

Chapter 2: C# Basics

Chapter 3: Objects and Types

Chapter 4: Inheritance

Chapter 5: Operators and Casts

Chapter 6: Delegates and Events

Chapter 7: Memory Management and Pointers

Chapter 8: Strings and Regular Expressions

Chapter 9: Collections

Chapter 10: Reflection

Chapter 11: Errors and Exceptions

02 557559 PP01.qxd 4/29/04 11:25 AM Page 1

02 557559 PP01.qxd 4/29/04 11:25 AM Page 2

.NET Architecture

You’ll find that we emphasize throughout this book that the C# language cannot be viewed in iso-
lation, but must be considered in parallel with the .NET Framework. The C# compiler specifically
targets .NET, which means that all code written in C# will always run within the .NET Framework.
This has two important consequences for the C# language:

❑ The architecture and methodologies of C# reflect the underlying methodologies of .NET.

❑ In many cases, specific language features of C# actually depend upon features of .NET,
or of the .NET base classes.

Because of this dependence, it is important to gain some understanding of the architecture and
methodology of .NET before we begin C# programming. That is the purpose of this chapter.

We will begin by going over what happens when all code (including C#) that targets .NET is com-
piled and run. Once we have this broad overview, we will take a more detailed look at the
Microsoft Intermediate Language (MSIL or simply IL), the assembly language which all compiled
code ends up in on .NET. In particular, we will see how IL, in partnership with the Common Type
System (CTS) and Common Language Specification (CLS) works to give us interoperability between
languages that target .NET. We’ll also discuss where common languages (including Visual Basic
and C++) fit into .NET.

Once we’ve done that, we will move on to examine some of the other features of .NET, including
assemblies, namespaces, and the .NET base classes. We’ll finish the chapter with a brief look at the
kinds of applications we can create as C# developers.

03 557599 Ch01.qxd 4/29/04 11:24 AM Page 3

The Relationship of C# to .NET
C# is a relatively new programming language, and is significant in two respects:

❑ It is specifically designed and targeted for use with Microsoft’s .NET Framework (a feature-rich
platform for the development, deployment, and execution of distributed applications).

❑ It is a language based on the modern object-oriented design methodology, and when designing
it Microsoft has been able to learn from the experience of all the other similar languages that
have been around since object-oriented principles came to prominence some 20 years ago.

One important thing to make clear is that C# is a language in its own right. Although it is designed to
generate code that targets the .NET environment, it is not itself part of .NET. There are some features
that are supported by .NET but not by C#, and you might be surprised to learn that there are actually
features of the C# language that are not supported by .NET (for example, some instances of operator
overloading)!

However, since the C# language is intended for use with .NET, it is important for us to have an under-
standing of this Framework if we want to develop applications in C# effectively. So, in this chapter we’re
going to take some time to peek underneath the surface of .NET. Let’s get started.

The Common Language Runtime
Central to the .NET Framework is its runtime execution environment, known as the Common Language
Runtime (CLR) or the .NET runtime. Code running under the control of the CLR is often termed managed
code.

However, before it can be executed by the CLR, any source code that we develop (in C# or some other
language) needs to be compiled. Compilation occurs in two steps in .NET:

1. Compilation of source code to IL

2. Compilation of IL to platform-specific code by the CLR

This two-stage compilation process is very important, because the existence of the IL (managed code) is
the key to providing many of the benefits of .NET. Let’s see why.

Advantages of Managed Code
Microsoft intermediate language shares with Java byte code the idea that it is a low-level language with
a simple syntax (based on numeric codes rather than text), which can be very quickly translated into
native machine code. Having this well-defined universal syntax for code has significant advantages.

Platform independence
First, it means that the same file containing byte code instructions can be placed on any platform; at
runtime the final stage of compilation can then be easily accomplished so that the code will run on that
particular platform. In other words, by compiling to IL we obtain platform independence for .NET, in
much the same way as compiling to Java byte code gives Java platform independence.

4

Chapter 1

03 557599 Ch01.qxd 4/29/04 11:24 AM Page 4

You should note that the platform independence of .NET is only theoretical at present because, at the
time of writing, a complete implementation of .NET is only available for Windows. However, there is a
partial implementation available (see for example the Mono project, an effort to create an open source
implementation of .NET, at www.go-mono.com/).

Performance improvement
Although we previously made comparisons with Java, IL is actually a bit more ambitious than Java byte
code. IL is always Just-In-Time compiled (known as JIT compilation), whereas Java byte code was often
interpreted. One of the disadvantages of Java was that, on execution, the process of translating from Java
byte code to native executable resulted in a loss of performance (with the exception of more recent cases,
where Java is JIT compiled on certain platforms).

Instead of compiling the entire application in one go (which could lead to a slow start-up time), the JIT
compiler simply compiles each portion of code as it is called (just-in-time). When code has been compiled
once, the resultant native executable is stored until the application exits, so that it does not need to be
recompiled the next time that portion of code is run. Microsoft argues that this process is more efficient
than compiling the entire application code at the start, because of the likelihood that large portions of any
application code will not actually be executed in any given run. Using the JIT compiler, such code will
never be compiled.

This explains why we can expect that execution of managed IL code will be almost as fast as executing
native machine code. What it doesn’t explain is why Microsoft expects that we will get a performance
improvement. The reason given for this is that, since the final stage of compilation takes place at runtime,
the JIT compiler will know exactly what processor type the program will run on. This means that it can
optimize the final executable code to take advantage of any features or particular machine code instruc-
tions offered by that particular processor.

Traditional compilers will optimize the code, but they can only perform optimizations that are indepen-
dent of the particular processor that the code will run on. This is because traditional compilers compile
to native executable before the software is shipped. This means that the compiler doesn’t know what
type of processor the code will run on beyond basic generalities, such as that it will be an x86-compatible
processor or an Alpha processor. Visual Studio 6, for example, optimizes for a generic Pentium machine,
so the code that it generates cannot take advantage of hardware features of Pentium III processors. On
the other hand, the JIT compiler can do all the optimizations that Visual Studio 6 can, and in addition it
will optimize for the particular processor the code is running on.

Language interoperability
The use of IL not only enables platform independence; it also facilitates language interoperability. Simply
put, you can compile to IL from one language, and this compiled code should then be interoperable with
code that has been compiled to IL from another language.

You’re probably now wondering which languages aside from C# are interoperable with .NET, so let’s
briefly discuss how some of the other common languages fit into .NET.

Visual Basic .NET
Visual Basic .NET has undergone a complete revamp from Visual Basic 6 to bring it up-to-date with .NET.
The way that Visual Basic has evolved over the last few years means that in its previous version, Visual
Basic 6, it was not a suitable language for running .NET programs. For example, it is heavily integrated

5

.NET Architecture

03 557599 Ch01.qxd 4/29/04 11:24 AM Page 5

into COM and works by exposing only event handlers as source code to the developer—most of the back-
ground code is not available as source code. Not only that, it does not support implementation inheritance,
and the standard data types Visual Basic 6 uses are incompatible with .NET.

Visual Basic 6 was upgraded to Visual Basic .NET, and the changes that were made to the language are
so extensive you might as well regard Visual Basic .NET as a new language. Existing Visual Basic 6 code
does not compile as Visual Basic .NET code. Converting a Visual Basic 6 program to Visual Basic .NET
requires extensive changes to the code. However, Visual Studio .NET (the upgrade of VS for use with
.NET) can do most of the changes for you. If you attempt to read a Visual Basic 6 project into Visual
Studio .NET, it will upgrade the project for you, which means that it will rewrite the Visual Basic 6
source code into Visual Basic .NET source code. Although this means that the work involved for you is
heavily cut down, you will need to check through the new Visual Basic .NET code to make sure that the
project still works as intended because the conversion might not be perfect.

One side effect of this language upgrade is that it is no longer possible to compile Visual Basic .NET to
native executable code. Visual Basic .NET compiles only to IL, just as C# does. If you need to continue
coding in Visual Basic 6, you may do so, but the executable code produced will completely ignore the
.NET Framework, and you’ll need to keep Visual Studio 6 installed if you want to continue to work in
this developer environment.

Visual C++ .NET
Visual C++ 6 already had a large number of Microsoft-specific extensions on Windows. With Visual C++
.NET, extensions have been added to support the .NET Framework. This means that existing C++ source
code will continue to compile to native executable code without modification. It also means, however,
that it will run independently of the .NET runtime. If you want your C++ code to run within the .NET
Framework, then you can simply add the following line to the beginning of your code:

#using <mscorlib.dll>

You can also pass the flag /clr to the compiler, which then assumes that you want to compile to man-
aged code, and will hence emit IL instead of native machine code. The interesting thing about C++ is
that when you compile to managed code, the compiler can emit IL that contains an embedded native
executable. This means that you can mix managed types and unmanaged types in your C++ code. Thus
the managed C++ code:

class MyClass
{

defines a plain C++ class, whereas the code:

__gc class MyClass
{

will give you a managed class, just as if you’d written the class in C# or Visual Basic .NET. The advan-
tage of using managed C++ over C# code is that we can call unmanaged C++ classes from managed C++
code without having to resort to COM interop.

The compiler raises an error if you attempt to use features that are not supported by .NET on managed
types (for example, templates or multiple inheritance of classes). You will also find that you will need to

6

Chapter 1

03 557599 Ch01.qxd 4/29/04 11:24 AM Page 6

use nonstandard C++ features (such as the __gc keyword shown in the previous code) when using
managed classes.

Because of the freedom that C++ allows in terms of low-level pointer manipulation and so on, the C++
compiler is not able to generate code that will pass the CLR’s memory type safety tests. If it’s important
that your code is recognized by the CLR as memory type safe, then you’ll need to write your source code
in some other language (such as C# or Visual Basic .NET).

Visual J# .NET
The latest language to be added to the mix is Visual J# .NET. Prior to .NET Framework 1.1, users were
able to use J# only after making a separate download. Now the J# language is built into the .NET
Framework. Because of this, J# users are able to take advantage of all the usual features of Visual Studio
.NET. Microsoft expects that most J++ users will find it easiest to use J# if they want to work with .NET.
Instead of being targeted at the Java runtime libraries, J# uses the same base class libraries that the rest
of the .NET compliant languages use. This means that you can use J# for building ASP.NET Web applica-
tions, Windows Forms, XML Web services, and everything else that is possible—just as C# and Visual
Basic .NET can.

Scripting languages
Scripting languages are still around, although, in general, their importance is likely to decline with the
advent of .NET. JScript, on the other hand, has been upgraded to JScript .NET. We can now write ASP.NET
pages in JScript .NET, run JScript .NET as a compiled rather than an interpreted language, and write
strongly typed JScript .NET code. With ASP.NET there is no reason to use scripting languages in server-
side Web pages. VBA is, however, still used as a language for Microsoft Office and Visual Studio macros.

COM and COM+
Technically speaking, COM and COM+ aren’t technologies targeted at .NET, because components based
on them cannot be compiled into IL (although it’s possible to do so to some degree using managed C++, if
the original COM component was written in C++). However, COM+ remains an important tool, because
its features are not duplicated in .NET. Also, COM components will still work—and .NET incorporates
COM interoperability features that make it possible for managed code to call up COM components and
vice versa (this is discussed in Chapter 29). In general, however, you will probably find it more convenient
for most purposes to code new components as .NET components, so that you can take advantage of the
.NET base classes as well as the other benefits of running as managed code.

A Closer Look at Intermediate Language
From what we learned in the previous section, Microsoft intermediate language obviously plays a fun-
damental role in the .NET Framework. As C# developers, we now understand that our C# code will be
compiled into IL before it is executed (indeed, the C# compiler only compiles to managed code). It makes
sense, then, that we should now take a closer look at the main characteristics of IL, since any language
that targets .NET would logically need to support the main characteristics of IL too.

Here are the important features of IL:

7

.NET Architecture

03 557599 Ch01.qxd 4/29/04 11:24 AM Page 7

❑ Object-orientation and use of interfaces

❑ Strong distinction between value and reference types

❑ Strong data typing

❑ Error handling through the use of exceptions

❑ Use of attributes

Let’s now take a closer look at each of these characteristics.

Support for Object Orientation and Interfaces
The language independence of .NET does have some practical limitations. IL is inevitably going to imple-
ment some particular programming methodology, which means that languages targeting it are going to
have to be compatible with that methodology. The particular route that Microsoft has chosen to follow for
IL is that of classic object-oriented programming, with single implementation inheritance of classes.

Those readers unfamiliar with the concepts of object orientation should refer to Appendix A for more
information. Appendix A is posted at www.wrox.com.

Besides classic object-oriented programming, IL also brings in the idea of interfaces, which saw their first
implementation under Windows with COM. .NET interfaces are not the same as COM interfaces; they do
not need to support any of the COM infrastructure (for example, they are not derived from IUnknown,
and they do not have associated GUIDs). However, they do share with COM interfaces the idea that they
provide a contract, and classes that implement a given interface must provide implementations of the
methods and properties specified by that interface.

Object orientation and language interoperability
We have now seen that working with .NET means compiling to IL, and that in turn means that you will
need to use traditional object-oriented methodologies. However, that alone is not sufficient to give us
language interoperability. After all, C++ and Java both use the same object-oriented paradigms, but they
are still not regarded as interoperable. We need to look a little more closely at the concept of language
interoperability.

To start with, we need to consider exactly what we mean by language interoperability. After all, COM
allowed components written in different languages to work together in the sense of calling each other’s
methods. What was inadequate about that? COM, by virtue of being a binary standard, did allow compo-
nents to instantiate other components and call methods or properties against them, without worrying
about the language the respective components were written in. In order to achieve this, however, each
object had to be instantiated through the COM runtime, and accessed through an interface. Depending on
the threading models of the relative components, there may have been large performance losses associ-
ated with marshaling data between apartments or running components or both on different threads. In
the extreme case of components that are hosted as an executable rather than DLL files, separate processes
would need to be created in order to run them. The emphasis was very much that components could talk
to each other, but only via the COM runtime. In no way with COM did components written in different
languages directly communicate with each other, or instantiate instances of each other—it was always
done with COM as an intermediary. Not only that, but the COM architecture did not permit implementa-
tion inheritance, which meant that it lost many of the advantages of object-oriented programming.

8

Chapter 1

03 557599 Ch01.qxd 4/29/04 11:24 AM Page 8

An associated problem was that, when debugging, you would still have to debug components written
in different languages independently. It was not possible to step between languages in the debugger.
So what we really mean by language interoperability is that classes written in one language should be
able to talk directly to classes written in another language. In particular:

❑ A class written in one language can inherit from a class written in another language.

❑ The class can contain an instance of another class, no matter what the languages of the two
classes are.

❑ An object can directly call methods against another object written in another language.

❑ Objects (or references to objects) can be passed around between methods.

❑ When calling methods between languages we can step between the method calls in the debugger,
even when this means stepping between source code written in different languages.

This is all quite an ambitious aim, but amazingly, .NET and IL have achieved it. In the case of stepping
between methods in the debugger, this facility is really offered by the Visual Studio .NET IDE rather
than by the CLR itself.

Distinct Value and Reference Types
As with any programming language, IL provides a number of predefined primitive data types. One
characteristic of IL, however, is that it makes a strong distinction between value and reference types.
Value types are those for which a variable directly stores its data, while reference types are those for which
a variable simply stores the address at which the corresponding data can be found.

In C++ terms, reference types can be considered to be similar to accessing a variable through a pointer,
while for Visual Basic, the best analogy for reference types are objects, which in Visual Basic 6 are always
accessed through references. IL also lays down specifications about data storage: instances of reference
types are always stored in an area of memory known as the managed heap, while value types are normally
stored on the stack (although if value types are declared as fields within reference types, then they will be
stored inline on the heap). We will discuss the stack and the heap and how they work in Chapter 3.

Strong Data Typing
One very important aspect of IL is that it is based on exceptionally strong data typing. What we mean by
that is that all variables are clearly marked as being of a particular, specific data type (there is no room in
IL, for example, for the Variant data type recognized by Visual Basic and scripting languages). In par-
ticular, IL does not normally permit any operations that result in ambiguous data types.

For instance, Visual Basic 6 developers are used to being able to pass variables around without worrying
too much about their types, because Visual Basic 6 automatically performs type conversion. C++ devel-
opers are used to routinely casting pointers between different types. Being able to perform this kind of
operation can be great for performance, but it breaks type safety. Hence, it is permitted only under cer-
tain circumstances in some of the languages that compile to managed code. Indeed, pointers (as opposed
to references) are only permitted in marked blocks of code in C#, and not at all in Visual Basic (although
they are allowed in managed C++). Using pointers in your code causes it to fail the memory type safety
checks performed by the CLR.

9

.NET Architecture

03 557599 Ch01.qxd 4/29/04 11:24 AM Page 9

You should note that some languages compatible with .NET, such as Visual Basic .NET, still allow some
laxity in typing, but that is only possible because the compilers behind the scenes ensure the type safety
is enforced in the emitted IL.

Although enforcing type safety might initially appear to hurt performance, in many cases the benefits
gained from the services provided by .NET that rely on type safety far outweigh this performance loss.
Such services include:

❑ Language interoperability

❑ Garbage collection

❑ Security

❑ Application domains

Let’s take a closer look at why strong data typing is particularly important for these features of .NET.

The Importance of strong data typing for language interoperability
If a class is to derive from or contains instances of other classes, it needs to know about all the data types
used by the other classes. This is why strong data typing is so important. Indeed, it is the absence of any
agreed system for specifying this information in the past that has always been the real barrier to inheri-
tance and interoperability across languages. This kind of information is simply not present in a standard
executable file or DLL.

Suppose that one of the methods of a Visual Basic .NET class is defined to return an Integer—one of
the standard data types available in Visual Basic .NET. C# simply does not have any data type of that
name. Clearly, we will only be able to derive from the class, use this method, and use the return type
from C# code, if the compiler knows how to map Visual Basic .NET’s Integer type to some known type
that is defined in C#. So how is this problem circumvented in .NET?

Common Type System
This data type problem is solved in .NET through the use of the Common Type System (CTS). The CTS
defines the predefined data types that are available in IL, so that all languages that target the .NET
Framework will produce compiled code that is ultimately based on these types.

For the example that we were considering before, Visual Basic .NET’s Integer is actually a 32-bit signed
integer, which maps exactly to the IL type known as Int32. This will therefore be the data type specified
in the IL code. Because the C# compiler is aware of this type, there is no problem. At source code level,
C# refers to Int32 with the keyword int, so the compiler will simply treat the Visual Basic .NET
method as if it returned an int.

The CTS doesn’t merely specify primitive data types, but a rich hierarchy of types, which includes well-
defined points in the hierarchy at which code is permitted to define its own types. The hierarchical struc-
ture of the Common Type System reflects the single-inheritance object-oriented methodology of IL, and
resembles Figure 1-1.

10

Chapter 1

03 557599 Ch01.qxd 4/29/04 11:24 AM Page 10

Figure 1-1

The following table explains the types shown in Figure 1-1.

Type Meaning

Type Base class that represents any type.

Value Type Base class that represents any value type.

Reference Types Any data types that are accessed through a reference and
stored on the heap.

Built-in Value Types Includes most of the standard primitive types, which rep-
resent numbers, Boolean values, or characters.

Enumerations Sets of enumerated values.

User-defined Value Types Types that have been defined in source code and are stored
as value types. In C# terms, this means any struct.

Interface Types Interfaces.

Pointer Types Pointers.

Self-describing Types Data types that provide information about themselves for
the benefit of the garbage collector (see the next section).

Arrays Any type that contains an array of objects.

Class Types Types that are self-describing but are not arrays.

Built in Value
Types

User-defined
Value Types

Value Type

Pointer Types

Type

Reference
Type

Enumerations

Interface Types

Self-describing
Types

ArraysClass Types

User-defined
Reference

Types

Delegates Boxed Value
Types

11

.NET Architecture

Table continued on following page

03 557599 Ch01.qxd 4/29/04 11:24 AM Page 11

Type Meaning

Delegates Types that are designed to hold references to methods.

User-defined Reference Types Types that have been defined in source code and are stored
as reference types. In C# terms, this means any class.

Boxed Value Types A value type that is temporarily wrapped in a reference so
that it can be stored on the heap.

We won’t list all of the built-in value types here, because they are covered in detail in Chapter 2. In C#,
each predefined type recognized by the compiler maps onto one of the IL built-in types. The same is true
in Visual Basic .NET.

Common Language Specification
The Common Language Specification (CLS) works with the CTS to ensure language interoperability.
The CLS is a set of minimum standards that all compilers targeting .NET must support. Since IL is a very
rich language, writers of most compilers will prefer to restrict the capabilities of a given compiler to only
support a subset of the facilities offered by IL and the CTS. That is fine, as long as the compiler supports
everything that is defined in the CLS.

For example, let’s look at case sensitivity. IL is case-sensitive. Developers who work with case-sensitive
languages regularly take advantage of the flexibility this case sensitivity gives them when selecting vari-
able names. Visual Basic .NET, however, is not case sensitive. The CLS works around this by indicating
that CLS-compliant code should not expose any two names that differ only in their case. Therefore,
Visual Basic .NET code can work with CLS-compliant code.

This example shows that the CLS works in two ways. First, it means that individual compilers do not
have to be powerful enough to support the full features of .NET—this should encourage the develop-
ment of compilers for other programming languages that target .NET. Second, it provides a guarantee
that, if you restrict your classes to only exposing CLS-compliant features, then it is guaranteed that code
written in any other compliant language can use your classes.

The beauty of this idea is that the restriction to using CLS-compliant features only applies to public and
protected members of classes and public classes. Within the private implementations of your classes,
you can write whatever non-CLS code you want, because code in other assemblies (units of managed
code, see later in this chapter) cannot access this part of your code anyway.

We won’t go into the details of the CLS specifications here. In general, the CLS won’t affect your C# code
very much, because there are very few non–CLS-compliant features of C# anyway.

It is perfectly acceptable to write non–CLS-compliant code. However, if you do, the
compiled IL code isn’t guaranteed to be fully language interoperable.

12

Chapter 1

03 557599 Ch01.qxd 4/29/04 11:24 AM Page 12

Garbage collection
The garbage collector is .NET’s answer to memory management, and in particular to the question of what
to do about reclaiming memory that running applications ask for. Up until now there have been two
techniques used on the Windows platform for de-allocating memory that processes have dynamically
requested from the system:

❑ Make the application code do it all manually.

❑ Make objects maintain reference counts.

Having the application code responsible for de-allocating memory is the technique used by lower-level,
high-performance languages such as C++. It is efficient, and it has the advantage that (in general)
resources are never occupied for longer than unnecessary. The big disadvantage, however, is the fre-
quency of bugs. Code that requests memory also should explicitly inform the system when it no longer
requires that memory. However, it is easy to overlook this, resulting in memory leaks.

Although modern developer environments do provide tools to assist in detecting memory leaks, they
remain difficult bugs to track down, because they have no effect until so much memory has been leaked
that Windows refuses to grant any more to the process. By this point, the entire computer may have
appreciably slowed down due to the memory demands being made on it.

Maintaining reference counts is favored in COM. The idea is that each COM component maintains a
count of how many clients are currently maintaining references to it. When this count falls to zero, the
component can destroy itself and free up associated memory and resources. The problem with this is
that it still relies on the good behavior of clients to notify the component that they have finished with it.
It only takes one client not to do so, and the object sits in memory. In some ways, this is a potentially
more serious problem than a simple C++-style memory leak, because the COM object may exist in its
own process, which means that it will never be removed by the system (at least with C++ memory leaks,
the system can reclaim all memory when the process terminates).

The .NET runtime relies on the garbage collector instead. This is a program whose purpose is to clean up
memory. The idea is that all dynamically requested memory is allocated on the heap (that is true for all
languages, although in the case of .NET, the CLR maintains its own managed heap for .NET applications
to use). Every so often, when .NET detects that the managed heap for a given process is becoming full
and therefore needs tidying up, it calls the garbage collector. The garbage collector runs through vari-
ables currently in scope in your code, examining references to objects stored on the heap to identify
which ones are accessible from your code—that is to say which objects have references that refer to
them. Any objects that are not referred to are deemed to be no longer accessible from your code and can
therefore be removed. Java uses a similar system of garbage collection to this.

Garbage collection works in .NET because IL has been designed to facilitate the process. The principle
requires that you cannot get references to existing objects other than by copying existing references and
that IL is type safe. In this context, what we mean is that if any reference to an object exists, then there is
sufficient information in the reference to exactly determine the type of the object.

It would not be possible to use the garbage collection mechanism with a language such as unmanaged
C++, for example, because C++ allows pointers to be freely cast between types.

13

.NET Architecture

03 557599 Ch01.qxd 4/29/04 11:24 AM Page 13

One important aspect of garbage collection is that it is not deterministic. In other words, you cannot
guarantee when the garbage collector will be called; it will be called when the CLR decides that it is
needed (unless you explicitly call the collector). Though it is also possible to override this process and
call up the garbage collector in your code.

Security
.NET can really excel in terms of complementing the security mechanisms provided by Windows
because it can offer code-based security, whereas Windows only really offers role-based security.

Role-based security is based on the identity of the account under which the process is running, in other
words, who owns and is running the process. Code-based security on the other hand is based on what the
code actually does and on how much the code is trusted. Thanks to the strong type safety of IL, the CLR is
able to inspect code before running it in order to determine required security permissions. .NET also offers
a mechanism by which code can indicate in advance what security permissions it will require to run.

The importance of code-based security is that it reduces the risks associated with running code of dubious
origin (such as code that you’ve downloaded from the Internet). For example, even if code is running
under the administrator account, it is possible to use code-based security to indicate that that code
should still not be permitted to perform certain types of operation that the administrator account would
normally be allowed to do, such as read or write to environment variables, read or write to the registry,
or to access the .NET reflection features.

Security issues are covered in more depth in Chapter 14.

Application domains
Application domains are an important innovation in .NET and are designed to ease the overhead
involved when running applications that need to be isolated from each other, but which also need to be
able to communicate with each other. The classic example of this is a Web server application, which may
be simultaneously responding to a number of browser requests. It will, therefore, probably have a num-
ber of instances of the component responsible for servicing those requests running simultaneously.

In pre-.NET days, the choice would be between allowing those instances to share a process, with the
resultant risk of a problem in one running instance bringing the whole Web site down, or isolating those
instances in separate processes, with the associated performance overhead.

Up until now, the only means of isolating code has been through processes. When you start a new appli-
cation, it runs within the context of a process. Windows isolates processes from each other through
address spaces. The idea is that each process has available 4GB of virtual memory in which to store its
data and executable code (4GB is for 32-bit systems; 64-bit systems use more memory). Windows
imposes an extra level of indirection by which this virtual memory maps into a particular area of actual
physical memory or disk space. Each process gets a different mapping, with no overlap between the
actual physical memories that the blocks of virtual address space map to (see Figure 1-2).

In general, any process is only able to access memory by specifying an address in virtual memory—
processes do not have direct access to physical memory. Hence it is simply impossible for one process
to access the memory allocated to another process. This provides an excellent guarantee that any badly
behaved code will not be able to damage anything outside its own address space. (Note that on Windows
95/98, these safeguards are not quite as thorough as they are on Windows NT/2000/XP/2003, so the the-
oretical possibility exists of applications crashing Windows by writing to inappropriate memory.)

14

Chapter 1

03 557599 Ch01.qxd 4/29/04 11:24 AM Page 14

Figure 1-2

Processes don’t just serve as a way to isolate instances of running code from each other. On Windows
NT/2000/XP/2003 systems, they also form the unit to which security privileges and permissions are
assigned. Each process has its own security token, which indicates to Windows precisely what opera-
tions that process is permitted to do.

While processes are great for security reasons, their big disadvantage is in the area of performance.
Often a number of processes will actually be working together, and therefore need to communicate
with each other. The obvious example of this is where a process calls up a COM component, which is an
executable, and therefore is required to run in its own process. The same thing happens in COM when
surrogates are used. Since processes cannot share any memory, a complex marshaling process has to be
used to copy data between the processes. This results in a very significant performance hit. If you need
components to work together and don’t want that performance hit, then you have to use DLL-based
components and have everything running in the same address space—with the associated risk that a
badly behaved component will bring everything else down.

Application domains are designed as a way of separating components without resulting in the performance
problems associated with passing data between processes. The idea is that any one process is divided into
a number of application domains. Each application domain roughly corresponds to a single application,
and each thread of execution will be running in a particular application domain (see Figure 1-3).

If different executables are running in the same process space, then they are clearly able to easily share
data, because theoretically they can directly see each other’s data. However, although this is possible in
principle, the CLR makes sure that this does not happen in practice by inspecting the code for each run-
ning application, to ensure that the code cannot stray outside its own data areas. This sounds at first
sight like an almost impossible trick to pull off—after all how can you tell what the program is going to
do without actually running it?

Physical memory
or disk space

PROCESS 1

4GB virtual
memory

Physical
Memory

Physical memory
or disk space

PROCESS 2

4GB virtual
memory

15

.NET Architecture

03 557599 Ch01.qxd 4/29/04 11:24 AM Page 15

Figure 1-3

In fact, it is usually possible to do this because of the strong type safety of the IL. In most cases, unless
code is using unsafe features such as pointers, the data types it is using will ensure that memory is not
accessed inappropriately. For example, .NET array types perform bounds checking to ensure that no out-
of-bounds array operations are permitted. If a running application does need to communicate or share
data with other applications running in different application domains, then it must do so by calling on
.NET’s remoting services.

Code that has been verified to check that it cannot access data outside its application domain (other than
through the explicit remoting mechanism) is said to be memory type-safe. Such code can safely be run
alongside other type-safe code in different application domains within the same process.

Error Handling with Exceptions
The .NET Framework is designed to facilitate handling of error conditions using the same mechanism,
based on exceptions, that is employed by Java and C++. C++ developers should note that because of IL’s
stronger typing system, there is no performance penalty associated with the use of exceptions with IL in
the way that there is in C++. Also, the finally block, which has long been on many C++ developers’
wish list, is supported by .NET and by C#.

We will cover exceptions in detail in Chapter 11. Briefly, the idea is that certain areas of code are desig-
nated as exception handler routines, with each one able to deal with a particular error condition (for
example, a file not being found, or being denied permission to perform some operation). These condi-
tions can be defined as narrowly or as widely as you wish. The exception architecture ensures that when
an error condition occurs, execution can immediately jump to the exception handler routine that is most
specifically geared to handle the exception condition in question.

The architecture of exception handling also provides a convenient means to pass an object containing
precise details of the exception condition to an exception handling routine. This object might include an
appropriate message for the user and details of exactly where in the code the exception was detected.

Most exception handling architecture, including the control of program flow when an exception occurs,
is handled by the high-level languages (C#, Visual Basic .NET, C++), and is not supported by any special

PROCESS - 4GB virtual memory

APPLICATION DOMAIN:
an application uses some

of this virtual memory

APPLICATION DOMAIN:
another application uses

some of this virtual memory

16

Chapter 1

03 557599 Ch01.qxd 4/29/04 11:24 AM Page 16

IL commands. C#, for example, handles exceptions using try{}, catch{}, and finally{} blocks of
code. (For more details, see Chapter 11.)

What .NET does do, however, is provide the infrastructure to allow compilers that target .NET to support
exception handling. In particular, it provides a set of .NET classes that can represent the exceptions, and the
language interoperability to allow the thrown exception objects to be interpreted by the exception handling
code, irrespective of what language the exception handling code is written in. This language independence
is absent from both the C++ and Java implementations of exception handling, although it is present to a
limited extent in the COM mechanism for handling errors, which involves returning error codes from
methods and passing error objects around. The fact that exceptions are handled consistently in different
languages is a crucial aspect of facilitating multi-language development.

Use of Attributes
Attributes are a feature that is familiar to developers who use C++ to write COM components (through
their use in Microsoft’s COM Interface Definition Language [IDL]). The initial idea of an attribute was that
it provided extra information concerning some item in the program that could be used by the compiler.

Attributes are supported in .NET—and hence now by C++, C#, and Visual Basic .NET. What is, however,
particularly innovative about attributes in .NET is that a mechanism exists whereby you can define your
own custom attributes in your source code. These user-defined attributes will be placed with the meta-
data for the corresponding data types or methods. This can be useful for documentation purposes, where
they can be used in conjunction with reflection technology in order to perform programming tasks based
on attributes. Also, in common with the .NET philosophy of language independence, attributes can be
defined in source code in one language, and read by code that is written in another language.

Attributes are covered in Chapter 10.

Assemblies
An assembly is the logical unit that contains compiled code targeted at the .NET Framework. We are not
going to cover assemblies in great detail in this chapter, because they are covered in detail in Chapter 13,
but we will summarize the main points here.

An assembly is completely self-describing, and is a logical rather than a physical unit, which means that
it can be stored across more than one file (indeed dynamic assemblies are stored in memory, not on file
at all). If an assembly is stored in more than one file, then there will be one main file that contains the
entry point and describes the other files in the assembly.

Note that the same assembly structure is used for both executable code and library code. The only real
difference is that an executable assembly contains a main program entry point, whereas a library assem-
bly doesn’t.

An important characteristic of assemblies is that they contain metadata that describes the types and
methods defined in the corresponding code. An assembly, however, also contains assembly metadata
that describes the assembly itself. This assembly metadata, contained in an area known as the manifest,
allows checks to be made on the version of the assembly, and on its integrity.

17

.NET Architecture

03 557599 Ch01.qxd 4/29/04 11:24 AM Page 17

ildasm, a Windows-based utility, can be used to inspect the contents of an assembly, including the man-
ifest and metadata. We discuss ildasm in Chapter 13.

The fact that an assembly contains program metadata means that applications or other assemblies that
call up code in a given assembly do not need to refer to the registry, or to any other data source, in order
to find out how to use that assembly. This is a significant break from the old COM way of doing things,
in which the GUIDs of the components and interfaces had to be obtained from the registry, and in some
cases, the details of the methods and properties exposed would need to be read from a type library.

Having data spread out in up to three different locations meant there was the obvious risk of something
getting out of synchronization, which would prevent other software from being able to use the compo-
nent successfully. With assemblies, there is no risk of this happening, because all the metadata is stored
with the program executable instructions. Note that even though assemblies are stored across several
files, there are still no problems with data going out of synchronization. This is because the file that con-
tains the assembly entry point also stores details of, and a hash of, the contents of the other files, which
means that if one of the files gets replaced, or in any way tampered with, this will almost certainly be
detected and the assembly will refuse to load.

Assemblies come in two types: shared and private assemblies.

Private Assemblies
Private assemblies are the simplest type. They normally ship with software and are intended to be used
only with that software. The usual scenario in which you will ship private assemblies is when you are
supplying an application in the form of an executable and a number of libraries, where the libraries con-
tain code that should only be used with that application.

The system guarantees that private assemblies will not be used by other software, because an application
may only load private assemblies that are located in the same folder that the main executable is loaded in,
or in a subfolder of it.

Because we would normally expect that commercial software would always be installed in its own direc-
tory, this means that there is no risk of one software package overwriting, modifying, or accidentally
loading private assemblies intended for another package. As private assemblies can only be used by
the software package that they are intended for, this means that you have much more control over what
software uses them. There is, therefore, less need to take security precautions, since there is no risk, for
example, of some other commercial software overwriting one of your assemblies with some new version
of it (apart from the case where software is designed specifically to perform malicious damage). There
are also no problems with name collisions. If classes in your private assembly happen to have the same
name as classes in someone else’s private assembly that doesn’t matter, because any given application
will only be able to see the one set of private assemblies.

Because a private assembly is entirely self-contained, the process of deploying it is simple. You simply
place the appropriate file(s) in the appropriate folder in the file system (there are no registry entries that
need to be made). This process is known as zero impact (xcopy) installation.

18

Chapter 1

03 557599 Ch01.qxd 4/29/04 11:24 AM Page 18

Shared Assemblies
Shared assemblies are intended to be common libraries that any other application can use. Because any
other software can access a shared assembly, more precautions need to be taken against the following risks:

❑ Name collisions, where another company’s shared assembly implements types that have the
same names as those in your shared assembly. Because client code can theoretically have access
to both assemblies simultaneously, this could be a serious problem.

❑ The risk of an assembly being overwritten by a different version of the same assembly—the new
version being incompatible with some existing client code.

The solution to these problems involves placing shared assemblies in a special directory subtree in the
file system, known as the global assembly cache (GAC). Unlike with private assemblies, this cannot be
done by simply copying the assembly into the appropriate folder—it needs to be specifically installed
into the cache. This process can be performed by a number of .NET utilities and involves carrying out
certain checks on the assembly, as well as setting up a small folder hierarchy within the assembly cache
that is used to ensure assembly integrity.

In order to avoid the risk of name collisions, shared assemblies are given a name that is based on private
key cryptography (private assemblies are simply given the same name as their main file name). This
name is known as a strong name, is guaranteed to be unique, and must be quoted by applications that
reference a shared assembly.

Problems associated with the risk of overwriting an assembly are addressed by specifying version infor-
mation in the assembly manifest, and by allowing side-by-side installations.

Reflection
Since assemblies store metadata, including details of all the types and members of these types that are
defined in the assembly, it is possible to access this metadata programmatically. Full details of this can be
found in Chapter 10. This technique, known as reflection, raises interesting possibilities, since it means
that managed code can actually examine other managed code, or can even examine itself, to determine
information about that code. This is most commonly used to obtain the details of attributes, although
you can also use reflection, among other purposes, as an indirect way of instantiating classes or calling
methods, given the names of those classes on methods as strings. In this way you could select classes to
instantiate methods to call at runtime, rather than compile time, based on user input (dynamic binding).

.NET Framework Classes
Perhaps one of the biggest benefits of writing managed code, at least from a developer’s point of view,
is that you get to use the .NET base class library.

The .NET base classes are a massive collection of managed code classes that allow you to do almost any
of the tasks that were previously available through the Windows API. These classes follow the same
object model IL uses, based on single inheritance. This means that you can either instantiate objects of
whichever .NET base class is appropriate, or you can derive your own classes from them.

19

.NET Architecture

03 557599 Ch01.qxd 4/29/04 11:24 AM Page 19

The great thing about the .NET base classes is that they have been designed to be very intuitive and easy
to use. For example, to start a thread, you call the Start() method of the Thread class. To disable a
TextBox, you set the Enabled property of a TextBox object to false. This approach—while familiar to
Visual Basic and Java developers, whose respective libraries are just as easy to use—will be a welcome
relief to C++ developers, who for years have had to cope with such API functions as GetDIBits(),
RegisterWndClassEx(), and IsEqualIID(), as well as a whole plethora of functions that required
Windows handles to be passed around.

On the other hand, C++ developers always had easy access to the entire Windows API, whereas Visual
Basic 6 and Java developers were more restricted in terms of the basic operating system functionality
that they have access to from their respective languages. What is new about the .NET base classes is that
they combine the ease of use that was typical of the Visual Basic and Java libraries with the relatively
comprehensive coverage of the Windows API functions. There are still many features of Windows that
are not available through the base classes, and for which you will need to call into the API functions, but
in general, these are now confined to the more exotic features. For everyday use, you will probably find
the base classes adequate. And if you do need to call into an API function, .NET offers a so-called plat-
form-invoke which ensures data types are correctly converted, so the task is no harder than calling the
function directly from C++ code would have been—regardless of whether you are coding in C#, C++,
or Visual Basic .NET.

WinCV, a Windows-based utility, can be used to browse the classes, structs, interfaces, and enums in
the base class library. We discuss WinCV in Chapter 12.

Although Chapter 3 is nominally dedicated to the subject of base classes, in reality, once we have com-
pleted our coverage of the syntax of the C# language, most of the rest of this book shows you how to
use various classes within the .NET base class library. That is how comprehensive base classes are. As a
rough guide, the areas covered by the .NET base classes include:

❑ Core features provided by IL (including, the primitive data types in the CTS discussed in
Chapter 3)

❑ Windows GUI support and controls (see Chapter 19)

❑ Web Forms (ASP.NET, discussed in Chapters 25 through 27)

❑ Data Access (ADO.NET, see Chapters 21 and 22)

❑ Directory Access (see Chapter 24)

❑ File system and registry access (see Chapter 30)

❑ Networking and Web browsing (see Chapter 31)

❑ .NET attributes and reflection (see Chapter 10)

❑ Access to aspects of the Windows OS (environment variables and so on; see Chapter 14)

❑ COM interoperability (see Chapters 28 and 29)

Incidentally, according to Microsoft sources, a large proportion of the .NET base classes have actually
been written in C#!

20

Chapter 1

03 557599 Ch01.qxd 4/29/04 11:24 AM Page 20

Namespaces
Namespaces are the way that .NET avoids name clashes between classes. They are designed to avoid the
situation in which you define a class to represent a customer, name your class Customer, and then
someone else does the same thing (a likely scenario—the proportion of businesses that have customers
seems to be quite high).

A namespace is no more than a grouping of data types, but it has the effect that the names of all data
types within a namespace automatically get prefixed with the name of the namespace. It is also possible
to nest namespaces within each other. For example, most of the general-purpose .NET base classes are in
a namespace called System. The base class Array is in this namespace, so its full name is
System.Array.

.NET requires all types to be defined in a namespace, so for example you could place your Customer class in
a namespace called YourCompanyName. This class would have the full name YourCompanyName.Customer.

If a namespace is not explicitly supplied, then the type will be added to a nameless global namespace.

Microsoft recommends that for most purposes you supply at least two nested namespace names: the
first one refers to the name of your company, the second one refers to the name of the technology or soft-
ware package that the class is a member of, such as YourCompanyName.SalesServices.Customer.
This protects, in most situations, the classes in your application from possible name clashes with classes
written by other organizations.

We will look more closely at namespaces in Chapter 2.

Creating .NET Applications Using C#
C# can also be used to create console applications: text-only applications that run in a DOS window.
You’ll probably use console applications when unit testing class libraries, and for creating Unix or Linux
daemon processes. However, more often you’ll use C# to create applications that use many of the tech-
nologies associated with .NET. In this section, we’ll give you an overview of the different types of appli-
cation that you can write in C#.

Creating ASP.NET Applications
Active Server Pages (ASP) is a Microsoft technology for creating Web pages with dynamic content. An
ASP page is basically an HTML file with embedded chunks of server-side VBScript or JavaScript. When
a client browser requests an ASP page, the Web server delivers the HTML portions of the page, process-
ing the server-side scripts as it comes to them. Often these scripts query a database for data, and mark
up that data in HTML. ASP is an easy way for clients to build browser-based applications.

However, ASP is not without its shortcomings. First, ASP pages sometimes render slowly because the
server-side code is interpreted instead of compiled. Second, ASP files can be difficult to maintain because
they were unstructured; the server-side ASP code and plain HTML are all jumbled up together. Third, ASP
sometimes make development difficult because there is little support for error handling and type-checking.

21

.NET Architecture

03 557599 Ch01.qxd 4/29/04 11:24 AM Page 21

Specifically, if you are using VBScript and want to implement error handling in your pages, you have to
use the On Error Resume Next statement, and follow every component call with a check to Err.Number
to make sure that the call had gone well.

ASP.NET is a complete revision of ASP that fixes many of its problems. It does not replace ASP; rather,
ASP.NET pages can live side by side on the same server with legacy ASP applications. Of course, you
can also program ASP.NET with C#!

The following section explores the key features of ASP.NET. For more details, refer to Chapters 25
through 27.

Features of ASP.NET
First, and perhaps most importantly, ASP.NET pages are structured. That is, each page is effectively a
class that inherits from the .NET System.Web.UI.Page class, and can override a set of methods that are
evoked during the Page object’s lifetime. (You can think of these events as page-specific cousins of the
OnApplication_Start and OnSession_Start events that went in the global.asa files of plain old
ASP.) Because you can factor a page’s functionality into event handlers with explicit meanings, ASP.NET
pages are easier to understand.

Another nice thing about ASP.NET pages is that you can create them in Visual Studio .NET, the same
environment in which you create the business logic and data access components that those ASP.NET
pages use. A Visual Studio .NET project, or solution, contains all of the files associated with an applica-
tion. Moreover, you can debug your classic ASP pages in the editor as well; in the old days of Visual
InterDev, it was often a vexing challenge to configure InterDev and the project’s Web server to turn
debugging on.

For maximum clarity, the ASP.NET code-behind feature lets you take the structured approach even fur-
ther. ASP.NET allows you to isolate the server-side functionality of a page to a class, compile that class
into a DLL, and place that DLL into a directory below the HTML portion. A code-behind directive at
the top of the page associates the file with its DLL. When a browser requests the page, the Web server
fires the events in the class in the page’s code-behind DLL.

Last but not least, ASP.NET is remarkable for its increased performance. Whereas classic ASP pages are
interpreted with each page request, the Web server caches ASP.NET pages after compilation. This means
that subsequent requests of an ASP.NET page execute more quickly than the first.

ASP.NET also makes it easy to write pages that cause forms to be displayed by the browser, which you
might use in an intranet environment. The traditional wisdom is that form-based applications offer a
richer user interface, but are harder to maintain because they run on so many different machines. For
this reason, people have relied on form-based applications when rich user interfaces were a necessity
and extensive support could be provided to the users.

With the advent of Internet Explorer 5 and the lackluster performance of Navigator 6, however, the
advantages of form-based applications are clouded. IE 5’s consistent and robust support for DHTML
allows the programmer to create Web-based applications that are every bit as pretty as their fat client
equivalents. Of course, such applications necessitate standardizing on IE and not supporting Navigator.
In many industrial situations, this standardization is now common.

22

Chapter 1

03 557599 Ch01.qxd 4/29/04 11:24 AM Page 22

Web Forms
To make Web page construction even easier, Visual Studio .NET supplies Web Forms. They allow you to
build ASP.NET pages graphically in the same way that Visual Basic 6 or C++ Builder windows are cre-
ated; in other words, by dragging controls from a toolbox onto a form, then flipping over to the code
aspect of that form, and writing event handlers for the controls. When you use C# to create a Web Form,
you are creating a C# class that inherits from the Page base class, and an ASP.NET page that designates
that class as its code-behind. Of course, you don’t have to use C# to create a Web Form; you can use
Visual Basic .NET or another .NET language just as well.

In the past, the difficulty of Web development has discouraged some teams from attempting it. To suc-
ceed in Web development, you had to know so many different technologies, such as VBScript, ASP,
DHTML, JavaScript, and so on. By applying the Form concepts to Web pages, Web Forms have made
Web development considerably easier.

Web controls
The controls used to populate a Web Form are not controls in the same sense as ActiveX controls. Rather,
they are XML tags in the ASP.NET namespace that the Web browser dynamically transforms into HTML
and client-side script when a page is requested. Amazingly, the Web server is able to render the same
server-side control in different ways, producing a transformation that is appropriate to the requestor’s
particular Web browser. This means that it is now easy to write fairly sophisticated user interfaces for
Web pages, without having to worry about how to ensure that your page will run on any of the available
browsers—because Web Forms will take care of that for you.

You can use C# or Visual Basic .NET to expand the Web Form toolbox. Creating a new server-side con-
trol is simply a matter of implementing .NET’s System.Web.UI.WebControls.WebControl class.

XML Web services
Today, HTML pages account for most of the traffic on the World Wide Web. With XML, however, com-
puters have a device-independent format to use for communicating with each other on the Web. In the
future, computers may use the Web and XML to communicate information rather than dedicated lines
and proprietary formats such as Electronic Data Interchange (EDI). XML Web services are designed for a
service-oriented Web, in which remote computers provide each other with dynamic information that can
be analyzed and re-formatted, before final presentation to a user. An XML Web service is an easy way for
a computer to expose information to other computers on the Web in the form of XML.

In technical terms, an XML Web service on .NET is an ASP.NET page that returns XML instead of
HTML to requesting clients. Such pages have a code-behind DLL containing a class that derives
from the WebService class. The Visual Studio .NET IDE provides an engine that facilitates Web Service
development.

There are two main reasons that an organization might choose to use XML Web services. The first reason
is that they rely on HTTP; XML Web services can use existing networks (HTTP) as a medium for convey-
ing information. The other is that because XML Web services use XML, the data format is self-describing,
non-proprietary, and platform-independent.

23

.NET Architecture

03 557599 Ch01.qxd 4/29/04 11:24 AM Page 23

Creating Windows Forms
Although C# and .NET are particularly suited to Web development, they still offer splendid support for
so-called fat-client or thick-client apps, applications that have to be installed on the end-user’s machine
where most of the processing takes place. This support is from Windows Forms.

A Windows Form is the .NET answer to a Visual Basic 6 Form. To design a graphical window interface,
you just drag controls from a toolbox onto a Windows Form. To determine the window’s behavior, you
write event-handling routines for the form’s controls. A Windows Form project compiles to an exe-
cutable that must be installed alongside the .NET runtime on the end user’s computer. Like other .NET
project types, Windows Form projects are supported by both Visual Basic .NET and C#. We examine
Windows Forms more closely in Chapter 19.

Windows Controls
Although Web Forms and Windows Forms are developed in much the same way, you use different kinds
of controls to populate them. Web Forms use Web Controls, and Windows Forms use Windows Controls.

A Windows Control is a lot like an ActiveX control. After a Windows control is implemented, it compiles
to a DLL that must be installed on the client’s machine. In fact, the .NET SDK provides a utility that cre-
ates a wrapper for ActiveX controls, so that they can be placed on Windows Forms. As is the case with
Web Controls, Windows Control creation involves deriving from a particular class, System.Windows.
Forms.Control.

Windows Services
A Windows Service (originally called an NT Service) is a program that is designed to run in the back-
ground in Windows NT/2000/XP/2003 (but not Windows 9x). Services are useful where you want a
program to be running continuously and ready to respond to events without having been explicitly
started by the user. A good example would be the World Wide Web Service on Web servers, which
listens out for Web requests from clients.

It is very easy to write services in C#. There are .NET Framework base classes available in the
System.ServiceProcess namespace that handle many of the boilerplate tasks associated with ser-
vices, and in addition, Visual Studio .NET allows you to create a C# Windows Service project, which
uses C# source code for a basic Windows service. We’ll explore how to write C# Windows Services in
Chapter 32.

The Role of C# in the .NET Enterprise
Architecture

C# requires the presence of the .NET runtime, and it will probably be a few years before most clients—
particularly most home computers—have .NET installed. In the meantime, installing a C# application is
likely to mean also installing the .NET redistributable components. Because of that, it is likely that we
will see many C# applications first in the enterprise environment. Indeed, C# arguably presents an out-
standing opportunity for organizations that are interested in building robust, n-tiered client-server
applications.

24

Chapter 1

03 557599 Ch01.qxd 4/29/04 11:24 AM Page 24

When combined with ADO.NET, C# has the ability to access quickly and generically data stores like SQL
Server and Oracle databases. The returned datasets can easily be manipulated using the ADO.NET
object model, and automatically render as XML for transport across an office intranet.

Once a database schema has been established for a new project, C# presents an excellent medium for
implementing a layer of data access objects, each of which could provide insertion, updates, and dele-
tion access to a different database table.

Because it’s the first component-based C language, C# is a great language for implementing a business
object tier, too. It encapsulates the messy plumbing for inter-component communication, leaving devel-
opers free to focus on gluing their data access objects together in methods that accurately enforce their
organizations’ business rules. Moreover, with attributes, C# business objects can be outfitted for method-
level security checks, object pooling, and JIT activation supplied by COM+ Services. Furthermore, .NET
ships with utility programs that allows your new .NET business objects to interface with legacy COM
components.

To create an enterprise application with C#, you create a Class Library project for the data access objects
and another for the business objects. While developing, you can use Console projects to test the methods
on your classes. Fans of extreme programming can build Console projects that can be executed automati-
cally from batch files to unit test that working code has not been broken.

On a related note, C# and .NET will probably influence the way you physically package your reusable
classes. In the past, many developers crammed a multitude of classes into a single physical component
because this arrangement made deployment a lot easier; if there was a versioning problem, you knew
just where to look. Because deploying .NET enterprise components simply involves copying files into
directories, developers can now package their classes into more logical, discrete components without
encountering “DLL Hell.”

Last but not least, ASP.NET pages coded in C# constitute an excellent medium for user interfaces.
Because ASP.NET pages compile, they execute quickly. Because they can be debugged in the Visual
Studio .NET IDE, they are robust. Because they support full-scale language features like early binding,
inheritance, and modularization, ASP.NET pages coded in C# are tidy and easily maintained.

Seasoned developers acquire a healthy skepticism about strongly hyped new technologies and lan-
guages and are reluctant to utilize new platforms simply because they are urged to. If you’re an enter-
prise developer in an IT department, though, or if you provide application services across the World
Wide Web, let us assure you that C# and .NET offer at least four solid benefits, even if some of the more
exotic features like XML Web services and server-side controls don’t pan out:

❑ Component conflicts will become infrequent and deployment is easier, because different ver-
sions of the same component can run side by side on the same machine without conflicting.

❑ Your ASP.NET code won’t look like spaghetti code.

❑ You can leverage a lot of the functionality in the .NET base classes.

❑ For applications requiring a Windows Forms user interface, C# makes it very easy to write this
kind of application.

Windows Forms have to some extent been downplayed in the last year due to the advent of Web Forms
and Internet-based applications. However, if you or your colleagues lack expertise in JavaScript, ASP, or

25

.NET Architecture

03 557599 Ch01.qxd 4/29/04 11:24 AM Page 25

related technologies, then Windows Forms are still a viable option for creating a user interface with
speed and ease. Just remember to factor your code so that the user interface logic is separate from the
business logic and the data access code. Doing so will allow you to migrate your application to the
browser at some point in the future if you need to do so. Also, it is likely that Windows Forms will
remain the dominant user interface for applications for use in homes and small businesses for a long
time to come.

Summary
We’ve covered a lot of ground in this chapter, briefly reviewing important aspects of the .NET Framework
and C#’s relationship to it. We started by discussing how all languages that target .NET are compiled into
Microsoft intermediate language (IL) before this is compiled and executed by the Common Language
Runtime (CLR). We also discussed the roles of the following features of .NET in the compilation and
execution process:

❑ Assemblies and .NET base classes

❑ COM components

❑ JIT compilation

❑ Application domains

❑ Garbage Collection

Figure 1-4 provides an overview of how these features come into play during compilation and execution.

We also discussed the characteristics of IL, particularly its strong data typing and object-orientation.
We noted how these characteristics influence the languages that target .NET, including C#. We also
noted how the strongly typed nature of IL enables language interoperability, as well as CLR services
such as garbage collection and security.

Finally, we talked about how C# can be used as the basis for applications that are built upon several
.NET technologies, including ASP.NET.

The following chapter discusses how to write code in C#.

26

Chapter 1

03 557599 Ch01.qxd 4/29/04 11:24 AM Page 26

Figure 1-4

ASSEMBLY
containing IL

CODE

COMPILATION

EXECUTION

Language
Interoperability

through CTS
and CLS

VB.NET
Source Code

.NET base
classes

Assemblies
loaded

CLR ORGANIZES:

C# Source
Code

ASSEMBLY
containing IL

CODE

JIT
compilation

Security
permissions
granted

Memory type
safety checked

Creates App
Domain

Garbage collector
cleans up sources

PROCESS

Application domain

CODE EXECUTES
HERE COM interop

services

legacy COM
component

27

.NET Architecture

03 557599 Ch01.qxd 4/29/04 11:24 AM Page 27

03 557599 Ch01.qxd 4/29/04 11:24 AM Page 28

C# Basics

Now that you understand a little more about what C# can do, you will want to learn how to use it.
This chapter on the basics of C# will give you a good start in that direction by providing you with
a basic knowledge of the fundamentals of C# programming, which we will build on in subsequent
chapters. The main topics we will be covering are:

❑ Declaring variables

❑ Initialization and scope of variables

❑ Predefined C# data types

❑ Dictating the flow of execution within a C# program using loops and conditional
statements

❑ Enumerations

❑ Namespaces

❑ The Main() method

❑ Basic command line C# compiler options

❑ Using System.Console to perform console I/O

❑ Using documentation features in C# and Visual Studio .NET

❑ C# identifiers and keywords

❑ Recommended guidelines and conventions for good programming in C#.

By the end of this chapter you will know enough C# to write simple programs, though without
using inheritance or other object-oriented features, which are covered in the following chapters.

04 557599 Ch02.qxd 4/29/04 11:29 AM Page 29

Before We Star t
As we have already mentioned, C# is an object-oriented language. As we get you up to speed in the fun-
damentals of the C# language, we will be assuming that you have a good grasp of the concepts behind
object-oriented (OO) programming. In other words, we will expect you to understand what we mean
by classes, objects, interfaces, and inheritance. If you have programmed in C++ or Java before, you should
have a pretty good grounding in object-oriented programming (OOP). However, if you do not have a
background in OOP, there are plenty of good sources of information on this subject. You can start with
Appendix A, which presents a detailed introduction to OOP concepts and is posted at www.wrox.com.
We also recommend Beginning Visual C#, the revised edition of Beginning C# for .NET v1.0 (ISBN
0-7645-4382-2) which teaches both object-oriented programming and C# from scratch.

If you are an experienced developer in Visual Basic 6, C++, or Java, you should note that we will make
many comparisons between C#, C++, Java, and Visual Basic 6 as we walk you through the basics of C#.
However, you might prefer to learn C# initially by reading a comparison between C# and your selected
language. If so, we have also made available separate documents for download on the Wrox Press Web
site (www.wrox.com) that give introductions to C# from the point of view of each of those languages.

Our First C# Program
Let’s start in the traditional way by compiling and running the simplest possible C# program—a simple
class consisting of a console application that writes a message to the screen.

The Code
Type the following into a text editor (such as Notepad), and save it with a .cs extension (for example,
First.cs):

using System;

namespace Wrox.ProCSharp.Basics
{

class MyFirstCSharpClass
{

static void Main()
{

Console.WriteLine(“This isn’t at all like Java!”);
Console.ReadLine();
return;

}
}

}

The following chapters present a number of code samples. The most common technique for writing C#
programs is to use Visual Studio .NET to generate a basic project and add your own code to it. However,
since the aim of these early chapters is to teach the C# language, we are going to keep things simple and
avoid relying on Visual Studio .NET until Chapter 12. Instead, we will present the code as simple files
that you can type in using any text editor and compile from the command line.

30

Chapter 2

04 557599 Ch02.qxd 4/29/04 11:29 AM Page 30

Compiling and Running the Program
You can compile this program by simply running the C# command line compiler (csc.exe) against the
source file, like this:

csc First.cs

If you want to compile code from the command line using the csc command, you should be aware that
the .NET command line tools, including csc, are only available if certain environment variables have
been set up. Depending on how you installed .NET (and Visual Studio .NET), this may or may not be
the case on your machine.

If you do not have the environment variables set up, you have the following two options. The first is to
run the batch file %Microsoft Visual Studio.NET%\Vc7\bin\vcvars32.bat from the command prompt
before running csc, where %Microsoft Visual Studio .NET is the folder to which Visual Studio .NET
has been installed. The second (easier) way is to use the Visual Studio .NET command prompt instead
of the usual command prompt window. You will find the Visual Studio .NET command prompt in the
Start Menu, under Programs, Microsoft Visual Studio.NET 2003, Microsoft Visual Studio .NET Tools.
It is simply a command prompt window that automatically runs vcvars32.bat when it opens.

Compiling the code produces an executable file named First.exe, which we can run from the command
line or from Windows Explorer like any other executable. Give it a try:

csc First.cs

Microsoft (R) Visual C# .NET Compiler version 7.10.3052.4
for Microsoft (R) .NET Framework version 1.1.4322
Copyright (C) Microsoft Corporation 2001-2002. All rights reserved.

First

This isn’t at all like Java!

Well, maybe that message isn’t quite true! There are some fairly fundamental similarities to Java in this
program, although there are one or two points (such as the capitalized Main() function) to catch out the
unwary Java or C++ developer. Let’s look a little more closely at what’s going on in the code.

A Closer Look
First, a few general comments about C# syntax. In C#, as in other C-style languages, every statement
must end in a semicolon (;) and can continue over multiple lines without needing a continuation char-
acter (such as the underscore in Visual Basic). Statements can be joined into blocks using curly braces
({}). Single-line comments begin with two forward slash characters (//), and multi-line comments begin
with a slash and an asterisk (/*) and end with the same combination reversed (*/). In these aspects, C#
is identical to C++ and Java, but different from Visual Basic. It is the semicolons and curly braces that
give C# code such a different visual appearance to Visual Basic code. If your background is predomi-
nantly Visual Basic, then take extra care to remember the semicolon at the end of every statement.

31

C# Basics

04 557599 Ch02.qxd 4/29/04 11:29 AM Page 31

Omitting this is usually the biggest single cause of compilation errors among developers new to C-style
languages.

The first couple of lines in the previous code example have to do with namespaces (mentioned in Chapter
1), which are a way to group together associated classes. This concept will be familiar to Java and C++
developers but may be new to Visual Basic 6 developers. C# namespaces are basically the same as C++
namespaces or, equivalently, Java packages, but there is no comparable concept in Visual Basic 6. The
namespace keyword declares the namespace our class should be associated with. All code within the
following braces is regarded as being within that namespace. The using statement specifies a names-
pace that the compiler should look at to find any classes that are referenced in your code but which
aren’t defined in the current namespace. This performs the same purpose as the import statement in
Java and the using namespace statement in C++.

using System;

namespace Wrox.ProCSharp.Basics
{

The reason for the presence of the using statement in the First.cs file is that we are going to use a library
class, System.Console. The using System statement allows us to refer to this class simply as Console
(and similarly for any other classes in the System namespace). The standard System namespace is
where the most commonly used .NET types reside. It is important to realize that everything we do in
C# depends on the .NET base classes; in this case, we are using the Console class within the System
namespace in order to write to the console window.

Since almost every C# program uses classes in the System namespace, we will assume that a using
System; statement is present in the file for all code snippets in this chapter.

Note that C# has no built-in keywords of its own for input or output; it is completely reliant on the .NET
classes.

Next, we declare a class ostensibly called MyFirstClass. However, because it has been placed in a
namespace called Wrox.ProCSharp.Basics the fully qualified name of this class is
Wrox.ProCSharp.Basics.MyFirstCSharpClass.

class MyFirstCSharpClass
{

As in Java, all C# code must be contained within a class. Classes in C# are similar to classes in Java and
C++, and very roughly comparable to class modules in Visual Basic 6. The class declaration consists of
the class keyword, followed by the class name and a pair of curly braces. All code associated with the
class should be placed between these braces.

Next we declare a method called Main(). Every C# executable (such as console applications, Windows
applications, and Windows services) must have an entry point—the Main() method (note the capital M):

static void Main()
{

32

Chapter 2

04 557599 Ch02.qxd 4/29/04 11:29 AM Page 32

The method is called when the program is started, like the main() function in C++ or Java, or Sub Main()
in a Visual Basic 6 module. This method must return either nothing (void) or an integer (int). A C#
method corresponds to a method in C++ and Java (sometimes referred to in C++ as a member function).
It also corresponds to either a Visual Basic Function or a Visual Basic Sub, depending on whether the
method returns anything (unlike Visual Basic, C# makes no conceptual distinction between functions and
subroutines).

Note the format of method definitions in C#:

[modifiers] return_type MethodName([parameters])
{

// Method body. NB. This code block is pseudo-code
}

Here, the first square brackets represent certain optional keywords. Modifiers are used to specify certain
features of the method we are defining, such as where the method can be called from. In our case, we
have two modifiers: public and static. The public modifier means that the method can be accessed
from anywhere, so it can be called from outside our class. This is the same meaning as public in C++
and Java, and Public in Visual Basic. The static modifier indicates that the method does not operate
on a specific instance of our class and therefore is called without first instantiating the class. This is
important since we are creating an executable rather than a class library. Once again, this has the same
meaning as the static keyword in C++ and Java, though in this case there is no Visual Basic equivalent
(the Static keyword in Visual Basic has a different meaning). We set the return type to void, and in our
example, we don’t include any parameters.

Finally we come to the code statements themselves:

Console.WriteLine(“This isn’t at all like Java!”);
Console.ReadLine();
return;

In this case, we simply call the WriteLine() method of the System.Console class to write a line of text
to the console window. WriteLine() is a static method, so we don’t need to instantiate a Console
object before calling it.

Console.ReadLine() reads user input. Adding this line forces the application to wait for the carriage
return key to be hit before the application exits, and, in the case of Visual Studio .NET, the console win-
dow disappears.

We then call return to exit from the method (and, since this is the Main() method, the program). We spec-
ified void in our method header, so we don’t return any parameters. The return statement is equivalent
to return in C++ and Java, and Exit Sub or Exit Function in Visual Basic.

Now that we have given you a taste of basic C# syntax, we are ready to go into more detail with the
various aspects of C#. Since it is virtually impossible to write any non-trivial program without variables,
we will start by looking at variables in C#.

33

C# Basics

04 557599 Ch02.qxd 4/29/04 11:29 AM Page 33

Variables
We declare variables in C# using the following syntax:

datatype identifier;

for example:

int i;

This statement declares an int named i. The compiler won’t actually let us use this variable until we
have initialized it with a value, but the declaration allocates four bytes on the stack to hold the value.

Once it has been declared, we can assign a value to the variable using the assignment operator, =:

i = 10;

We can also declare the variable and initialize its value at the same time:

int i = 10;

This syntax is identical to C++ and Java syntax, but very different from Visual Basic syntax for declaring
variables. If you are coming from Visual Basic 6, you should also be aware that C# doesn’t distinguish
between objects and simple types, so there is no need for anything like the Set keyword, even if we
want our variable to refer to an object. The C# syntax for declaring variables is the same no matter what
the data type of the variable.

If we declare and initialize more than one variable in a single statement, all of the variables will be of the
same data type:

int x = 10, y =20; // x and y are both ints

To declare variables of different types, you need to use separate statements. Don’t assign different data
types within a multiple variable declaration:

int x = 10;
bool y = true; // Creates a variable that stores true or false
int x = 10, bool y = true; // This won’t compile!

Initialization of Variables
Variable initialization demonstrates another example of C#’s emphasis on safety. Briefly, the C# compiler
requires that any variable be initialized with some starting value before we refer to that variable in an
operation. Most modern compilers will flag violations of this as a warning, but the ever-vigilant C# com-
piler treats such violations as errors. This prevents us from unintentionally retrieving junk values from
memory that is left over from other programs.

C# has two methods for ensuring that variables are initialized before use:

❑ Variables that are fields in a class or struct, if not initialized explicitly, are by default zeroed out
when they are created.

34

Chapter 2

04 557599 Ch02.qxd 4/29/04 11:29 AM Page 34

❑ Variables that are local to a method must be explicitly initialized in your code prior to any state-
ments in which their values are used. In this case, the initialization doesn’t have to happen when
the variable is declared, but the compiler will check all possible paths through the method and
will flag an error if it detects any possibility of the value of a local variable being used before it is
initialized.

C#’s approach contrasts with that of C++, in which the compiler leaves it up to the programmer to make
sure that variables are initialized before use, and that of Visual Basic, in which all variables are zeroed
out automatically.

For example, we can’t do the following in C#:

public static int Main()
{

int d;
Console.WriteLine(d); // Can’t do this! Need to initialize d before use
return 0;

}

Notice that for this code snippet we have demonstrated defining Main() so it returns an int instead of
void.

When we attempt to compile these lines, we will receive this kind of error message:

Use of unassigned local variable ‘d’

The same rules apply to reference types as well. Consider the following statement:

Something objSomething;

In C++, this line would create an instance of the Something class on the stack. In C#, this same line of
code would only create a reference for a Something object, but this reference does not yet actually refer to
any object. Any attempt to call a method or property against this variable would result in an error.

Instantiating a reference object in C# requires use of the new keyword. We create a reference as shown
in the previous example and then point the reference at an object allocated on the heap using the new
keyword:

objSomething = new Something(); // This creates a Something on the heap

Variable Scope
The scope of a variable is the region of code from which the variable can be accessed. In general, the
scope is determined by the following rules:

❑ A field (also known as a member variable) of a class is in scope for as long as its containing class
is in scope (this is the same as for C++, Java, and VB).

❑ local variable is in scope until a closing brace indicates the end of the block statement or method
in which it was declared.

35

C# Basics

04 557599 Ch02.qxd 4/29/04 11:29 AM Page 35

❑ A local variable that is declared in a for, while, or similar statement is in scope in the body of
that loop. (C++ developers will note that this is the same behavior as the ANSI standard for
C++. Early versions of the Microsoft C++ compiler did not comply with this standard, but
scoped such variables to remain in scope after the loop terminated.)

Scope clashes for local variables
It’s common in a large program to use the same variable name for different variables in different parts of
the program. This is fine as long as the variables are scoped to completely different parts of the program
so there is no possibility for ambiguity. However bear in mind that local variables with the same name
can’t be declared twice in the same scope, so we can’t do this:

int x = 20;
// some more code
int x = 30;

Consider the following code sample:

using System;

namespace Wrox.ProCSharp.Basics
{

public class ScopeTest
{

public static int Main()
{

for (int i = 0; i < 10; i++)
{

Console.WriteLine(i);
} // i goes out of scope here

// We can declare a variable named i again, because
// there’s no other variable with that name in scope
for (int i = 9; i >= 0; i--)
{

Console.WriteLine(i);
} // i goes out of scope here
return 0;

}
}

}

This code simply prints out the numbers from 0 to 9, and then back again from 9 to 0, using a for
loop. The important thing to note is that we declare the variable i twice in this code, within the same
method. The reason that we can do this is that i is declared in two separate loops, so each i variable
is local to its own loop.

Let’s have a look at another example:

public static int Main()
{

int j = 20;

36

Chapter 2

04 557599 Ch02.qxd 4/29/04 11:29 AM Page 36

for (int i = 0; i < 10; i++)
{

int j = 30; // Can’t do this - j is still in scope
Console.WriteLine(j + i);

}
return 0;

}

If we try to compile this, we’ll get an error:

ScopeTest.cs(12,14): error CS0136: A local variable named ‘j’ cannot be declared in
this scope because it would give a different meaning to ‘j’, which is already used
in a ‘parent or current’ scope to denote something else

This is because the variable j, which we defined before the start of the for loop, is still in scope within
the for loop, and won’t go out of scope until the Main() method has finished executing. Although the
second j (the illegal one) is in the loop’s scope, that scope is nested within the Main() method’s scope.
The compiler has no way to distinguish between these two variables, so it won’t allow the second one to
be declared. This is again different from C++ where variable hiding is permitted.

Scope clashes for fields and local variables
In certain circumstances, however, we can distinguish between two identifiers with the same name
(although not the same fully qualified name) and the same scope, and in this case the compiler will allow
us to declare the second variable. The reason is that C# makes a fundamental distinction between variables
that are declared at the type level (fields) and variables declared within methods (local variables):

Consider the following code snippet:

using System;

namespace Wrox.ProCSharp.Basics
{

class ScopeTest2
{

static int j = 20;

public static void Main()
{

int j = 30;
Console.WriteLine(j);
return;

}
}

}

This code will compile, even though we have two variables named j in scope within the Main() method:
the j that was defined at the class level, and doesn’t go out of scope until the class is destroyed (when the
Main() method terminates, and the program ends), and the j defined in Main(). In this case, the new
variable named j that we declare in the Main() method hides the class-level variable with the same name,
so when we run this code, the number 30 will be displayed.

37

C# Basics

04 557599 Ch02.qxd 4/29/04 11:29 AM Page 37

However, what if we want to refer to the class-level variable? We can actually refer to fields of a class or
struct from outside the object, using the syntax object.fieldname. In the previous example, we are access-
ing a static field (we will look at what this means in the next section) from a static method, so we can’t
use an instance of the class; we just use the name of the class itself:

...
public static void Main()
{

int j = 30;
Console.WriteLine(ScopeTest2.j);

}
...

If we were accessing an instance field (a field that belongs to a specific instance of the class), we would
need to use the this keyword instead. This keyword performs the same role as this in C++ and Java,
and Me in Visual Basic.

Constants
Prefixing a variable with the const keyword when it is declared and initialized designates that variable
as a constant. As the name implies, a constant is a variable whose value cannot be changed throughout
its lifetime:

const int a = 100; // This value cannot be changed

Constants will be familiar to Visual Basic and C++ developers. C++ developers should, however, note
that C# does not permit all the subtleties of C++ constants. In C++, not only could variables be declared
as constant, but depending on the declaration, you could have constant pointers, variable pointers to
constants, constant methods (that don’t change the contents of the containing object), constant parame-
ters to methods, and so on. These subtleties have been discarded in C#, and all you can do is declare
local variables and fields to be constant.

Constants have the following characteristics:

❑ They must be initialized when they are declared, and once a value has been assigned, it can
never be overwritten.

❑ The value of a constant must be computable at compile time. Therefore, we can’t initialize a
constant with a value taken from a variable. If you need to do this, you will need to use a read-
only field (which we explain in Chapter 3).

❑ Constants are always implicitly static. However, notice that we don’t have to (and, in fact, are
not permitted to) include the static modifier in the constant declaration.

There are at least three advantages to using constants in your programs:

❑ Constants make your programs easier to read by replacing magic numbers and strings with
readable names whose values are easy to understand.

❑ Constants make your programs easier to modify. For example, let’s assume that you have a
SalesTax constant in one of your C# programs, and that constant is assigned a value of

38

Chapter 2

04 557599 Ch02.qxd 4/29/04 11:29 AM Page 38

6 percent. If the sales tax rate changes at a later point in time, you can modify the behavior of all
tax calculations simply by assigning a new value to the constant; you don’t have to hunt through-
out your code for the value .06 and change each one, hoping that you’ve found all of them.

❑ Constants make it easier to avoid mistakes in your programs. If you attempt to assign another
value to a constant somewhere in your program other than at the point where the constant is
declared, the compiler will flag the error.

Predefined Data Types
Now that we have seen how to declare variables and constants, we shall take a closer look at the data
types available in C#. As we will see, C# is a lot fussier about the types available and their definitions
than some other languages are.

Value Types and Reference Types
Before examining the data types in C#, it is important to understand that C# distinguishes between two
categories of data type:

❑ Value types

❑ Reference types

We will look in detail at the syntax for value and reference types over the next few sections. Conceptually,
the difference is that a value type stores its value directly, while a reference type stores a reference to the
value. Compared to other languages, value types in C# are basically the same thing as simple types (inte-
ger, float, but not pointers or references) in Visual Basic or C++. Reference types are the same as reference
types in Visual Basic, or are similar to types accessed through pointers in C++.

These types are stored in different places in memory; value types in an area known as the stack, while
reference types are stored in an area known as the managed heap. It is important to be aware of whether a
type is a value type or a reference type because of the different effect that assignment has. For example,
int is a value type, which means that the following statement will result in two locations in memory
storing the value 20:

// i and j are both of type int
i = 20;
j = i;

However, consider the following code. For this code, we will assume we have defined a class called
Vector. We assume that Vector is a reference type and has an int member variable called Value:

Vector x, y;
x = new Vector();
x.Value = 30; // Value is a field defined in Vector class
y = x;
Console.WriteLine(y.Value);
y.Value = 50;
Console.WriteLine(x.Value);

39

C# Basics

04 557599 Ch02.qxd 4/29/04 11:29 AM Page 39

The crucial point to understand is that after executing this code, there is only one Vector object around. x
and y both point to the memory location that contains this object. Since x and y are variables of a reference
type, declaring each variable simply reserves a reference—it doesn’t instantiate an object of the given
type. This is the same as declaring a pointer in C++ or an object reference in Visual Basic. In neither case
does an object actually get created. In order to create an object we have to use the new keyword, as shown.
Since x and y refer to the same object, changes made to x will affect y and vice versa. Hence the previous
code will display 30 then 50.

C++ developers should note that this syntax is like a reference, not a pointer. We use the . notation, not
->, to access object members. Syntactically, C# references look more like C++ reference variables.
However, behind the superficial syntax, the real similarity is with C++ pointers.

If a variable is a reference, it is possible to indicate that it does not refer to any object by setting its value
to null:

y = null;

This is just the same as setting a reference to null in Java, a pointer to NULL in C++, or an object reference
in Visual Basic to Nothing. If a reference is set to null, then clearly it is not possible to call any non-static
member functions or fields against it; doing so would cause an exception to be thrown at runtime.

In languages like C++, the developer could choose whether a given value was to be accessed directly or
via a pointer. Visual Basic was more restrictive, taking the view that COM objects were reference types
and simple types were always value types. C# is similar to Visual Basic in this regard: whether a variable
is a value or reference is determined solely by its data type, so int for example is always a value type.
It is not possible to declare an int variable as a reference (although in Chapter 5 when we cover boxing,
we will see it is possible to wrap value types in references of type object).

In C#, basic data types like bool and long are value types. This means that if we declare a bool variable
and assign it the value of another bool variable, we will have two separate bool values in memory.
Later, if we change the value of the original bool variable, the value of the second bool variable does
not change. These types are copied by value.

In contrast, most of the more complex C# data types, including classes that we ourselves declare, are
reference types. They are allocated upon the heap, have lifetimes that can span multiple function calls,
and can be accessed through one or several aliases. The Common Language Runtime (CLR) implements
an elaborate algorithm to track which reference variables are still reachable, and which have been
orphaned. Periodically, the CLR will destroy orphaned objects and return the memory that they once
occupied back to the operating system. This is done by the garbage collector.

C# has been designed this way because high performance is best served by keeping primitive types (like
int and bool) as value types, while having larger types that contain many fields (as is usually the case
with classes) as reference types. If you want to define your own type as a value type, you should declare
it as a struct.

CTS Types
As we pointed out in Chapter 1, the basic predefined types recognized by C# are not intrinsic to the
language but part of the .NET Framework. For example, when you declare an int in C#, what you are

40

Chapter 2

04 557599 Ch02.qxd 4/29/04 11:29 AM Page 40

actually declaring is an instance of a .NET struct, System.Int32. This may sound like an esoteric point,
but it has a profound significance: it means that you are able to treat all the primitive data types syntacti-
cally as if they were classes that supported certain methods. For example, to convert an int i to a
string you can write:

string s = i.ToString();

It should be emphasized that, behind this syntactical convenience, the types really are stored as primi-
tive types, so there is absolutely no performance cost associated with the idea that the primitive types
are notionally represented by .NET structs.

Let’s now review the types that are recognized as built-in types in C#. We will list each type, along with
its definition and the name of the corresponding .NET type (CTS type). C# has 15 predefined types, 13
value types, and 2 (string and object) reference types.

Predefined Value Types
The built-in value types represent primitives, such as integer and floating-point numbers, character, and
Boolean types.

Integer types
C# supports eight predefined integer types:

Name CTS Type Description Range (min:max)

sbyte System.SByte 8-bit signed integer -128:127 (-27:27-1)

short System.Int16 16-bit signed integer -32,768:32,767 (-215:215-1)

int System.Int32 32-bit signed integer -2,147,483,648:2,147,483,647
(-231:231-1)

long System.Int64 64-bit signed integer -9,223,372,036,854,775,808:
9,223,372,036,854,775,807

(-263:263-1)

byte System.Byte 8-bit unsigned integer 0:255 (0:28-1)

ushort System.UInt16 16-bit unsigned integer 0:65,535 (0:216-1)

uint System.UInt32 32-bit unsigned integer 0:4,294,967,295 (0:232-1)

ulong System.UInt64 64-bit unsigned integer 0:18,446,744,073,709,551,615
(0:264-1)

Future versions of Windows will target 64-bit processors, which can move bits into and out of memory
in larger chunks to achieve faster processing times. Consequently, C# supports a rich palette of signed
and unsigned integer types ranging in size from 8 to 64 bits.

Many of these type names will be new to Visual Basic. C++ and Java developers should be careful; some
of the names of C# types are the same as C++ and Java types, but the types have different definitions.

41

C# Basics

04 557599 Ch02.qxd 4/29/04 11:29 AM Page 41

For example, in C#, an int is always a 32-bit signed integer. In C++ an int is a signed integer, but the
number of bits is platform-dependent (32 bits on Windows). In C#, all data types have been defined in a
platform-independent manner in order to allow for the possible future porting of C# and .NET to other
platforms.

A byte is the standard 8-bit type for values in the range 0 to 255 inclusive. Be aware that, in keeping
with its emphasis on type safety, C# regards the byte type and the char type as completely distinct, and
any programmatic conversions between the two must be explicitly requested. Also be aware that unlike
the other types in the integer family, a byte type is by default unsigned. Its signed version bears the spe-
cial name sbyte.

With .NET, a short is no longer quite so short; it is now 16 bits long. The int type is 32 bits long. The
long type reserves 64 bits for values. All integer-type variables can be assigned values in decimal or in
hex notation. The latter require the 0x prefix:

long x = 0x12ab;

If there is any ambiguity about whether an integer is int, uint, long, or ulong, it will default to an
int. In order to specify which of the other integer types the value should take, you can append one of
the following characters to the number:

uint ui = 1234U;
long l = 1234L;
ulong ul = 1234UL;

We can also use lowercase u and l, although the latter could be confused with the integer 1 (one).

Floating point types
Although C# provides a plethora of integer data types, it supports floating-point types as well. They will
be familiar to C and C++ programmers:

Name CTS Type Description Significant Range
Figures (approximate)

float System.Single 32-bit single-precision 7 ±1.5 _ 10-45 to ±3.4 _ 1038

floating point

double System.Double 64-bit double-precision 15/16 ±5.0 _ 10-324 to ±1.7 _ 10308

floating point

The float data type is for smaller floating-point values, for which less precision is required. The double
data type is bulkier than the float data type, but offers twice the precision (15 digits).

If you hard-code in a non-integer number (such as 12.3) in your code, the compiler will normally assume
you want the number interpreted as a double. If we want to specify that the value is a float, we append
the character F (or f) to it:

float f = 12.3F;

42

Chapter 2

557599 Ch02.qxd 4/29/04 6:58 PM Page 42

The decimal type
In addition, there is a decimal type representing higher precision floating-point numbers:

Name CTS Type Description Significant Range
Figures (approximate)

decimal System.Decimal 128-bit high precision 28 ±1.0 _ 10-28 to ±7.9 _ 1028

decimal notation

One of the great things about the CTS and C# is the provision of a dedicated decimal type for financial cal-
culations. How you use the 28 digits that the decimal type provides is up to you. In other words, you can
track smaller dollar amounts with greater accuracy for cents, or larger dollar amounts with more rounding
in the fractional area. You should bear in mind, however, that decimal is not implemented under the hood
as a primitive type, so using decimal will have a performance impact on your calculations.

To specify that our number is of a decimal type rather than a double, float, or an integer, we can
append the M (or m) character to the value as shown in the following example:

decimal d = 12.30M;

The Boolean type
The C# bool type is used to contain Boolean values of either true or false:

Name CTS Type Values

bool System.Boolean true or false

We cannot implicitly convert bool values to and from integer values. If a variable (or a function return
type) is declared as a bool, then we can only use values of true and false. We will get an error if we
try to use zero for false and a non-zero value for true.

The character type
For storing the value of a single character, C# supports the char data type:

Name CTS Type Values

char System.Char Represents a single 16-bit (Unicode) character

Although this data type has a superficial resemblance to the char type provided by C and C++, there is a
significant difference. C++ char represents an 8-bit character, whereas a C# char contains 16 bits. This is part
of the reason that implicit conversions between the char type and the 8-bit byte type are not permitted.

Although 8 bits may be enough to encode every character in the English language and the digits 0-9, they
aren’t enough to encode every character in more expansive symbol systems (such as Chinese). In a gesture

43

C# Basics

04 557599 Ch02.qxd 4/29/04 11:29 AM Page 43

toward universality, the computer industry is moving away from the 8-bit character set and toward the
16-bit Unicode scheme, of which the ASCII encoding is a subset.

Literals of type char are signified by being enclosed in single quotes, for example ‘A’. If we try to
enclose a character in double quotes, the compiler will treat this as a string and throw an error.

As well as representing chars as character literals, we can represent them with 4-digit hex Unicode val-
ues (for example ‘\u0041’), as integer values with a cast (for example, (char)65), or as hexadecimal
values (‘\x0041’). They can also be represented by an escape sequence:

Escape Sequence Character

\’ Single quote

\” Double quote

\\ Backslash

\0 Null

\a Alert

\b Backspace

\f Form feed

\n Newline

\r Carriage return

\t Tab character

\v Vertical tab

C++ developers should note that because C# has a native string type, we don’t need to represent
strings as arrays of chars.

Predefined Reference Types
C# supports two predefined reference types:

Name CTS Type Description

object System.Object The root type, from which all other types in the CTS derive
(including value types)

string System.String Unicode character string

The object type
Many programming languages and class hierarchies provide a root type, from which all other objects in the
hierarchy derive. C# and .NET are no exception. In C#, the object type is the ultimate parent type from
which all other intrinsic and user-defined types derive. This is a key feature of C#, which distinguishes it

44

Chapter 2

04 557599 Ch02.qxd 4/29/04 11:29 AM Page 44

from both Visual Basic and C++, although its behavior here is very similar to Java. All types implicitly
derive ultimately from the System.Object class. This means that we can use the object type for two
purposes.

❑ We can use an object reference to bind to an object of any particular sub-type. For example, in
Chapter 5 we’ll see how we can use the object type to box a value object on the stack to move
it to the heap. object references are also useful in reflection, when code must manipulate
objects whose specific types are unknown. This is similar to the role played by a void pointer
in C++ or by a Variant data type in VB.

❑ The object type implements a number of basic, general-purpose methods, which include
Equals(), GetHashCode(), GetType(), and ToString(). Responsible user-defined classes
may need to provide replacement implementations of some of these methods using an object-
oriented technique known as overriding, which we will discuss in Chapter 4. When we override
ToString(), for example, we equip our class with a method for intelligently providing a string
representation of itself. If we don’t provide our own implementations for these methods in our
classes, the compiler will pick up the implementations in object, which may or may not be cor-
rect or sensible in the context of our classes.

We’ll examine the object type in more detail in subsequent chapters.

The string type
Veterans of C and C++ probably have battle scars from wrestling with C-style strings. A C or C++ string
was nothing more than an array of characters, so the client programmer had to do a lot of work just to
copy one string to another or to concatenate two strings. In fact, for a generation of C++ programmers,
implementing a string class that wrapped up the messy details of these operations was a rite of passage
requiring many hours of teeth gnashing and head scratching. Visual Basic programmers had a some-
what easier life, with a string type, while Java people had it even better, with a String class that is in
many ways very similar to C# string.

C# recognizes the string keyword, which under the hood is translated to the .NET class,
System.String. With it, operations like string concatenation and string copying are a snap:

string str1 = “Hello “;
string str2 = “World”;
string str3 = str1 + str2; // string concatenation

Despite this style of assignment, string is a reference type. Behind the scenes, a string object is allo-
cated on the heap, not the stack, and when we assign one string variable to another string, we get two
references to the same string in memory. However, with string there are some differences from the
usual behavior for reference types. For example, should we then make changes to one of these strings,
note that this will create an entirely new string object, leaving the other string unchanged. Consider
the following code:

using System;

class StringExample
{

public static int Main()
{

string s1 = “a string”;

45

C# Basics

04 557599 Ch02.qxd 4/29/04 11:29 AM Page 45

string s2 = s1;
Console.WriteLine(“s1 is “ + s1);
Console.WriteLine(“s2 is “ + s2);
s1 = “another string”;
Console.WriteLine(“s1 is now “ + s1);
Console.WriteLine(“s2 is now “ + s2);
return 0;

}
}

The output from this is:

s1 is a string
s2 is a string
s1 is now another string
s2 is now a string

In other words, changing the value of s1 had no effect on s2, contrary to what we’d expect with a refer-
ence type! What’s happening here is that when s1 is initialized with the value a string, a new string
object is allocated on the heap. When s2 is initialized, the reference points to this same object, so s2 also
has the value a string. However, when we now change the value of s1, instead of replacing the origi-
nal value, a new object will be allocated on the heap for the new value. Our s2 variable will still point
to the original object, so its value is unchanged. Under the hood, this happens as a result of operator
overloading, a topic that we will explore in Chapter 5. In general, the string class has been imple-
mented so that its semantics follow what you would normally intuitively expect for a string.

String literals are enclosed in double quotes (“...”); if we attempt to enclose a string in single quotes,
the compiler will take the value as a char, and throw an error. C# strings can contain the same Unicode
and hexadecimal escape sequences as chars. Since these escape sequences start with a backslash, we
can’t use this character unescaped in a string. Instead, we need to escape it with two backslashes (\\):

string filepath = “C:\\ProCSharp\\First.cs”;

Even if you are confident you can remember to do this all the time, it can prove annoying typing all
those double backslashes. Fortunately, C# gives us an alternative. We can prefix a string literal with the
at character (@) and all the characters in it will be treated at face value; they won’t be interpreted as
escape sequences:

string filepath = @”C:\ProCSharp\First.cs”;

This even allows us to include line breaks in our string literals:

string jabberwocky = @”’Twas brillig and the slithy toves
Did gyre and gimble in the wabe.”;

Then the value of jabberwocky would be this:

‘Twas brillig and the slithy toves
Did gyre and gimble in the wabe.

46

Chapter 2

04 557599 Ch02.qxd 4/29/04 11:29 AM Page 46

Flow Control
In this section, we will look at the real nuts and bolts of the language: the statements that allow us to con-
trol the flow of our program rather than executing every line of code in the order it appears in the program.

Conditional Statements
Conditional statements allow us to branch our code depending on whether certain conditions are met or
on the value of an expression. C# has two constructs for branching code—the if statement, which allows
us to test whether a specific condition is met, and the switch statement, which allows us to compare an
expression with a number of different values.

The if statement
For conditional branching, C# inherits the C and C++ if...else construct. The syntax should be fairly
intuitive for anyone who has done any programming with a procedural language:

if (condition)
statement(s)

else
statement(s)

If more than one statement is to be executed as part of either condition, these statements will need to be
joined together into a block using curly braces ({ ... }) (this also applies to other C# constructs where
statements can be joined into a block, such as the for and while loops):

bool isZero;
if (i == 0)
{

isZero = true;
Console.WriteLine(“i is Zero”);

}
else
{

isZero = false;
Console.WriteLine(“i is Non-zero”);

}

The syntax here is similar to C++ and Java but once again different from Visual Basic. Visual Basic devel-
opers should note that C# does not have any statement corresponding to Visual Basic’s EndIf. Instead,
the rule is that each clause of an if contains just one statement. If you need more than one statement, as
in the above example, you should enclose the statements in braces, which will cause the whole group of
statements to be treated as a single block statement.

If we want to, we can use an if statement without a final else statement. We can also combine else if
clauses to test for multiple conditions.

using System;

namespace Wrox.ProCSharp.Basics
{

47

C# Basics

04 557599 Ch02.qxd 4/29/04 11:29 AM Page 47

class MainEntryPoint
{

static void Main(string[] args)
{

Console.WriteLine(“Type in a string”);
string input;
input = Console.ReadLine();
if (input == “”)
{

Console.WriteLine(“You typed in an empty string”);
}
else if (input.Length < 5)
{

Console.WriteLine(“The string had less than 5 characters”);
}
else if (input.Length < 10)
{

Console.WriteLine(“The string had at least 5 but less than 10
characters”);

}
Console.WriteLine(“The string was “ + input);

}
}

}

There is no limit to how many else if’s we can add to an if clause.

You’ll notice that in the previous example, we declare a string variable called input, get the user to enter
text at the command line, feed this into input, and then test the length of this string variable. The code
also shows us how easy string manipulation can be in C#. To find the length of input, for example, use
input.Length.

One point to note about if is that we don’t need to use the braces if there’s only one statement in the
conditional branch:

if (i == 0)
Console.WriteLine(“i is Zero”); // This will only execute if i == 0

Console.WriteLine(“i can be anything”); // Will execute whatever the
// value of i

However, for consistency, many programmers prefer to use curly braces whenever they use an if
statement.

The if statements we have presented also illustrate some of the C# operators that compare values. Note
in particular that, like C++ and Java, C# uses == to compare variables for equality. Do not use = for this
purpose. A single = is used to assign values.

In C#, the expression in the if clause must evaluate to a Boolean. C++ programmers should be particularly
aware of this; unlike C++, it is not possible to test an integer (returned from a function, say) directly. In C#,
we have to convert the integer that is returned to a Boolean true or false, for example by comparing the
value with zero or with null:

48

Chapter 2

04 557599 Ch02.qxd 4/29/04 11:29 AM Page 48

if (DoSomething() != 0)
{

// Non-zero value returned
}
else
{

// Returned zero
}

This restriction is there in order to prevent some common types of run-time bugs that occur in C++. In
particular, in C++ it was common to mistype = when == was intended, resulting in unintentional assign-
ments. In C# this will normally result in a compile-time error, since unless you are working with bool
values, = will not return a bool.

The switch statement
The switch...case statement is good for selecting one branch of execution from a set of mutually
exclusive ones. It will be familiar to C++ and Java programmers and is similar to the Select Case state-
ment in Visual Basic.

It takes the form of a switch argument followed by a series of case clauses. When the expression in the
switch argument evaluates to one of the values beside a case clause, the code immediately following
the case clause executes. This is one example where we don’t need to use curly braces to join statements
into blocks; instead, we mark the end of the code for each case using the break statement. We can also
include a default case in the switch statement, which will execute if the expression evaluates to none
of the other cases. The following switch statement tests the value of the integerA variable:

switch (integerA)
{

case 1:
Console.WriteLine(“integerA =1”);
break;

case 2:
Console.WriteLine(“integerA =2”);
break;

case 3:
Console.WriteLine(“integerA =3”);
break;

default:
Console.WriteLine(“integerA is not 1,2, or 3”);
break;

}

Note that the case values must be constant expressions; variables are not permitted.

Though the switch...case statement should be familiar to C and C++ programmers, C#’s switch...
case is a bit safer than its C++ equivalent. Specifically, it prohibits fall-through conditions in almost all
cases. This means that if a case clause is fired early on in the block, later clauses cannot be fired unless
you use a goto statement to mark that you want them fired too. The compiler enforces this restriction
by flagging every case clause that is not equipped with a break statement as an error similar to this:

Control cannot fall through from one case label (‘case 2:’) to another

49

C# Basics

04 557599 Ch02.qxd 4/29/04 11:29 AM Page 49

While it is true that fall-through behavior is desirable in a limited number of situations, in the vast
majority of cases it is unintended and results in a logical error that’s hard to spot. Isn’t it better to code
for the norm rather than for the exception?

By getting creative with goto statements (which C# does support) however, you can duplicate fall-
through functionality in your switch...cases. However, if you find yourself really wanting to, you
probably should re-consider your approach. The following code illustrates both how to use goto to
simulate fall-through, and how messy the resultant code can get.

// assume country and language are of type string
switch(country)
{

case “America”:
CallAmericanOnlyMethod();
goto case “Britain”;

case “France”:
language = “French”;
break;

case “Britain”:
language = “English”;
break;

}

There is one exception to the no–fall-through rule however, in that we can fall through from one case to
the next if that case is empty. This allows us to treat two or more cases in an identical way (without the
need for goto statements):

switch(country)
{

case “au”:
case “uk”:
case “us”:

language = “English”;
break;

case “at”:
case “de”:

language = “German”;
break;

}

One intriguing point about the switch statement in C# is that the order of the cases doesn’t matter—we
can even put the default case first! As a result, no two cases can be the same. This includes different
constants that have the same value, so we can’t, for example, do this:

// assume country is of type string
const string england = “uk”;
const string britain = “uk”;
switch(country)
{

case england:
case britain: // this will cause a compilation error

language = “English”;
break;

}

50

Chapter 2

04 557599 Ch02.qxd 4/29/04 11:29 AM Page 50

The previous code also shows another way in which the switch statement is different in C# from C++:
In C#, you are allowed to use a string as the variable being tested.

Loops
C# provides four different loops (for, while, do...while, and foreach) that allow us to execute a
block of code repeatedly until a certain condition is met. The for, while, and do...while loops are
essentially identical to those encountered in C++. The for loop is the first that we shall examine.

The for loop
C# for loops provide a mechanism for iterating through a loop where we test whether a particular
condition holds before we perform another iteration. The syntax is:

for (initializer; condition; iterator)
statement(s)

where:

❑ The initializer is the expression evaluated before the first loop is executed (usually initializing a
local variable as a loop counter).

❑ The condition is the expression that is checked before each new iteration of the loop (this must
evaluate to true for another iteration to be performed).

❑ The iterator is an expression that will be evaluated after each iteration (usually incrementing the
loop counter). The iterations end when the condition evaluates to false.

The for loop is a so-called pre-test loop, because the loop condition is evaluated before the loop statements
are executed, and so the contents of the loop won’t be executed at all if the loop condition is false.

The for loop is excellent for repeating a statement or a block of statements for a predetermined number
of times. The following example is typical of the use of a for loop. The following code will write out all
the integers from 0 to 99:

for (int i = 0; i < 100; i = i+1) // this is equivalent to
// For i = 0 To 99 in VB.

{
Console.WriteLine(i);

}

Here, we declare an int called i and initialize it to zero. This will be used as the loop counter. We then
immediately test whether it is less than 100. Since this condition evaluates to true, we execute the code
in the loop, displaying the value 0. We then increment the counter by one, and walk through the process
again. Looping ends when i reaches 100.

Actually, the way we have written the above loop isn’t quite how you would normally write it. C# has a
shorthand for adding 1 to a variable, so instead of i = i + 1, we can simply write i++:

for (int i = 0; i < 100; i++)
{

// etc.

51

C# Basics

04 557599 Ch02.qxd 4/29/04 11:29 AM Page 51

C# for loop syntax is far more powerful than the Visual Basic For...Next loop, since the iterator can
be any statement. In Visual Basic, all you can do is add or subtract some number from the loop control
variable. In C# you can do anything; for example, you can multiply the loop control variable by 2.

It’s not unusual to nest for loops so that an inner loop executes once completely for each iteration of an
outer loop. This scheme is typically employed to loop through every element in a rectangular multidi-
mensional array. The outermost loop loops through every row, and the inner loop loops through every
column in a particular row. The following code is available as the NumberTable sample, and displays
rows of numbers. It also uses another Console method, Console.Write(), which does the same as
Console.WriteLine() but doesn’t send a carriage return to the output.

using System;

namespace Wrox.ProCSharp.Basics
{

class MainEntryPoint
{

static void Main(string[] args)
{

// This loop iterates through rows...
for (int i = 0; i < 100; i+=10)
{

// This loop iterates through columns...
for (int j = i; j < i + 10; j++)
{

Console.Write(“ “ + j);
}
Console.WriteLine();

}
}

}
}

Although j is an integer, it will be automatically converted to a string so that the concatenation can take
place. C++ developers will note that this is far easier than string handling ever was in C++; for Visual
Basic developers this is familiar ground.

C programmers should take note of one particular feature of the example above. The counter variable in
the innermost loop is effectively re-declared with each successive iteration of the outer loop. This syntax
is legal not only in C#, but in C++ as well.

The above sample results in this output:

csc NumberTable.cs

Microsoft (R) Visual C# .NET Compiler version 7.10.3052.4
for Microsoft (R) .NET Framework version 1.0.4322
Copyright (C) Microsoft Corporation 2001-2002. All rights reserved.

0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29
30 31 32 33 34 35 36 37 38 39

52

Chapter 2

04 557599 Ch02.qxd 4/29/04 11:29 AM Page 52

40 41 42 43 44 45 46 47 48 49
50 51 52 53 54 55 56 57 58 59
60 61 62 63 64 65 66 67 68 69
70 71 72 73 74 75 76 77 78 79
80 81 82 83 84 85 86 87 88 89
90 91 92 93 94 95 96 97 98 99

Although it is technically possible to evaluate something other than a counter variable in a for loop’s
test condition, it is certainly not typical. It is also possible to omit one (or even all) of the expressions in
the for loop. In such situations, however, you should consider using the while loop.

The while loop
The while loop is identical to the while loop in C++ and Java, and the While...Wend loop in Visual
Basic. Like the for loop, while is a pre-test loop. The syntax is similar, but while loops take only one
expression:

while(condition)
statement(s);

Unlike the for loop, the while loop is most often used to repeat a statement or a block of statements for
a number of times that is not known before the loop begins. Usually, a statement inside the while loop’s
body will set a Boolean flag to false on a certain iteration, triggering the end of the loop, as in the fol-
lowing example:

bool condition = false;
while (!condition)
{

// This loop spins until the condition is true
DoSomeWork();
condition = CheckCondition(); // assume CheckCondition() returns a bool

}

All of C#’s looping mechanisms, including the while loop, can forego the curly braces that follow them
if they intend to repeat just a single statement and not a block of statements. Again, many programmers
consider it good practice to use braces all of the time.

The do...while loop
The do...while loop is the post-test version of the while loop. It does the same thing with the same syn-
tax as do...while in C++ and Java, and the same thing as Loop...While in Visual Basic. This means
that the loop’s test condition is evaluated after the body of the loop has been executed. Consequently,
do...while loops are useful for situations in which a block of statements must be executed at least one
time, as in this example:

bool condition;
do
{

// this loop will at least execute once, even if Condition is false
MustBeCalledAtLeastOnce();
condition = CheckCondition();

} while (condition);

53

C# Basics

04 557599 Ch02.qxd 4/29/04 11:29 AM Page 53

The foreach loop
The foreach loop is the final C# looping mechanism that we will discuss. While the other looping
mechanisms were present in the earliest versions of C and C++, the foreach statement is a new addi-
tion (borrowed from Visual Basic), and a very welcome one at that.

The foreach loop allows us to iterate through each item in a collection. For the time being we won’t worry
about exactly what a collection is—we’ll explain fully in Chapter 9. For now, we will just say that it is an
object that contains other objects. Technically, to count as a collection, it must support an interface called
IEnumerable. Examples of collections include C# arrays, the collection classes in the System.Collection
namespaces, and user-defined collection classes. We can get an idea of the syntax of foreach from the fol-
lowing code, if we assume that arrayOfInts is (unsurprisingly) an array if ints:

foreach (int temp in arrayOfInts)
{

Console.WriteLine(temp);
}

Here, foreach steps through the array one element at a time. With each element, it places the value of
the element in the int variable called temp, and then performs an iteration of the loop.

An important point to note with foreach is that we can’t change the value of the item in the collection
(temp above), so code such as the following will not compile:

foreach (int temp in arrayOfInts)
{

temp++;
Console.WriteLine(temp);

}

If you need to iterate through the items in a collection and change their values, you will need to use a
for loop instead.

Jump Statements
C# provides a number of statements that allow us to jump immediately to another line in the program.
The first of these is, of course, the notorious goto statement.

The goto statement
The goto statement allows us to jump directly to another specified line in the program, indicated by a
label (this is just an identifier followed by a colon):

goto Label1;
Console.WriteLine(“This won’t be executed”);

Label1:
Console.WriteLine(“Continuing execution from here”);

There are a couple of restrictions involved with goto. We can’t jump into a block of code such as a for
loop, we can’t jump out of a class, and we can’t exit a finally block after try...catch blocks (we will
look at exception handling with try...catch...finally in Chapter 11).

54

Chapter 2

04 557599 Ch02.qxd 4/29/04 11:29 AM Page 54

The reputation of the goto statement probably precedes it, and in most circumstances, its use is sternly
frowned upon. In general, it certainly doesn’t conform to good object-oriented programming practice.
However, there is one place where it is quite handy: jumping between cases in a switch statement, par-
ticularly since C#’s switch is so strict on fall-through. We saw the syntax for this earlier in this chapter.

The break statement
We have already met the break statement briefly—when we used it to exit from a case in a switch
statement. In fact, break can also be used to exit from for, foreach, while, or do...while loops too.
Control will switch to the statement immediately after the end of the loop.

If the statement occurs in a nested loop, control will switch to the end of the innermost loop. If the break
occurs outside of a switch statement or a loop, a compile-time error will occur.

The continue statement
The continue statement is similar to break, and must also be used within a for, foreach, while, or
do...while loop. However, it exits only from the current iteration of the loop, meaning execution will
restart at the beginning of the next iteration of the loop, rather than outside the loop altogether.

The return statement
The return statement is used to exit a method of a class, returning control to the caller of the method. If
the method has a return type, return must return a value of this type; otherwise if the method returns
void, then you should use return without an expression.

Enumerations
An enumeration is a user-defined integer type. When we declare an enumeration, we specify a set of
acceptable values that instances of that enumeration can contain. Not only that, but we can give the
values user-friendly names. If, somewhere in our code, we attempt to assign a value that is not in the
acceptable set of values to an instance of that enumeration, the compiler will flag an error. This concept
may be new to Visual Basic programmers. C++ does support enumerations (or enums), but C# enumera-
tions are far more powerful than their C++ counterparts.

Creating an enumeration can end up saving you lots of time and headaches in the long run. There are at
least three benefits to using enumerations instead of plain integers:

❑ As mentioned, enumerations make your code easier to maintain by helping to ensure that your
variables are assigned only legitimate, anticipated values.

❑ Enumerations make your code clearer by allowing you to refer to integer values by descriptive
names rather than by obscure “magic” numbers.

❑ Enumerations make your code easier to type, too. When you go to assign a value to an instance
of an enumerated type, the Visual Studio .NET IDE will, through IntelliSense, pop up a list box
of acceptable values in order to save you some keystrokes and to remind you of what the possi-
ble options are.

55

C# Basics

04 557599 Ch02.qxd 4/29/04 11:29 AM Page 55

We can define an enumeration as follows:

public enum TimeOfDay
{

Morning = 0,
Afternoon = 1,
Evening = 2

}

In this case, we use an integer value to represent each period of the day in the enumeration. We can now
access these values as members of the enumeration. For example, TimeOfDay.Morning will return the
value 0. We will typically use this enumeration to pass an appropriate value into a method, and iterate
through the possible values in a switch statement:

class EnumExample
{

public static int Main()
{

WriteGreeting(TimeOfDay.Morning);
return 0;

}

static void WriteGreeting(TimeOfDay timeOfDay)
{

switch(timeOfDay)
{

case TimeOfDay.Morning:
Console.WriteLine(“Good morning!”);
break;

case TimeOfDay.Afternoon:
Console.WriteLine(“Good afternoon!”);
break;

case TimeOfDay.Evening:
Console.WriteLine(“Good evening!”);
break;

default:
Console.WriteLine(“Hello!”);
break;

}
}

}

The real power of enums in C# is that behind the scenes they are instantiated as structs derived from the
base class, System.Enum. This means it is possible to call methods against them to perform some useful
tasks. Note that because of the way the .NET Framework is implemented there is no performance loss
associated with treating the enums syntactically as structs. In practice, once your code is compiled,
enums will exist as primitive types, just like int and float.

You can retrieve the string representation of an enum as in the following example, using our earlier
TimeOfDay enum:

TimeOfDay time = TimeOfDay.Afternoon;
Console.WriteLine(time.ToString());

56

Chapter 2

04 557599 Ch02.qxd 4/29/04 11:29 AM Page 56

This will return the string Afternoon.

Alternatively you can obtain an enum value from a string.

TimeOfDay time2 = (TimeOfDay) Enum.Parse(typeof(TimeOfDay), “afternoon”, true);
Console.WriteLine((int)time2);

This code snippet illustrates both obtaining an enum value from a string and converting to an integer.
To convert from a string, we need to use the static Enum.Parse() method, which as shown here takes
three parameters. The first is the type of enum we wish to consider. The syntax is the keyword typeof
followed by the name of the enum class in brackets. We will explore the typeof operator in more detail
in Chapter 5. The second parameter is the string to be converted, and the third parameter is a bool indi-
cating whether or not we should ignore case when doing the conversion. Finally, note that Enum.Parse()
actually returns an object reference — we need to explicitly convert this to the required enum type (this
is an example of an unboxing operation). For the above code, this returns the value 1 as an object, corre-
sponding to the enum value of TimeOfDay.Afternoon. On converting explicitly to an int, this produces
the value 1 again.

There are other methods on System.Enum to do things like return the number of values in an enum defi-
nition or to list the names of the values. Full details are in the MSDN documentation.

Arrays
We won’t say too much about arrays in this chapter, because we cover arrays and collections in detail
in Chapter 9. However we’ll give you just enough syntax here that you can code 1-dimensional arrays.
Arrays in C# are declared by fixing a set of square brackets to the end of the variable type of the individ-
ual elements (note that all the elements in an array must be of the same data type).

A note to Visual Basic users: arrays in C# use square brackets, not parentheses. C++ users will be famil-
iar with the square brackets, but should check the code we present here carefully because C# syntax for
actually declaring array variables is not the same as C++ syntax.

For example, while int represents a single integer, int[] represents an array of integers:

int[] integers;

To initialize the array with specific dimensions, we can use the new keyword, giving the size in the
square brackets after the type name:

// Create a new array of 32 ints
int[] integers = new int[32];

All arrays are reference types and follow reference semantics. Hence, in this code, even though the indi-
vidual elements are primitive value types, the integers array is a reference type. Hence if we later write

int [] copy = integers;

this will simply assign the variable copy to refer to the same array—it won’t create a new array.

57

C# Basics

04 557599 Ch02.qxd 4/29/04 11:29 AM Page 57

To access an individual element within the array, we use the usual syntax, placing the index of the element
in square brackets after the name of the array. All C# arrays use zero-based indexing, so we can reference
the first variable with the index zero:

integers[0] = 35;

Similarly, we reference the 32 element value with an index value of 31:

integers[31] = 432;

C#’s array syntax is flexible. In fact, C# allows us to declare arrays without initializing them, so that the
array can be dynamically sized later in the program. With this technique, we are basically creating a
null reference, and later pointing that reference at a dynamically allocated stretch of memory locations
requested with the new keyword:

int[] integers;
integers = new int[32];

You can find out how many elements are in any array by using this syntax:

int numElements = integers.Length; // integers is any reference to an array.

Namespaces
As we have seen earlier, namespaces provide a way of organizing related classes and other types. Unlike
a file or a component, a namespace is a logical, rather than a physical grouping. When we define a class
in a C# file, we can include it within a namespace definition. Later, when we define another class that
performs related work in another file, we can include it within the same namespace, creating a logical
grouping that gives an indication to other developers using the classes how they are related and used:

namespace CustomerPhoneBookApp
{

using System;

public struct Subscriber
{

// Code for struct here...
}

}

Placing a type in a namespace effectively gives that type a long name, consisting of the type’s namespace
as a series of names separated with periods (.), terminating with the name of the class. In the example
above, the full name of the Subscriber struct is CustomerPhoneBookApp.Subscriber. This allows
distinct classes with the same short name to be used within the same program without ambiguity.

We can also nest namespaces within other namespaces, creating a hierarchical structure for our types:

58

Chapter 2

04 557599 Ch02.qxd 4/29/04 11:29 AM Page 58

namespace Wrox
{

namespace ProCSharp
{

namespace Basics
{

class NamespaceExample
{

// Code for the class here...
}

}
}

}

Each namespace name is composed of the names of the namespaces it resides within, separated with
periods, starting with the outermost namespace and ending with its own short name. So the full name
for the ProCSharp namespace is Wrox.ProCSharp, and the full name of our NamespaceExample class
is Wrox.ProCSharp.Basics.NamespaceExample.

We can use this syntax to organize the namespaces in our namespace definitions too, so the previous
code could also be written:

namespace Wrox.ProCSharp.Basics
{

class NamespaceExample
{

// Code for the class here...
}

}

Note that we are not permitted to declare a multi-part namespace nested within another namespace.

Namespaces are not related to assemblies. It is perfectly acceptable to have different namespaces in the
same assembly, or define types in the same namespace in different assemblies.

The using Statement
Obviously, namespaces can grow rather long and tiresome to type, and the ability to indicate a particular
class with such specificity may not always be necessary. Fortunately, as we noted at the beginning of the
chapter, C# allows us to abbreviate a class’s full name. To do this, we list the class’s namespace at the top
of the file, prefixed with the using keyword. Throughout the rest of the file, we can refer to the types in
the namespace simply by their type names.

using System;
using Wrox.ProCSharp;

As remarked earlier, virtually all C# source code will start with the statement using System; simply
because so many useful classes supplied by Microsoft are contained in the System namespace.

59

C# Basics

04 557599 Ch02.qxd 4/29/04 11:29 AM Page 59

If two namespaces referenced by using statements contain a type of the same name, then we will have to
use the full (or at least, a longer) form of the name to ensure that the compiler knows which type is to be
accessed. For example, say classes called NamespaceExample exist both in the Wrox.ProCSharp.Basics
and Wrox.ProCSharp.OOP namespaces. If we then create a class called Test in the Wrox.ProCSharp
namespace, and instantiate one of the NamespaceExample classes in this class, we need to specify which
of these two classes we’re talking about:

using Wrox.ProCSharp;

class Test
{

public static int Main()
{

Basics.NamespaceExample nSEx = new Basics.NamespaceExample();
// do something with the nSEx variable

return 0;
}

}

Since using statements occur at the top of C# files, in the same place that C and C++ list #include
statements, it’s easy for programmers moving from C++ to C# to confuse namespaces with C++-style
header files. Don’t make this mistake. The using statement does no physical linking between files, and
C# has no equivalent to C++ header files.

Your organization will probably want to spend some time developing a namespace schema so that its
developers can quickly locate functionality that they need and so that the names of the organization’s
homegrown classes won’t conflict with those in off-the-shelf class libraries. We will discuss guidelines
on establishing your own namespace scheme along with other naming recommendations later in this
chapter.

Namespace Aliases
Another use of the using keyword is to assign aliases to classes and namespaces. If we have a very long
namespace name that we want to refer to several times in our code, but don’t want to include in a simple
using statement (for example, to avoid type name conflicts), we can assign an alias to the namespace.
The syntax for this is:

using alias = NamespaceName;

The following example (a modified version of the previous example) assigns the alias Introduction to
the Wrox.ProCSharp.Basics namespace, and uses this to instantiate a NamespaceExample object,
which is defined in this namespace. This object has one method, GetNamespace(), which uses the
GetType() method exposed by every class to access a Type object representing the class’s type. We use
this object to return a name of the class’s namespace:

using System;
using Introduction = Wrox.ProCSharp.Basics;

class Test
{

60

Chapter 2

04 557599 Ch02.qxd 4/29/04 11:29 AM Page 60

public static int Main()
{

Introduction.NamespaceExample NSEx =
new Introduction.NamespaceExample();

Console.WriteLine(NSEx.GetNamespace());

return 0;
}

}

namespace Wrox.ProCSharp.Basics
{

class NamespaceExample
{

public string GetNamespace()
{

return this.GetType().Namespace;
}

}
}

The Main() Method
We saw at the start of this chapter that C# programs start execution at a method named Main(). As we
saw earlier, this must be a static method of a class (or struct), and must have a return type of either int
or void.

Although it is common to specify the public modifier explicitly, since by definition the method must be
called from outside the program, it doesn’t actually matter what accessibility level we assign to the entry
point method—it will run even if we mark the method as private.

Multiple Main() Methods
When a C# console or Windows application is compiled, by default the compiler looks for exactly one
Main() method in any class matching the signature listed above and makes that class method the entry
point for the program. If there is more than one Main() method, the compiler will return an error mes-
sage. For example, consider the following code called MainExample.cs:

using System;

namespace Wrox.ProCSharp.Basics
{

class Client
{

public static int Main()
{

MathExample.Main();

61

C# Basics

04 557599 Ch02.qxd 4/29/04 11:29 AM Page 61

return 0;
}

}

class MathExample
{

static int Add(int x, int y)
{

return x + y;
}

public static int Main()
{

int i = Add(5,10);
Console.WriteLine(i);
return 0;

}
}

}

This contains two classes, both of which have a Main() method. If we try to compile this code in the
usual way we will get the following errors:

csc MainExample.cs

Microsoft (R) Visual C# .NET Compiler version 7.10.3052.4
for Microsoft (R) .NET Framework version 1.1.4322
Copyright (C) Microsoft Corporation 2001-2002. All rights reserved.

MainExample.cs(7,25): error CS0017: Program ‘MainExample.exe’ has more than one
entry point defined: ‘Wrox.ProCSharp.Basics.Client.Main()’
MainExample.cs(21,25): error CS0017: Program ‘MainExample.exe’ has more than one
entry point defined: ‘Wrox.ProCSharp.Basics.MathExample.Main()’

However, we can explicitly tell the compiler which of these methods to use as the entry point for the
program using the /main switch, together with the full name (including namespace) of the class to
which the Main() method belongs:

csc MainExample.cs /main:Wrox.ProCSharp.Basics.MathExample

Passing Arguments to Main()
In our examples so far, we have only shown the Main() method without any parameters. However,
when the program is invoked, we can get the CLR to pass any command line arguments to the program
by including a parameter. This parameter is a string array, traditionally called args (although C# will
accept any name). The program can use this array to access any options passed through the command
line when the program is started.

The following sample, ArgsExample.cs, loops through the string array passed in to the Main() method
and writes the value of each option to the console window:

62

Chapter 2

04 557599 Ch02.qxd 4/29/04 11:29 AM Page 62

using System;

namespace Wrox.ProCSharp.Basics
{

class ArgsExample
{

public static int Main(string[] args)
{

for (int i = 0; i < args.Length; i++)
{

Console.WriteLine(args[i]);
}
return 0;

}
}

}

We can compile this as usual using command line. When we run the compiled executable, we can pass
in arguments after the name of the program, for example:

ArgsExample /a /b /c

/a
/b
/c

More on Compiling C# Files
So far, we have seen how to compile console applications using csc.exe, but what about other types of
application? What if we want to reference a class library? The full set of compilation options for the C#
compiler is of course detailed in the MSDN documentation, but we list here the most important options.

To answer the first question, we can specify what type of file we want to create using the /target
switch, often abbreviated to /t. This can be one of the following:

Option Output

/t:exe A console application (the default)

/t:library A class library with a manifest

/t:module A component without a manifest

/t:winexe A Windows application (without a console window)

If we want a non-executable file (such as a DLL) to be loadable by the .NET runtime, we must compile it
as a library. If we compile a C# file as a module, no assembly will be created. Although modules cannot
be loaded by the runtime, they can be compiled into another manifest using the /addmodule switch.

63

C# Basics

04 557599 Ch02.qxd 4/29/04 11:29 AM Page 63

Another option we need to mention is /out. This allows us to specify the name of the output file pro-
duced by the compiler. If the /out option isn’t specified, the compiler will base the name of the output
file on the name of the input C# file, adding an extension according to the target type (for example, exe
for a Windows or console application, or dll for a class library). Note that the /out and /t , or /target,
options must precede the name of the file we want to compile.

If we want to reference types in assemblies that aren’t referenced by default, we can use the /reference or
/r switch, together with the path and filename of the assembly. The following example demonstrates how
we can compile a class library and then reference that library in another assembly. It consists of two files:

❑ The class library

❑ A console application, which will call a class in the library.

The first file is called MathLibrary.cs and contains the code for our DLL. To keep things simple, it contains
just one (public) class, MathLib, with a single method that adds two ints:

namespace Wrox.ProCSharp.Basics
{

public class MathLib
{

public int Add(int x, int y)
{

return x + y;
}

}
}

We can compile this C# file into a .NET DLL using the following command:

csc /t:library MathLibrary.cs

The console application, MathClient.cs, will simply instantiate this object and call its Add() method,
displaying the result in the console window:

using System;

namespace Wrox.ProCSharp.Basics
{

class Client
{

public static void Main()
{

MathLib mathObj = new MathLib();
Console.WriteLine(mathObj.Add(7,8));

}
}

}

64

Chapter 2

04 557599 Ch02.qxd 4/29/04 11:29 AM Page 64

We can compile this code using the /r switch to point at or reference our newly compiled DLL:

csc MathClient.cs /r:MathLibrary.dll

We can then run it as normal just by entering MathClient at the command prompt. This displays the
number 15—the result of our addition.

Console I/O
By this point, you should have a basic familiarity with C#’s data types, as well as some knowledge of
how the thread-of-control moves through a program that manipulates those data types. During this
chapter we have also used several of the Console class’s static methods used for reading and writing
data. Since these methods are so useful when writing basic C# programs, we will quickly go over them
in a little more detail.

To read a line of text from the console window, we use the Console.ReadLine() method. This will
read an input stream (terminated when the user presses the Return key) from the console window and
return the input string. There are also two corresponding methods for writing to the console, which we
have already used extensively:

❑ Console.Write()—Writes the specified value to the console window.

❑ Console.WriteLine()—Which does the same, but adds a new line character at the end of the
output.

There are various forms (overloads) of these methods for all of the predefined types (including object),
so in most cases we don’t have to convert values to strings before we display them.

For example, the following code lets the user input a line of text, and displays that text:

string s = Console.ReadLine();
Console.WriteLine(s);

Console.WriteLine() also allows us to display formatted output in a way comparable to C’s printf()
function. To use WriteLine() in this way, we pass in a number of parameters. The first is a string con-
taining markers in curly braces where the subsequent parameters will be inserted into the text. Each
marker contains a zero-based index for the number of the parameter in the following list. For example,
{0} represents the first parameter in the list. Consider the following code:

int i = 10;
int j = 20;
Console.WriteLine(“{0} plus {1} equals {2}”, i, j, i + j);

This code displays:

10 plus 20 equals 30

65

C# Basics

04 557599 Ch02.qxd 4/29/04 11:29 AM Page 65

We can also specify a width for the value, and justify the text within that width, using positive values for
right justification and negative values for left justification. To do this, we use the format {n,w}, where n
is the parameter index and w is the width value:

int i = 940;
int j = 73;
Console.WriteLine(“ {0,4}\n+{1,4}\n ----\n {2,4}”, i, j, i + j);

The result of this is:

940
+ 73

1013

Finally, we can also add a format string, together with an optional precision value. It is not possible to
give a complete list of possible format strings, since, as we will see in Chapter 8, it is possible to define
your own format strings. However, the main ones in use for the predefined types are:

String Description

C Local currency format.

D Decimal format. Converts an integer to base 10, and pads with leading zeros if a pre-
cision specifier is given.

E Scientific (exponential) format. The precision specifier sets the number of decimal
places (6 by default). The case of the format string (e or E) determines the case of the
exponential symbol.

F Fixed-point format; the precision specifier controls the number of decimal places.
Zero is acceptable.

G General format. Uses E or F formatting, depending on which is the most compact.

N Number format. Formats the number with commas as thousands separators, for
example 32,767.44.

P Percent format.

X Hexadecimal format. The precision specifier can be used to pad with leading zeros.

Note that the format strings are normally case-insensitive, except for e/E.

If you want to use a format string, you should place it immediately after the marker that gives the
parameter number and field width, and separated from it by a colon. For example, to format a decimal
value as currency for the computer’s locale, with precision to two decimal places, we would use C2:

decimal i = 940.23m;
decimal j = 73.7m;
Console.WriteLine(“ {0,9:C2}\n+{1,9:C2}\n ---------\n {2,9:C2}”, i, j, i + j);

66

Chapter 2

04 557599 Ch02.qxd 4/29/04 11:29 AM Page 66

The output of this in the United States is:

$940.23
+ $73.70

$1,013.93

As a final trick, we can also use placeholder characters instead of these format strings to map out format-
ting. For example:

double d = 0.234;
Console.WriteLine(“{0:#.00}”, d);

This displays as .23, because the # symbol (#) is ignored if there is no character in that place, and zeros
will either be replaced by the character in that position if there is one or else printed as a zero.

Using Comments
The next topic we will look at looks very simple on the surface—adding comments to our code.

Internal Comments Within the Source Files
As we noted earlier in this chapter, C# uses the traditional C-type single-line (// ...) and multi-line
(/* ... */) comments:

// This is a single-line comment
/* This comment

spans multiple lines */

Everything in a single-line comment, from the // to the end of the line, will be ignored by the compiler,
and everything from an opening /* to the next */ in a multi-line comment combination will be ignored.
Obviously we can’t include the combination */ in any multi-line comments, as this will be treated as the
end of the comment.

It is actually possible to put multi-line comments within a line of code:

Console.WriteLine(/* Here’s a comment! */ “This will compile”);

Inline comments like this should be used with care as they can make code hard to read. However, they
can be useful when debugging if, say, you temporarily want to try running the code with a different
value somewhere:

DoSomething(Width, /*Height*/ 100);

Comment characters included in string literals are of course treated like normal characters:

string s = “/* This is just a normal string */”;

67

C# Basics

04 557599 Ch02.qxd 4/29/04 11:29 AM Page 67

XML Documentation
In addition to the C-type comments, illustrated above, C# has a very neat feature that we can’t omit from
this chapter: the ability to produce documentation in XML format automatically from special comments.
These comments are single-line comments, but begin with three slashes (///), instead of the usual two.
Within these comments, we can place XML tags containing documentation of the types and type members
in our code.

The following tags are recognized by the compiler:

Tag Description

<c> Marks up text within a line as code, for example:
<c>int i = 10;</c>

<code> Marks multiple lines as code.

<example> Marks up a code example.

<exception> Documents an exception class. (Syntax verified by the compiler.)

<include> Includes comments from another documentation file. (Syntax verified
by the compiler.)

<list> Inserts a list into the documentation.

<param> Marks up a method parameter. (Syntax verified by the compiler.)

<paramref> Indicates that a word is a method parameter. (Syntax verified by the
compiler.)

<permission> Documents access to a member. (Syntax verified by the compiler.)

<remarks> Adds a description for a member.

<returns> Documents the return value for a method.

<see> Provides a cross-reference to another parameter. (Syntax verified by
the compiler.)

<seealso> Provides a “see also” section in a description. (Syntax verified by the
compiler.)

<summary> Provides a short summary of a type or member.

<value> Describes a property.

To see how this works, let’s add some XML comments to the MathLibrary.cs file from an earlier section,
and call it Math.cs. We will add a <summary> element for the class and for its Add() method, and also a
<returns> element and two <param> elements for the Add() method:

// Math.cs
namespace Wrox.ProCSharp.Basics
{

68

Chapter 2

04 557599 Ch02.qxd 4/29/04 11:29 AM Page 68

///<summary>
/// Wrox.ProCSharp.Basics.Math class.
/// Provides a method to add two integers.
///</summary>
public class Math
{

///<summary>
/// The Add method allows us to add two integers
///</summary>
///<returns>Result of the addition (int)</returns>
///<param name=”x”>First number to add</param>
///<param name=”y”>Second number to add</param>
public int Add(int x, int y)
{

return x + y;
}

}
}

The C# compiler can extract the XML elements from the special comments and use them to generate an
XML file. To get the compiler to generate the XML documentation for an assembly, we specify the /doc
option when we compile, together with the name of the file we want to be created:

csc /t:library /doc:Math.xml Math.cs

The compiler will throw an error if the XML comments do not result in a well-formed XML document.

This will generate an XML file named Math.xml, which looks like this:

<?xml version=”1.0”?>
<doc>

<assembly>
<name>Math</name>

</assembly>
<members>

<member name=”T:Wrox.ProCSharp.Basics.Math”>
<summary>

Wrox.ProCSharp.Basics.Math class.
Provides a method to add two integers.

</summary>
</member>
<member name=

“M:Wrox.ProCSharp.Basics.Math.Add(System.Int32,System.Int32)”>
<summary>

The Add method allows us to add two integers
</summary>
<returns>Result of the addition (int)</returns>
<param name=”x”>First number to add</param>
<param name=”y”>Second number to add</param>

</member>
</members>

</doc>

69

C# Basics

04 557599 Ch02.qxd 4/29/04 11:29 AM Page 69

Notice how the compiler has actually done some work for us; it has created an <assembly> element and
also added a <member> element for each type or member of a type in the file. Each <member> element
has a name attribute with the full name of the member as its value, prefixed by a letter that indicates
whether this is a type (T:), field (F:), or member (M:).

The C# Preprocessor Directives
Besides the usual keywords, most of which we have now encountered, C# also includes a number of
commands that are known as preprocessor directives. These commands never actually get translated to
any commands in your executable code, but instead they affect aspects of the compilation process. For
example, you can use preprocessor directives to prevent the compiler from compiling certain portions of
your code. You might do this if you are planning to release two versions of the code, a basic version, and
an enterprise version that will have more features. You could use preprocessor directives to prevent the
compiler from compiling code related to the additional features when you are compiling the basic ver-
sion of the software. Another scenario is that you might have written bits of code that are intended to
provide you with debugging information. You probably don’t want those portions of code compiled
when you actually ship the software.

The preprocessor directives are all distinguished by beginning with the # symbol.

C++ developers will recognize the preprocessor directives as something that plays an important part
in C and C++. However, there aren’t as many preprocessor directives in C#, and they are not used as
often. C# provides other mechanisms, such as custom attributes, that achieve some of the same effects
as C++ directives. Also, note that C# doesn’t actually have a separate preprocessor in the way that C++
does. The so-called preprocessor directives are actually handled by the compiler. Nevertheless, C# retains
the name preprocessor directive because these commands give the impression of a preprocessor.

We will briefly cover the purposes of the preprocessor directives here.

#define and #undef
#define is used like this:

#define DEBUG

What this does is tell the compiler that a symbol with the given name (in this case DEBUG) exists. It is a
little bit like declaring a variable, except that this variable doesn’t really have a value—it just exists. And
this symbol isn’t part of your actual code; it only exists for the benefit of the compiler, while the compiler
is compiling the code, and has no meaning within the C# code itself.

#undef does the opposite, and removes the definition of a symbol:

#undef DEBUG

If the symbol doesn’t exist in the first place, then #undef has no effect. Similarly, #define has no effect
if a symbol already exists.

You need to place any #define and #undef directives at the beginning of the C# source file, before any
code that declares any objects to be compiled.

70

Chapter 2

04 557599 Ch02.qxd 4/29/04 11:29 AM Page 70

#define isn’t much use on its own, but when combined with other preprocessor directives, especially
#if, it becomes very powerful.

Incidentally, you might notice some changes from the usual C# syntax. Preprocessor directives are not
terminated by semicolons, and normally constitute the only command on a line. That’s because for the
preprocessor directives, C# abandons its usual practice of requiring commands to be separated by semi-
colons. If it sees a preprocessor directive, it assumes the next command is on the next line.

#if, #elif, #else, and #endif
These directives inform the compiler whether or not to compile a block of code. Consider this method:

int DoSomeWork(double x)
{

// do something
#if DEBUG

Console.WriteLine(“x is “ + x);
#endif

}

This code will compile as normal, except for the Console.WriteLine() method call that is contained
inside the #if clause. This line will only be executed if the symbol DEBUG has been defined by a previous
#define directive. When the compiler finds the #if directive, it checks to see if the symbol concerned
exists, and only compiles the code inside the #if clause if the symbol does exist. Otherwise, the com-
piler simply ignores all the code until it reaches the matching #endif directive. Typical practice is to
define the symbol DEBUG while you are debugging, and have various bits of debugging-related code
inside #if clauses. Then, when you are close to shipping, you simply comment out the #define direc-
tive, and all the debugging code miraculously disappears, the size of the executable file gets smaller, and
your end users don’t get confused by being shown debugging information. (Obviously, you would do
more testing to make sure your code still works without DEBUG defined). This technique is very common
in C and C++ programming and is known as conditional compilation.

The #elif (=else if) and #else directives can be used in #if blocks and have the intuitively obvious
meanings. It is also possible to nest #if blocks:

#define ENTERPRISE
#define W2K

// further on in the file

#if ENTERPRISE
// do something
#if W2K

// some code that is only relevant to enterprise
// edition running on W2K

#endif
#elif PROFESSIONAL

// do something else
#else

// code for the leaner version
#endif

71

C# Basics

04 557599 Ch02.qxd 4/29/04 11:29 AM Page 71

Note that, unlike the situation in C++, using #if is not the only way to compile code conditionally. C#
provides an alternative mechanism through the Conditional attribute, which we will explore in
Chapter 10.

#if and #elif support a limited range of logical operators too, using the operators !, ==, !=, and ||.
A symbol is considered to be true if it exists and false if it doesn’t. For example:

#if W2K && (ENTERPRISE==false) // if W2K is defined but ENTERPRISE isn’t

#warning and #error
Two other very useful preprocessor directives are #warning and #error. These will respectively cause
a warning or an error to be raised when the compiler encounters them. If the compiler sees a #warning
directive, then it will display whatever text appears after the #warning to the user, after which compila-
tion continues. If it encounters a #error directive, it will display the subsequent text to the user as if it
were a compilation error message, and then immediately abandon the compilation, so no IL code will
be generated.

You can use these directives as checks that you haven’t done anything silly with your #define statements;
you can also use the #warning statements to remind yourself to do something:

#if DEBUG && RELEASE
#error “You’ve defined DEBUG and RELEASE simultaneously!”

#endif

#warning “Don’t forget to remove this line before the boss tests the code!”
Console.WriteLine(“*I hate this job*”);

#region and #endregion
The #region and #endregion directives are used to indicate that a certain block of code is to be treated
as a single block with a given name, like this:

#region Member Field Declarations
int x;
double d;
Currency balance;

#endregion

This doesn’t look that useful by itself; it doesn’t affect the compilation process in any way. However, the
real advantage is that these directives are recognized by some editors, including the Visual Studio .NET
editor. These editors can use these directives to lay out your code better on the screen. We will see how
this works in Chapter 12, when we look at Visual Studio. NET.

#line
The #line directive can be used to alter the file name and line number information that is output by the
compiler in warnings and error messages. You probably won’t want to use this directive that often. Its
main use occurs if you are coding in conjunction with some other package that alters the code you are

72

Chapter 2

04 557599 Ch02.qxd 4/29/04 11:29 AM Page 72

typing in before sending it to the compiler, since this will mean line numbers, or perhaps the file names
reported by the compiler, won’t match up to the line numbers in the files or the file names you are edit-
ing. The #line directive can be used to restore the match. You can also use the syntax #line default to
restore the line to the default line numbering:

#line 164 “Core.cs” // we happen to know this is line 164 in the file
// Core.cs, before the intermediate
// package mangles it.

// later on

#line default // restores default line numbering

C# Programming Guidelines
In this final section of the chapter we’re going to look at the guidelines you need to bear in mind when
writing C# programs.

Rules for Identifiers
In this section we examine the rules governing what names we can use for variables, classes, methods,
and so on. Note that the rules presented in this section are not merely guidelines: They are enforced by
the C# compiler.

Identifiers are the names we give to variables, to user-defined types such as classes and structs, and to
members of these types. Identifiers are case-sensitive, so for example variables named interestRate
and InterestRate would be recognized as different variables. There are a couple of rules determining
what identifiers we can use in C#:

❑ They must begin with a letter or underscore, although they can contain numeric characters.

❑ We can’t use C# keywords as identifiers.

C# has the following reserved keywords:

abstract do Implicit params switch

as double In private this

base else Int protected throw

bool enum Interface public true

break event Internal readonly try

byte explicit Is ref typeof

case extern lock return uint

catch false long sbyte ulong

73

C# Basics

Table continued on following page

04 557599 Ch02.qxd 4/29/04 11:29 AM Page 73

char finally namespace sealed unchecked

checked fixed new short unsafe

class float null sizeof ushort

const for object stackalloc using

continue foreach operator static virtual

decimal goto out string volatile

default if override struct void

delegate while

If we do need to use one of these words as an identifier (for example, if we are accessing a class written
in a different language), we can prefix the identifier with the @ symbol to indicate to the compiler that
what follows is to be treated as an identifier, not as a C# keyword (so abstract is not a valid identifier,
but @abstract is).

Finally, identifiers can also contain Unicode characters, specified using the syntax \uXXXX, where XXXX is
the four-digit hex code for the Unicode character. The following are some examples of valid identifiers:

❑ Name

❑ überfluß

❑ _Identifier

❑ \u005fIdentifier

The last two items in this list are identical and interchangeable (because 005f is the Unicode code for the
underscore character), so obviously these identifiers couldn’t both be declared in the same scope. Note
that although syntactically you are allowed to use the underscore character in identifiers, this isn’t recom-
mended in most situations because it doesn’t follow the guidelines for naming variables that Microsoft
has written in order to ensure that developers use the same conventions, making it easier to read each
other’s code.

Usage Conventions
In any development language there usually arise certain traditional programming styles. The styles are
not part of the language itself but are conventions concerning, for example, how variables are named or
how certain classes, methods, or functions are used. If most developers using that language follow the
same conventions, it makes it easier for different developers to understand each other’s code—which in
turn generally helps program maintainability. For example, a common (though not universal) conven-
tion in Visual Basic 6 was that variables that represents strings have names beginning with lowercase s
or lowercase str, as in the Visual Basic 6 statements Dim sResult As String or Dim strMessage As
String. Conventions do, however, depend on the language and the environment. For example, C++
developers programming on the Windows platform have traditionally used the prefixes psz or lpsz to
indicate strings: char *pszResult; char *lpszMessage;, but on Unix machines it’s more common
not to use any such prefixes: char *Result; char *Message;.

74

Chapter 2

04 557599 Ch02.qxd 4/29/04 11:29 AM Page 74

You’ll notice from the sample code in this book that the convention in C# is to name variables without
prefixes: string Result; string Message;.

The convention by which variable names are prefixed with letters that represent the data type is known
as Hungarian notation. It means that other developers reading the code can immediately tell from the
variable name what data type the variable represents. Hungarian notation is widely regarded as redun-
dant in these days of smart editors and intellisense.

Whereas, with many languages, usage conventions simply evolved as the language was used, with C#
and the whole of the .NET Framework Microsoft has written very comprehensive usage guidelines,
which are detailed in the .NET/C# MSDN documentation. This should mean that, right from the start,
.NET programs will have a high degree of interoperability in terms of developers being able to under-
stand code. The guidelines have also been developed with the benefit of some twenty years hindsight in
object-oriented programming, and as a result have been carefully thought out and appear to have been
well received in the developer community to judge by the relevant newsgroups. Hence the guidelines
are well worth following.

It should be noted, however, that the guidelines are not the same as language specifications. You should
try to follow the guidelines when you can. Nevertheless, you won’t run into problems if you do have a
good reason for not doing so—for example, you won’t get a compilation error because you don’t follow
these guidelines. The general rule is that if you don’t follow the usage guidelines you must have a con-
vincing reason. Departing from the guidelines should be a positive decision rather than simply not both-
ering. Also, if you compare the guidelines with the samples in the remainder of this book, you’ll notice
that in numerous examples in this book, we have chosen not to follow the conventions. That’s usually
because the conventions are designed for much larger programs than our samples, and while they are
great if you are writing a complete software package, they are not really so suitable for small 20-line
standalone programs. In many cases following the conventions would have made our samples harder
rather than easier to follow.

The full guidelines for good programming style are quite extensive. Here we will confine ourselves to
describing some of the more important guidelines, as well as the ones most likely to surprise you. If you
want to make absolutely certain your code follows the usage guidelines completely, then you will need
to refer to the MSDN documentation.

Naming conventions
One important aspect to making your programs understandable is how you choose to name your
items—and that includes naming variables, methods, classes, enumerations, and namespaces.

It is intuitively obvious that your names should reflect the purpose of the item and should be designed
not to clash with other names. The general philosophy in the .NET Framework is also that the name of a
variable should reflect the purpose of that variable instance and not the data type. For example, height
is a good name for a variable, while integerValue isn’t. However, you will probably feel that that prin-
ciple is an ideal that is hard to achieve. Particularly when you are dealing with controls, in most cases,
you’ll probably feel happier sticking with variable names like confirmationDialog and
chooseEmployeeListBox, which do indicate the data type in the name.

Let’s look at some of the things you need to think about when choosing names.

75

C# Basics

04 557599 Ch02.qxd 4/29/04 11:29 AM Page 75

Casing of names
In many cases you should use Pascal casing for names. Pascal casing means that the first letter of each
word in a name is capitalized: EmployeeSalary, ConfirmationDialog, PlainTextEncoding. You
will notice that essentially all of the names of namespaces, classes, and members in the base classes fol-
low Pascal casing. In particular, the convention of joining words using the underscore character is dis-
couraged. So you should try not to use names like employee_salary. It has also been common in other
languages to use all-capitals for names of constants. This is not advised in C#, since such names are
harder to read—the convention is to use Pascal casing throughout:

const int MaximumLength;

The only other casing scheme that you are advised to use is camel casing. Camel casing is similar to
Pascal casing, except that the first letter of the first word in the name is not capitalized:
employeeSalary, confirmationDialog, plainTextEncoding. There are three situations in which
you are advised to use camel casing:

❑ For names of all private member fields in types:

public int subscriberID;

Note however that often it is conventional to prefix names of member fields with an underscore:

public int subscriberID;

❑ For names of all parameters passed to methods:

public void RecordSale(string salesmanName, int quantity);

❑ To distinguish items that would otherwise have the same name. A common example is when a
property wraps around a field:

private string employeeName;

public string EmployeeName

{

get

{

return employeeName;

}

}

If you are doing this, you should always use camel casing for the private member and Pascal casing for
the public or protected member, so that other classes that use your code see only names in Pascal case
(except for parameter names).

76

Chapter 2

04 557599 Ch02.qxd 4/29/04 11:29 AM Page 76

You should also be wary about case sensitivity. C# is case sensitive, so it is syntactically correct for names
in C# to differ only by the case, as in the previous examples. However, you should bear in mind that your
assemblies might at some point be called from Visual Basic .NET applications—and Visual Basic .NET is
not case-sensitive. Hence, if you do use names that differ only by a case, it is important to do so only in situ-
ations in which both names will never be seen outside your assembly. (The pervious example qualifies as
okay because camel case is used with the name that is attached to a private variable.) Otherwise you
may prevent other code written in Visual Basic .NET from being able to use your assembly correctly.

Name styles
You should try to be consistent about your style of names. For example, if one of the methods in a
class is called ShowConfirmationDialog(), then you should not give another method a name
like ShowDialogWarning(), or WarningDialogShow(). The other method should be called
ShowWarningDialog(). Get the idea?

Namespace names
Namespace names are particularly important to design carefully in order to avoid risk of ending up with
the same name for one of your namespaces as someone else uses. Remember, namespace names are the
only way that .NET distinguishes names of objects in shared assemblies. So if you use the same names-
pace name for your software package as another package, and both packages get installed on the same
computer, there are going to be problems. Because of this, it’s almost always a good idea to create a top-
level namespace with the name of your company, and then nest successive namespaces that narrow
down the technology, group, or department you are working in or the name of the package your classes
are intended for. Microsoft recommends namespace names that begin with <CompanyName>
.<TechnologyName> as in these two examples:

WeaponsOfDestructionCorp.RayGunControllers
WeaponsOfDestructionCorp.Viruses

Names and keywords
It is important that the names do not clash with any keywords. In fact, if you attempt to name an item
in your code with a word that happens to be a C# keyword, you’ll almost certainly get a syntax error
because the compiler will assume the name refers to a statement. However, because of the possibility
that your classes will be accessed by code written in other languages, it is important that you also don’t
use names that are keywords in other .NET languages. Generally speaking, C++ keywords are similar to
C# keywords, so confusion with C++ is unlikely, and those commonly encountered keywords that are
unique to Visual C++ tend to start with two underscore characters. Like C#, C++ keywords are spelled in
lowercase, so if you hold to the convention of naming your public classes and members with Pascal-style
names, then they will always have at least one uppercase letter in their names, and there will be no risk
of clashes with C++ keywords. On the other hand, you are more likely to have problems with Visual
Basic .NET, which has many more keywords than C# does, and being non–case-sensitive means you
cannot rely on Pascal-style names for your classes and methods.

The following table lists the keywords and standard function calls in Visual Basic .NET, which should if
possible be avoided, in whatever case combination, for your public C# classes.

77

C# Basics

04 557599 Ch02.qxd 4/29/04 11:29 AM Page 77

Abs Do Loc RGB

Add Double Local Right

AddHandler Each Lock RmDir

AddressOf Else LOF Rnd

Alias ElseIf Log RTrim

And Empty Long SaveSettings

Ansi End Loop Second

AppActivate Enum LTrim Seek

Append EOF Me Select

As Erase Mid SetAttr

Asc Err Minute SetException

Assembly Error MIRR Shared

Atan Event MkDir Shell

Auto Exit Module Short

Beep Exp Month Sign

Binary Explicit MustInherit Sin

BitAnd ExternalSource MustOverride Single

BitNot False MyBase SLN

BitOr FileAttr MyClass Space

BitXor FileCopy Namespace Spc

Boolean FileDateTime New Split

ByRef FileLen Next Sqrt

Byte Filter Not Static

ByVal Finally Nothing Step

Call Fix NotInheritable Stop

Case For NotOverridable Str

Catch Format Now StrComp

CBool FreeFile NPer StrConv

CByte Friend NPV Strict

CDate Function Null String

CDbl FV Object Structure

CDec Get Oct Sub

ChDir GetAllSettings Off Switch

78

Chapter 2

04 557599 Ch02.qxd 4/29/04 11:29 AM Page 78

ChDrive GetAttr On SYD

Choose GetException Open SyncLock

Chr GetObject Option Tab

CInt GetSetting Optional Tan

Class GetType Or Text

Clear GoTo Overloads Then

CLng Handles Overridable Throw

Close Hex Overrides TimeOfDay

Collection Hour ParamArray Timer

Command If Pmt TimeSerial

Compare Iif PPmt TimeValue

Const Implements Preserve To

Cos Imports Print Today

CreateObject In Private Trim

CShort Inherits Property Try

CSng Input Public TypeName

CStr InStr Put TypeOf

CurDir Int PV UBound

Date Integer QBColor UCase

DateAdd Interface Raise Unicode

DateDiff Ipmt RaiseEvent Unlock

DatePart IRR Randomize Until

DateSerial Is Rate Val

DateValue IsArray Read Weekday

Day IsDate ReadOnly While

DDB IsDbNull ReDim Width

Decimal IsNumeric Remove With

Declare Item RemoveHandler WithEvents

Default Kill Rename Write

Delegate Lcase Replace WriteOnly

DeleteSetting Left Reset Xor

Dim Lib Resume Year

Dir Line Return

79

C# Basics

04 557599 Ch02.qxd 4/29/04 11:29 AM Page 79

Use of properties and methods
One area that can cause confusion in a class is whether a particular quantity should be represented by a
property or a method. The rules here are not hard and fast, but in general, you ought to use a property if
something really should look and feel like a variable. (If you’re not sure what a property is, we’ll be cov-
ering properties in Chapter 3.) This means, among other things, that:

❑ Client code should be able to read its value. Write-only properties are not recommended, so for
example use a SetPassword() method, not a write-only Password property.

❑ Reading the value should not take too long. The fact that something is a property usually sug-
gests that reading it will be relatively quick.

❑ Reading the value should not have any observable and unexpected side effect. Further, setting
the value of a property should not have any side effect that is not directly related to the prop-
erty. Setting the width of a dialog box has the obvious effect of changing the appearance of the
dialog box on the screen. That’s fine, as that’s obviously related to the property in question.

❑ It should be possible to set properties in any order. In particular, it is not good practice when set-
ting a property to throw an exception because another related property has not yet been set. For
example, if in order to use a class that accesses a database you need to set ConnectionString,
UserName, and Password, then the author of the class should make sure the class is implemented
so the user really can set them in any order.

❑ Successive reads of a property should give the same result. If the value of a property is likely to
change unpredictably, then you should code it up as a method instead. Speed, in a class that
monitors the motion of an automobile, is not a good candidate for a property. Use a GetSpeed()
method here; on the other hand, Weight and EngineSize are good candidates for properties as
they will not change for a given object.

If the item you are coding satisfies all of the above criteria, then it is probably a good candidate for a
property. Otherwise you should use a method.

Use of fields
The guidelines are pretty simple here. Fields should almost always be private, except that in some cases
it may be acceptable for constant or read-only fields to be public. The reason is that if you make a field
public, you may hinder your ability to extend or modify the class in the future.

The above guidelines should give you a rough idea of good practices, and you should also use them in
conjunction with good object-oriented programming style.

It’s also worth bearing in mind that Microsoft has been fairly careful about being consistent and has
followed its own guidelines when writing the .NET base classes. So a very good way to get an intuitive
feel for the conventions to follow when writing .NET code is to simply look at the base classes—see how
classes, members, and namespaces are named, and how the class hierarchy works. If you try to write
your code in the same style as the base classes, then you shouldn’t go wrong.

80

Chapter 2

04 557599 Ch02.qxd 4/29/04 11:29 AM Page 80

Summary
In this chapter, we have examined some of the basic syntax of C#, covering the areas needed to write
simple C# programs. We have covered a lot of ground, but much of it will be instantly recognizable to
developers who are familiar with any C-style language (or even JavaScript). Some of the topics we have
covered include:

❑ Variable scope and access levels

❑ Declaring variables of various data types

❑ Controlling the flow of execution within a C# program

❑ Comments and Xml documentation

❑ Preprocessor directives

❑ Usage guidelines and naming conventions, the guidelines that you should adhere to when
writing C# code, so that your code follows normal .NET practice and can be easily understood
by others

We have seen that C# syntax is similar to C++ and Java syntax, although there are many minor differ-
ences. We have also seen that in many areas this syntax is combined with facilities to write code very
quickly, for example high-quality string handling facilities. C# also has a strongly defined type system,
based on a distinction between value and reference types. In the following two chapters we cover the C#
object-oriented programming features.

81

C# Basics

04 557599 Ch02.qxd 4/29/04 11:29 AM Page 81

04 557599 Ch02.qxd 4/29/04 11:29 AM Page 82

Objects and Types

So far, we’ve been introduced to some of the main building blocks that make up the C# language,
including declaring variables, data types, and program flow statements, and we have seen a cou-
ple of very short complete programs containing little more than the Main() method. What we
haven’t really seen is how we can put all these together to form a longer complete program. The
key to this lies in working with classes—the subject of this chapter. In particular, we will cover:

❑ The differences between classes and structs

❑ Fields, properties, and methods

❑ Passing values by value and reference

❑ Method overloading

❑ Constructors and static constructors

❑ Read-only fields

❑ The Object class, from which all other types are derived

We discuss inheritance and features related to inheritance in Chapter 4.

In this chapter, we will introduce the basic syntax associated with classes. However,
we will assume that you are already familiar with the underlying principles of using
classes—for example, that you know what a constructor or a property is, and we will
largely confine ourselves to seeing how to apply those principles in C# code. If you
are not familiar with the concept of the class, then you might want to take a look at
Appendix A, which is available with the code downloads for the book on the Web
at www.wrox.com.

05 557599 Ch03.qxd 4/29/04 11:32 AM Page 83

We will introduce and explain those concepts that are not necessarily supported by most object-oriented
languages. For example, although object constructors are a widely used concept that you should be famil-
iar with, static constructors are something new to C#, so we will explain how static constructors work.

Classes and Structs
Classes and structs are essentially templates from which we can create objects. Each object contains data
and has methods to manipulate and access that data. The class defines what data and functionality each
particular object (called an instance) of that class can contain. For example, if we have a class that repre-
sents a customer, it might define fields such as CustomerID, FirstName, LastName, and Address,
which we will use to hold information about a particular customer. It might also define functionality
that acts upon the data stored in these fields. We can then instantiate an object of this class to represent
one specific customer, set the field values for that instance, and use its functionality.

class PhoneCustomer
{

public const string DayOfSendingBill = “Monday”;
public int CustomerID;
public string FirstName;
public string LastName;

}

Structs differ from classes in the way that they are stored in memory and accessed (classes are reference
types stored in the heap, structs are value types stored on the stack), and in some of the features (for
example, structs don’t support inheritance). You will tend to use structs for smaller data types for perfor-
mance reasons. In terms of syntax, however, structs look very similar to classes; the main difference is
that we use the keyword struct instead of class to declare them. For example, if we wanted all
PhoneCustomer instances to be allocated on the stack instead of the managed heap, we could write:

struct PhoneCustomerStruct

{
public const string DayOfSendingBill = “Monday”;
public int CustomerID;
public string FirstName;
public string LastName;

}

For both classes and structs, you use the keyword new to declare an instance: This keyword creates the
object and initializes it; in the following example, the default behavior is to zero out its fields.

PhoneCustomer myCustomer = new PhoneCustomer(); // works for a class
PhoneCustomerStruct myCustomer2 = new PhoneCustomerStruct(); // works for a struct

In most cases you’ll find you use classes much more often than structs. For this reason, we discuss
classes first, then we point out the differences between classes and structs and the specific reasons why
you might choose to use a struct instead of a class. Unless otherwise stated, however, you can assume
that code we present for a class will work equally well for a struct.

84

Chapter 3

05 557599 Ch03.qxd 4/29/04 11:32 AM Page 84

Class Members
The data and functions within a class are known as the class’s members. Microsoft’s official terminology
distinguishes between data members and function members. As well as these members, classes can also
contain nested types (such as other classes). All members of a class can be declared as public (in which
case they are directly accessible from outside the class) or as private (in which case they are only visi-
ble to other code within the class), just as in Visual Basic, C++, and Java. C# also has variants on this
theme, such as protected (which indicates a member is visible only to the class in question and to any
derived classes). We provide a comprehensive list of the different accessibilities in Chapter 4.

Data Members
Data members are those members that contain the data for the class—fields, constants, and events. Data
members can be either static (associated with the class as a whole) or instance (each instance of the class
has its own copy of the data). As usual for object-oriented languages, a class member is always an instance
member unless it is explicitly declared as static.

Fields are any variables associated with the class. We have already seen fields being used in the
PhoneCustomer class in the previous example.

Once we have instantiated a PhoneCustomer object, we can then access these fields using the
Object.FieldName syntax as shown in this example:

PhoneCustomer Customer1 = new PhoneCustomer();
Customer1.FirstName = “Simon”;

Constants can be associated with classes in the same way as variables. We declare a constant using the
const keyword. Once again, if it is declared as public, it will be accessible from outside the class.

class PhoneCustomer
{

public const string DayOfSendingBill = “Monday”;
public int CustomerID;
public string FirstName;
public string LastName;

}

Events are class members that allow an object to notify a caller whenever something noteworthy hap-
pens, such as a field or property of the class changing, or some form of user interaction occurring. The
client can have code known as an event handler that reacts to the event. We look at events in detail in
Chapter 6.

Function Members
Function members are those members that provide some functionality for manipulating the data in the
class. They include methods, properties, constructors, finalizers, operators, and indexers.

85

Objects and Types

05 557599 Ch03.qxd 4/29/04 11:32 AM Page 85

Methods are functions that are associated with a particular class. They can be either instance methods,
which work on a particular instance of a class, or static methods, which provide more generic functional-
ity that doesn’t require us to instantiate a class (like the Console.WriteLine() method). We discuss
methods in the next section.

Properties are sets of functions that can be accessed from the client in a similar way to the public fields
of the class. C# provides a specific syntax for implementing read and write properties on our classes, so
we don’t have to jury-rig methods whose names have the words Get or Set embedded in them. Since
there’s a dedicated syntax for properties that is distinct from that for normal functions, the illusion of
objects as actual things is strengthened for client code.

Constructors are special functions that are called automatically when an object is instantiated. They must
have the same name as the class to which they belong, and cannot have a return type. Constructors are
useful for initializing the values of fields.

Finalizers are similar to constructors, but are called when the CLR detects that an object is no longer
needed. They have the same name as the class, preceded by a tilde (~). C++ programmers should note
that finalizers are used much less frequently than their nearest C++ equivalent, destructors, because the
CLR handles garbage collection automatically. Also, it is impossible to predict precisely when a finalizer
will be called. We discuss finalizers in Chapter 7.

Operators are at their simplest are actions like + or -. When you add two integers you are, strictly speak-
ing, using the + operator for integers. However, C# also allows us to specify how existing operators will
work with our own classes (operator overloading). We look at operators in detail in Chapter 5.

Indexers allow our objects to be indexed in the same way as an array or collection. This topic is also cov-
ered in Chapter 5.

Methods
In Visual Basic, C, and C++, we could define global functions that were not associated with a particular
class. This is not the case in C#. As noted earlier, in C# every function must be associated with a class or
struct.

Note that official C# terminology does in fact make a distinction between functions and methods. In this
terminology, the term function member includes not only methods, but also other non-data members of
a class or struct. This includes indexers, operators, constructors, destructors, and also—perhaps some-
what surprisingly—properties. These are contrasted with data members: fields, constants, and events.
In this chapter, we confine ourselves to looking at methods.

Declaring methods
The syntax for defining a method in C# is just what you’d expect from a C-style language, and is virtu-
ally identical to the syntax in C++ and Java. The main syntactical difference from C++ is that, in C#, each
method is separately declared as public or private. It is not possible to use public: blocks to group sev-
eral method definitions. Also, all C# methods are declared and defined in the class definition. There is no
facility in C# to separate the method implementation as in C++.

86

Chapter 3

05 557599 Ch03.qxd 4/29/04 11:32 AM Page 86

In C#, the definition of a method consists of any method modifiers (such as the method’s accessibility),
the type of the return value, followed by the name of the method, followed by a list of input arguments
enclosed in parentheses, followed by the body of the method enclosed in curly braces:

[modifiers] return_type MethodName([parameters])
{

// Method body
}

Each parameter consists of the name of the type of the parameter, and the name by which it can be refer-
enced in the body of the method. Also, if the method returns a value, a return statement must be used
with the return value to indicate the exit point. For example:

public bool IsSquare(Rectangle rect)
{

return (rect.Height == rect.Width);
}

This code uses one of the .NET base classes, System.Drawing.Rectangle, which represents a rectangle.

If the method doesn’t return anything, we specify a return type of void, because we can’t omit the return
type altogether; and if it takes no arguments, we still need to include an empty set of parentheses after
the method name (as with the Main() method). In this case, including a return statement is optional—
the method returns automatically when the closing curly brace is reached. You should note that a
method can contain as many return statements as required:

public bool IsPositive(int value)
{

if (value < 0)
return false;

return true;
}

Invoking methods
The syntax for invoking a method is exactly the same in C# as it is in C++ and Java, and the only differ-
ence between C# and Visual Basic is that round brackets must always be used when invoking the
method in C#—this is actually simpler than the Visual Basic 6 set of rules whereby brackets were some-
times necessary and at other times not allowed.

The following sample, MathTest, illustrates the syntax for definition of and instantiation of classes, and
definition and invocation of methods. Besides the class that contains the Main() method, it defines a
class named MathTest, which contains a couple of methods and a field.

using System;

namespace Wrox.ProCSharp.MathTestSample
{

class MainEntryPoint
{

static void Main()

87

Objects and Types

05 557599 Ch03.qxd 4/29/04 11:32 AM Page 87

{
// Try calling some static functions
Console.WriteLine(“Pi is “ + MathTest.GetPi());
int x = MathTest.GetSquareOf(5);
Console.WriteLine(“Square of 5 is “ + x);

// Instantiate at MathTest object
MathTest math = new MathTest(); // this is C#’s way of

// instantiating a reference type

// Call non-static methods
math.value = 30;
Console.WriteLine(

“Value field of math variable contains “ + math.value);
Console.WriteLine(“Square of 30 is “ + math.GetSquare());

}
}

// Define a class named MathTest on which we will call a method
class MathTest
{

public int value;

public int GetSquare()
{

return value*value;
}

public static int GetSquareOf(int x)
{

return x*x;
}

public static double GetPi()
{

return 3.14159;
}

}
}

Running the MathTest sample produces these results:

csc MathTest.cs

Microsoft (R) Visual C# .NET Compiler version 7.10.3052.4
for Microsoft (R) .NET Framework version 1.1.4322
Copyright (C) Microsoft Corporation 2001-2002. All rights reserved.

MathTest
Pi is 3.14159
Square of 5 is 25
Value field of math variable contains 30
Square of 30 is 900

88

Chapter 3

05 557599 Ch03.qxd 4/29/04 11:32 AM Page 88

As you can see from the code, the MathTest class contains a field that contains a number, as well as a
method to find the square of this number. It also contains two static methods, to return the value of pi,
and to find the square of the number passed in as a parameter.

There are some features of this class that are not really good examples of C# program design. For exam-
ple, GetPi() would usually be implemented as a const field, but following good design here would
mean using some concepts than we have not yet introduced.

Most of the syntax in the previous sample should be familiar to C++ and Java developers. If your back-
ground is in Visual Basic, then just think of the MathTest class as being like a Visual Basic class module
that implements fields and methods. There are a couple of points to watch out for though, whatever
your language.

Passing parameters to methods
Arguments can in general be passed into methods by reference, or by value. When a variable is passed
by reference, the called method gets the actual variable—so any changes made to the variable inside the
method persist when the method exits. On the other hand, if a variable is passed by value, then the
called method gets an identical copy of the variable—which means any changes made are lost when the
method exits. For complex data types, passing by reference is more efficient because of the large amount
of data that must be copied when passing by value.

In C#, all parameters are passed by value unless we specifically say otherwise. This is the same behavior
as in C++, but the opposite to Visual Basic. However, we need to be careful in understanding the impli-
cations of this for reference types. Since reference type variables only hold a reference to an object, it is
this reference that will be copied, not the object itself. Hence changes made to the underlying object will
persist. Value type variables, in contrast, hold the actual data, so a copy of the data itself will be passed
into the method. An int, for instance, is passed by value to a method, and any changes that the method
makes to the value of that int do not change the value of the original int object. Conversely, if an array
or any other reference type, such as a class, is passed into a method, and the method uses the reference
to change a value in that array, the new value is reflected in the original array object.

Here is an example, ParameterTest.cs, that demonstrates this:

using System;

namespace Wrox.ProCSharp.ParameterTestSample
{

class ParameterTest
{

static void SomeFunction(int[] ints, int i)
{

ints[0] = 100;
i = 100;

}

public static int Main()
{

int i = 0;
int[] ints = { 0, 1, 2, 4, 8 };
// Display the original values
Console.WriteLine(“i = “ + i);

89

Objects and Types

05 557599 Ch03.qxd 4/29/04 11:32 AM Page 89

Console.WriteLine(“ints[0] = “ + ints[0]);
Console.WriteLine(“Calling SomeFunction...”);

// After this method returns, ints will be changed,
// but i will not
SomeFunction(ints, i);
Console.WriteLine(“i = “ + i);
Console.WriteLine(“ints[0] = “ + ints[0]);
return 0;

}
}

}

The output of this is:

csc ParameterTest.cs

Microsoft (R) Visual C# .NET Compiler version 7.10.3052.4
for Microsoft (R) .NET Framework version 1.1.4322
Copyright (C) Microsoft Corporation 2001-2002. All rights reserved.

ParameterTest
i = 0
ints[0] = 0
Calling SomeFunction...
i = 0
ints[0] = 100

Notice how the value of i remains unchanged, but the value we changed in ints is also changed in the
original array.

The behavior of strings is different again. This is because strings are immutable (if we alter a string’s
value, we create an entirely new string), so strings don’t display the typical reference-type behavior. Any
changes made to a string within a method call won’t affect the original string. This point is discussed in
more detail in Chapter 8.

ref parameters
Passing variables by value is the default. We can, however, force value parameters to be passed by refer-
ence. To do so, we use the ref keyword. If a parameter is passed to a method, and if the input argument
for that method is prefixed with the ref keyword, then any changes that the method makes to the vari-
able will affect the value of the original object:

static void SomeFunction(int[] ints, ref int i)
{

ints[0] = 100;
i = 100; // the change to i will persist after SomeFunction() exits

}

We will also need to add the ref keyword when we invoke the method:

SomeFunction(ints, ref i);

90

Chapter 3

05 557599 Ch03.qxd 4/29/04 11:32 AM Page 90

Adding the ref keyword in C# serves the same purpose as using the & syntax in C++ to specify passing
by reference. However, C# makes the behavior more explicit (thus hopefully preventing bugs) by requir-
ing the use of the ref keyword when invoking the method.

Finally, it is also important to understand that C# continues to apply initialization requirements to
parameters passed to methods. Any variable must be initialized before it is passed into a method,
whether it is passed in by value or reference.

out parameters
In C-style languages, it is common for functions to be able to output more than one value from a single
routine. This is accomplished using output parameters, by assigning the output values to variables that
have been passed to the method by reference. Often, the starting values of the variables that are passed
by reference are unimportant. Those values will be overwritten by the function, which may never even
look at any previous value.

It would be convenient if we could use the same convention in C#. However, C# requires that variables
be initialized with a starting value before they are referenced. Although we could initialize our input
variables with meaningless values before passing them into a function that will fill them with real,
meaningful ones, this practice seems at best needless and at worst confusing. However, there is a way
to short-circuit the C# compiler’s insistence on initial values for input arguments.

This is achieved with the out keyword. When a method’s input argument is prefixed with out, that
method can be passed a variable that has not been initialized. The variable is passed by reference, so any
changes that the method makes to the variable will persist when control returns from the called method.
Again, we also need to use the out keyword when we call the method, as well as when we define it:

static void SomeFunction(out int i)
{

i = 100;
}

public static int Main()
{

int i; // note how i is declared but not initialized
SomeFunction(out i);
Console.WriteLine(i);
return 0;

}

The out keyword is an example of something new in C# that has no analogy in either Visual Basic or
C++, and which has been introduced to make C# more secure against bugs. If an out parameter isn’t
assigned a value within the body of the function, the method won’t compile.

Method overloading
C# supports method overloading—several versions of the method that have different signatures (that is,
the name, number of parameters, and parameter types). However, C# does not support default parame-
ters in the way that, say, C++ or Visual Basic do. In order to overload methods, you simply declare the
methods with the same name but different numbers or types of parameters:

91

Objects and Types

05 557599 Ch03.qxd 4/29/04 11:32 AM Page 91

class ResultDisplayer
{

void DisplayResult(string result)
{

// implementation
}

void DisplayResult(int result)
{

// implementation
}

}

Because C# does not support optional parameters, you will need to use method overloading to achieve
the same effect:

class MyClass
{

int DoSomething(int x) // want 2nd parameter with default value 10
{

DoSomething(x, 10);
}

int DoSomething(int x, int y)
{

// implementation
}

}

As in any language, method overloading carries with it the potential for subtle runtime bugs if the
wrong overload is called. In Chapter 4 we discuss how to code defensively against these problems. For
now, we’ll point out that C# does place some minimum differences on the parameters of overloaded
methods.

❑ It is not sufficient for two methods to differ only in their return type.

❑ It is not sufficient for two methods to differ only by virtue of a parameter having been declared
as ref or out.

Properties
Properties are unusual in that they represent an idea that C# has taken from Visual Basic, not from
C++/Java. The idea of a property is that it is a method or pair of methods that are dressed to look like a
field as far as any client code is concerned. A good example of this is the Height property of a Windows
Form. Suppose you have the following code:

// mainForm is of type System.Windows.Forms
mainForm.Height = 400;

On executing this code, the height of the window will be set to 400 and you will see the window resize
on the screen. Syntactically, the above code looks like we’re setting a field, but in fact we are calling a
property accessor that contains code to resize the form.

92

Chapter 3

05 557599 Ch03.qxd 4/29/04 11:32 AM Page 92

To define a property in C#, we use the following syntax.

public string SomeProperty
{

get
{

return “This is the property value”;
}
set
{

// do whatever needs to be done to set the property
}

}

The get accessor takes no parameters and must return the same type as the declared property. You
should not specify any explicit parameters for the set accessor either, but the compiler assumes it takes
one parameter, which is of the same type again, and which is referred to as value. As an example, the
following code contains a property called ForeName, which sets a field called foreName, and which
applies a length limit.

private string foreName;

public string ForeName
{

get
{

return foreName;
}
set
{

if (value.Length > 20)
// code here to take error recovery action
// (eg. throw an exception)

else
foreName = value;

}
}

Note the naming convention used here. We take advantage of C#’s case sensitivity by using the same
name, Pascal-cased for the public property and camel-cased for the equivalent private field if there is
one. This is standard practice. Some developers prefer to use field names that are prefixed by an under-
score: _foreName; this provides an extremely convenient way of identifying fields.

Visual Basic 6 programmers should remember that C# does not distinguish between Visual Basic 6 Set
and Visual Basic 6 Let: In C#, the write accessor is always identified with the keyword, set.

Read-only and write-only properties
It is possible to create a read-only property by simply omitting the set accessor from the property defi-
nition. Thus, to make ForeName read-only in the previous example:

93

Objects and Types

05 557599 Ch03.qxd 4/29/04 11:32 AM Page 93

private string foreName;

public string ForeName
{

get
{

return foreName;
}

}

It is similarly possible to create a write-only property by omitting the get accessor. However, this is
regarded as poor programming practice because it could be confusing to authors of client code. In gen-
eral, it is recommended that if you are tempted to do this, you should use a method instead.

Access modifiers for properties
C# does not permit setting different access modifiers to the get and set accessor of a property. This may
cause you some headaches if you have a property that wraps a private field, where you need public
access for reading, but you want to confine write access to derived classes. It’s tempting in this case to
make the underlying field protected rather than private, but this is generally regarded as poor coding
practice. In this situation, the most common workaround, is to declare a public read-only property and
a protected or private Set() function.

public string ForeName
{

get
{

return foreName;
}

}

protected void SetForeName(string value)
{

if (value.Length > 20)
// code here to take error recovery action
// (eg. throw an exception)

else
foreName = value;

}

A note about inlining
Some developers may worry that, in the previous sections, we have presented a number of situations in
which standard C# coding practices have led to very small functions—for example, accessing a field via a
property instead of directly. Is this going to hurt performance because of the overhead of the extra function
call? The answer is that there is no need to worry about performance loss from these kinds of programming
methodologies in C#. Recall that C# code is compiled to IL then JIT compiled at runtime to native exe-
cutable code. The JIT compiler is designed to generate highly optimized code, and will ruthlessly inline
code as appropriate (in other words, replace function calls by inline code). A method or property whose
implementation simply calls another method or returns a field will almost certainly be inlined. Note how-
ever that the decision of where to inline is made entirely by the CLR. There is no way for you to control
which methods are inlined, by using, for example, some keyword similar to the inline keyword of C++.

94

Chapter 3

05 557599 Ch03.qxd 4/29/04 11:32 AM Page 94

Constructors
The syntax for declaring basic constructors in C# is the same as in Java and C++. We declare a method
that has the same name as the containing class, and which does not have any return type:

public class MyClass
{

public MyClass()
{
}
// rest of class definition

As in C++ and Java, it’s not necessary to provide a constructor for your class. We haven’t supplied one
for any of our examples so far in the book. In general, if you don’t supply any constructor, the compiler
will just make up a default one for you behind the scenes. It’ll be a very basic constructor that just initial-
izes all the member fields by zeroing them out (null reference for reference types, zero for numeric data
types, and false for bools). Often, that will be adequate; if not, you’ll need to write your own constructor.

Constructors follow the same rules for overloading as other methods. In other words, you can provide
as many overloads to the constructor as you want, provided they are clearly different in signature:

public MyClass() // zero-parameter constructor
{

// construction code
}
public MyClass(int number) // another overload
{

// construction code
}

Note, however, that if you supply any constructors that take parameters, then the compiler will not auto-
matically supply a default one. This is only done if you have not defined any constructors at all. In the
following example, because we have defined a one-parameter constructor, the compiler assumes that
this is the only constructor we want to be available, and so will not implicitly supply any others:

public class MyNumber
{

private int number;
public MyNumber(int number)
{

this.number = number;
}

}

The previous code also illustrates typical use of the this keyword to distinguish member fields from
parameters of the same name. If we now try instantiating a MyNumber object using a no-parameter con-
structor, we will get a compilation error:

For C++ programmers: Because primitive fields in C# are by default initialized by
being zeroed out, whereas primitive fields in C++ are by default uninitialized, you
may find you don’t need to write constructors in C# as often as you would in C++.

95

Objects and Types

05 557599 Ch03.qxd 4/29/04 11:32 AM Page 95

MyNumber numb = new MyNumber(); // causes compilation error

We should mention that it is possible to define constructors as private or protected, so that they are
invisible to code in unrelated classes too:

public class MyNumber
{

private int number;
private MyNumber(int number) // another overload
{

this.number = number;
}

}

In this example we haven’t actually defined any public or even any protected constructors for MyNumber.
This would actually make it impossible for MyNumber to be instantiated by outside code using the new
operator (though you might write a public static property or method in MyNumber that can instantiate the
class). This is useful in two situations:

❑ If your class serves only as a container for some static members or properties, and therefore
should never be instantiated

❑ If you want the class to only ever be instantiated by calling some static member function (this is
the so-called class factory approach to object instantiation)

Static constructors
One novel feature of C# is that it is also possible to write a static no-parameter constructor for a class.
Such a constructor will only be executed once, as opposed to the constructors we’ve written so far, which
are instance constructors, and are executed whenever an object of that class is created. There is no equiv-
alent to the static constructor in C++ or Visual Basic 6.

class MyClass
{

static MyClass()
{

// initialization code
}
// rest of class definition

}

One reason for writing a static constructor would be if your class has some static fields or properties that
need to be initialized from an external source before the class is first used.

The .NET runtime makes no guarantees about when a static constructor will be executed, so you should
not place any code in it that relies on it being executed at a particular time (for example, when an assem-
bly is loaded). Nor is it possible to predict in what order static constructors of different classes will exe-
cute. However, what is guaranteed is that the static constructor will run at most once, and that it will be
invoked before your code makes any reference to the class. In C#, the static constructor usually seems to
be executed immediately before the first call to any member of the class.

96

Chapter 3

05 557599 Ch03.qxd 4/29/04 11:32 AM Page 96

Notice that the static constructor does not have any access modifiers. It’s never called by any other C#
code, but always by the .NET runtime when the class is loaded, so any access modifier like public or
private would be meaningless. For this same reason, the static constructor cannot ever take any param-
eters, and there can only be one static constructor for a class. It should also be obvious that a static con-
structor can only access static members, not instance members, of the class.

Note that it is possible to have a static constructor and a zero-parameter instance constructor defined in
the same class. Although the parameter lists are identical, there is no conflict because the static construc-
tor is executed when the class is loaded, but the instance constructor is executed whenever an instance is
created —so there won’t be any confusion about which constructor gets executed when.

Note that if you have more than one class that has a static constructor, the static constructor that will be
executed first is undefined. This means that you should not put any code in a static constructor that
depends on other static constructors having been or not having been executed. On the other hand, if any
static fields have been given default values, these will be allocated before the static constructor is called.

We’ll now present a sample that illustrates the use of a static constructor. The sample is imaginatively
called StaticConstructor and is based on the idea of a program that has user preferences (which are pre-
sumably stored in some configuration file). To keep things simple, we’ll assume just one user preference—
a quantity called BackColor, which might represent the background color to be used in an application.
And since we don’t want to get into the details of writing code to read data from an external source here,
we’ll make the assumption that the preference is to have a background color of red on weekdays and
green at weekends. All the program will do is display the preference in a console window—but this is
enough to see a static constructor at work.

namespace Wrox.ProCSharp.StaticConstructorSample
{

public class UserPreferences
{

public static readonly Color BackColor;

static UserPreferences()
{

DateTime now = DateTime.Now;
if (now.DayOfWeek == DayOfWeek.Saturday

|| now.DayOfWeek == DayOfWeek.Sunday)
BackColor = Color.Green;

else
BackColor = Color.Red;

}

private UserPreferences()
{
}

}
}

This code shows how the color preference is stored in a static variable, which is initialized in the static
constructor. We have declared this field as read-only, which means that its value can only be set in a con-
structor. We’ll look at read-only fields in more detail later in this chapter. The code makes use of a couple
of useful structs that have been supplied by Microsoft as part of the framework class library,

97

Objects and Types

05 557599 Ch03.qxd 4/29/04 11:32 AM Page 97

System.DateTime. and System.Drawing.Color. DateTime implements a static property, Now, which
returns the current time, and an instance property, DayOfWeek, which works out what day of the week
a date-time represents. Color (which is discussed in Chapter 20) is used to store colors. It implements
various static properties, such as Red and Green as used in this example, which return commonly used
colors. In order to use Color, we need to reference the System.Drawing.dll assembly when compil-
ing, and we must add a using statement for the System.Drawing namespace.

using System;
using System.Drawing;

We test the static constructor with this code:

class MainEntryPoint
{

static void Main(string[] args)
{

Console.WriteLine(“User-preferences: BackColor is: “ +
UserPreferences.BackColor.ToString());

}
}

Compiling and running this code results in this output:

C:> StaticConstructor

User-preferences: BackColor is: Color [Red]

Calling constructors from other constructors
You may sometimes find yourself in the situation where you have several constructors in a class, per-
haps to accommodate some optional parameters, for which the constructors have some code in common.
For example, consider this:

class Car
{

private string description;
private uint nWheels;
public Car(string model, uint nWheels)
{

this.description = description;
this.nWheels = nWheels;

}

public Car(string model)
{

this.description = description;
this.nWheels = 4;

}
// etc.

Both constructors initialize the same fields. It would clearly be neater to place all the code in one place,
and C# has a special syntax, known as a constructor initializer, to allow this.

98

Chapter 3

05 557599 Ch03.qxd 4/29/04 11:32 AM Page 98

class Car
{

private string description;
private uint nWheels;

public Car(string model, uint nWheels)
{

this.description = description;
this.nWheels = nWheels;

}

public Car(string model) : this(model, 4)
{
}
// etc

In this context, the this keyword simply causes the constructor with the nearest matching parameters
to be called. Note that any constructor initializer is executed before the body of the constructor. Say the
following code is run:

Car myCar = new Car(“Proton Persona”);

In this example, the two-parameter constructor executes before any code in the body of the one-parameter
constructor (though in this particular case, since there is no code in the body of the one-parameter con-
structor, it makes no difference).

A C# constructor initializer may contain either one call to another constructor in the same class (using the
syntax just presented) or one call to a constructor in the immediate base class (using the same syntax, but
using the keyword base instead of this). It is not possible to put more than one call in the initializer.

The syntax for constructor initializers in C# is similar to that for constructor initialization lists in C++,
but C++ developers should beware. Behind the similarity in syntax, C# initializers follow very different
rules for what can be placed in them. Whereas you can use a C++ initialization list to indicate initial val-
ues of any member variables or to call a base constructor, the only thing you can put in a C# initializer is
one call to one other constructor. This forces C# classes to follow a strict sequence for how they get con-
structed, where C++ allows some laxity. We study this issue more in Chapter 4, where we will see that
the sequence enforced by C# arguably amounts to no more than good programming practice anyway.

readonly Fields
The concept of a constant, as a variable that contains a value that cannot be changed, is something that
C# shares with most programming languages. However, constants don’t necessarily meet all require-
ments. On occasion, you may have some variable whose value shouldn’t be changed, but where the
value is not known until runtime. C# provides another type of variable that is useful in this scenario:
the readonly field.

The readonly keyword gives a bit more flexibility than const, allowing for the case in which you
might want a field to be constant but also need to carry out some calculations to determine its initial
value. The rule is that you can assign values to a readonly field inside a constructor, but not anywhere
else. It’s also possible for a readonly field to be an instance rather than a static field, having a different

99

Objects and Types

05 557599 Ch03.qxd 4/29/04 11:32 AM Page 99

value for each instance of a class. This means that, unlike a const field, if you want a readonly field to
be static, you have to declare it as such.

Suppose we have an MDI program that edits documents, but that for licensing reasons we want to
restrict the number of documents that can be opened simultaneously. Now assume that we are selling
different versions of the software, and it’s possible that customers can upgrade their licenses to open
more documents simultaneously. Clearly this means we can’t hard-code the maximum number in the
source code. We’d probably need a field to represent this maximum number. This field will have to be
read in—perhaps from a registry key or some other file storage—each time the program is launched.
So our code might look something like this:

public class DocumentEditor
{

public static readonly uint MaxDocuments;

static DocumentEditor()
{

MaxDocuments = DoSomethingToFindOutMaxNumber();
}

In this case, the field is static, since the maximum number of documents only needs to be stored once
per running instance of the program. This is why it is initialized in the static constructor. If we had an
instance readonly field then we would initialize it in the instance constructor(s). For example, presum-
ably each document we edit has a creation date, which you wouldn’t want to allow the user to change
(because that would be rewriting the past!). Note that the field is also public—we don’t normally need
to make readonly fields private, because by definition they cannot be modified externally (the same
principle also applies to constants).

As noted earlier, date is represented by the class System.DateTime. In the following code we use a
System.DateTime constructor that takes three parameters (the year, month, and day of the month—
you can find details of this and other DateTime constructors in the MSDN documentation):

public class Document
{

public readonly DateTime CreationDate;

public Document()
{

// read in creation date from file. Assume result is 1 Jan 2002
// but in general this can be different for different instances
// of the class
CreationDate = new DateTime(2002, 1, 1);
}

}

CreationDate and MaxDocuments in the previous code snippet are treated like any other field, except
that because they are read-only, it cannot be assigned to outside the constructors.

void SomeMethod()
{

MaxDocuments = 10; // compilation error here. MaxDocuments is readonly
}

100

Chapter 3

05 557599 Ch03.qxd 4/29/04 11:32 AM Page 100

It’s also worth noting that you don’t have to assign a value to a readonly field in a constructor. If you
don’t do so, it will be left with the default value for its particular data type or whatever value you initial-
ized it to at its declaration. That applies to both static and instance readonly fields.

Structs
So far, we have seen how classes offer a great way of encapsulating objects in your program. We have
also seen how they are stored on the heap in a way that gives you much more flexibility in data lifetime,
but with a slight cost in performance. This performance cost is small thanks to the optimizations of man-
aged heaps. However, there are some situations when all you really need is a small data structure. In this
case, a class provides more functionality than you need, and for performance reasons you will probably
prefer to use a struct. Look at this example:

class Dimensions
{

public double Length;
public double Width;

}

We’ve defined a class called Dimensions, which simply stores the length and width of some item.
Perhaps we’re writing a furniture-arranging program to let people experiment with rearranging their
furniture on the computer and we want to store the dimensions of each item of furniture. It looks like
we’re breaking the rules of good program design by making the fields public, but the point is that we
don’t really need all the facilities of a class for this at all. All we have is two numbers, which we find
convenient to treat as a pair rather than individually. There is no need for lots of methods, or for us to
be able to inherit from the class, and we certainly don’t want to have the .NET runtime go to the trouble
of bringing in the heap with all the performance implications, just to store two doubles.

As mentioned earlier in this chapter, the only thing we need to change in the code to define a type as a
struct instead of a class is to replace the keyword class with struct:

struct Dimensions
{

public double Length;
public double Width;

}

Defining functions for structs is also exactly the same as defining them for classes. The following code
demonstrates a constructor and a property for a struct:

struct Dimensions
{

public double Length;
public double Width;

Dimensions(double length, double width)
{ Length=length; Width=width; }

public int Diagonal

101

Objects and Types

05 557599 Ch03.qxd 4/29/04 11:32 AM Page 101

{
{

get
{

return Math.Sqrt(Length*Length + Width*Width);
}

}
}

}

In many ways you can think of structs in C# as being like scaled-down classes. They are basically the
same as classes, but designed more for cases where you simply want to group some data together. They
differ from classes in the following ways:

❑ Structs are value types, not reference types. This means they are stored either in the stack or
inline (if they are part of another object that is stored on the heap) and have the same lifetime
restrictions as the simple data types.

❑ Structs do not support inheritance.

❑ There are some differences in the way constructors work for structs. In particular, the compiler
always supplies a default no-parameter constructor, which you are not permitted to replace.

❑ With a struct, you can specify how the fields are to be laid out in memory (we will examine this
in Chapter 10 when we cover attributes).

Because structs are really intended to group data items together, you’ll sometimes find that most or all of
their fields are declared as public. This is strictly speaking contrary to the guidelines for writing .NET
code—according to Microsoft, fields (other than const fields) should always be private and wrapped by
public properties. However, for simple structs, many developers would nevertheless consider public
fields to be acceptable programming practice.

C++ developers beware; structs in C# are very different from classes in their implementation. This is
very different to the situation in C++, for which classes and structs are virtually the same thing.

Let’s look at some of these differences in more detail.

Structs Are Value Types
Although structs are value types, you can often treat them syntactically in the same way as classes. For
example, with our definition of the Dimensions class in the previous section, we could write:

Dimensions point = new Dimensions();
point.Length = 3;
point.Width = 6;

Note that because structs are value types, the new operator does not work in the same way as it does for
classes and other reference types. Instead of allocating memory on the heap, the new operator simply
calls the appropriate constructor, according to the parameters passed to it, initializing all fields. Indeed,
for structs it is perfectly legal to write:

102

Chapter 3

05 557599 Ch03.qxd 4/29/04 11:32 AM Page 102

Dimensions point;
point.Length = 3;
point.Width = 6;

If Dimensions was a class, this would produce a compilation error, because point would contain an
uninitialized reference—an address that points nowhere, so we could not start setting values to its fields.
For a struct however, the variable declaration actually allocates space on the stack for the entire struct, so
it’s ready to assign values to. Note, however, that the following code would cause a compilation error,
with the compiler complaining that you are using an uninitialized variable:

Dimensions point;
Double D = point.Length;

Structs follow the same rules as any other data type: everything must be initialized before use. A struct is
considered fully initialized either when the new operator has been called against it, or when values have
been individually assigned to all its fields. And of course, a struct defined as a member field of a class is
initialized by being zeroed-out automatically when the containing object is initialized.

The fact that structs are value types will affect performance, though depending on how you use your
struct, this can be good or bad. On the positive side, allocating memory for structs is very fast because
this takes place inline or on the stack. The same goes for removing structs when they go out of scope.
On the other hand, whenever you pass a struct as a parameter or assign a struct to another struct (as in
A=B, where A and B are structs), the full contents of the struct are copied, whereas for a class only the ref-
erence is copied. This will result in a performance loss that depends on the size of the struct—this should
emphasize the fact that structs are really intended for small data structures. Note, however, that when
passing a struct as a parameter to a method, you can avoid this performance loss by passing it as a ref
parameter—in this case only the address in memory of the struct will be passed in, which is just as fast
as passing in a class. On the other hand, if you do this, you’ll have to be aware that it means the called
method can in principle change the value of the struct.

Structs and Inheritance
Structs are not designed for inheritance. This means that it is not possible to inherit from a struct. The only
exception to this is that structs, in common with every other type in C#, derive ultimately from the class
System.Object. Hence, structs also have access to the methods of System.Object, and it is even possi-
ble to override them in structs—an obvious example would be overriding the ToString() method. The
actual inheritance chain for structs is that each struct derives from a class, System.ValueType, which in
turn derives from System.Object. ValueType does not add any new members to Object, but provides
implementations of some of them that are more suitable for structs. Note that you cannot supply a differ-
ent base class for a struct: Every struct is derived from ValueType.

Constructors for Structs
You can define constructors for structs in exactly the same way that you can for classes, except that you
are not permitted to define a constructor that takes no parameters. This may seem nonsensical, and the
reason is buried in the implementation of the .NET runtime. There are some rare circumstances in which
the .NET runtime would not be able to call a custom zero-parameter constructor that you have supplied.
Microsoft has therefore taken the easy way out and banned zero-parameter constructors for structs in C#.

103

Objects and Types

05 557599 Ch03.qxd 4/29/04 11:32 AM Page 103

That said, the default constructor, which initializes all fields to zero values, is always present implicitly,
even if you supply other constructors that take parameters. It’s also impossible to circumvent the default
constructor by supplying initial values for fields. The following code will cause a compile-time error:

struct Dimensions
{

public double Length = 1; // error. Initial values not allowed
public double Width = 2; // error. Initial values not allowed

Of course, if Dimensions had been declared as a class, this code would have compiled without any
problems.

Incidentally, you can supply a Close() or Dispose() method for a struct in the same way you do for a
class.

The Object Class
We indicated earlier that all .NET classes are ultimately derived from System.Object. In fact, if you
don’t specify a base class when you define a class, the compiler will automatically assume that it derives
from Object. Since we have not used inheritance in this chapter, that means that every class we have
shown here is actually derived from System.Object. (As noted earlier, for structs this derivation is indi-
rect: A struct is always derived from System.ValueType, which in turn derives from System.Object.)

The practical significance of this is that, besides the methods and properties and so on that you define,
you also have access to a number of public and protected member methods that have been defined for
the Object class. These methods are available in all other classes that you define.

System.Object Methods
The methods defined in Object are as shown in the following table.

Method Access Modifiers Purpose

string ToString() public virtual Returns a string representation of the object

int GetHashTable() public virtual Used if implementing dictionaries (hash
tables)

bool Equals(object obj) public virtual Compares instances of the object for equality

bool Equals(object objA, public static Compares instances of the object for
object objB) equality

bool ReferenceEquals public static Compares whether two references refer to
(object objA, object objB) the same object

Type GetType() Public Returns details of the type of the object.

object MemberwiseClone() Protected Makes a shallow copy of the object

void Finalize() protected virtual This is the .NET version of a destructor

104

Chapter 3

05 557599 Ch03.qxd 4/29/04 11:32 AM Page 104

We haven’t yet covered enough of the C# language to be able to understand how to use all these meth-
ods. For the time being, we will simply summarize the purpose of each method, with the exception of
ToString(), which we examine in more detail.

❑ ToString()—This is intended as a fairly basic, quick-and-easy string representation; use it
when you just want a quick idea of the contents of an object, perhaps for debugging purposes.
It provides very little choice of how to format the data: For example, dates can in principle be
expressed in a huge variety of different formats, but DateTime.ToString() does not offer you
any choice in this regard. If you need a more sophisticated string representation that, for exam-
ple, takes account of your formatting preferences or of the culture (the locale), then you should
implement the IFormattable interface (see Chapter 8).

❑ GetHashCode()—This is used if objects are placed in a data structure known as a map (also
known as a hash table or dictionary). It is used by classes that manipulate these structures in
order to determine where to place an object in the structure. If you intend your class to be used
as key for a dictionary, then you will need to override GetHashCode(). There are some fairly
strict requirements for how you implement your overload, and we deal with those when we
examine dictionaries in Chapter 9.

❑ Equals() (both versions) and ReferenceEquals()—As you’ll gather by the existence of three
different methods aimed at comparing the equality of objects, The .NET Framework has quite a
sophisticated scheme for measuring equality. There are subtle differences between how these
three methods, along with the comparison operator, ==, are intended to be used. Not only that
but there are also restrictions on how you should override the virtual, one parameter version of
Equals() if you choose to do so, because certain base classes in the System.Collections
namespace call the method and expect it to behave in certain ways. We explore the use of these
methods in Chapter 5 when we examine operators.

❑ Finalize()—We cover this method in Chapter 7. It is intended as the nearest that C# has to C++-
style destructors, and is called when a reference object is garbage collected to clean up resources.
The Object implementation of Finalize() actually does nothing and is ignored by the garbage
collector. You will normally override Finalize() if an object owns references to unmanaged
resources which need to be removed when the object is deleted. The garbage collector cannot do
this directly as it only knows about managed resources, so it relies on any finalizers that you supply.

❑ GetType()—This method returns an instance of a class derived from System.Type. This object
can provide an extensive range of information about the class of which your object is a member,
including base type, methods, properties, and so on. System.Type also provides the entry point
into .NET’s reflection technology. We will examine this topic in Chapter 10.

❑ MemberwiseClone()—This is the only member of System.Object that we don’t examine in
detail anywhere in the book. There is no need to, since it is fairly simple in concept. It simply
makes a copy of the object and returns a reference (or in the case of a value type, a boxed refer-
ence) to the copy. Note that the copy made is a shallow copy—this means that it copies all the
value types in the class. If the class contains any embedded references, then only the references
will be copied, not the objects referred to. This method is protected and so cannot be called to
copy external objects. It is also not virtual, so you cannot override its implementation.

The ToString() Method
We have already encountered ToString() in Chapter 2. It provides the most convenient way to get a
quick string representation of an object.

105

Objects and Types

05 557599 Ch03.qxd 4/29/04 11:32 AM Page 105

For example:

int i = -50;
string str = i.ToString(); // returns “-50”

Here’s another example:

enum Colors {Red, Orange, Yellow};
// later on in code...
Colors favoriteColor = Colors.Orange;
string str = favoriteColor.ToString(); // returns “Orange”

Object.ToString() is actually declared as virtual, and in all these examples, we are taking advantage
of the fact that its implementation in the C# predefined data types has been overridden for us in order
to return correct string representations of those types. You might not think that our Colors enum counts
as a predefined data type. It actually gets implemented as a struct derived from System.Enum, and
System.Enum has a rather clever override of ToString() that deals with all the enums you define.

If you don’t override ToString() in classes that you define, then your classes will simply inherit the
System.Object implementation—which displays the name of the class. If you want ToString() to
return a string that contains information about the value of objects of your class, then you will need to
override it. We illustrate this with a sample, Money, which defines a very simple class, also called Money,
which represent U.S. currency amounts. Money simply acts as a wrapper for the decimal class but sup-
plies a ToString() method. Note that this method must be declared as override because it is replac-
ing (overriding) the ToString() method supplied by Object. We discuss overriding in more detail in
Chapter 4. The complete code for the sample is as follows. Note that it also illustrates use of properties
to wrap fields:

using System;

namespace Wrox.ProCSharp.OOCSharp
{

class MainEntryPoint
{

static void Main(string[] args)
{

Money cash1 = new Money();
cash1.Amount = 40M;
Console.WriteLine(“cash1.ToString() returns: “ + cash1.ToString());
Console.ReadLine();

}
}
class Money
{

private decimal amount;

public decimal Amount
{

get
{

return amount;
}

106

Chapter 3

05 557599 Ch03.qxd 4/29/04 11:32 AM Page 106

set
{

amount = value;
}

}
public override string ToString()
{

return “$” + Amount.ToString();
}

}

}

You’ll realize that this sample is there just to illustrate syntactical features of C#. C# already has a prede-
fined type to represent currency amounts, decimal, so in real life, you wouldn’t write a class to duplicate
this functionality unless you wanted to add various other methods to it. And in many cases due to for-
matting requirements, you’d probably use the String.Format() method (which we cover in Chapter 8)
rather than ToString() to display a currency string.

In the Main() method we instantiate first a Money object, then a BetterMoney object. In both cases we
call ToString(). For the Money object, we’ll pick up the Object version of this method that displays
class information. For the BetterMoney object, we’ll pick up our own override. Running this code gives
the following results:

StringRepresentations
cash1.ToString() returns: $40

Summary
In this chapter we’ve examined C# syntax for declaring and manipulating objects. We have seen how to
declare static and instance fields, properties, methods, and constructors. We have also seen that C# adds
some new features not present in the OOP model of some other languages: Static constructors provide a
means of initializing static fields, while structs allow you to define high-performance types, albeit with a
more restricted feature set, which do not require the use of the managed heap. We have also seen how all
types in C# derive ultimately from the type System.Object, which means that all types start with a
basic set of useful methods, including ToString().

In Chapter 4 we examine implementation and interface inheritance in C#.

107

Objects and Types

05 557599 Ch03.qxd 4/29/04 11:32 AM Page 107

05 557599 Ch03.qxd 4/29/04 11:32 AM Page 108

Inheritance

In Chapter 3, we examined how to use individual classes in C#. The focus in that chapter was
on how to define methods, constructors, properties, and other members of a single class (or a
single struct). Although we did point out the fact that all classes ultimately derive from the class
System.Object, we did not examine how to create a hierarchy of inherited classes. Inheritance is
the subject of this chapter. We will briefly discuss the scope of C#’s support for inheritance, before
examining in detail how to code first implementation inheritance then interface inheritance in C#.
Note that this chapter presumes familiarity with the basic concepts of inheritance, including vir-
tual functions and overriding. We will concentrate on the syntax used to provide inheritance and
inheritance-related topics, such as virtual functions, and on those aspects of the C# inheritance
model that are particular to C# and not necessarily shared by other object-oriented languages.

Types of Inheritance
We’re going to start off by reviewing exactly what C# does and does not support as far as inheri-
tance is concerned.

Implementation Versus Interface Inheritance
Gurus of object-oriented programming will know that there are two distinct types of inheritance:
implementation inheritance and interface inheritance.

❑ Implementation inheritance means that a type derives from a base type, taking all the
base type’s member fields and functions. With implementation inheritance, a derived type
adopts the base type’s implementation of each function, unless it is indicated in the defini-
tion of the derived type that a function implementation is to be overridden. This type of
inheritance is most useful when you need to add functionality to an existing type, or
where a number of related types share a significant amount of common functionality. A
good example of this comes in the Windows Forms classes, which we discuss in Chapter

06 557599 Ch04.qxd 4/29/04 11:30 AM Page 109

19. (Chapter 19 also looks at the base class System.Windows.Forms.Control, which provides
a very sophisticated implementation of a generic Windows control, and numerous other classes
such as System.Windows.Forms.TextBox and System.Windows.Forms.ListBox that derive
from Control and override functions or provide new functions to implement specific types of
control.)

❑ Interface inheritance means that a type inherits only the signatures of the functions, but does not
inherit any implementations. This type of inheritance is most useful when you want to specify that
a type makes certain features available. For example, certain types can indicate that they provide a
resource cleanup method called Dispose() by deriving from an interface, System.IDisposable
(see Chapter 7). Since the way that one type cleans up resources is likely to be very different from
the way that another type cleans up resources, there is no point defining any common implmenta-
tion, so interface inheritance is appropriate here. Interface inheritance is often regarded as provid-
ing a contract: By deriving from an interface, a type is guaranteed to provide certain functionality
to clients.

Traditionally, languages such as C++ have been very strong on implementation inheritance: Indeed,
implementation inheritance has been at the core of the C++ programming model. On the other hand,
Visual Basic 6 did not support any implementation inheritance of classes but did support interface
inheritance thanks to its underlying COM foundations.

In C#, we have both implementation and interface inheritance. There is arguably no preference, as both
types of inheritance are fully built into the language from the ground up. This makes it easy for you to
choose the best architecture for your solution.

Multiple Inheritance
Some languages such as C++ support what is known as multiple inheritance, which a class derives
from more than one other class. The benefits of using of multiple inheritance are debatable: On the one
hand, there is no doubt that it is possible to use multiple inheritance to write extremely sophisticated,
yet compact, code, as demonstrated by the C++ ATL library. On the other hand, code that uses multiple
implementation inheritance is often difficult to understand and debug (a point that is equally well
demonstrated by the C++ ATL library). As we mentioned, making it easy to write robust code was one of
the crucial design goals behind the development of C#. Accordingly, C# does not support multiple imple-
mentation inheritance. On the other hand, it does allow types to derive from multiple interfaces. This
means that a C# class can derive from one other class, and any number of interfaces. Indeed, we can be
more precise: Thanks to the presence of System.Object as a common base type, every C# class (except
for Object) has exactly one base class, and may additionally have any number of base interfaces.

Structs and Classes
In Chapter 3 we distinguish between structs (value types) and classes (reference types). One restriction
of using a struct is that structs do not support inheritance, beyond the fact that every struct is automati-
cally derived from System.ValueType. In fact we should be more careful. It’s true that it is not possible
to code a type hierarchy of structs; however, it is possible for structs to implement interfaces: In other
words, structs don’t really support implementation inheritance, but they do support interface inheri-
tance. Indeed, we can summarize the situation for any types that you define as follows:

110

Chapter 4

06 557599 Ch04.qxd 4/29/04 11:30 AM Page 110

❑ Structs are always derived from System.ValueType. They can also derive from any number of
interfaces.

❑ Classes are always derived from one other class of your choosing. They can also derive from
any number of interfaces.

Implementation Inheritance
If you want to declare that a class derives from another class, use the following syntax:

class MyDerivedClass : MyBaseClass
{

// functions and data members here
}

This syntax is very similar to C++ and Java syntax. However, C++ programmers, who will be used to
the concepts of public and private inheritance, should note that C# does not support private inheritance,
hence the absence of a public or private qualifier on the base class name. Supporting private inheritance
would have complicated the language for very little gain: In practice private inheritance is used
extremely rarely in C++ anyway.

If a class (or a struct) also derives from interfaces, then the list of base class and interfaces is separated by
commas:

public class MyDerivedClass : MyBaseClass, IInterface1, IInterface2
{

// etc.

For a struct, the syntax is as follows:

public struct MyDerivedStruct : IInterface1, IInterface2
{

// etc.

If you do not specify a base class in a class definition, the C# compiler will assume that System.Object
is the base class. Hence the following two pieces of code yield the same result:

class MyClass : Object // derives from System.Object
{

// etc.
}

and

class MyClass // derives from System.Object
{

// etc.
}

For the sake of simplicity, the second form is more common.

111

Inheritance

06 557599 Ch04.qxd 4/29/04 11:30 AM Page 111

Since C# supports the object keyword, which serves as a pseudonym for the System.Object class,
you can also write:

class MyClass : object // derives from System.Object
{

// etc.
}

If you want to reference the Object class, use the object keyword, which is recognized by intelligent
editors such as Visual Studio .NET and thus facilitates editing your code.

Virtual Methods
By declaring a base class function as virtual, we allow the function to be overridden in any derived
classes:

class MyBaseClass
{

public virtual string VirtualMethod()
{

return “This method is virtual and defined in MyBaseClass”;
}

}

It is also permitted to declare a property as virtual. For a virtual or overridden property, the syntax is
the same as for a non-virtual property with the exception of the keyword virtual, which is added to
the definition. The syntax looks like this:

public virtual string ForeName
{

get { return foreName;}
set { foreName = value;}

}
private string foreName;

For simplicity, the following discussion focuses mainly on methods, but it applies equally well to prop-
erties.

The concepts behind virtual functions in C# are identical to standard OOP concepts: We can override a
virtual function in a derived class, and when the method is called, the appropriate method for the type
of object is invoked. In C#, functions are not virtual by default, but (aside from constructors) can be
explicitly declared as virtual. This follows the C++ methodology: for performance reasons, functions
are not virtual unless indicated. In Java, by contrast, all functions are virtual. C# differs from C++ syntax,
however, because it requires you to declare when a derived class’s function overrides another function,
using the override keyword:

class MyDerivedClass : MyBaseClass
{

public override string VirtualMethod()
{

return “This method is an override defined in MyDerivedClass”;
}

}

112

Chapter 4

06 557599 Ch04.qxd 4/29/04 11:30 AM Page 112

This syntax for method overriding removes potential runtime bugs that can easily occur in C++, when a
method signature in a derived class unintentionally differs slightly from the base version, resulting in
the method failing to override the base version. In C# this is picked up as a compile-time error, since the
compiler would see a function marked as override, but no base method for it to override.

Neither member fields nor static functions can be declared as virtual. The concept simply wouldn’t
make sense for any class member other than an instance function member.

Hiding Methods
If a method with the same signature is declared in both base and derived classes, but the methods are
not declared as virtual and override respectively, then the derived class version is said to hide the
base class version. The result is that which version of a method gets called depends on the type of the
variable used to reference the instance, not the type of the instance itself.

In most cases you would want to override methods rather than hide them; by hiding them you risk call-
ing the “wrong” method for a given class instance. However, as we will show in the following example,
C# syntax is designed to ensure that the developer is warned at compile time about this potential prob-
lem, thus making it safer to hide methods if that is your intention. This also has versioning benefits for
developers of class libraries.

Suppose you have a class called HisBaseClass:

class HisBaseClass
{

// various members
}

At some point in the future you write a derived class that adds some functionality to HisBaseClass. In
particular, you add a method called MyGroovyMethod(), which is not present in the base class:

class MyDerivedClass: HisBaseClass
{

public int MyGroovyMethod()
{

// some groovy implementation
return 0;

}
}

Now one year later, you decide to extend the functionality of the base class. By coincidence, you add a
method that is also called MyGroovyMethod() and has the same name and signature as yours, but prob-
ably doesn’t do the same thing. When you compile your code using the new version of the base class,
you have a potential clash because your program won’t know which method to call. It’s all perfectly
legal C#, but since your MyGroovyMethod() is not intended to be related in any way to the base class
MyGroovyMethod() the result of running this code does not yield the result you want. Fortunately C#
has been designed in such a way that it copes very well when conflicts of this type arise.

113

Inheritance

06 557599 Ch04.qxd 4/29/04 11:30 AM Page 113

In these situations, C# generates a compilation warning. That reminds us to use the new keyword to
declare that we intend to hide a method, like this:

class MyDerivedClass : HisBaseClass
{

public new int MyGroovyMethod()
{

// some groovy implementation
return 0;

}
}

However, because your version of MyGroovyMethod() is not declared as new, the compiler will pick up
on the fact that it’s hiding a base class method without being instructed to do so and generate a warning
(this applies whether or not you declared MyGroovyMethod() as virtual). If you want, you can
rename your version of the method. This is the recommended course of action, since it will eliminate
future confusion. However, if you decide not to rename your method for whatever reason (for example,
you’ve published your software as a library for other companies, so you can’t change the names of
methods), all your existing client code will still run correctly, picking up your version of
MyGroovyMethod(). That’s because any existing code that accesses this method must be doing so
through a reference to MyDerivedClass (or a further derived class).

Your existing code cannot access this method through a reference to HisBaseClass; it would generate a
compilation error when compiled against the earlier version of HisBaseClass. The problem can only
happen in client code you have yet to write. C# arranges things so that you get a warning that a poten-
tial problem might occur in future code—and you will need to pay attention to this warning, and take
care not to attempt to call your version of MyGroovyMethod() through any reference to HisBaseClass
in any future code you add. However, all your existing code will still work fine. It may be a subtle point,
but it’s quite an impressive example of how C# is able to cope with different versions of classes.

Calling Base Versions of Functions
C# has a special syntax for calling base versions of a method from a derived class: base.<MethodName>().
For example, if you want a method in a derived class to return 90 percent of the value returned by the
base class method, you can use the following syntax:

class CustomerAccount
{

public virtual decimal CalculatePrice()
{

// implementation
return 0.0M;

}
}
class GoldAccount : CustomerAccount
{

public override decimal CalculatePrice()
{

return base.CalculatePrice() * 0.9M;
}

}

114

Chapter 4

06 557599 Ch04.qxd 4/29/04 11:30 AM Page 114

Java uses a similar syntax, with the exception that Java uses the keyword super rather than base. C++
has no similar keyword but instead requires specification of the class name (CustomerAccount:
:CalculatePrice()). Any equivalent to base in C++ would have been ambiguous since C++ supports
multiple inheritance.

Note that you can use the base.<MethodName>() syntax to call any method in the base class—you
don’t have to call it from inside an override of the same method.

Abstract Classes and Functions
C# allows both classes and functions to be declared as abstract. An abstract class cannot be instantiated,
while an abstract function does not have an implementation, and must be overridden in any non-
abstract derived class. Obviously, an abstract function is automatically virtual (although you don’t need
to supply the virtual keyword; doing so results in a syntax error). If any class contains any abstract
functions, then that class is also abstract and must be declared as such.

abstract class Building
{

public abstract decimal CalculateHeatingCost(); // abstract method
}

C++ developers will notice some syntactical differences in C# here. C# does not support the =0 syntax to
declare abstract functions. In C#, this syntax would be misleading, since =<value> is allowed in member
fields in class declarations to supply initial values:

abstract class Building
{

private bool damaged = false; // field
public abstract decimal CalculateHeatingCost(); // abstract method

}

C++ developers should also note the slightly different terminology: In C++, abstract functions are often
described as pure virtual; in the C# world, the only correct term to use is abstract.

Sealed Classes and Methods
C# allows classes and methods to be declared as sealed. In the case of a class, this means that you can’t
inherit from that class. In the case of a method, this means that you can’t override that method.

sealed class FinalClass
{

// etc
}
class DerivedClass : FinalClass // wrong. Will give compilation error
{

// etc
}

Java developers will recognize sealed as the C# equivalent of Java’s final.

115

Inheritance

06 557599 Ch04.qxd 4/29/04 11:30 AM Page 115

The most likely situation when you’ll mark a class or method as sealed will be if the class or method is
internal to the operation of the library, class, or other classes that you are writing, so you are sure that
any attempt to override some of its functionality will cause problems. You might also mark a class or
method as sealed for commercial reasons, in order to prevent a third party from extending your classes
in a manner that is contrary to the licensing agreements. In general, however, you should be careful
about marking a class or member as sealed, since by doing so you are severely restricting how it can be
used. Even if you don’t think it would be useful to inherit from a class or override a particular member
of it, it’s still possible that at some point in the future someone will encounter a situation you hadn’t
anticipated in which it is useful to do so. The .NET base class library frequently uses sealed classes in
order to make these classes inaccessible to third-party developers who might want to derive their own
classes from them. For example, string is a sealed class.

Declaring a method as sealed serves a similar purpose as for a class, although you rarely will want to
declare a method as sealed.

class MyClass
{

public sealed override void FinalMethod()
{

// etc.
}

}
class DerivedClass : MyClass
{

public override void FinalMethod() // wrong. Will give compilation error
{
}

}

It does not make sense to use the sealed keyword on a method unless that method is itself an override
of another method in some base class. If you are defining a new method and you don’t want anyone else
to override it, then you would not declare it as virtual in the first place. If, however, you have overrid-
den a base class method then the sealed keyword provides a way of ensuring that the override you sup-
ply to a method is a “final” override in the sense that no one else can override it again.

Constructors of Derived Classes
In Chapter 3 we discuss how constructors can be applied to individual classes. An interesting question
arises as to what happens when you start defining your own constructors for classes that are part of a
hierarchy, inherited from other classes that may also have custom constructors?

Let’s assume you have not defined any explicit constructors for any of your classes. This means that the
compiler supplies default zeroing-out constructors for all your classes. There is actually quite a lot going
on under the hood when that happens, but the compiler is able to arrange it so that things work out
nicely throughout the class hierarchy and every field in every class gets initialized to whatever its
default value is. When you add a constructor of your own, however, you are effectively taking control of
construction. This has implications right down through the hierarchy of derived classes, and you have to
make sure that you don’t inadvertently do anything to prevent construction through the hierarchy from
taking place smoothly.

116

Chapter 4

06 557599 Ch04.qxd 4/29/04 11:30 AM Page 116

You might be wondering why there is any special problem with derived classes. The reason is that when
you create an instance of a derived class, there is actually more than one constructor at work. The con-
structor of the class you instantiate isn’t by itself sufficient to initialize the class—the constructors of the
base classes must also be called. That’s why we’ve been talking about construction through the hierarchy.

To see why base class constructors must be called, we’re going to develop an example based on
a cell phone company called MortimerPhones. The example contains an abstract base class,
GenericCustomer, which represents any customer. There is also a (non-abstract) class,
Nevermore60Customer, that represents any customer on a particular rate called the Nevermore60 rate.
All customers have a name, represented by a private field. Under the Nevermore60 rate, the first few
minutes of the customer’s call time are charged at a higher rate, necessitating the need for the field
highCostMinutesUsed, which details how many of these higher cost minutes each customer has used
up. The class definitions look like this:

abstract class GenericCustomer
{

private string name;
// lots of other methods etc.

}
class Nevermore60Customer : GenericCustomer
{

private uint highCostMinutesUsed;
// other methods etc.

}

We won’t worry about what other methods might be implemented in these classes, as we are concentrat-
ing solely on the construction process here. And if you download the sample code for this chapter, you’ll
find that the class definitions include only the constructors.

Let’s look at what happens when you use the new operator to instantiate a Nevermore60Customer.

GenericCustomer customer = new Nevermore60Customer();

Clearly both of the member fields name and highCostMinutesUsed must be initialized when customer
is instantiated. If we don’t supply constructors of our own, but rely simply on the default constructors,
then we’d expect name to be initialized to the null reference, and highCostMinutesUsed to zero. Let’s
look in a bit more detail at how this actually happens.

The highCostMinutesUsed field presents no problem: the default Nevermore60Customer constructor
supplied by the compiler will initialize this field to zero.

What about name? Looking at the class definitions, it’s clear that the Nevermore60Customer constructor
can’t initialize this value. This field is declared as private, which means that derived classes don’t have
access to it. So the default Nevermore60Customer constructor simply won’t even know that this field
exists. The only code items that have that knowledge are other members of GenericCustomer. This
means that if name is going to be initialized, that’ll have to be done by some constructor in
GenericCustomer. No matter how big your class hierarchy is, this same reasoning applies right down
to the ultimate base class, System.Object.

117

Inheritance

06 557599 Ch04.qxd 4/29/04 11:30 AM Page 117

Now that we have an understanding of the issues involved, we can look at what actually happens when-
ever a derived class is instantiated. Assuming default constructors are used throughout, the compiler first
grabs the constructor of the class it is trying to instantiate, in this case Nevermore60Customer. The first
thing that the default Nevermore60Customer constructor does is attempt to run the default constructor
for the immediate base class, GenericCustomer. Then the GenericCustomer constructor attempts to
run the constructor for its immediate base, System.Object. System.Object doesn’t have any base
classes, so its constructor just executes and returns control to the GenericCustomer constructor. That
constructor now executes, initializing name to null, before returning control to the Nevermore60Customer
constructor. That constructor in turn executes, initializing highCostMinutesUsed to zero, and exits. At
this point, the Nevermore60Customer instance has been successfully constructed and initialized.

The net result of all this is that the constructors are called in order of System.Object first, then progressing
down the hierarchy until the compiler reaches the class being instantiated. Notice also that in this process,
each constructor handles initialization of the fields in its own class. That’s how it should normally work,
and when you start adding your own constructors you should try to stick to that principle.

Notice the order in which this happens. It’s always the base class constructors that get called first. This
means that there are no problems with a constructor for a derived class invoking any base class meth-
ods, properties, and any other members that it has access to, because it can be confident that the base
class has already been constructed and its fields initialized. It also means that if the derived class doesn’t
like the way that the base class has been initialized, it can change the initial values of the data, provided
it has access to do so. However, good programming practice almost invariably means you’ll try to pre-
vent that situation from occurring if you can, and you will trust the base class constructor to deal with its
own fields.

Now that you know how the process of construction works, you can start fiddling with it by adding
your own constructors.

Adding a No-Parameter Constructor in a Hierarchy
We’ll take the simplest case first and see what happens if we simply replace the default constructor
somewhere in the hierarchy with another constructor that takes no parameters. Suppose that we decide
that we want everyone’s name to be initially set to the string, “<no name>” instead of to the null refer-
ence. We’d modify the code in GenericCustomer like this:

public abstract class GenericCustomer
{

private string name;
public GenericCustomer()

: base() // we could omit this line without affecting the compiled code
{

name = “<no name>”;
}

Adding this code will work fine. Nevermore60Customer still has its default constructor, so the
sequence of events described above will proceed as before, except that the compiler will use our custom
GenericCustomer constructor instead of generating a default one, so the name field will always be ini-
tialized to “<no name>” as required.

118

Chapter 4

06 557599 Ch04.qxd 4/29/04 11:30 AM Page 118

Notice that in our constructor, we’ve added a call to the base class constructor before the
GenericCustomer constructor is executed, using a syntax similar to what we were using earlier when
we discussed how to get different overloads of constructors to call each other. The only difference is that
this time we use the base keyword instead of this, to indicate it’s a constructor to the base class rather
than a constructor to the current class we want to call. There are no parameters in the brackets after the
base keyword—that’s important because it means we are not passing any parameters to the base con-
structor, so the compiler will have to look for a parameterless constructor to call. The result of all this is
that the compiler will inject code to call the System.Object constructor, just as would happen by
default anyway.

In fact, we can omit that line of code, and write the following (as we’ve done for most of the constructors
so far in the chapter):

public GenericCustomer()
{

name = “<no name>”;
}

If the compiler doesn’t see any reference to another constructor before the opening curly brace, it assumes
that we intended to call the base class constructor; this fits in with the way default constructors work.

The base and this keywords are the only keywords allowed in the line which calls another constructor.
Anything else causes a compilation error. Also note that only one other constructor can be specified.

So far this code works fine. One good way to mess up the progression through the hierarchy of construc-
tors, however, is to declare a constructor as private:

private GenericCustomer()
{

name = “<no name>”;
}

If you try this, you’ll find you get an interesting compilation error, which could really throw you if you
don’t understand how construction down a hierarchy works:

‘Wrox.ProCSharp.GenericCustomer()’ is inaccessible due to its protection level

The interesting thing is that the error occurs not in the GenericCustomer class, but in the derived class,
Nevermore60Customer. What’s happened is that the compiler has tried to generate a default construc-
tor for Nevermore60Customer, but not been able to because the default constructor is supposed to
invoke the no-parameter GenericCustomer constructor. By declaring that constructor as private,
we’ve made it inaccessible to the derived class. A similar error occurs if we supply a constructor to
GenericCustomer, which takes parameters, but at the same time we fail to supply a no-parameter con-
structor. In this case the compiler will not generate a default constructor for GenericCustomer, so when
it tries to generate the default constructors for any derived class, it’ll again find that it can’t because a no-
parameter base class constructor is not available. A workaround would be to add your own constructors
to the derived classes, even if you don’t actually need to do anything in these constructors, so that the
compiler doesn’t try to generate any default constructor for them.

119

Inheritance

06 557599 Ch04.qxd 4/29/04 11:30 AM Page 119

Now that you have all the theoretical background you need, you’re ready to move on to an example of
how you can neatly add constructors to a hierarchy of classes. In the next section we’ll start adding con-
structors that take parameters to the MortimerPhones example.

Adding Constructors with Parameters to a Hierarchy
We’re going to start with a one-parameter constructor for GenericCustomer which controls that cus-
tomers can be instantiated only when they supply their names.

abstract class GenericCustomer
{

private string name;
public GenericCustomer(string name)
{

this.name = name;
}

So far, so good. However, as mentioned previously, this will cause a compilation error when the com-
piler tries to create a default constructor for any derived classes, because the default compiler-generated
constructors for Nevermore60Customer will try to call a no-parameter GenericCustomer constructor
and GenericCustomer does not possess such a constructor. Therefore, we’ll need to supply our own
constructors to the derived classes to avoid a compilation error.

class Nevermore60Customer : GenericCustomer
{

private uint highCostMinutesUsed;
public Nevermore60Customer(string name)

: base(name)
{
}

Now instantiation of Nevermore60Customer objects can only take place when a string containing
the customer’s name is supplied, which is what we want anyway. The interesting thing is what our
Nevermore60Customer constructor does with this string. Remember that it can’t initialize the name
field itself, because it has no access to private fields in its base class. Instead, it passes the name through
to the base class for the GenericCustomer constructor to handle. It does this by specifying that the base
class constructor to be executed first is the one that takes the name as a parameter. Other than that, it
doesn’t take any action of its own.

Next we’re going to investigate what happens if you have different overloads of the constructor as well
as a class hierarchy to deal with. To this end we’re going to assume that Nevermore60 customers may
have been referred to MortimerPhones by a friend as part of one of these sign-up-a-friend-and-get-a-
discount offers. This means that when we construct a Nevermore60Customer, we may need to pass in
the referrer’s name as well. In real life the constructor would have to do something complicated with the
name, like process the discount, but here we’ll just store the referrer’s name in another field.

The Nevermore60Customer definition will now look like this:

class Nevermore60Customer : GenericCustomer
{

public Nevermore60Customer(string name, string referrerName)
: base(name)

120

Chapter 4

06 557599 Ch04.qxd 4/29/04 11:30 AM Page 120

{
this.referrerName = referrerName;

}

private string referrerName;
private uint highCostMinutesUsed;

The constructor takes the name and passes it to the GenericCustomer constructor for processing.
referrerName is the variable that is our responsibility here, so the constructor deals with that parame-
ter in its main body.

However, not all Nevermore60Customers will have a referrer, so we still need a constructor that doesn’t
require this parameter (or a constructor that gives us a default value for it). In fact we will specify that if
there is no referrer, then the referrerName field should be set to “<None>”, using the following one-
parameter constructor:

public Nevermore60Customer(string name)
: this(name, “<None>”)

{
}

We’ve now got all our constructors set up correctly. It’s instructive to examine the chain of events that
now occurs when we execute a line like this:

GenericCustomer customer = new Nevermore60Customer(“Arabel Jones”);

The compiler sees that it needs a one-parameter constructor that takes one string, so the constructor it’ll
identify is the last one that we’ve defined:

public Nevermore60Customer(string Name)
: this(Name, “<None>”)

When we instantiate customer, this constructor will be called. It immediately transfers control to the
corresponding Nevermore60Customer 2-parameter constructor, passing it the values “Arabel Jones”,
and “<None>”. Looking at the code for this constructor, we see that it in turn immediately passes control
to the one-parameter GenericCustomer constructor, giving it the string “Arabel Jones”, and in turn
that constructor passes control to the System.Object default constructor. Only now do the constructors
execute. First, the System.Object constructor executes. Next comes the GenericCustomer constructor,
which initializes the name field. Then the Nevermore60Customer 2-parameter constructor gets control
back, and sorts out initializing the referrerName to “<None>”. Finally, the Nevermore60Customer
one-parameter constructor gets to execute; this constructor doesn’t do anything else.

As you can see, this is a very neat and well-designed process. Each constructor handles initialization of
the variables that are obviously its responsibility, and in the process our class has been correctly instanti-
ated and prepared for use. If you follow the same principles when you write your own constructors for
your classes, you should find that even the most complex classes get initialized smoothly and without
any problems.

121

Inheritance

06 557599 Ch04.qxd 4/29/04 11:30 AM Page 121

Modifiers
We have already encountered quite a number of so-called modifiers—keywords that can be applied to a
type or to a member. Modifiers can indicate the visibility of a method, such as public or private, or
the nature of an item, such as whether a method is virtual or abstract. C# has a number of modifiers,
and at this point it’s worth taking a minute to provide the complete list.

Visibility Modifiers
These modifiers indicate which other code items can view an item.

Modifier Applies To Description

public Any types or members The item is visible to any other code.

protected Any member of a type, The item is visible only to any derived
also any nested type type.

internal Any member of a type, The item is visible only within its
also any nested type containing assembly.

private Any types or members The item is visible only inside the type to
which it belongs.

protected internal Any member of a type, The item is visible to any code within its
also any nested type containing assembly and also to any code

inside a derived type.

Note that type definitions can be public or private, depending on whether you want the type to be visi-
ble outside its containing assembly.

public class MyClass
{

// etc.

You cannot define types as protected, internal, or protected internal, as these visibility levels would be
meaningless for a type contained in a namespace. Hence these visibilities can only be applied to mem-
bers. However, you can define nested types (that is, types contained within other types) with these visi-
bilities, since in this case the type also has the status of a member. Hence the following code is correct:

public class OuterClass
{

protected class InnerClass
{

// etc.
}
// etc.

}

122

Chapter 4

06 557599 Ch04.qxd 4/29/04 11:30 AM Page 122

If you have a nested type, the inner type is always able to see all members of the outer type. Hence with
the above code, any code inside InnerClass always has access to all members of OuterClass, even
where those members are private.

Other Modifiers
These modifiers can be applied to members of types, and have various uses. A few of these modifiers
also make sense when applied to types.

Modifier Applies To Description

new Function members The member hides an inherited member with the
same signature.

static All members The member does not operate on a specific
instance of the class.

virtual Classes and function The member can be overridden by a derived class.
members only

abstract Function members only A virtual member that defines the signature of the
member, but doesn’t provide an implementation.

override Function members only The member overrides an inherited virtual or
abstract member.

sealed Classes The member overrides an inherited virtual mem-
ber, but cannot be overridden by any classes that
inherit from this class. Must be used in conjunction
with override.

extern static [DllImport] methods only. The member is implemented externally, in a differ-
ent language.

Of these, internal and protected internal are the ones that are new to C# and the .NET
Framework. internal acts in much the same way as public, but access is confined to other code in the
same assembly—in other words, code that is being compiled at the same time in the same program. You
can use internal to ensure all the other classes that you are writing have access to a particular member,
while at the same time hiding it from other code written by other organizations. protected internal
combines protected and internal, but in an OR sense, not an AND sense. A protected internal member
can be seen by any code in the same assembly. It can also be seen by any derived classes, even those in
other assemblies.

Interfaces
As we mentioned earlier, by deriving from an interface a class is declaring that it implements certain
functions. Because not all object-oriented languages support interfaces, we will examine C#’s implemen-
tation of interfaces in detail in this section.

123

Inheritance

06 557599 Ch04.qxd 4/29/04 11:30 AM Page 123

Developers familiar with COM should be aware that, although conceptually C# interfaces are similar to
COM interfaces, they are not the same thing. The underlying architecture is different. For example, C#
interfaces do not derive from IUnknown. A C# interface provides a contract stated in terms of .NET
functions. Unlike a COM interface, a C# interface does not represent any kind of binary standard.

We will illustrate interfaces by presenting the complete definition of one of the interfaces that has been
predefined by Microsoft, System.IDisposable. IDisposable contains one method, Dispose(),
which is intended to be implemented by classes to clean up code.

public interface IDisposable
{

void Dispose();
}

This code shows that declaring an interface works syntactically in pretty much the same way as declar-
ing an abstract class. You should be aware, however, that it is not permitted to supply implementations
of any of the members of an interface. In general, an interface can only contain declarations of methods,
properties, indexers, and events.

You can never instantiate an interface; it only contains the signatures of its members. An interface has
neither constructors (how can you construct something that you can’t instantiate?) nor fields (because
that would imply some internal implementation). An interface definition is also not allowed to contain
operator overloads, though that’s not because there is any problem in principle with declaring them—
there isn’t; it is because interfaces are usually intended to be public contracts, and having operator over-
loads would cause some incompatibility problems with other .NET languages, such as Visual Basic
.NET, which do not support operator overloading.

It is also not permitted to declare modifiers on the members in an interface definition. Interface members
are always implicitly public, and cannot be declared as virtual or static. That’s up to implementing
classes to decide on. It is therefore fine for implementing classes to declare access modifiers, as we do in
the example in this section.

Take for example IDisposable. If a class wants to declare publicly that it implements the Dispose()
method, then it must implement IDisposable—which in C# terms means that the class derives from
IDisposable.

class SomeClass : IDisposable
{

// this class MUST contain an implementation of the
// IDisposable.Dispose() method, otherwise
// you get a compilation error
public void Dispose()
{

// implementation of Dispose() method
}
// rest of class

}

In this example, if SomeClass derives from IDisposable but doesn’t contain a Dispose() implemen-
tation with the exact same signature as defined in IDisposable, then you get a compilation error,
because the class would be breaking its agreed contract to implement IDisposable. Of course, there’s
no problem for the compiler about a class having a Dispose() method but not deriving from

124

Chapter 4

06 557599 Ch04.qxd 4/29/04 11:30 AM Page 124

IDisposable. The problem then would be that other code would have no way of recognizing that
SomeClass has agreed to support the IDisposable features.

IDisposable is a relatively simple interface, since it defines only one method. Most interfaces will
contain more members.

Another good example of an interface is provided by the foreach loop in C#. In principle, the foreach
loop works internally by querying the object to find out whether it implements an interface called
System.Collections.IEnumerable. If it does, then the C# compiler will inject IL code, which uses the
methods on this interface to iterate through the members of the collection. If it doesn’t, then foreach
will raise an exception. We will examine the IEnumerable interface in more detail in Chapter 9. It’s
worth pointing out that both IEnumerable and IDisposable are somewhat special interfaces to the
extent that they are actually recognized by the C# compiler, which takes account of these interfaces in
the code that it generates. Obviously, any interfaces that you define yourself won’t be so privileged!

Defining and Implementing Interfaces
We’re going to illustrate how to define and use interfaces by developing a short program that follows the
interface inheritance paradigm. The example is based on bank accounts. We assume we are writing code
that will ultimately allow computerized transfers between bank accounts. And we’ll assume for our
example that there are many companies that may implement bank accounts, but they have all mutually
agreed that any classes that represent bank accounts will implement an interface, IBankAccount, which
exposes methods to deposit or withdraw money, and a property to return the balance. It is this interface
that will allow outside code to recognize the various bank account classes implemented by different
bank accounts. Although our aim is to allow the bank accounts to talk to each other to allow transfers of
funds between accounts, we won’t introduce that feature just yet.

To keep things simple, we will keep all the code for our sample in the same source file. Of course if
something like our example were used in real life, we could surmise that the different bank account
classes would not only be compiled to different assemblies but would be hosted on different machines
owned by the different banks. (We explore how .NET assemblies hosted on different machines can com-
municate in Chapter 16 when we cover remoting.) That’s all much too complicated for our purposes
here. However, to maintain some attempt at realism, we will define different namespaces for the differ-
ent companies.

To begin, we need to define the IBank interface:

namespace Wrox.ProCSharp
{

public interface IBankAccount
{

void PayIn(decimal amount);
bool Withdraw(decimal amount);
decimal Balance
{

get;
}

}
}

125

Inheritance

06 557599 Ch04.qxd 4/29/04 11:30 AM Page 125

Notice the name of the interface, IBankAccount. It’s a convention that an interface name traditionally
starts with the letter I, so that we know that it’s an interface.

We pointed out in Chapter 2 that, in most cases, .NET usage guidelines discourage the so-called
Hungarian notation in which names are preceded by a letter that indicates the type of object being
defined. Interfaces are one of the few exceptions in which Hungarian notation is recommended.

The idea is that we can now write classes that represent bank accounts. These classes don’t have to be
related to each other in any way, they can be completely different classes. They will, however, all declare
that they represent bank accounts by the mere fact that they implement the IBankAccount interface.

Let’s start off with the first class, a saver account run by the Royal Bank of Venus:

namespace Wrox.ProCSharp.VenusBank
{

public class SaverAccount : IBankAccount
{

private decimal balance;
public void PayIn(decimal amount)
{

balance += amount;
}
public bool Withdraw(decimal amount)
{

if (balance >= amount)
{

balance -= amount;
return true;

}
Console.WriteLine(“Withdrawal attempt failed.”);
return false;

}
public decimal Balance
{

get
{

return balance;
}

}
public override string ToString()
{

return String.Format(“Venus Bank Saver: Balance = {0,6:C}”, balance);
}

}
}

It should be pretty obvious what the implementation of this class does. We maintain a private field, bal-
ance, and adjust this amount when money is deposited or withdrawn. We display an error message if
an attempt to withdraw money fails because there is insufficient money in the account. Notice also that,
because we want to keep the code as simple as possible, we are not implementing extra properties, such
as the account holder’s name! In real life that would be pretty essential information, but for this example
it’s unnecessarily complicated.

126

Chapter 4

06 557599 Ch04.qxd 4/29/04 11:30 AM Page 126

The only really interesting line in this code is the class declaration:

public class SaverAccount : IBankAccount

We’ve declared that SaverAccount derives from one interface, IBankAccount, and we have not explic-
itly indicated any other base classes (which of course means that SaverAccount derives directly from
System.Object). By the way, derivation from interfaces acts completely independently from derivation
from classes.

Being derived from IBankAccount means that SaverAccount gets all the members of IBankAccount.
But since an interface doesn’t actually implement any of its methods, SaverAccount must provide its
own implementations of all of them. If any implementations are missing, you can rest assured that the
compiler will complain. Recall also that the interface just indicates the presence of its members. It’s up to
the class to decide if it wants any of them to be virtual or abstract (though abstract functions are
of course only allowed if the class itself is abstract). For our particular example, we don’t have any
reason to make any of the interface functions virtual.

To illustrate how different classes can implement the same interface, we will assume the Planetary Bank
of Jupiter also implements a class to represent one of its bank accounts—a Gold Account.

namespace Wrox.ProCSharp.JupiterBank
{

public class GoldAccount : IBankAccount
{

// etc
}

}

We won’t present details of the GoldAccount class here because in the sample code it’s basically identi-
cal to the implementation of SaverAccount. We stress that GoldAccount has no connection with
VenusAccount, other than that they happen to implement the same interface.

Now that we have our classes, we can test them out. We first need a couple of using statements:

using System;
using Wrox.ProCSharp;
using Wrox.ProCSharp.VenusBank;
using Wrox.ProCSharp.JupiterBank;

Now we need a Main() method:

namespace Wrox.ProCSharp
{

class MainEntryPoint
{

static void Main()
{

IBankAccount venusAccount = new SaverAccount();
IBankAccount jupiterAccount = new GoldAccount();
venusAccount.PayIn(200);
venusAccount.Withdraw(100);
Console.WriteLine(venusAccount.ToString());
jupiterAccount.PayIn(500);

127

Inheritance

06 557599 Ch04.qxd 4/29/04 11:30 AM Page 127

jupiterAccount.Withdraw(600);
jupiterAccount.Withdraw(100);
Console.WriteLine(jupiterAccount.ToString());

}
}

}

This code (which if you download the sample, you can find in the file BankAccounts.cs) produces this
output:

C:> BankAccounts
Venus Bank Saver: Balance = £100.00
Withdrawal attempt failed.
Jupiter Bank Saver: Balance = £400.00

The main point to notice about this code is the way that we have declared both our reference variables as
IBankAccount references. This means that they can point to any instance of any class that implements this
interface. It does, however, mean that we can only call methods that are part of this interface through these
references—if we want to call any methods implemented by a class that are not part of the interface, then we
need to cast the reference to the appropriate type. In our code, we were able to call ToString() (not imple-
mented by IBankAccount) without any explicit cast, purely because ToString() is a System.Object
method, so the C# compiler knows that it will be supported by any class (put differently: the cast from any
interface to System.Object is implicit). We cover the syntax for how to perform casts in Chapter 5.

Interface references can in all respects be treated like class references—but the power of an interface ref-
erence is that it can refer to any class that implements that interface. For example, this allows us to form
arrays of interfaces, where each element of the array is a different class:

IBankAccount[] accounts = new IBankAccount[2];
accounts[0] = new SaverAccount();
accounts[1] = new GoldAccount();
Note, however, that we’d get a compiler error if we tried something like this
accounts[1] = new SomeOtherClass(); // SomeOtherClass does NOT implement

// IBankAccount: WRONG!!

This causes a compilation error similar to this:

Cannot implicitly convert type ‘Wrox.ProCSharp. SomeOtherClass’ to
‘Wrox.ProCSharp.IBankAccount’

Derived Interfaces
It’s possible for interfaces to inherit from each other in the same way that classes do. We’ll illustrate this
concept by defining a new interface, ITransferBankAccount, which has the same features as
IBankAccount, but also defines a method to transfer money directly to a different account:

namespace Wrox.ProCSharp
{

public interface ITransferBankAccount : IBankAccount
{

bool TransferTo(IBankAccount destination, decimal amount);
}

}

128

Chapter 4

06 557599 Ch04.qxd 4/29/04 11:30 AM Page 128

Because ITransferBankAccount derives from IBankAccount, it gets all the members of
IBankAccount as well as its own. That means that any class that implements (derives from)
ITransferBankAccount must implement all the methods of IBankAccount, as well as the new
TransferTo() method defined in ITransferBankAccount. Failure to implement all of these methods
will result in a compilation error.

Note that TransferTo() method uses an IBankAccount interface reference for the destination account.
This illustrates the usefulness of interfaces: When implementing and then invoking this method, we
don’t need to know anything about what type of object we are transferring money to—all we need to
know is that this object implements IBankAccount.

We’ll illustrate ITransferBankAccount by assuming that the Planetary Bank of Jupiter also offers a
current account. Most of the implementation of the CurrentAccount class is identical to the implemen-
tations of SaverAccount and GoldAccount (again this is just in order to keep this sample simple—that
won’t normally be the case), so in the following code we’ve just highlighted the differences:

public class CurrentAccount : ITransferBankAccount
{

private decimal balance;
public void PayIn(decimal amount)
{

balance += amount;
}
public bool Withdraw(decimal amount)
{

if (balance >= amount)
{

balance -= amount;
return true;

}
Console.WriteLine(“Withdrawal attempt failed.”);
return false;

}
public decimal Balance
{

get
{

return balance;
}

}
public bool TransferTo(IBankAccount destination, decimal amount)
{

bool result;
if ((result = Withdraw(amount)) == true)

destination.PayIn(amount);
return result;

}
public override string ToString()
{

return String.Format(“Jupiter Bank Current Account: Balance = {0,6:C}”,
balance);

}
}

129

Inheritance

06 557599 Ch04.qxd 4/29/04 11:30 AM Page 129

We can demonstrate the class with this code:

static void Main()
{

IBankAccount venusAccount = new SaverAccount();
ITransferBankAccount jupiterAccount = new CurrentAccount();
venusAccount.PayIn(200);
jupiterAccount.PayIn(500);
jupiterAccount.TransferTo(venusAccount, 100);
Console.WriteLine(venusAccount.ToString());
Console.WriteLine(jupiterAccount.ToString());

}

This code (CurrentAccount.cs) produces the following output, which as you can verify shows the correct
amounts have been transferred:

C:> CurrentAccount
Venus Bank Saver: Balance = £300.00
Jupiter Bank Current Account: Balance = £400.00

Summary
In this chapter we have examined how to code inheritance in C#. We have seen that C# offers rich sup-
port for both multiple interface and single implementation inheritance, as well as provides a number of
useful syntactical constructs designed to assist in making code more robust, such as the override key-
word, which indicates when a function should override a base function; the new keyword, which indi-
cates when a function hides a base function; and the rigid rules for constructor initializers that are
designed to ensure that constructors are designed to interoperate in a robust manner.

In the next chapter we will examine C#’s support for operators, operator overloads, and casting between
types.

130

Chapter 4

06 557599 Ch04.qxd 4/29/04 11:30 AM Page 130

Operators and Casts

In the preceding chapters, we have covered most of what you need to start writing useful pro-
grams using C#. In this chapter, we complete our discussion of the essential language elements
and go on to discuss powerful aspects of C# that allow you to extend the capabilities of the C# lan-
guage. Specifically in this chapter we discuss:

❑ The operators available in C#

❑ The idea of equality when dealing with reference and value types

❑ Data conversion between the primitive data types

❑ Converting value types to reference types using boxing

❑ Converting between reference types by casting

❑ Overloading the standard operators to support operations on the custom types you define

❑ Adding cast operators to the custom types you define to support seamless data type con-
versions

Operators
Although most of C#’s operators should be familiar to C and C++ developers, we will discuss the
most important ones here for the benefit of new programmers and Visual Basic converts, and to
shed light on some of the changes introduced with C#.

07 557599 Ch05.qxd 4/29/04 11:28 AM Page 131

C# supports the operators listed in the following table, although four (sizeof, *, ->, and &) are only avail-
able in unsafe code (code that bypasses C#’s type safety checking), which we will look at in Chapter 7:

Category Operator

Arithmetic + - * / %

Logical & | ^ ~ && || !

String concatenation +

Increment and decrement ++ —

Bit shifting << >>

Comparison == != < > <= >=

Assignment = += -= *= /= %= &= |= ^= <<= >>=

Member access (for objects and structs) .

Indexing (for arrays and indexers) []

Cast ()

Conditional (the Ternary Operator) ?:

Object Creation new

Type information sizeof (unsafe code only) is typeof as

Overflow exception control checked unchecked

Indirection and Address * -> & (unsafe code only) []

One of the biggest pitfalls to watch out for when using C# operators is that, like other C-style languages,
C# uses different operators for assignment =, and comparison ==. For instance, the following statement
means let x equal three:

x = 3;

If we now want to compare x to a value, we need to use the double equals sign ==:

if (x == 3)

Fortunately, C#’s strict type safety rules prevent the very common C error where assignment is per-
formed instead of comparison in logical statements. This means that in C# the following statement will
generate a compiler error:

if (x = 3)

Visual Basic programmers who are used to using the ampersand (&) character to concatenate strings
will have to make an adjustment. In C#, the plus sign (+) is used instead, while & denotes a bit-wise AND
between two different integer values. | allows you to perform a bit-wise OR between two integers. Visual
Basic programmers also might not recognize the modulus (%) arithmetic operator. This returns the
remainder after division, so for example x % 5 returns 2 if x is equal to 7.

132

Chapter 5

07 557599 Ch05.qxd 4/29/04 11:28 AM Page 132

You will use few pointers in C#, and so, you will use few indirection operators ->. Specifically, the only
place you will use them is within blocks of unsafe code, because that’s the only place in C# where point-
ers are allowed.

Operator Shortcuts
The following table shows the full list of shortcut assignment operators available in C#:

Shortcut Operator Equivalent To

x++, ++x x = x + 1

x—, —x x = x - 1

x += y x = x + y

x -= y x = x — y

x *= y x = x * y

x /= y x = x / y

x %= y x = x % y

x >>= y x = x >> y

x <<= y x = x << y

x &= y x = x & y

x |= y x = x | y

x ^= y x = x ^ y

You may be wondering why there are two examples each for the ++ increment and the — decrement
operators. Placing the operator before the expression is known as a prefix, and placing the operator after
the expression is known as a postfix. The expressions x++ and ++x are both equivalent to x = x + 1, but
there is a difference in the way they behave.

The increment and decrement operators can act both as whole expressions and within expressions. As
lines on their own, they are identical and correspond to the statement x = x + 1. When used within
expressions, the prefix operator will increment the value of x before the expression is evaluated; in other
words, x is incremented and the new value is used in the expression. In contrast, the postfix operator
increments the value of x after the expression is evaluated—the expression is evaluated using the origi-
nal value. The following example shows the difference between the two operators:

int x = 5;
if (++x == 6)
{

Console.WriteLine(“This will execute”);
}
if (x++ == 7)
{

Console.WriteLine(“This won’t”);
}

133

Operators and Casts

07 557599 Ch05.qxd 4/29/04 11:29 AM Page 133

The first if condition evaluates to true, because x is incremented from 5 to 6 before the expression is
evaluated. The condition in the second if statement is false, however, because x is only incremented
to 7 after the entire expression has been evaluated.

The prefix and postfix operators —x and x— behave in the same way, but decrement rather than incre-
ment the operand.

The other shortcut operators, such as += and -=, require two operands, and are used to modify the value
of the first operand by performing an arithmetic, logical, or bit-wise operation on it. For example, the
next two lines are equivalent:

x += 5;
x = x + 5;

The Ternary Operator
The ternary operator (?:) is a shorthand form of the if...else construction. It gets its name from the
fact that it involves three operands. It allows us to evaluate a condition, returning one value if that con-
dition is true, or another value if it is false. The syntax is:

condition ? true_value : false_value

Here, condition is the Boolean expression to be evaluated, true_value is the value that will be returned if
condition is true, and false_value is the value that will be returned otherwise.

When used sparingly, the ternary operator can add a dash of terseness to your programs. It is especially
handy for providing one of a couple of arguments to a function that is being invoked. You can use it to
quickly convert a Boolean value to a string value of true or false. It is also handy for displaying the
correct singular or plural form of a word, for example:

int x = 1;
string s = x.ToString() + “ “;
s += (x == 1 ? “man” : “men”);
Console.WriteLine(s);

This code displays 1 man if x is equal to one, but will display the correct plural form for any other num-
ber. Note, however, that if your output needs to be localized to different languages then you will have
to write more sophisticated routines to take account of the different grammatical rules of different
languages.

The checked and unchecked Operators
Consider the following code:

byte b = 255;
b++;
Console.WriteLine(b.ToString());

134

Chapter 5

07 557599 Ch05.qxd 4/29/04 11:29 AM Page 134

The byte data type can only hold values in the range zero to 255, so incrementing the value of b causes
an overflow. How the CLR handles this depends on a number of issues, including compiler options, so
whenever there’s a risk of an unintentional overflow, we need some way of making sure that we get the
result we want.

To do this, C# provides the checked and unchecked operators. If we mark a block of code as checked,
the CLR will enforce overflow checking, and throw an exception if an overflow occurs. Let’s change our
code to include the checked operator:

byte b = 255;

checked
{

b++;
}

Console.WriteLine(b.ToString());

When we try to run this code, we will get an error message like this:

Unhandled Exception: System.OverflowException: Arithmetic operation resulted in an
overflow.

at Wrox.ProCSharp.Basics.OverflowTest.Main(String[] args)

We can enforce overflow checking for all unmarked code in our program by compiling with the /checked
option.

If we want to suppress overflow checking, we can mark the code as unchecked:

byte b = 255;

unchecked
{

b++;
}

Console.WriteLine(b.ToString());

In this case, no exception will be raised, but we will lose data—since the byte type can’t hold a value of
256, the overflowing bits will be discarded, and our b variable will hold a value of zero.

Note that unchecked is the default behavior. The only time where you are likely to need to explicitly use
the unchecked keyword is if you need a few unchecked lines of code inside a larger block that you have
explicitly marked as checked.

The is Operator
The is operator allows us to check whether an object is compatible with a specific type. For example, to
check whether a variable is compatible with the object type:

135

Operators and Casts

07 557599 Ch05.qxd 4/29/04 11:29 AM Page 135

By the phrase is compatible, we mean that an object is either of that type or is derived from that type.

int i = 10;
if (i is object)
{

Console.WriteLine(“i is an object”);
}

int, like all C# data types, inherits from object, therefore the expression i is object will evaluate to
true, and the message will be displayed.

The as Operator
The as operator is used to perform explicit type conversions of reference types. If the type being con-
verted is compatible with the specified type, conversion is performed successfully. However, if the types
are incompatible, then the as operator returns the value null. As shown in the following code, attempt-
ing to convert an object reference to a string will return null if the object reference does not actu-
ally refer to a string instance:

object o1 = “Some String”;
object o2 = 5;

string s1 = o1 as string; // s1 = “Some String”
string s2 = o2 as string; // s2 = null

The as operator allows you to perform a safe type conversion in a single step without the need to first
test the type using the is operator and then perform the conversion.

The sizeof Operator
We can determine the size (in bytes) required on the stack by a value type using the sizeof operator:

string s = “A string”;
unsafe
{

Console.WriteLine(sizeof(int));
}

This will display the number 4, as an int is four bytes long.

Notice that we can only use the sizeof operator in unsafe code. We will look at unsafe code in more
detail in Chapter 7.

The typeof Operator
The typeof operator returns a System.Type object representing a specified type. For example,
typeof(string) will return a Type object representing the System.String type. This is useful when
we want to use reflection to find out information about an object dynamically. We will look at reflection
in Chapter 10.

136

Chapter 5

07 557599 Ch05.qxd 4/29/04 11:29 AM Page 136

Operator Precedence
The following table shows the order of precedence of the C# operators. The operators at the top of the
table are those with the highest precedence (that is, the ones which are evaluated first in an expression
containing multiple operators):

Group Operators

Primary () . [] x++ x— new typeof sizeof checked unchecked

Unary + - ! ~ ++x —x and casts

Multiplication/Division * / %

Addition/Subtraction + -

Bitwise shift operators << >>

Relational < > <= >= is as

Comparison == !=

Bitwise AND &

Bitwise XOR ^

Bitwise OR |

Boolean AND &&

Boolean OR ||

Ternary operator ?:

Assignment = += -= *= /= %= &= |= ^= <<= >>= >>>=

In complex expressions, you should avoid relying on operator precedence to produce the correct result.
Using parentheses to specify the order in which you want operators applied clarifies your code and
avoids potential confusion.

Type Safety
In Chapter 1 we noted that the Intermediate Language (IL) enforces strong type safety upon its code. We
noted that strong typing enables many of the services provided by .NET, including security and lan-
guage interoperability. As we would expect from a language that is compiled into IL, C# is also strongly
typed. Among other things, this means that data types are not always seamlessly interchangeable. In this
section, we will look at conversions between primitive types.

C# also supports conversions between different reference types and allows you to define how data types
that you create behave when converted to and from other types. We will look at both these topics later in
this chapter.

137

Operators and Casts

07 557599 Ch05.qxd 4/29/04 11:29 AM Page 137

Type Conversions
We often need to convert data from one type to another. Consider the following code:

byte value1 = 10;
byte value2 = 23;
byte total;
total = value1 + value2;
Console.WriteLine(total);

When we attempt to compile these lines, we get the error message:

Cannot implicitly convert type ‘int’ to ‘byte’

The problem here is that when we add two bytes together, the result will be returned as an int, not as
another byte. This is because a byte can only contain eight bits of data, so adding two bytes together
could very easily result in a value that can’t be stored in a single byte. If we do want to store this result
in a byte variable, then we’re going to have to convert it back to a byte. There are two ways this can
happen, either implicitly or explicitly.

Implicit conversions
Conversion between types can normally be achieved automatically (implicitly) only if we can guarantee
that the value is not changed in any way. This is why our previous code failed; by attempting a conver-
sion from an int to a byte, we were potentially losing three bytes of data. The compiler isn’t going to let
us do that unless we explicitly tell it that that’s what we want to do. If we store the result in a long
instead of a byte however, we’ll have no problems:

byte value1 = 10;
byte value2 = 23;

long total; // this will compile fine

total = value1 + value2;
Console.WriteLine(total);

This is because a long holds more bytes of data than an int, so there is no risk of data being lost. In
these circumstances, the compiler is happy to make the conversion for us, without us needing to ask for
it explicitly.

The following table shows the implicit type conversions that are supported in C#:

From To

sbyte short, int, long, float, double, decimal

byte short, ushort, int, uint, long, ulong, float, double, decimal

short int, long, float, double, decimal

ushort int, uint, long, ulong, float, double, decimal

138

Chapter 5

07 557599 Ch05.qxd 4/29/04 11:29 AM Page 138

From To

int long, float, double, decimal

uint long, ulong, float, double, decimal

long, ulong float, double, decimal

float double

char ushort, int, uint, long, ulong, float, double, decimal

As you would expect, we can only perform implicit conversions from a smaller integer type to a larger
one, not from larger to smaller. We can also convert between integers and floating-point values; how-
ever, the rules are slightly different here. Though we can convert between types of the same size, such as
int/uint to float and long/ulong to double, we can also convert from long/ulong back to float.
We might lose four bytes of data doing this, but this only means that the value of the float we receive
will be less precise than if we had used a double; this is regarded by the compiler as an acceptable
possible error because the magnitude of the value is not affected.

We can also assign an unsigned variable to a signed variable so long as the limits of value of the
unsigned type fit between the limits of the signed variable.

Explicit conversions
There are many conversions that cannot be implicitly made between types and the compiler will give an
error if any are attempted. These are some of the conversions that cannot be made implicitly:

❑ int to short—May lose data

❑ int to uint—May lose data

❑ uint to int—May lose data

❑ float to int—Will lose everything after the decimal point

❑ Any numeric type to char—Will lose data

❑ decimal to any numeric type—Since the decimal type is internally structured differently from
both integers and floating-point numbers

However, we can explicitly carry out such conversions using casts. When we cast one type to another, we
deliberately force the compiler to make the conversion. A cast looks like this:

long val = 30000;
int i = (int)val; // A valid cast. The maximum int is 2147483647

We indicate the type to which we’re casting by placing its name in parentheses before the value to be
converted. For programmers familiar with C, this is the typical syntax for casts. For those familiar with
the C++ special cast keywords such as static_cast, these do not exist in C# and you have to use the
older C-type syntax.

139

Operators and Casts

07 557599 Ch05.qxd 4/29/04 11:29 AM Page 139

Casting can be a dangerous operation to undertake. Even a simple cast from a long to an int can cause
problems if the value of the original long is greater than the maximum value of an int:

long val = 3000000000;
int i = (int)val; // An invalid cast. The maximum int is 2147483647

In this case, you will not get an error, but you also will not get the result you expect. If you run the code
above and output the value stored in i, this is what you get:

-1294967296

It is good practice to assume that an explicit cast will not give the results you expect. As we saw earlier,
C# provides a checked operator that we can use to test whether an operation causes an arithmetic over-
flow. We can use the checked operator to check that a cast is safe and to force the runtime to throw an
overflow exception if it isn’t:

long val = 3000000000;

int i = checked ((int)val);

Bearing in mind that all explicit casts are potentially unsafe, you should take care to include code in your
application to deal with possible failures of the casts. We will introduce structured exception handling
using the try and catch statements in Chapter 11.

Using casts, we can convert most primitive data types from one type to another, for example:

double price = 25.30;
int approximatePrice = (int)(price + 0.5);

This will give the price rounded to the nearest dollar. However, in this conversion, data is lost—namely
everything after the decimal point. Therefore, such a conversion should never be used if you want to go
on to do more calculations using this modified price value. However, it is useful if you want to output
the approximate value of a completed or partially completed calculation—if you do not want to bother
the user with lots of figures after the decimal point.

This example shows what happens if you convert an unsigned integer into a char:

ushort c = 43;
char symbol = (char)c;
Console.WriteLine(symbol);

The output is the character that has an ASCII number of 43, the + sign. You can try out any kind of con-
version you want between the numeric types (including char), and it will work, such as converting a
decimal into a char, or vice versa.

Converting between value types is not just restricted to isolated variables, as we have shown. We can
convert an array element of type double to a struct member variable of type int:

struct ItemDetails
{

public string Description;
public int ApproxPrice;

140

Chapter 5

07 557599 Ch05.qxd 4/29/04 11:29 AM Page 140

}

//...

double[] Prices = { 25.30, 26.20, 27.40, 30.00 };

ItemDetails id;
id.Description = “Whatever”;
id.ApproxPrice = (int)(Prices[0] + 0.5);

Using explicit casts and a bit of care and attention, you can convert any instance of a simple value type
to almost any other. However there are limitations on what we can do with explicit type conversions—as
far as value types are concerned, we can only convert to and from the numeric and char types and enum
types. We can’t directly cast Booleans to any other type or vice versa.

If we need to convert between numeric and string, there are methods provided in the .NET class library.
The Object class implements a ToString() method, which has been overridden in all the .NET prede-
fined types and which returns a string representation of the object:

int i = 10;
string s = i.ToString();

Similarly, if we need to parse a string to retrieve a numeric or Boolean value, we can use the Parse()
method supported by all the predefined value types:

string s = “100”;
int i = int.Parse(s);
Console.WriteLine(i + 50); // Add 50 to prove it is really an int

Note that Parse() will register an error by throwing an exception if it is unable to convert the string (for
example, if you try to convert the string Hello to an integer). We cover exceptions in Chapter 11.

Boxing and Unboxing
We noted in Chapter 2 that all types, both the simple predefined types such as int and char, and the
complex types such as classes and structs, derive from the object type. This means that we can treat
even literal values as though they were objects:

string s = 10.ToString();

However, we also saw that C# data types are divided into value types, which are allocated on the stack,
and reference types, which are allocated on the heap. How does this square with the ability to call meth-
ods on an int, if the int is nothing more than a four-byte value on the stack?

The way C# achieves this is through a bit of magic called boxing. Boxing and its counterpart, unboxing,
allow us to convert value types to reference types and then back to value types. This has been included
in the section on casting as this is essentially what we are doing—we are casting our value to the object
type. Boxing is the term used to describe the transformation of a value type to a reference type. Basically,
the runtime creates a temporary reference-type box for the object on the heap.

141

Operators and Casts

07 557599 Ch05.qxd 4/29/04 11:29 AM Page 141

This conversion can occur implicitly, as in the example above, but we can also perform it manually:

int i = 20;
object o = i;

Unboxing is the term used to describe the reverse process, where the value of a previously boxed value
type is cast back to a value type. We use the term cast here, as this has to be done explicitly. The syntax is
similar to explicit type conversions already described:

int i = 20;
object o = i; // Box the int
int j = (int)o; // Unbox it back into an int

We can only unbox a variable that has previously been boxed. If we executed the last line when o is not a
boxed int, we will get an exception thrown at runtime.

One word of warning. When unboxing, we have to be careful that the receiving value variable has enough
room to store all the bytes in the value being unboxed. C#’s ints, for example, are only 32 bits long, so
unboxing a long value (64 bits) into an int as shown below will result in an InvalidCastException:

long a = 333333423;
object b = (object)a;
int c = (int)b;

Comparing Objects for Equality
After discussing operators and briefly touching on the equality operator, it is worth considering for a
moment what equality means when dealing with instances of classes and structs. Understanding the
mechanics of object equality is essential for programming logical expressions and is important when
implementing operator overloads and casts, which is the topic of the rest of this chapter.

The mechanism of object equality are different depending on whether you are comparing reference
types (instances of classes), or value types (the primitive data types, instances of structs or enums).
We’ll look at the equality of reference and value types independently.

Comparing Reference Types for Equality
One aspect of System.Object that can look surprising at first sight is the fact that it defines three differ-
ent methods for comparing objects for equality: ReferenceEquals() and two version of Equals().
Add to this the comparison operator (==), and we actually have four ways of comparing for equality.
There are some subtle differences between the different methods, which we will now examine.

The ReferenceEquals() Method
ReferenceEquals()is a static method that tests whether two references refer to the same instance of
a class: specifically whether the two references contain the same address in memory. As a static
method, it is not possible to override, so the System.Object implementation is what you always have.

142

Chapter 5

07 557599 Ch05.qxd 4/29/04 11:29 AM Page 142

ReferenceEquals() will always return true if supplied with two references that refer to the same
object instance, and false otherwise. It does, however, consider null to be equal to null:

SomeClass x, y;
x = new SomeClass();
y = new SomeClass();
bool B1 = ReferenceEquals(null, null); // returns true
bool B2 = ReferenceEquals(null,x); // returns false
bool B3 = ReferenceEquals(x, y); // returns false because x and y

// point to different objects

The virtual Equals() Method
The System.Object implementation of the virtual version of Equals() also works by comparing
references. However, because this method is virtual, you can override it in your own classes in order to
compare objects by value. In particular, if you intend instances of your class to be used as keys in a dictio-
nary, then you will need to override this method to compare values. Otherwise, depending on how you
override Object.GetHashCode(), the dictionary class that contains your objects will either not work at
all, or will work very inefficiently. One point you should note when overriding Equals() is that your
override should never throw exceptions. Once again, this is because doing so could cause problems for
dictionary classes and possibly certain other .NET base classes that internally call this method.

The static Equals() Method
The static version of Equals() actually does the same thing as the virtual instance version. The differ-
ence is that the static version takes two parameters and compares them for equality. This method is able to
cope when either of the objects is null, and therefore, provides an extra safeguard against throwing excep-
tions if there is a risk that an object might be null. The static overload first checks whether the references
it has been passed are null. If they are both null, then it returns true (since null is considered to be
equal to null). If just one of them is null, then it returns false. If both references actually refer to some-
thing, then it calls the virtual instance version of Equals(). This means that when you override the
instance version of Equals(), the effect is as if you were overriding the static version as well.

Comparison Operator (==)
The comparison operator can be best seen as an intermediate option between strict value comparison
and strict reference comparison. In most cases, writing:

bool b = (x == y); // x, y object references

means that you are comparing references. However, it is accepted that there are some classes whose
meanings are more intuitive if they are treated as values. In those cases, it is better to override the com-
parison operator to perform a value comparison. We talk about overriding operators next, but the obvi-
ous example of this is the System.String class for which Microsoft has overridden this operator to
compare the contents of the strings rather than their references.

Comparing Value Types for Equality
When comparing value types for equality, the same principles hold as for reference types:
ReferenceEquals() is used to compare references, Equals() is intended for value comparisons, and

143

Operators and Casts

07 557599 Ch05.qxd 4/29/04 11:29 AM Page 143

the comparison operator is viewed as an intermediate case. However the big difference is that value
types need to be boxed in order to convert them to references so that methods can be executed on them.
In addition, Microsoft has already overloaded the instance Equals() method in the System.ValueType
class in order to test equality appropriate to value types. If you call sA.Equals(sB) where sA and sB
are instances of some struct, then the return value will be true or false according to whether sA and
sB contain the same values in all their fields. On the other hand, no overload of == is available by default
for your own structs. Writing (sA == sB) in any expression will result in a compilation error unless you
have provided an overload of == in your code for the struct in question.

Another point is that ReferenceEquals()always returns false when applied to value types, because
in order to call this method, the value types will need to be boxed into objects. Even if you write:

bool b = ReferenceEquals(v,v); // v is a variable of some value type

you will still get the answer of false because v will be boxed separately when converting each parame-
ter, which means you get different references. Calling ReferenceEquals() to compare value types
doesn’t really make much sense.

Although the default override of Equals() supplied by System.ValueType will almost certainly be
adequate for the vast majority of structs that you define, you might want to override it again for your
own structs in order to improve performance. Also, if a value type contains reference types as fields,
you might want to override Equals() to provide appropriate semantics for these fields, as the default
override of Equals() will simply compare their addresses.

Operator Overloading
In this section, we’re going to look at another type of member that you can define for a class or a struct:
the operator overload.

Operator overloading is something that will be familiar to C++ developers. However, since the concept
will be new to both Java and Visual Basic developers, we’ll explain it here. C++ developers will probably
prefer to skip ahead to the main example.

The point of operator overloading is that you don’t always just want to call methods or properties on
class instances. Often you need to do things like adding quantities together, multiplying them, or per-
forming logical operations such as comparing objects. Suppose for example you had defined a class that
represents a mathematical matrix. Now in the world of math, matrices can be added together and multi-
plied, just like numbers. So it’s quite plausible that you’d want to write code like this:

Matrix a, b, c;
// assume a, b and c have been initialized
Matrix d = c * (a + b);

By overloading the operators, you can tell the compiler what + and * do when used in conjunction with
a Matrix, allowing you to write code like that above. If we were coding in a language that didn’t sup-
port operator overloading, we would have to define methods to perform those operations. The result
would certainly be less intuitive, and would probably look something like this:

Matrix d = c.Multiply(a.Add(b));

144

Chapter 5

07 557599 Ch05.qxd 4/29/04 11:29 AM Page 144

With what you’ve learned so far, operators like + and * have been strictly for use with the predefined
data types, and for good reason: the compiler knows what all the common operators mean for those data
types. For example, it knows how to add two longs or how to divide one double by another double,
and can generate the appropriate intermediate language code. When we define our own classes or
structs, however, we have to tell the compiler everything: what methods are available to call, what fields
to store with each instance, and so on. Similarly, if we want to use operators with our own types, we’ll
have to tell the compiler what the relevant operators mean in the context of that class. The way we do
that is by defining overloads for the operators.

The other thing we should stress is that overloading isn’t just concerned with arithmetic operators. We
also need to consider the comparison operators, ==, <, >, !=, >=, and <=. Take the statement if (a==b).
For classes, this statement will, by default, compare the references a and b—it tests to see if the refer-
ences point to the same location in memory, rather than checking to see if the instances actually contain
the same data. For the string class, this behavior is overridden so that comparing strings really does
compare the contents of each string. You might want to do the same for your own classes. For structs,
the == operator doesn’t do anything at all by default. Trying to compare two structs to see if they are
equal produces a compilation error unless you explicitly overload == to tell the compiler how to
perform the comparison.

There are a large number of situations in which being able to overload operators will allow us to gener-
ate more readable and intuitive code, including:

❑ Almost any mathematical object such as coordinates, vectors, matrices, tensors, functions, and
so on. If you are writing a program that does some mathematical or physical modeling, you will
almost certainly use classes representing these objects.

❑ Graphics programs that use mathematical or coordinate-related objects when calculating posi-
tions on screen.

❑ A class that represents an amount of money (for example, in a financial program).

❑ A word processing or text analysis program that uses classes representing sentences, clauses
and so on; you might want to use operators to combine sentences (a more sophisticated version
of concatenation for strings).

However, there are also many types for which operator overloading would not be relevant. Using opera-
tor overloading inappropriately will make code that uses your types far more difficult to understand.
For example, multiplying two DateTime objects just doesn’t make any sense conceptually.

How Operators Work
In order to understand how to overload operators, it’s quite useful to think about what happens when
the compiler encounters an operator. Using the addition operator (+) as an example, suppose the com-
piler processes the following lines of code:

int a = 3;
uint b = 2;
double d = 4.0;
long l = a + b;
double x = d + a;

145

Operators and Casts

07 557599 Ch05.qxd 4/29/04 11:29 AM Page 145

What happens when the compiler encounters the following line?

long l = a + b;

The compiler identifies that it needs to add two integers and assign the result to a long. However, the
expression a + b is really just an intuitive and convenient syntax for calling a method that adds two
numbers together .The method takes two parameters, a and b, and returns their sum. Therefore, the
compiler does the same thing as it does for any method call—it looks for the best matching overload of
the addition operator based on the parameter types. In this case, one that takes two integers. As with
normal overloaded methods, the desired return type does not influence the compiler’s choice as to
which version of a method it calls. As it happens, the overload called in the example takes two int
parameters and returns an int; this return value is subsequently converted to a long.

The next line causes the compiler to use a different overload of the addition operator:

double x = d + a;

In this instance, the parameters are a double and an int, but as it happens there isn’t an overload of
the addition operator that takes this combination of parameters. Instead, the compiler identifies the best
matching overload of the addition operator as being the version that takes two doubles as its parame-
ters, and implicitly casts the int to a double. Adding together two doubles requires a different process
than adding two integers. Floating-point numbers are stored as a mantissa and an exponent. Adding
them involves bit-shifting the mantissa of one of the doubles so that the two exponents have the same
value, adding the mantissas, then shifting the mantissa of the result and adjusting its exponent to
maintain the highest possible accuracy in the answer.

Now, we’re in a position to see what happens if the compiler finds something like this:

Vector vect1, vect2, vect3;
// initialise vect1 and vect2
vect3 = vect1 + vect2;
vect1 = vect1*2;

Here Vector is the struct that we shall define shortly. The compiler will see that it needs to add two
Vectors, vect1 and vect2 together. It’ll look for an overload of the addition operator, which takes two
Vectors as its parameters.

If the compiler finds an appropriate overload, it’ll call up the implementation of that operator. If it can’t
find one, it’ll look to see if there is any other overload for + that it can use as a best match—perhaps some-
thing that has two parameters of other data types that can be implicitly converted to Vector instances. If
the compiler can’t find a suitable overload, it’ll raise a compilation error, just as it would if it couldn’t find
an appropriate overload for any other method call.

Operator Overloading Example: The Vector Struct
In this section we’re going to demonstrate operator overloading by developing a struct named Vector
that represents a 3-dimensional mathematical vector. Don’t worry if mathematics is not your strong
point—we’ll keep the vector example very simple. As far as we are concerned, a 3D-vector is just a set of
three numbers (doubles) that tell you how far something is moving. The variables representing the num-
bers are called x, y, and z: x tells you how far something moves East, y tells you how far it moves
North, and z tells you how far it moves upwards (in height). Combine the three numbers together and

146

Chapter 5

07 557599 Ch05.qxd 4/29/04 11:29 AM Page 146

you get the total movement. For example, if x=3.0, y=3.0, and z=1.0, (which we’d normally write as
(3.0, 3.0, 1.0) then you’re moving 3 units East, 3 units North, and rising upwards by 1 unit.

You can add or multiply vectors by other vectors or by numbers. Incidentally, in this context we’ll use the
term scalar, which is math-speak for a simple number—in C# terms that’s just a double. The significance of
addition should be clear. If you move first by the vector (3.0, 3.0, 1.0) then you move by the vector
(2.0, -4.0, -4.0), the total amount you have moved can be worked out by adding the two vectors.
Adding vectors means adding each component individually, so you get (5.0, -1.0, -3.0). In this con-
text, mathematicians write c=a+b, where a and b are the vectors and c is the resulting vector. We want to
be able to use our Vector struct the same way.

The fact that our example will be developed as a struct rather than a class is not significant. Operator
overloading works in the same way for both structs and classes.

The following is the definition for Vector—containing the member fields, constructors, and a ToString()
override so we can easily view the contents of a Vector, and finally that operator overload:

namespace Wrox.ProCSharp.OOCSharp
{

struct Vector
{

public double x, y, z;

public Vector(double x, double y, double z)
{

this.x = x;
this.y = y;
this.z = z;

}

public Vector(Vector rhs)
{

x = rhs.x;
y = rhs.y;
z = rhs.z;

}

public override string ToString()
{

return “(“ + x + “ , “ + y + “ , “ + z + “)”;
}

We’ve supplied two constructors that require the initial value of the vector to be specified, either by
passing in the values of each component or by supplying another Vector whose value can be copied.
Constructors like our second one that takes single Vector argument are often termed copy constructors,
since they effectively allow you to initialize a class or struct instance by copying another instance. Note
that in order to keep things simple we’ve left the fields as public. We could have made them private
and written corresponding properties to access them, but it wouldn’t have made any difference to the
example, other than to make the code longer.

Here is the interesting part of the Vector struct—the operator overload that provides support for the
addition operator.

147

Operators and Casts

07 557599 Ch05.qxd 4/29/04 11:29 AM Page 147

public static Vector operator + (Vector lhs, Vector rhs)
{

Vector result = new Vector(lhs);
result.x += rhs.x;
result.y += rhs.y;
result.z += rhs.z;
return result;

}
}

}

The operator overload is declared in much the same way as a method, except the operator keyword
tells the compiler it’s actually an operator overload we’re defining. The operator keyword is followed
by the actual symbol for the relevant operator, in this case the addition operator (+). The return type is
whatever type you get when you use this operator. Adding two vectors results in a vector, so the return
type is Vector. For this particular override of the addition operator, the return type is the same as the
containing class, but that’s not necessarily the case as we’ll see later in this example. The two parameters
are the things you’re operating on. For binary operators (those that take two parameters), like the addi-
tion and subtraction operators, the first parameter is the value on the left of the operator, and the second
parameter is the value on the right.

C# requires that all operator overloads are declared as public and static, which means that they are
associated with their class or struct, not with a particular instance. Because of this, the body of the opera-
tor overload has no access to non-static class members and has no access to the this identifier. This is
fine because the parameters provide all the input data the operator needs to know to perform its task.

Now that we’ve dealt with the syntax for the addition operator declaration, we can look at what hap-
pens inside the operator:

{
Vector result = new Vector(lhs);
result.x += rhs.x;
result.y += rhs.y;
result.z += rhs.z;
return result;

}

This part of the code is exactly the same as if we were declaring a method, and you should easily be able
to convince yourself that this really will return a vector containing the sum of lhs and rhs as defined
above. We simply add the members x, y, and z together individually.

Now all we need to do is write some simple code to test our Vector struct. Here it is:

static void Main()
{

Vector vect1, vect2, vect3;
vect1 = new Vector(3.0, 3.0, 1.0);
vect2 = new Vector(2.0, -4.0, -4.0);
vect3 = vect1 + vect2;
Console.WriteLine(“vect1 = “ + vect1.ToString());
Console.WriteLine(“vect2 = “ + vect2.ToString());
Console.WriteLine(“vect3 = “ + vect3.ToString());

}

148

Chapter 5

07 557599 Ch05.qxd 4/29/04 11:29 AM Page 148

Saving this code as Vectors.cs, and compiling and running it returns this result:

Vectors

vect1 = (3 , 3 , 1)
vect2 = (2 , -4 , -4)
vect3 = (5 , -1 , -3)

Adding more overloads
In addition to adding vectors, you can also multiply and subtract them, and compare their values. In this
section we’ll develop the Vector example further by adding a few more operator overloads. We won’t
develop the complete set that you’d probably need for a real and fully functional Vector type, but
enough to demonstrate some other aspects of operator overloading. First, we’ll overload the multiplica-
tion operator to support multiplying vectors by a scalar and multiplying vectors by another vector.

Multiplying a vector by a scalar simply means multiplying each component individually by the scalar: for
example, 2 * (1.0, 2.5, 2.0) returns (2.0, 5.0, 4.0). The relevant operator overload looks like this:

public static Vector operator * (double lhs, Vector rhs)
{

return new Vector(lhs * rhs.x, lhs * rhs.y, lhs * rhs.z);
}

This by itself, however, is not sufficient. If a and b are declared as type Vector, it will allow us to write
code like this:

b = 2 * a;

The compiler will implicitly convert the integer 2 to a double in order to match the operator overload
signature. However, code like the following will not compile:

b = a * 2;

The thing is that the compiler treats operator overloads exactly like method overloads. It examines all
the available overloads of a given operator to find the best match. The above statement requires the first
parameter to be a Vector and the second parameter to be an integer, or something that an integer can be
implicitly converted to. We have not provided such an overload. The compiler can’t start swapping the
order of parameters so the fact that we’ve provided an overload that takes a double followed by a
Vector is not sufficient. We need to explicitly define an overload that takes a Vector followed by a
double as well. There are two possible ways of implementing this. The first way involves breaking
down the vector multiplication operation in the same way that we’ve done for all operators so far:

public static Vector operator * (Vector lhs, double rhs)
{

return new Vector(rhs * lhs.x, rhs * lhs.y, rhs *lhs.z);
}

Given that we’ve already written code to implement essentially the same operation, however, you might
prefer to reuse that code by writing:

149

Operators and Casts

07 557599 Ch05.qxd 4/29/04 11:29 AM Page 149

public static Vector operator * (Vector lhs, double rhs)
{

return rhs * lhs;
}

This code works by effectively telling the compiler that if it sees a multiplication of a Vector by a dou-
ble, it can simply reverse the parameters and call the other operator overload. Which you prefer is to
some extent a matter of preference. In the sample code for this chapter we’ve gone for the second ver-
sion, because it looks neater and because we want to illustrate the idea in action. This version also makes
for more maintainable code, since it saves duplicating the code to perform the multiplication in two sep-
arate overloads.

Next we need to overload the multiplication operator to support vector multiplication. In mathematics
there are a couple of ways of multiplying vectors together, but the one we are interested in here is
known as the dot product or inner product, and it actually gives a scalar as a result. That’s the reason we’re
introducing that example, so that we can demonstrate that arithmetic operators don’t have to return the
same type as the class in which they are defined.

In mathematical terms, if you have two vectors (x, y, z) and (X, Y, Z), then the inner product is
defined to be the value of x*X + y*Y + z*Z. That might look like a strange way to multiply two things
together, but it’s actually very useful, since it can be used to calculate various other quantities. Certainly,
if you ever end up writing code that displays complex 3D graphics, for example using Direct3D or
DirectDraw, you’ll almost certainly find your code needs to work out inner products of vectors quite
often as an intermediate step in calculating where to place objects on the screen. What concerns us here
is that we want people to be able to write double X = a*b where a and b are Vector objects and what
they intend is for the dot product to be calculated. The relevant overload looks like this:

public static double operator * (Vector lhs, Vector rhs)
{

return lhs.x * rhs.x + lhs.y * rhs.y + lhs.z * rhs.z;
}

Now, we’ve defined the arithmetic operators, we can check that they work using a simple test method:

static void Main()
{

// stuff to demonstrate arithmetic operations
Vector vect1, vect2, vect3;
vect1 = new Vector(1.0, 1.5, 2.0);
vect2 = new Vector(0.0, 0.0, -10.0);
vect3 = vect1 + vect2;
Console.WriteLine(“vect1 = “ + vect1);
Console.WriteLine(“vect2 = “ + vect2);
Console.WriteLine(“vect3 = vect1 + vect2 = “ + vect3);
Console.WriteLine(“2*vect3 = “ + 2*vect3);
vect3 += vect2;
Console.WriteLine(“vect3+=vect2 gives “ + vect3);
vect3 = vect1*2;
Console.WriteLine(“Setting vect3=vect1*2 gives “ + vect3);
double dot = vect1*vect3;
Console.WriteLine(“vect1*vect3 = “ + dot);

}

150

Chapter 5

07 557599 Ch05.qxd 4/29/04 11:29 AM Page 150

Running this code (Vectors2.cs) produces this result:

Vectors2

vect1 = (1 , 1.5 , 2)
vect2 = (0 , 0 , -10)
vect3 = vect1 + vect2 = (1 , 1.5 , -8)
2*vect3 = (2 , 3 , -16)
vect3+=vect2 gives (1 , 1.5 , -18)
Setting vect3=vect1*2 gives (2 , 3 , 4)
vect1*vect3 = 14.5

This shows that the operator overloads have given us the correct results, but if you look at the test code
closely, you might be surprised to notice that we’ve actually used an operator that we hadn’t over-
loaded—the addition assignment operator “+=”:

vect3 += vect2;
Console.WriteLine(“vect3 += vect2 gives “ + vect3);

Although += normally counts as a single operator, it can be broken down into two steps: the addition and
the assignment. Unlike C++, C# won’t actually allow you to overload the = operator, but if you overload +,
the compiler will automatically use your overload of + to work out how to carry out a += operation. The
same principle works for the all of the assignment operators like -=, *=, /=, &=, and so on.

Overloading the comparison operators
There are six comparison operators in C#, and they come in three pairs:

❑ == and !=

❑ > and <

❑ >= and <=

C# requires that you overload these operators in pairs. That is, if you overload “==”, then you must
overload “!=” too, otherwise you get a compiler error. In addition, the comparison operators must
return a bool. This is the fundamental difference between these operators and the arithmetic operators.
The result of adding or subtracting two quantities, for example, can theoretically be any type depending
on the quantities. We’ve already seen that multiplying two Vector objects can be implemented to give a
scalar. Another example involves the .NET base class System.DateTime. It’s possible to subtract two
DateTime instances, but the result is not a DateTime, instead it is a System.TimeSpan instance. By
contrast, it doesn’t really make much sense for a comparison to return anything other than a bool.

If you overload == and !=, you must also override the Equals() and GetHashCode() methods
inherited from System.Object, otherwise you’ll get a compiler warning. The reasoning is that the
Equals() method should implement the same kind of equality logic as the == operator.

Apart from these differences, overloading the comparison operators follows the same principles as over-
loading the arithmetic operators. However, comparing quantities isn’t always as simple as you’d think.
For example, if you simply compare two object references, you will compare the memory address where
the objects are stored. This is rarely the desired behavior of a comparison operator, and so you must code

151

Operators and Casts

07 557599 Ch05.qxd 4/29/04 11:29 AM Page 151

the operator to compare the value of the objects and return the appropriate Boolean response. We’re
going to override the == and != operators for our Vector struct. Here’s our implementation of ==:

public static bool operator == (Vector lhs, Vector rhs)
{

if (lhs.x == rhs.x && lhs.y == rhs.y && lhs.z == rhs.z)
return true;

else
return false;

}

This approach simply compares two Vector objects for equality based on the values of their compo-
nents. For most structs, that is probably what you will want to do, though in some cases you may need
to think carefully about what you mean by equality. For example, if there are embedded classes, should
you simply compare whether the references point to the same object (shallow comparison) or whether the
values of the objects are the same (deep comparison)?

Don’t be tempted to overload the comparison operator by calling the instance version of the Equals()
method inherited from System.Object. If you do and then attempt is made to evaluate (objA ==
objB) when objA happens to be null, you will get an exception as the .NET runtime tries to evaluate
null.Equals(objB). Working the other way round (overriding Equals() to call the comparison
operator) should be safe.

We also need to override the != operator. The simple way to do it is like this:

public static bool operator != (Vector lhs, Vector rhs)
{
return ! (lhs == rhs);

}

As usual, we’ll quickly check that our override works with some test code. This time we’ll define three
Vector objects and compare them:

static void Main()
{

Vector vect1, vect2, vect3;
vect1 = new Vector(3.0, 3.0, -10.0);
vect2 = new Vector(3.0, 3.0, -10.0);
vect3 = new Vector(2.0, 3.0, 6.0);
Console.WriteLine(“vect1==vect2 returns “ + (vect1==vect2));
Console.WriteLine(“vect1==vect3 returns “ + (vect1==vect3));
Console.WriteLine(“vect2==vect3 returns “ + (vect2==vect3));
Console.WriteLine();
Console.WriteLine(“vect1!=vect2 returns “ + (vect1!=vect2));
Console.WriteLine(“vect1!=vect3 returns “ + (vect1!=vect3));
Console.WriteLine(“vect2!=vect3 returns “ + (vect2!=vect3));

}

Compiling this code (the Vectors3.cs sample in the code download), generates this compiler warning
because we haven’t overridden Equals() for our Vector. For our purposes here, that doesn’t matter
and we will ignore it.

152

Chapter 5

07 557599 Ch05.qxd 4/29/04 11:29 AM Page 152

csc Vectors3.cs

Microsoft (R) Visual C# .NET Compiler version 7.00.9466
for Microsoft (R) .NET Framework version 1.0.3705
Copyright (C) Microsoft Corporation 2001. All rights reserved.

Vectors3.cs(5,11): warning CS0660: ‘Wrox.ProCSharp.OOCSharp.Vector’ defines
operator == or operator != but does not override Object.Equals(object o)

Vectors3.cs(5,11): warning CS0661: ‘Wrox.ProCSharp.OOCSharp.Vector’ defines
operator == or operator != but does not override Object.GetHashCode()

Running the example produces these results at the command line:

Vectors3

vect1==vect2 returns True
vect1==vect3 returns False
vect2==vect3 returns False

vect1!=vect2 returns False
vect1!=vect3 returns True
vect2!=vect3 returns True

Which Operators Can You Overload?
It is not possible to overload all of the available operators. The operators that you can overload are:

Category Operators Restrictions

Arithmetic binary +, *, /, -, % None.

Arithmetic unary +, -, ++, — None.

Bitwise binary &, |, ^, <<, >> None.

Bitwise unary !, ~ The true and false operators
true, false must be overloaded as a pair.

Comparison ==, != They must be overloaded in pairs.
>=, <=
>, <,

Assignment +=, -=, *=, /=, >>=, You cannot explicitly overload these operators; they
<<=, %=, &=, |=, ^= are overridden implicitly when you override the

individual operators such as +, -, %, and so on.

Index [] You cannot overload the index operator directly. The
indexer member type, discussed in Chapter 2, allows
you to support the index operator on your classes
and structs.

Cast () You cannot overload the cast operator directly. User-
defined casts (discussed in the second part of this
chapter) allow you to define custom cast behavior.

153

Operators and Casts

07 557599 Ch05.qxd 4/29/04 11:29 AM Page 153

User-Defined Casts
Earlier in this chapter, we examined how you can convert values between predefined data types. We saw
that this is done through a process of casting. We also saw that C# allows two different types of casts:
implicit and explicit casts.

For an explicit cast, you explicitly mark the cast in your code by writing the destination data type inside
parentheses:

int I = 3;
long l = I; // implicit
short s = (short)I; // explicit

For the predefined data types, explicit casts are required where there is a risk that the cast might fail or
some data might be lost, examples include:

❑ When converting from an int to a short, because the short might not be large enough to hold
the value of the int.

❑ When converting from signed to unsigned data types will return incorrect results if the signed
variable holds a negative value,

❑ When converting from floating-point to integer data types, the fractional part of the number
will be lost.

The idea is that by making the cast explicit in your code, C# forces you to affirm that you understand
there is a risk of data loss, and therefore presumably you have written your code to take this into
account.

Since C# allows you to define your own data types (structs and classes), it follows that you will need the
facility to support casts to and from your data types. The mechanism is that you can define a cast as a
member operator of one of the relevant classes. Your cast operator must be marked as either implicit
or explicit to indicate how you are intending it to be used. The expectation is that you follow the same
guidelines as for the predefined casts: if you know the cast is always safe whatever the value held by the
source variable, then you define it as implicit. If on the other hand you know there is a risk of some-
thing going wrong for certain values—perhaps some loss of data or an exception being thrown—then
you should define the cast as explicit.

The syntax for defining a cast is similar to that for overloading operators discussed in the first half of
this chapter. This is not a coincidence, since a cast is regarded as an operator whose effect is to convert
from the source type to the destination type. To illustrate the syntax, the following is taken from an
example struct named Currency, which we will introduce later in this section:

public static implicit operator float (Currency value)
{

// processing
}

You should define any custom casts you write as explicit if there are any source data
values for which the cast will fail, or if there is any risk of an exception being thrown.

154

Chapter 5

07 557599 Ch05.qxd 4/29/04 11:29 AM Page 154

The return type of the operator defines the target type of the cast operation, and the single parameter is
the source object for the conversion. The cast defined here allows us to implicitly convert the value of a
Currency into a float. Note that if a conversion has been declared as implicit, then the compiler will
permit its use either implicitly or explicitly. If it had been declared as explicit, the compiler will only
permit it to be used explicitly. In common with other operator overloads, casts must be declared as both
public and static.

C++ developers will notice that this is different from C++, in which casts are instance members of
classes.

Implementing User-Defined Casts
In this section, we will illustrate the use of implicit and explicit user-defined casts in an example called
SimpleCurrency (which, as usual, is found in the code download). In this example, we will define a
struct, Currency, that holds a positive USD ($) monetary value. C# provides the decimal type for this
purpose, but it is possible you might still want to write your own struct or class to represent monetary
values if you want to perform sophisticated financial processing, and therefore, want to implement spe-
cific methods on such a class.

The syntax for casting is the same for structs and classes. Our example happens to be for a struct, but
would work just as well if we declared Currency as a class.

Initially, the definition of the Currency struct is as follows:

struct Currency
{

public uint Dollars;
public ushort Cents;

public Currency(uint dollars, ushort cents)
{

this.Dollars = dollars;
this.Cents = cents;

}

public override string ToString()
{

return string.Format(“${0}.{1,-2:00}”, Dollars,Cents);
}

The use of unsigned data types for the Dollar and Cents fields ensures that a Currency instance
can only hold positive values. We are restricting it this way so that we can illustrate some points about
explicit casts later on. You might want to use a class like this to hold, for example, salary information for
employees of a company (people’s salaries tend not to be negative!). In order to keep the class simple,
we are making our fields public, but usually, you would make them private and define corresponding
properties for the dollars and cents.

Let’s start off by assuming that we want to be able to convert Currency instances to float values,
where the integer part of the float represents the dollars. In other words we would like to be able to
write code like this:

155

Operators and Casts

07 557599 Ch05.qxd 4/29/04 11:29 AM Page 155

Currency balance = new Currency(10,50);
float f = balance; // We want f to be set to 10.5

To be able to do this, we need to define a cast. Hence we add the following to our Currency definition:

public static implicit operator float (Currency value)
{

return value.Dollars + (value.Cents/100.0f);
}

This cast is implicit. This is a sensible choice in this case, because, as should be clear from the definition
of Currency, any value that can be stored in the currency can also be stored in a float. There’s no way
that anything should ever go wrong in this cast.

There is a slight cheat here—in fact, when converting a uint to a float, there can be a loss in precision, but
Microsoft has deemed this error sufficiently marginal to count the uint-to-float cast as implicit anyway.

However, if we have a float that we would like to be converted to a Currency, the conversion is not
guaranteed to work; a float can store negative values, which Currency instances can’t; and a float
can store numbers of a far higher magnitude than can be stored in the (uint) Dollar field of Currency.
So if a float contains an inappropriate value, converting it to a Currency could give unpredictable
results. As a result of this risk, the conversion from float to Currency should be defined as explicit.
Here is our first attempt, which we will say now won’t give quite the correct results, but it is instructive
to examine why:

public static explicit operator Currency (float value)
{

uint dollars = (uint)value;
ushort cents = (ushort)((value-dollars)*100);
return new Currency(dollars, cents);

}

The following code will now successfully compile:

float amount = 45.63f;
Currency amount2 = (Currency)amount;

However, the following code, if we tried it, would generate a compilation error, because it attempts to
use an explicit cast implicitly:

float amount = 45.63f;
Currency amount2 = amount; // wrong

By making the cast explicit, you warn the developer to be careful because data loss might occur.
However, as we will see soon, this isn’t how we want our Currency struct to behave. We will try writing
a test harness and running the sample. Here is the Main() method, which instantiates a Currency struct
and attempts a few conversions. At the start of this code, we write out the value of balance in two differ-
ent ways (because we will need to use this to illustrate something later on in the example):

static void Main()
{

try
{

156

Chapter 5

07 557599 Ch05.qxd 4/29/04 11:29 AM Page 156

Currency balance = new Currency(50,35);
Console.WriteLine(balance);
Console.WriteLine(“balance is “ + balance);
Console.WriteLine(“balance is (using ToString()) “ +

balance.ToString());
float balance2= balance;
Console.WriteLine(“After converting to float, = “ + balance2);
balance = (Currency) balance2;
Console.WriteLine(“After converting back to Currency, = “ + balance);

Console.WriteLine(“Now attempt to convert out of range value of “ +
“-$100.00 to a Currency:”);

checked
{

balance = (Currency) (-50.5);
Console.WriteLine(“Result is “ + balance.ToString());

}
}
catch(Exception e)
{

Console.WriteLine(“Exception occurred: “ + e.Message);
}

}

Notice that we have placed the entire code in a try block to catch any exceptions that occur during our
casts. Also, we have placed the lines that test converting an out-of-range value to Currency in a
checked block in an attempt to trap negative values. Running this code gives this output:

SimpleCurrency

50.35
Balance is $50.35
Balance is (using ToString()) $50.35
After converting to float, = 50.35
After converting back to Currency, = $50.34
Now attempt to convert out of range value of -$100.00 to a Currency:
Result is $4294967246.60486

This output shows that the code didn’t quite work as we expected. First, converting back from float to
Currency gave a wrong result of $50.34 instead of $50.35. Second, no exception was generated when
we tried to convert an obviously out-of-range value.

The first problem is caused by rounding errors. If a cast is used to convert from a float to a uint, the
computer will truncate the number rather than rounding it. The computer stores numbers in binary rather
than decimal, and the fraction 0.35 cannot be exactly represented as a binary fraction (just like 1/3 can-
not be represented exactly as a decimal fraction; it comes out as 0.3333 recurring). So, the computer ends
up storing a value very slightly lower than 0.35, and which can be represented exactly in binary format.
Multiply by 100 and you get a number fractionally less than 35, which gets truncated to 34 cents. Clearly
in our situation, such errors caused by truncation are serious, and the way to avoid them is to ensure
that some intelligent rounding is performed in numerical conversions instead. Luckily, Microsoft has
written a class that will do this, System.Convert. System.Convert contains a large number of static
methods to perform various numerical conversions, and the one that we want is Convert.ToUInt16().
Note that the extra care taken by the System.Convert methods does come at a performance cost, so
you should only use them when you need them.

157

Operators and Casts

07 557599 Ch05.qxd 4/29/04 11:29 AM Page 157

Now let’s examine why the expected overflow exception didn’t get thrown. The problem here is this: the
place where the overflow really occurs isn’t actually in the Main() routine at all—it is inside the code for
the cast operator, which is called from the Main() method. And we didn’t mark that code as checked.

The solution here is to ensure that the cast itself is computed in a checked context too. With both of
these changes, the revised code for the conversion looks like this:

public static explicit operator Currency (float value)
{

checked
{

uint dollars = (uint)value;
ushort cents = Convert.ToUInt16((value-dollars)*100);
return new Currency(dollars, cents);

}
}

Note that we use Convert.ToUInt16() to calculate the cents, as described above, but we do not use it
for calculating the dollar part of the amount. System.Convert is not needed when working out the dol-
lar amount because truncating the float value is what we want there.

It is worth noting that the System.Convert methods also carry out their own overflow checking.
Hence, for the particular case we are considering, there is no need to place the call to
Convert.ToUInt16() inside the checked context. The checked context is still required, however, for
the explicit casting of value to dollars.

We won’t show a new set of results with this new checked cast just yet, because we have some more
modifications to make to the SimpleCurrency example later in this section.

If you are defining a cast that will be used very often, and for which performance is at an absolute pre-
mium, you may prefer not to do any error checking. That’s also a legitimate solution, provided the
behavior of your cast and the lack of error checking are very clearly documented.

Casts between classes
Our Currency example involves only classes that convert to or from float—one of the predefined data
types. However, it is not necessary to involve any of the simple data types. It is perfectly legitimate to
define casts to convert between instances of different structs or classes that you have defined. There are a
couple of restrictions to be aware of, however. These are:

❑ You cannot define a cast if one of the classes is derived from the other (these types of cast
already exist, as we will see).

❑ The cast must be defined inside the definition of either the source or destination data type.

To illustrate these requirements, suppose you have the class hierarchy shown in Figure 5-1.

158

Chapter 5

07 557599 Ch05.qxd 4/29/04 11:29 AM Page 158

Figure 5-1

In other words, classes C and D are indirectly derived from A. In this case, the only legitimate user-
defined cast between A, B, C, or D would be to convert between classes C and D, because these classes are
not derived from each other. The code to do so might look like this (assuming you want the casts to be
explicit, which is usually the case when defining casts between user-defined casts):

public static explicit operator D(C value)
{

// and so on
}
public static explicit operator C(D value)
{

// and so on
}

For each of these casts, you have a choice of where you place the definitions — inside the class definition
of C, or inside the class definition of D, but not anywhere else. C# requires you to put the definition of a
cast inside either the source class (or struct) or the destination class (or struct). A side effect of this is that
you can’t define a cast between two classes unless you have access to edit the source code for at least one
of them. This is sensible because it prevents third parties from introducing casts into your classes.

Once you have defined a cast inside one of the classes, you also can’t define the same cast inside the
other class. Obviously, there should only be one cast for each conversion—otherwise the compiler
wouldn’t know which one to pick.

Casts between base and derived classes
To see how these casts work, let’s start by considering the case where the source and destination are both
reference types, and consider two classes, MyBase and MyDerived, where MyDerived is derived directly
or indirectly from MyBase.

Firstly from MyDerived to MyBase; it is always possible (assuming the constructors are available) to write:

MyDerived derivedObject = new MyDerived();
MyBase baseCopy = derivedObject;

System Object

A

B

C D

159

Operators and Casts

07 557599 Ch05.qxd 4/29/04 11:29 AM Page 159

In this case, we are casting implicitly from MyDerived to MyBase. This works because of the rule that
any reference to a type MyBase is allowed to refer to objects of class MyBase or to objects of anything
derived from MyBase. In OO programming, instances of a derived class are, in a real sense, instances of
the base class, plus something extra. All the functions and fields defined on the base class are defined in
the derived class too.

Alternatively, we can also write:

MyBase derivedObject = new MyDerived();
MyBase baseObject = new MyBase();
MyDerived derivedCopy1 = (MyDerived) derivedObject; // OK
MyDerived derivedCopy2 = (MyDerived) baseObject; // Throws exception

This code is perfectly legal C# (in a syntactic sense, that is), and illustrates casting from a base class to
a derived class. However, the final statement will throw an exception when executed. What happens
when we perform the cast is that the object being referred to is examined. Since a base class reference can
in principle refer to a derived class instance, it is possible that this object is actually an instance of the
derived class that we are attempting to cast to. If that’s the case, then the cast succeeds, and the derived
reference is set to refer to the object. If, however, the object in question is not an instance of the derived
class (or of any class derived from it) then the cast fails and an exception is thrown.

Notice the casts that the compiler has supplied, which convert between base and derived class do not
actually do any data conversion on the object in question. All they do is set the new reference to refer to
the object if it is legal for that conversion to occur. To that extent, these casts are very different in nature
from the ones that you will normally define yourself. For example, in our SimpleCurrency sample ear-
lier, we defined casts that convert between a Currency struct and a float. In the float-to-Currency
cast, we actually instantiated a new Currency struct and initialized it with the required values. The pre-
defined casts between base and derived classes do not do this. If you actually want to convert a MyBase
instance into a real MyDerived object with values based on the contents of the MyBase instance, you
would not be able to use the cast syntax to do this. The most sensible option is usually to define a
derived class constructor that takes a base class instance as a parameter, and have this constructor per-
form the relevant initializations:

class DerivedClass : BaseClass
{

public DerivedClass(BaseClass rhs)
{

// initialize object from the Base instance
}
// etc.

Boxing and unboxing casts
The previous discussion focused on casting between base and derived classes where both were reference
types. Similar principles apply when casting value types, although in this case it is not possible to sim-
ply copy references —some copying of data must take place.

It is not, of course, possible to derive from structs or primitive value types. So, casting between base and
derived structs invariably means casting between a primitive type or a struct and System.Object (theo-
retically, it is possible to cast between a struct and System.ValueType, though it is hard to see why you
would want to do this).

160

Chapter 5

07 557599 Ch05.qxd 4/29/04 11:29 AM Page 160

The cast from any struct (or primitive type) to object is always available as an implicit cast—since it is
a cast from derived to base type—and is just the familiar process of boxing that we have encountered
briefly in Chapter 2. For example, with our Currency struct:

Currency balance = new Currency(40,0);
object baseCopy = balance;

When this implicit cast is executed, the contents of balance are copied onto the heap into a boxed
object, and the baseCopy object reference set to this object. What actually happens behind the scenes is
this: when we originally defined the Currency struct, the .NET Framework implicitly supplied another
(hidden) class, a boxed Currency class, which contains all the same fields as the Currency struct, but is
a reference type, stored on the heap. This happens whenever we define a value type—whether it is a
struct or enum, and similar boxed reference types exist corresponding to all the primitive value types
of int, double, uint, and so on. It is not possible, nor necessary, to gain direct programmatic access to
any of these boxed classes in source code, but they are the objects that are working behind the scenes
whenever a value type is cast to object. When we implicitly cast Currency to object, a boxed
Currency instance gets instantiated, and initialized with all the data from the Currency struct. In the
above code, it is this boxed Currency instance that baseCopy will refer to. By these means, it is possible
for casting from derived to base type to work syntactically in the same way for value types as for refer-
ence types.

Casting the other way is known as unboxing. Just as for casting between a base reference type and a
derived reference type, it is an explicit cast, since an exception will be thrown if the object being cast is
not of the correct type:

object derivedObject = new Currency(40,0);
object baseObject = new object();
Currency derivedCopy1 = (Currency)derivedObject; // OK
Currency derivedCopy2 = (Currency)baseObject; // Exception thrown

The previous code works analogously to the similar code presented earlier for reference types. Casting
derivedObject to Currency works fine because derivedObject actually refers to a boxed Currency
instance—the cast will be performed by copying the fields out of the boxed Currency object into a new
Currency struct. The second cast fails because baseObject does not refer to a boxed Currency object.

When using boxing and unboxing, it is important to understand both processes actually copy the data
into the new boxed or unboxed object. Hence, manipulations on the boxed object for example will not
affect the contents of the original value type.

Multiple Casting
One thing you will have to watch for when you are defining casts is if the C# compiler is presented with
a situation in which no direct cast is available to perform a requested conversion, it will attempt to find a
way of combining casts to do the conversion. For example, with our Currency struct, suppose the com-
piler encounters a couple of lines of code like this:

Currency balance = new Currency(10,50);
long amount = (long)balance;
double amountD = balance;

161

Operators and Casts

07 557599 Ch05.qxd 4/29/04 11:29 AM Page 161

We first initialize a Currency instance, and then we attempt to convert it to a long. The trouble is that
we haven’t defined the cast to do that. However, this code will still compile successfully. What will hap-
pen is that the compiler will realize that you have defined an implicit cast to get from Currency to
float, and the compiler already knows how to explicitly cast a float to a long. Hence, it will compile
that line of code into IL code that converts balance first to a float, and then converts that result to a
long. The same thing happens in the final line of the above code, when we convert balance to a dou-
ble. However, since the cast from Currency to float and the predefined cast from float to double
are both implicit, we can write this conversion in our code as an implicit cast. If we’d preferred, we
could have specified the casting route explicitly:

Currency balance = new Currency(10,50);
long amount = (long)(float)balance;
double amountD = (double)(float)balance;

However, in most cases, this would be seen as needlessly complicating your code. The following code by
contrast would produce a compilation error:

Currency balance = new Currency(10,50);
long amount = balance;

The reason is the best match for the conversion that the compiler can find is still to convert first to float
then to long. The conversion from float to long needs to be specified explicitly, though.

All this by itself shouldn’t give you too much trouble. The rules are, after all, fairly intuitive and
designed to prevent any data loss from occurring without the developer knowing about it. However, the
problem is that if you are not careful when you define your casts, it is possible for the compiler to figure
out a path that leads to unexpected results. For example, suppose it occurs to someone else in the group
writing the Currency struct, that it would be useful to be able to convert a uint containing the total
number of cents in an amount into a Currency (cents not dollars because the idea is not to lose the
fractions of a dollar). So, this cast might be written to try to achieve this:

public static implicit operator Currency (uint value)
{

return new Currency(value/100u, (ushort)(value%100));
} // Don’t do this!

Note the u after the first 100 in this code to ensure that value/100u is interpreted as a uint. If we’d
written value/100 then the compiler would have interpreted this as an int, not a uint.

We have clearly commented Don’t do this in this code, and here’s why. Look at the following code
snippet; all we do in it is convert a uint containing 350 into a Currency and back again. What do you
think bal2 will contain after executing this?

uint bal = 350;
Currency balance = bal;
uint bal2 = (uint)balance;

The answer is not 350, but 3! And it all follows logically. We convert 350 implicitly to a Currency, giv-
ing the result Balance.Dollars=3, Balance.Cents=50. Then the compiler does its usual figuring out
of best path for the conversion back. Balance ends up getting implicitly converted to a float (value
3.5), and this gets converted explicitly to a uint with value 3.

162

Chapter 5

07 557599 Ch05.qxd 4/29/04 11:29 AM Page 162

Of course, other instances exist in which converting to another data type and back again causes data
loss. For example, converting a float containing 5.8 to an int and back to a float again will lose the
fractional part, giving a result of 5, but there is a slight difference in principle between losing the frac-
tional part of a number and dividing an integer by more than 100! Currency has suddenly become a
rather dangerous class that does strange things to integers!

The problem is that there is a conflict between how our casts interpret integers. Our casts between
Currency and float interpret an integer value of 1 as corresponding to one dollar, but our latest uint-
to-Currency cast interprets this value as one cent. This is an example of very poor design. If you want
your classes to be easy to use, then you should make sure all your casts behave in a way that is mutually
compatible, in the sense that they intuitively give the same results. In this case, the solution is obviously
to rewrite our uint-to-Currency cast so that it interprets an integer value of 1 as one dollar:

public static implicit operator Currency (uint value)
{

return new Currency(value, 0);
}

Incidentally, you might wonder whether this new cast is necessary at all. The answer is that it could be
useful. Without this cast, the only way for the compiler to carry out a uint-to-Currency conversion
would be via a float. Converting directly is a lot more efficient in this case, so having this extra cast
gives performance benefits, but we need to make sure it gives the same result as we would get going via
a float, which we have now done. In other situations, you may also find that separately defining casts
for different predefined data types allows more conversions to be implicit rather than explicit, though
that’s not the case here.

A good test of whether your casts are compatible is to ask whether a conversion will give the same
results (other than perhaps a loss of accuracy as in float-to-int conversions), irrespective of which
path it takes. Our Currency class provides a good example of this. Look at this code:

Currency balance = new Currency(50, 35);
ulong bal = (ulong) balance;

At present, there is only one way that the compiler can achieve this conversion: by converting the
Currency to a float implicitly, then to a ulong explicitly. The float-to-ulong conversion requires an
explicit conversion, but that’s fine because we have specified one here.

Suppose, however, that we then added another cast, to convert implicitly from a Currency to a uint.
We will actually do this by modifying the Currency struct by adding the casts both to and from uint.
This code is available as the SimpleCurrency2 example:

public static implicit operator Currency (uint value)
{

return new Currency(value, 0);
}

public static implicit operator uint (Currency value)
{

return value.Dollars;
}

163

Operators and Casts

07 557599 Ch05.qxd 4/29/04 11:29 AM Page 163

Now the compiler has another possible route to convert from Currency to ulong: to convert from
Currency to uint implicitly then to ulong implicitly. Which of these two routes will it take? C# does
have some precise rules (which we won’t detail in this book; if you are interested, details are in the MSDN
documentation) to say how the compiler decides which is the best route if there are several possibilities.
The best answer is that you should design your casts so that all routes give the same answer (other than
possible loss of precision), in which case it doesn’t really matter which one the compiler picks. (As it
happens in this case, the compiler picks the Currency-to-uint-to-ulong route in preference to
Currency-to-float-to-ulong.)

To test the SimpleCurrency2 sample, we will add this code to the test code for SimpleCurrency:

try
{

Currency balance = new Currency(50,35);
Console.WriteLine(balance);
Console.WriteLine(“balance is “ + balance);
Console.WriteLine(“balance is (using ToString()) “ + balance.ToString());

uint balance3 = (uint) balance;
Console.WriteLine(“Converting to uint gives “ + balance3);

Running the sample now gives these results:

SimpleCurrency2

50
balance is $50.35
balance is (using ToString()) $50.35
Converting to uint gives 50
After converting to float, = 50.35
After converting back to Currency, = $50.34
Now attempt to convert out of range value of -$100.00 to a Currency:
Exception occurred: Arithmetic operation resulted in an overflow.

The output shows that the conversion to uint has been successful, though as expected, we have lost the
cents part of the Currency in making this conversion. Casting a negative float to Currency has also
produced the expected overflow exception now that the float-to-Currency cast itself defines a
checked context.

However, the output also demonstrates one last potential problem that you need to be aware of when
working with casts. The very first line of output has not displayed the balance correctly, displaying 50
instead of $50.35. Consider these lines:

Console.WriteLine(balance);
Console.WriteLine(“balance is “ + balance);
Console.WriteLine(“balance is (using ToString()) “ + balance.ToString());

Only the last two lines correctly display the Currency as a string. So what’s going on? The problem here
is that when you combine casts with method overloads, you get another source of unpredictability. We
will look at these lines in reverse order.

164

Chapter 5

07 557599 Ch05.qxd 4/29/04 11:29 AM Page 164

The third Console.WriteLine() statement explicitly calls the Currency.ToString() method ensuring
the Currency is displayed as a string. The second does not do so. However, the string literal “balance is”
passed to Console.WriteLine() makes it clear to the compiler that the parameter is to be interpreted as a
string. Hence the Currency.ToString() method will be called implicitly.

The very first Console.WriteLine() method, however, simply passes a raw Currency struct to
Console.WriteLine(). Now, Console.WriteLine() has many overloads, but none of them takes a
Currency struct. So the compiler will start fishing around to see what it can cast the Currency to in
order to make it match up with one of the overloads of Console.WriteLine(). As it happens, one of
the Console.WriteLine() overloads is designed to display uints quickly and efficiently, and it takes
a uint as a parameter, and we have now supplied a cast that converts Currency implicitly to uint.

In fact, Console.WriteLine() has another overload that takes a double as a parameter and displays
the value of that double. If you look closely at the output from the first SimpleCurrency example, you
will find the very first line of output displayed Currency as a double, using this overload. In that exam-
ple, there wasn’t a direct cast from Currency to uint, so the compiler picked Currency-to-float-to-
double as its preferred way of matching up the available casts to the available Console.WriteLine()
overloads. However, now that there is a direct cast to uint available in SimpleCurrency2, the compiler
has opted for this route.

The upshot of this is that if you have a method call that takes several overloads, and you attempt to pass
it a parameter whose data type doesn’t match any of the overloads exactly, then you are forcing the com-
piler to decide not only what casts to use to perform the data conversion, but which overload, and hence
which data conversion, to pick. The compiler always works logically and according to strict rules, but
the results may not be what you expected. If there is any doubt, you are probably better off specifying
which cast to use explicitly.

Summary
In this chapter we’ve looked at the standard operators provided by C#, described the mechanics of object
equality, and examined how the compiler converts the standard data types from one to another. We have
also demonstrated how you can implement custom operator support on your data types using operator
overloads. Finally, we looked at a special type of operator overload, the cast operator, which allows you
to specify how instances of your types are converted to other data types.

In the following chapter, we focus on two closely related member types that you can implement in your
types to support very clean event-based object models: delegates and events.

165

Operators and Casts

07 557599 Ch05.qxd 4/29/04 11:29 AM Page 165

07 557599 Ch05.qxd 4/29/04 11:29 AM Page 166

Delegates and Events

Callback functions are an important part of programming in Windows. If you have a background
in C or C++ programming you have seen callbacks used in many of the Windows APIs. With the
addition of the AddressOf keyword, Visual Basic developers are now able to take advantage of the
API that once was off limits. Callback functions are really a pointer to a method call. Also known
as function pointers, they are a very powerful programming feature. .NET has implemented the
concept of a function pointer in the form of delegates. What makes them special is that unlike the
C function pointer the .NET delegate is type-safe. What this means is that a function pointer in C
is nothing but a pointer to a memory location. You have no idea what that pointer is really point-
ing to. Things like parameters and return types are not known. As you will see in this chapter,
.NET has made delegates a type-safe operation. Later in the chapter you will see how .NET uses
delegates as the means of implementing events.

Delegates
Delegates can best be seen as a new type of object in C#, which has some similarities to classes.
They exist for situations in which you want to pass methods around to other methods. To see what
we mean by that, consider this line of code:

int i = int.Parse(“99”);

We are so used to passing data to methods as parameters, as in the previous example, we don’t con-
sciously think about it; and for this reason the idea of passing methods around instead of data might
sound a little strange. However, there are cases in which you have a method that does something,
and rather than operating on data, the method might need to do something that involves invoking
another method. To complicate things further, you do not know at compile-time what this second
method is. That information is only available at runtime and hence will need to be passed in as a
parameter to the first method. That might sound confusing, but should be clearer with a couple of
examples:

08 557599 Ch06.qxd 4/29/04 11:33 AM Page 167

❑ Starting Threads—It is possible in C# to tell the computer to start some new sequence of execu-
tion in parallel with what it is currently doing. Such a sequence is known as a thread, and start-
ing one up is done using the Start() method on an instance of one of the base classes,
System.Threading.Thread. If you are going to tell the computer to start a new sequence of
execution, you have got to tell it where to start that sequence. You have to supply it with the
details of a method in which execution can start. In other words, the Thread.Start() method
has to take a parameter that defines the method to be invoked by the thread.

❑ Generic Library Classes—There are of course many libraries that contain code to perform vari-
ous standard tasks. It is usually possible for these libraries to be self-contained, in the sense that
you know when you write to the library exactly how the task must be performed. However,
sometimes the task contains some subtask, which only the individual client code that uses the
library knows how to perform. For example, say we want to write a class that takes an array of
objects and sorts them into ascending order. Part of the sorting process involves repeatedly tak-
ing two of the objects in the array and comparing them in order to see which one should come
first. If we want to make the class capable of sorting arrays of any object, there is no way that it
can tell in advance how to do this comparison. The client code that hands our class the array of
objects will also have to tell our class how to do this comparison for the particular objects it
wants sorted. In other words, the client code will have to pass our class details of an appropriate
method that can be called and does the comparison.

❑ Events—The general idea here is that often, you have code that needs to be informed when
some event takes place. GUI programming is full of situations like this. When the event is
raised, the runtime will need to know what method should be executed. This is done by passing
the method that handles the event as a parameter to a delegate. This will be discussed later in
the chapter.

So, we have established the principle that sometimes, methods need to take details of other methods as
parameters. Next, we need to figure out how we can do that. The simplest way would appear to be to
just pass in the name of a method as a parameter. To take our example from threading, suppose we are
going to start a new thread, and we have a method called EntryPoint(), which is where we want our
thread to start running:

void EntryPoint()
{

// do whatever the new thread needs to do
}

Alternatively you can also start the new thread off with some code like this:

Thread NewThread = new Thread();
Thread.Start(EntryPoint); // WRONG

In fact, this is the simple way of doing it, and it is what some languages, such as C and C++, do in this
kind of situation (in C and C++, the parameter EntryPoint is the function pointer).

Unfortunately, this direct approach causes some problems with type safety, and it also neglects the fact
that when we are doing object-oriented programming, methods rarely exist in isolation, but usually
need to be associated with a class instance before they can be called. As a result of these problems, the
.NET Framework does not syntactically permit this direct approach. Instead, if you want to pass meth-
ods around, you have to wrap up the details of the method in a new kind of object, a delegate. Delegates

168

Chapter 6

08 557599 Ch06.qxd 4/29/04 11:33 AM Page 168

quite simply are a special type of object—special in the sense that, whereas all the objects we have
defined up to now contain data, a delegate just contains the details of a method.

Using Delegates in C#
When we want to use a class in C#, there are two stages. First, we need to define the class—that is, we
need to tell the compiler what fields and methods make up the class. Then (unless we are using only
static methods), we instantiate an object of that class. With delegates it is the same thing. We have to start
off by defining the delegates we want to use. In the case of delegates, defining it means telling the com-
piler what kind of method a delegate of that type will represent. Then, we have to create one or more
instances of that delegate.

The syntax for defining delegates looks like this:

delegate void VoidOperation(uint x);

In this case, we have defined a delegate called VoidOperation, and we have indicated that each
instance of this delegate can hold a reference to a method that takes one uint parameter and returns
void. The crucial point to understand about delegates is that they are very type-safe. When you define
the delegate, you have to give full details of the signature of the method that it is going to represent.

Suppose we wanted to define a delegate called TwoLongsOp that will represent a function that takes two
longs as its parameters and returns a double. We could do it like this:

delegate double TwoLongsOp(long first, long second);

Or, to define a delegate that will represent a method that takes no parameters and returns a string, we
might write this:

delegate string GetAString();

The syntax is similar to that for a method definition, except that there is no method body, and the defini-
tion is prefixed with the keyword delegate. Since what we are doing here is basically defining a new
class, we can define a delegate in any of the same places that we would define a class—that is to say
either inside another class or outside of any class and in a namespace as a top-level object. Depending on
how visible we want our definition to be, we can apply any of the normal access modifiers to delegate
definitions—public, private, protected, and so on:

public delegate string GetAString();

We really mean what we say when we describe defining a delegate as defining a new class. Delegates are
implemented as classes derived from the class System.MulticastDelegate which is derived from
the base class, System.Delegate. The C# compiler is aware of this class and uses its delegate syntax
to shield us from the details of the operation of this class. This is another good example of how C# works
in conjunction with the base classes to make programming as easy as practicable.

One good way of understanding delegates is by thinking of a delegate as something
that gives a name to a method signature.

169

Delegates and Events

08 557599 Ch06.qxd 4/29/04 11:33 AM Page 169

After we have defined a delegate, we can create an instance of it so that we can use it to store details of a
particular method.

There is an unfortunate problem with terminology here. With classes there are two distinct terms—
class, which indicates the broader definition, and object, which means an instance of the class.
Unfortunately, with delegates there is only the one term. When you create an instance of a delegate,
what you have created is also referred to as a delegate. You need to be aware of the context to know
which meaning we are using when we talk about delegates.

The following code snippet demonstrates the use of a delegate. It is a rather long-winded way of calling
the ToString() method on an int:

private delegate string GetAString();

static void Main(string[] args)
{

int x = 40;
GetAString firstStringMethod = new GetAString(x.ToString);
Console.WriteLine(“String is” + firstStringMethod());
// With firstStringMethod initialized to x.ToString(),
// the above statement is equivalent to saying
// Console.WriteLine(“String is” + x.ToString());

In this code, we instantiate a delegate of type GetAString, and we initialize it so that it refers to the
ToString() method of the integer variable x. Delegates in C# always syntactically take a one-parameter
constructor, the parameter being the method to which the delegate will refer. This method must match
the signature with which we originally defined the delegate. So in this case, we would get a compilation
error if we tried to initialize firstStringMethod with any method that did not take parameters and
return a string. Notice that since int.ToString() is an instance method (as opposed to a static one) we
need to specify the instance (x) as well as the name of the method to initialize the delegate properly.

The next line actually uses the delegate to display the string. In any code, supplying the name of a dele-
gate instance, followed by brackets containing any parameters, has exactly the same effect as calling the
method wrapped by the delegate. Hence, in the previous code snippet, the Console.WriteLine()
statement is completely equivalent to the commented-out line.

One feature of delegates is that they are type-safe to the extent that they ensure the signature of the
method being called is correct. However, interestingly, they do not care what type of object the method is
being called against, or even whether the method is a static method or an instance method.

To demonstrate this, we will expand the previous code snippet so that it uses the firstStringMethod
delegate to call a couple of other methods on another object—an instance method and a static method.
For this, we will use the Currency struct that is defined as follows:

An instance of a given delegate can refer to any instance or static method on any
object of any type, provided that the signature of the method matches the signature
of the delegate.

170

Chapter 6

08 557599 Ch06.qxd 4/29/04 11:33 AM Page 170

struct Currency
{

public uint Dollars;
public ushort Cents;

public Currency(uint dollars, ushort cents)
{

this.Dollars = dollars;
this.Cents = cents;

}

public override string ToString()
{

return string.Format(“${0}.{1,-2:00}”, Dollars,Cents);
}

public static explicit operator Currency (float value)
{

checked
{

uint dollars = (uint)value;
ushort cents = (ushort)((value-dollars)*100);
return new Currency(dollars, cents);

}
}

public static implicit operator float (Currency value)
{

return value.Dollars + (value.Cents/100.0f);
}

public static implicit operator Currency (uint value)
{

return new Currency(value, 0);
}

public static implicit operator uint (Currency value)
{

return value.Dollars;
}

}

Notice that the Currency struct has its own overload of ToString(). In order to demonstrate using del-
egates with static methods, we will also add a static method with the same signature to Currency:

struct Currency
{

public static string GetCurrencyUnit()
{

return “Dollar”;
}

171

Delegates and Events

08 557599 Ch06.qxd 4/29/04 11:33 AM Page 171

Now we can use our GetAString instance as follows:

private delegate string GetAString();

static void Main(string[] args)
{

int x = 40;
GetAString firstStringMethod = new GetAString(x.ToString);
Console.WriteLine(“String is “ + firstStringMethod());
Currency balance = new Currency(34, 50);
firstStringMethod = new GetAString(balance.ToString);
Console.WriteLine(“String is “ + firstStringMethod());
firstStringMethod = new GetAString(Currency.GetCurrencyUnit);
Console.WriteLine(“String is “ + firstStringMethod());

This code shows how you can call a method via a delegate, and subsequently reassign the delegate to refer
to different methods on different instances of classes, even static methods or methods against instances of
different types of class, provided that the signature of each method matches the delegate definition.

However, we still haven’t demonstrated the process of actually passing a delegate to another method.
Nor have we actually achieved anything particularly useful yet. It is possible to call the ToString()
method of int and Currency objects in a much more straightforward way than using delegates!
Unfortunately, it is in the nature of delegates that we need a fairly complex example before we can really
appreciate their usefulness. We are now going to present two delegate examples. The first one simply
uses delegates to call a couple of different operations. It illustrates how to pass delegates to methods,
and how you can use arrays of delegates—although arguably it still doesn’t do much that you couldn’t
do a lot more simply without delegates. Then, we will present a second, much more complex example of
a BubbleSorter class, which implements a method to sort out arrays of objects into increasing order.
This class would be difficult to write without delegates.

SimpleDelegate Example
For this example, we will define a MathsOperations class that has a couple of static methods to per-
form two operations on doubles. Then, we will use delegates to call up these methods. The math class
looks like this:

class MathsOperations
{

public static double MultiplyByTwo(double value)
{

return value*2;
}

public static double Square(double value)
{

return value*value;
}

}

172

Chapter 6

08 557599 Ch06.qxd 4/29/04 11:33 AM Page 172

We call up these methods like this:

using System;

namespace SimpleDelegate
{

delegate double DoubleOp(double x);

class MainEntryPoint
{

static void Main()
{

DoubleOp [] operations =
{

new DoubleOp(MathsOperations.MultiplyByTwo),
new DoubleOp(MathsOperations.Square)

};

for (int i=0 ; i<operations.Length ; i++)
{

Console.WriteLine(“Using operations[{0}]:”, i);
ProcessAndDisplayNumber(operations[i], 2.0);
ProcessAndDisplayNumber(operations[i], 7.94);
ProcessAndDisplayNumber(operations[i], 1.414);
Console.WriteLine();

}
}

static void ProcessAndDisplayNumber(DoubleOp action, double value)
{

double result = action(value);
Console.WriteLine(

“Value is {0}, result of operation is {1}”, value, result);
}

In this code, we instantiate an array of DoubleOp delegates (remember that once we have defined a dele-
gate class, we can basically instantiate instances just like we can with normal classes, so putting some
into an array is no problem). Each element of the array gets initialized to refer to a different operation
implemented by the MathOperations class. Then, we loop through the array, applying each operation
to three different values. This illustrates one way of using delegates—that you can group methods
together into an array using them, so that you can call several methods in a loop.

The key lines in this code are the ones in which we actually pass each delegate to the
ProcessAndDisplayNumber() method, for example:

ProcessAndDisplayNumber(operations[i], 2.0);

Here, we are passing in the name of a delegate, but without any parameters. Given that operations[i]
is a delegate, syntactically:

❑ operations[i] means the delegate, in other words the method represented by the delegate.

❑ operations[i](2.0) means actually call this method, passing in the value in parentheses.

173

Delegates and Events

08 557599 Ch06.qxd 4/29/04 11:33 AM Page 173

The ProcessAndDisplayNumber() method is defined to take a delegate as its first parameter:

static void ProcessAndDisplayNumber(DoubleOp action, double value)

Then, when in this method, we call:

double result = action(value);

This actually causes the method that is wrapped up by the action delegate instance to be called and its
return result stored in Result.

Running this sample gives the following:

SimpleDelegate
Using operations[0]:
Value is 2, result of operation is 4
Value is 7.94, result of operation is 15.88
Value is 1.414, result of operation is 2.828

Using operations[1]:
Value is 2, result of operation is 4
Value is 7.94, result of operation is 63.0436
Value is 1.414, result of operation is 1.999396

BubbleSorter Example
We are now ready for an example that will show delegates working in a situation in which they are very
useful. We are going to write a class called BubbleSorter. This class implements a static method,
Sort(), which takes as its first parameter an array of objects, and rearranges this array into ascending
order. In other words, suppose we were to pass it this array of ints: {0, 5, 6, 2, 1}. It would rearrange
this array into {0, 1, 2, 5, 6}.

The bubble-sorting algorithm is a well-known and very simple way of sorting numbers. It is best suited
to small sets of numbers, since for larger sets of numbers (more than about 10) there are far more effi-
cient algorithms available). It works by repeatedly looping through the array, comparing each pair of
numbers and, if necessary, swapping them, so that the largest numbers progressively move to the end of
the array. For sorting ints, a method to do a bubble sort might look like this:

// Note that this isn’t part of the sample
for (int i = 0; i < sortArray.Length; i++)
{

for (int j = i + 1; j < sortArray.Length; j++)
{

if (sortArray[j] < sortArray[i]) // problem with this test
{

int temp = sortArray[i]; // swap ith and jth entries
sortArray[i] = sortArray[j];
sortArray[j] = temp;

}
}

}

174

Chapter 6

08 557599 Ch06.qxd 4/29/04 11:33 AM Page 174

This is all very well for ints, but we want our Sort() method to be able to sort any object. In other
words, if some client code hands us an array of Currency structs or any other class or struct that it may
have defined, we need to be able to sort the array. This gives us a problem with the line
if(sortArray[j] < sortArray[i]) in the above code, since that requires us to compare two objects
on the array to see which one is greater. We can do that for ints, but how are we to do it for some new
class that is unknown or undecided until runtime? The answer is the client code that knows about the
class will have to pass in a delegate wrapping a method that will do the comparison.

We define the delegate like this:

delegate bool CompareOp(object lhs, object rhs);

And we give our Sort method this signature:

static public void Sort(object [] sortArray, CompareOp gtMethod)

The documentation for this method states that gtMethod must refer to a static method that takes two
arguments, and returns true if the value of the second argument is greater than (in other words should
come later in the array than) the first one.

Although we are using delegates here, it is possible to solve this problem alternatively, by using inter-
faces. .NET in fact makes the IComparer interface available for that purpose. However, we will use
delegates here since this is still the kind of problem that lends itself to delegates.

Now we are all set. Here is the definition for the BubbleSorter class:

class BubbleSorter
{

static public void Sort(object [] sortArray, CompareOp gtMethod)
{

for (int i=0 ; i<sortArray.Length ; i++)
{

for (int j=i+1 ; j<sortArray.Length ; j++)
{

if (gtMethod(sortArray[j], sortArray[i]))
{

object temp = sortArray[i];
sortArray[i] = sortArray[j];
sortArray[j] = temp;

}
}

}
}

}

In order to use this class, we need to define some other class, which we can use to set up an array that
needs sorting. For this example, we will assume that our Mortimer Phones mobile phone company has a

175

Delegates and Events

08 557599 Ch06.qxd 4/29/04 11:33 AM Page 175

list of employees and wants them sorted according to salary. The employees are each represented by an
instance of a class, Employee, which looks like this:

class Employee
{

private string name;
private decimal salary;

public Employee(string name, decimal salary)
{

this.name = name;
this.salary = salary;

}

public override string ToString()
{

return string.Format(name + “, {0:C}”, salary);
}

public static bool RhsIsGreater(object lhs, object rhs)
{

Employee empLhs = (Employee) lhs;
Employee empRhs = (Employee) rhs;
return (empRhs.salary > empLhs.salary) ? true : false;

}
}

Notice that in order to match the signature of the CompareOp delegate, we have had to define
RhsIsGreater in this class as taking two object references, rather than Employee references as parame-
ters. This means that we have had to cast the parameters into Employee references in order to perform
the comparison.

Now we are ready to write some client code to request a sort:

using System;

namespace Wrox.ProCSharp.AdvancedCSharp
{

delegate bool CompareOp(object lhs, object rhs);

class MainEntryPoint
{

static void Main()
{

Employee [] employees =
{

new Employee(“Bugs Bunny”, 20000),
new Employee(“Elmer Fudd”, 10000),
new Employee(“Daffy Duck”, 25000),
new Employee(“Wiley Coyote”, (decimal)1000000.38),
new Employee(“Foghorn Leghorn”, 23000),
new Employee(“RoadRunner’”, 50000)};

CompareOp employeeCompareOp = new CompareOp(Employee.RhsIsGreater);

176

Chapter 6

08 557599 Ch06.qxd 4/29/04 11:33 AM Page 176

BubbleSorter.Sort(employees, employeeCompareOp);

for (int i=0 ; i<employees.Length ; i++)
Console.WriteLine(employees[i].ToString());

}
}

Running this code shows that the Employees are correctly sorted according to salary:

BubbleSorter
Elmer Fudd, $10,000.00
Bugs Bunny, $20,000.00
Foghorn Leghorn, $23,000.00
Daffy Duck, $25,000.00
RoadRunner, $50,000.00
Wiley Coyote, $1,000,000.38

Multicast Delegates
So far, each of the delegates we have used wraps just one single method call. Calling the delegate
amounts to calling that method. If we want to call more than one method, we need to make an explicit
call through a delegate more than once. However, it is possible for a delegate to wrap more than one
method. Such a delegate is known as a multicast delegate. If a multicast delegate is called, it will succes-
sively call each method in order. For this to make sense, the delegate signature must return a void (oth-
erwise, where would all the return values go?), and in fact, if the compiler sees a delegate that returns a
void, it automatically assumes you mean a multicast delegate. Consider this code, which is adapted
from the SimpleDelegate example. Although the syntax is the same as before, it is actually a multicast
delegate, Operations, that gets instantiated:

delegate void DoubleOp(double value);
// delegate double DoubleOp(double value); // can’t do this now

class MainEntryPoint
{

static void Main()
{

DoubleOp operations = new DoubleOp(MathOperations.MultiplyByTwo);
operations += new DoubleOp(MathOperations.Square);

In our earlier example, we wanted to store references to two methods so we instantiated an array of del-
egates. Here, we simply add both operations into the same multicast delegate. Multicast delegates recog-
nize the operators + and +=. Alternatively, we can also expand the last two lines of the previous code as
in this snippet:

DoubleOp operation1 = new DoubleOp(MathOperations.MultiplyByTwo);
DoubleOp operation2 = new DoubleOp(MathOperations.Square);
DoubleOp operations = operation1 + operation2;

Multicast delegates also recognize the operators — and -= to remove method calls from the delegate.

177

Delegates and Events

08 557599 Ch06.qxd 4/29/04 11:33 AM Page 177

In terms of what’s going on under the hood, a multicast delegate is a class derived from
System.MulticastDelegate, which in turn is derived from System.Delegate.
System.MulticastDelegate has additional members to allow chaining of method calls together
into a list.

To illustrate the use of multicast delegates, we have recast the SimpleDelegate sample into a new sam-
ple, MulticastDelegate. Since we now need the delegate to refer to methods that return void, we
have to rewrite the methods in the MathOperations class, so they display their results instead of
returning them:

class MathOperations
{

public static void MultiplyByTwo(double value)
{

double result = value*2;
Console.WriteLine(

“Multiplying by 2: {0} gives {1}”, value, result);
}

public static void Square(double value)
{

double result = value*value;
Console.WriteLine(“Squaring: {0} gives {1}”, value, result);

}
}

To accommodate this change, we also have to rewrite ProcessAndDisplayNumber:

static void ProcessAndDisplayNumber(DoubleOp action, double value)
{

Console.WriteLine(“\nProcessAndDisplayNumber called with value = “ +
value);

action(value);
}

Now we can try out our multicast delegate like this:

static void Main()
{

DoubleOp operations = new DoubleOp(MathOperations.MultiplyByTwo);
operations += new DoubleOp(MathOperations.Square);

ProcessAndDisplayNumber(operations, 2.0);
ProcessAndDisplayNumber(operations, 7.94);
ProcessAndDisplayNumber(operations, 1.414);
Console.WriteLine();

}

Now, each time that ProcessAndDisplayNumber is called, it will display a message to say that it has
been called. Then the following statement will cause each of the method calls in the action delegate
instance to be called in succession:

action(value);

178

Chapter 6

08 557599 Ch06.qxd 4/29/04 11:33 AM Page 178

Running this code gives this result:

MulticastDelegate

ProcessAndDisplayNumber called with value = 2
Multiplying by 2: 2 gives 4
Squaring: 2 gives 4

ProcessAndDisplayNumber called with value = 7.94
Multiplying by 2: 7.94 gives 15.88
Squaring: 7.94 gives 63.0436

ProcessAndDisplayNumber called with value = 1.414
Multiplying by 2: 1.414 gives 2.828
Squaring: 1.414 gives 1.999396

If you are using multicast delegates, you should be aware that the order in which methods chained to
the same delegate will be called is formally undefined. You should, therefore, avoid writing code that
relies on such methods being called in any particular order.

Events
Windows-based applications are message based. What this means is that the application is communicating
with Windows and Windows is communicating with the application by using predefined messages. These
messages are structures that contain various pieces of information that the application and Windows will
use to determine what to do next. Prior to libraries such as MFC or to development environments such
as Visual Basic, the developer would have to handle the message that Windows sends to the application.
Visual Basic and now .NET wrap some of these incoming messages as something called events. If you
need to react to a specific incoming message, then you would handle the corresponding event. A common
example of this is when the user clicks a button on a form. Windows is sending a WM_MOUSECLICK
message to the buttons message handler (sometimes referred to as the Windows Procedure or WndProc).
To the .NET developer this is exposed as the OnClick event of the button.

In developing object-based applications another form of communication between objects is required.
When something of interest happens in one of your objects, chances are that other objects will want to be
informed. Again events come to the rescue. Just as the .NET Framework wraps up Windows messages in
events you can also utilize events as the communications medium between your objects.

Delegates are used as the means of wiring the event up when the message is received by the application.

Believe it or not, in the preceding section on delegates, we learned just about everything we needed
to know to understand how events work. However, one of the great things about how Microsoft has
designed C# events is that you don’t actually need to understand anything about the underlying dele-
gates in order to use them. So, we are going to start off with a short discussion of events from the point of
view of the client software. We will focus on what code you need to write in order to receive notifications
of events, without worrying too much about what is happening behind the scenes—just so we can show
how easy handling events really is. After we have done that, we will write a sample that generates events,
and as we do so, we should see how the relationship between events and delegates work.

179

Delegates and Events

08 557599 Ch06.qxd 4/29/04 11:33 AM Page 179

The discussion in this section will be of most use to C++ developers since C++ does not have any con-
cept similar to events. C# events on the other hand are quite similar in concept to Visual Basic events,
although the syntax and the underlying implementation are different in C#.

In this context, we are using the term event in two different senses. Firstly, as something interesting
that happens; and secondly, as a precisely defined object in the C# language—the object that handles the
notification process. When we mean the latter, we will usually refer to it either as a C# event, or, when
the meaning is obvious from the context, simply as an event.

The Receiver’s View of Events
The event receiver is any application, object, or component that wants to be notified when something hap-
pens. To go along with the receiver there will of course be the event sender. The sender’s job will be to raise
the event. The sender can be either another object or assembly in your application, or in the case of system
events such as mouse clicks or keyboard entry the sender will be the .NET runtime. It is important to note
that the sender of the event will not have any knowledge of who or what the receiver is. This is what
makes events so useful.

Now, somewhere inside the event receiver there will be a method that is responsible for handling the
event. This event handler will be executed each time the event that it is registered to is raised. This is
where the delegate comes in. Since the sender has no idea who the receiver(s) will be, there cannot be
any type of reference set between the two. So the delegate is used as the intermediary. The sender
defines the delegate that will be used by the receiver. The receiver registers the event handler with the
event. The process of hooking up the event handler is known as wiring up an event. A simple example
of wiring up the Click event will help illustrate this process.

First create a simple Windows Forms application. Drag over a button control from the toolbox and place
it on the form. In the properties window rename the button to btnOne. In the code editor add the follow-
ing line of code in the Form1 constructor:

btnOne.Click += new EventHandler(Button_Click);

Now in Visual Studio you should have noticed that after you typed in the += operator all you had to do
was press the Tab key a couple of times and the editor will do the rest of the work for you. In most cases
this is fine. However, in this example the default handler name is not being used, so you should just
enter the text yourself.

What is happening is that you are telling the runtime that when the Click event of btnOne is raised that
Button_Click method should be executed. EventHandler is the delegate that the event uses to assign
the handler (Button_Click) to the event (Click). Notice that you used the += operator to add this new
method to the delegate list. This is just like the multicast example that you looked at earlier in this chap-
ter. This means that you can add more then one handler for any event. Since this is a multicast delegate
all of the rules about adding multiple methods apply; however, there is no guarantee as to the order that
the methods are called. Go ahead and drag another button onto the form and rename it to btnTwo. Now
connect the btnTwo Click event to the same Button_Click method, as shown in this example:

btnOne.Click += new EventHandler(Button_Click);
btnTwo.Click += new EventHandler(Button_Click);

180

Chapter 6

08 557599 Ch06.qxd 4/29/04 11:33 AM Page 180

The EventHandler delegate is defined for you in the framework. It is in the System namespace and all of
the events that are defined in the framework use it. As we discussed earlier, a delegate requires that all
of the methods that are added to the delegate list must have the same signature. This obviously holds
true for event delegates as well. Here is the Button_Click method defined:

private void Button_Click(object sender, EventArgs e)
{

}

There are a few things that are important about this method. First, it always returns void. Event handlers
cannot return a value. Next are the parameters. As long as you use the EventHandler delegate, your
parameters will be object and EventArgs. The first parameter is the object that raised the event. In this
example it is either btnOne or btnTwo, depending on which button is clicked. By sending a reference to
the object that raised the event you can assign the same event handler to more then one object. For exam-
ple, you can define one button click handler for several buttons and then determine which button was
clicked by asking the sender parameter.

The second parameter, EventArgs, is an object that contains other potentially useful information about the
event. This parameter could actually be any type as long as it is derived from EventArgs. The MouseDown
event uses the MouseDownEventArgs. It contains properties for which button was used, the X and Y coor-
dinates of the pointer, and other info related to the event. Notice the naming pattern of ending the type
with EventArgs. Later in the chapter you will see how to create and use a custom EventArgs-based
object.

The name of the method should also be mentioned. As a convention any event handlers follow a naming
convention of object_event. Object is the object that is raising the event and event is the event being
raised. There is a convention and for readability’s sake it should be followed.

The last thing to do in this example is to add some code to actually do something in the handler. Now
remember that there are two buttons using the same handler. So first you have to determine which but-
ton raises the event, then you can call the action that should be performed. In this example, you can just
output some text to a label control on the form. Drag a label control from the toolbox onto the form and
name it lblInfo. Then write the following code on the Button_Click method:

if(((Button)sender).Name == “btnOne”)
lblInfo.Text = “Button One was pressed”;

else
lblInfo.Text = “Button Two was pressed”;

Notice that since the sender parameter is sent as object, you will have to cast it to whatever object is rais-
ing the event, in this case Button. In this example, we use the Name property to determine what button
raised the event; however, you can also use another property. The Tag property is handy to use in this
scenario, because it can contain anything that you want to place in it. To see how the multicast capability
of the event delegate works, add another method to the btnTwo Click event. Use the default method
name. The constructor of the form should look something like this now:

btnOne.Click += new EventHandler(Button_Click);
btnTwo.Click += new EventHandler(Button_Click);
btnTwo.Click += new EventHandler(btnTwo_Click);

181

Delegates and Events

08 557599 Ch06.qxd 4/29/04 11:33 AM Page 181

If you let Visual Studio create the stub for you, you will have the following method at the end of the
source file. However, you have to add the call to the Messagebox function.

private void btnTwo_Click(object sender, EventArgs e)
{

MessageBox.Show(“This only happens in Button 2 click event”);
}

When you run this example, clicking btnOne will change the text in the label. Clicking btnTwo will not
only change the text but also display the MessageBox. Again the important thing to remember is that
there is no guarantee that the label text changes before the MessageBox appears, so be careful not to
write dependent code in the handlers.

You might have had to learn a lot of concepts to get this far, but the amount of coding you need to do in
the receiver is fairly trivial. Also bear in mind that you will find yourself writing event receivers a lot
more often than you write event senders. At least in the field of the Windows user interface, Microsoft
has already written all the event senders you are likely to need (these are in the .NET base classes, in the
Windows.Forms namespace).

Generating Events
Receiving events and responding to them is only one side of the story. In order to be really useful you
need the ability to generate events and raise them in your code. This example looks at creating, raising,
receiving, and optionally cancelling an event.

The example has a form raise an event that will be listened to by another class. When the event is raised
the receiving object will determine if the process should execute and then cancel the event if the process
cannot continue. The goal in this case is to determine whether the number of seconds of the current time
is greater than or less than 30. If the number of seconds is less than 30 then a property is set with a string
that represents the current time; if the number of seconds is greater then 30, then the event is cancelled
and the time string is set to an empty string.

The form used to generate the event has a button and a label on it. The code in the example download
has the button named btnRaise and the label is lblInfo; however, you can use any name you want for
your labels. After you have created the form and added the two controls you will be able to create the
event and the corresponding delegate. Add the following code in the class declaration section of the
form class:

public delegate void ActionEventHandler(object sender, ActionCancelEventArgs ev);
public static event ActionEventHandler Action;

So what exactly is going on with these two lines of code? First you are declaring a new delegate type of
ActionEventHandler. The reason that you have to create a new one and not use one of the predefined
delegates in the framework is that there will be a custom EventArgs class used. Remember the method
signature must match the delegate. So you now have a delegate to use, the next line actually defines the
event. In this case the Action event is defined, and the syntax for defining the event requires that you
specify the delegate that will be associated with the event. You can also use a delegate that is defined in
the framework. There are nearly 100 classes that are derived from the EventArgs class, so you might
find one that works for you. Again since a custom EventArgs class is used in this example, a new dele-
gate type has to be created that matches it.

182

Chapter 6

08 557599 Ch06.qxd 4/29/04 11:33 AM Page 182

The new EventArgs-based class, ActionCancelEventArgs is actually derived from CancelEventArgs
which is derived from EventArgs. CancelEventArgs adds the Cancel property. Cancel is a Boolean
that informs the sender object that the receiver wants to cancel or stop the event processing. In the
ActionCancelEventArgs class a Message property has been added. This is a string property that will
contain textual information on the processing state of the event. Here is the code for the
ActionCancelEventArgs class:

public class ActionCancelEventArgs : System.ComponentModel.CancelEventArgs
{

string _msg = “”;

public ActionCancelEventArgs() : base() {}

public ActionCancelEventArgs(bool cancel) : base(cancel) {}

public ActionCancelEventArgs(bool cancel, string message) : base(cancel)
{

_msg = message;
}

public string Message
{

get {return _msg;}
set {_msg = value;}

}
}

You can see that all an EventArgs-based class does is carry information about an event to and from the
sender and receiver. Most times the information used from the EventArgs class will be used by the
receiver object in the event handler. However, sometimes the event handler can add information into
the EventArgs class and it will be available to the sender. This is how the example will be using the
EventArgs class. Notice that there are a couple of constructors available in the EventArgs class. This
extra flexibility adds to the usability of the class by others.

At this point, an event has been declared, the delegate has been defined and the EventArgs class has been
created. The next thing that has to happen is that the event needs to be raised. The only thing that really
needs to be done is to make a call to the event with the proper parameters as shown in this example:

ActionCancelEventArgs ev = new CancelEventArgs();
Action(this, ev);

Simple enough. Create the new ActionCancelEventArgs class and pass it in as one of the parameters
to the event. However, there is one small problem. What if the event hasn’t been used anywhere yet.
What if an event handler has not yet been defined for the event. The Action event would actually be
null. If you tried to raise the event, you would get a null reference exception. If you wanted to derive a
new form class and use the form that has the Action event defined as the base, you would have to do
something else whenever the Action event is raised. Currently you would have to enable another event
handler in the derived form in order to get access to it. In order to make this process a little easier and to
catch the null reference error you have to create a method with the name OnEventName where

183

Delegates and Events

08 557599 Ch06.qxd 4/29/04 11:33 AM Page 183

EventName is the name of the event. In the example there is a method named OnAction. Here is the
complete code for the OnAction method.

protected void OnAction(object sender, ActionCancelEventArgs ev)
{

if(Action != null)
Action(sender, ev);

}

Not much to it but it does accomplish what is needed. By making the method protected then only
derived classes have access to it. You can also see that the event is tested against null before it is raised. If
you were to derive a new class that contains this method and event, you would have to override the
OnAction method and then you would be hooked into the event. To do this, you would have to call
base.OnAction() in the override. Otherwise the event would not be raised. This naming convention is
used throughout the .NET Framework and is documented in the .NET SDK documentation.

Notice the two parameters that are passed into the OnAction method. They should look familiar to you
since they are the same parameters that will need to be passed to the event. If the event would need to
be raised from another object other than the one that the method is defined in, then you would need to
make the accessor internal or public and not protected. Sometimes it makes sense to have a class that
consists of nothing but event declarations and that these events are called from other classes. You would
still want to create the OnEventName methods. However, in that case they might be static methods.

So now that the event has been raised, something needs to handle it. Create a new class in the project. In
this sample we called it BusEntity. Remember that the goal of this project is to check the seconds prop-
erty of the current time, and if it is less than 30, set a string value to the time and if it is greater than 30
set the string to :: and cancel the event. Here is the code:

using System;
using System.IO;
using System.ComponentModel;

namespace SimpleEvent
{

public class BusEntity
{

string _time = “”;

public BusEntity()
{

Form1.Action += new Form1.ActionEventHandler(Form1_Action);
}

private void Form1_Action(object sender, ActionCancelEventArgs ev)
{

ev.Cancel = !DoActions();
if(ev.Cancel)

ev.Message = “Wasn’t the right time.”;
}

private bool DoActions()
{

184

Chapter 6

08 557599 Ch06.qxd 4/29/04 11:33 AM Page 184

bool retVal = false;
DateTime tm = DateTime.Now;

if(tm.Second < 30)
{

_time = “The time is “ + DateTime.Now.ToLongTimeString();
retVal = true;

}
else

_time = “”;

return retVal;

}

public string TimeString
{

get {return _time;}
}

}
}

In the constructor the handler for the Form1.Action event is declared. Notice the syntax is very similar
to the Click event that we registered earlier. Since we used the same pattern for declaring the event the
usage syntax stays consistent as well. Something else that is worth mentioning at this point is how you
were able to get a reference to the Action event without having a reference to Form1 in the BusEntity
class. Remember in the Form1 class the Action event is declared static. This isn’t a requirement, but it
does make it easier to create the handler. You could have declared the event public, but then an instance
of Form1 would need to be referenced.

When we coded the event in the constructor, we called the method that was added to the delegate list
Form1_Action, in keeping with the naming standards. In the handler a decision on whether or not to
cancel the event needs to be done. The DoActions method returns a Boolean value based on the time
criteria that we described earlier. DoAction also sets the _time string to the proper value.

After the DoActions return value is set to the ActionCancelEventArgs Cancel property. Remember
that EventArg classes generally do not do anything other then carry values to and from the event
senders and receivers. If the event is cancelled (ev.Cancel = true), the Message property is also set
with a string value that describes why the event was cancelled.

Now if you look at the code in the btnRaise_Click event handler again you will be able to see how the
Cancel property is used.

private void btnRaise_Click(object sender, EventArgs e)
{

ActionCancelEventArgs cancelEvent = new ActionCancelEventArgs();
OnAction(this, cancelEvent);
if(cancelEvent.Cancel)

lblInfo.Text = cancelEvent.Message;
else

lblInfo.Text = _busEntity.TimeString;
}

185

Delegates and Events

08 557599 Ch06.qxd 4/29/04 11:33 AM Page 185

Note that the ActionCancelEventArgs object is created. Next the event Action is raised, passing in the
newly created ActionCancelEventArgs object. When the OnAction method is called and the event is
raised, the code in the Action event handler in the BusEntity object is executed. If there were other objects
that had registered for the Action event, they too would execute. Something to keep in mind is that if there
were other objects handling this event, they would all see the same ActionCancelEventArgs object. If
you needed to keep up with which object canceled the event and if more than one object canceled the
event, then you would need some type of list-based data structure in the ActionCancelEventArgs class.

After the handlers that have been registered with the event delegate have been executed, you can query
the ActionCancelEventArgs object to see if it has been canceled. If it has been cancelled, then lblInfo
will contain the Message property value. If the event has not been canceled, the lblInfo will show the
current time.

This should give you the basic idea of how you can utilize events and the EventArgs-based object in the
event to pass information around in your applications.

Summary
This chapter gave you the basics of delegates and events. We explained how to declare a delegate and
add methods to the delegate list. We also explained the process of declaring event handlers to respond to
an event, as well as how to create a custom event and use the patterns for raising the vent.

As a .NET developer, you will be using delegates and events extensively,, especially when developing
Windows Forms applications. Events are the means that the .NET developer has to monitor the various
Windows messages that occur while the application is executing. Otherwise you would have to monitor
the WndProc and catch the WM_MOUSEDOWN message instead of getting the mouse Click event for a
button.

The use of delegates and events in the design of a large application can reduce dependencies and the
coupling of layers. This allows you to develop components that have a higher reusability factor.

186

Chapter 6

08 557599 Ch06.qxd 4/29/04 11:33 AM Page 186

Memory Management
and Pointers

In this chapter we look at various aspects of memory management and memory access. Although
the runtime takes much of the responsibility for memory management away from the program-
mer, you must still understand how memory management works and know what to do when
working with unmanaged resources.

If you have a good understanding of memory management and knowledge of the pointer capabili-
ties provided by C#, you are also better positioned to integrate C# code with legacy code and per-
form highly efficient memory manipulation in performance-critical systems.

Specifically, this chapter discusses:

❑ How the runtime allocates space on the stack and the heap

❑ How garbage collection works

❑ How to use destructors and the System.IDisposable interface to ensure unmanaged
resources are released correctly

❑ The syntax for using pointers in C#

❑ How to use pointers to implement high-performance stack-based arrays

Memory Management under the Hood
One of the advantages of C# programming is that the programmer doesn’t need to worry about
detailed memory management; in particular the garbage collector deals with the problem of mem-
ory cleanup on your behalf. The result is that you get something that approximates the efficiency
of languages like C++ without the complexity of having to handle memory management yourself

09 557599 Ch07.qxd 4/29/04 11:30 AM Page 187

as you do in C++. However, although you don’t have to manage memory manually, if you need to write
efficient code, it still pays to understand what is going on behind the scenes. In this section we will take
a look at what happens in the computer’s memory when you allocate variables.

The precise details of much of the content of this section are undocumented. You should interpret this sec-
tion as a simplified guide to the general processes rather than as a statement of exact implementation.

Value Data Types
Windows uses a system known as virtual addressing, in which the mapping from the memory address
seen by your program to the actual location in hardware memory is entirely managed by Windows. The
result of this is that each process on a 32-bit processor sees 4GB of available memory, irrespective of how
much hardware memory you actually have in your computer (on 64-bit processors this number will be
greater). This 4GB of memory contains everything that is part of the program, including the executable
code, any DLLs loaded by the code, and the contents of all variables used when the program runs. This
4GB of memory is known as the virtual address space or virtual memory. For convenience we will continue
referring to it simply as memory.

Each memory location in the available 4GB is numbered starting from zero. To access a value stored at a
particular location in memory, you need to supply the number that represents that memory location. In
any compiled high-level language, including C#, Visual Basic, C++, and Java, the compiler converts human-
readable variable names into memory addresses that the processor understands.

Somewhere inside a process’ virtual memory is an area known as the stack. The stack stores value data
types that are not members of objects. In addition, when you call a method, the stack is used to hold a
copy of any parameters passed to the method. In order to understand how the stack works, we need to
understand the importance of variable scope in C#. It is always the case that if a variable a goes into
scope before variable b, then b will go out of scope first. Look at this code:

{
int a;
// do something
{

int b;
// do something else

}
}

First, a gets declared. Then, inside the inner code block, b gets declared. Then the inner code block termi-
nates and b goes out of scope, then a goes out of scope. So, the lifetime of b is entirely contained within
the lifetime of a. This idea that you always deallocate variables in the reverse order to how you allocate
them is crucial to the way that the stack works.

We don’t know exactly where in the address space the stack is—we don’t need to know for C# develop-
ment. A stack pointer (a variable maintained by the operating system) identifies the next free location on
the stack. When your program first starts running, the stack pointer will point to just past the end of the
block of memory that is reserved for the stack. The stack actually fills downward, from high memory
addresses to low addresses. As data is put on the stack, the stack pointer is adjusted accordingly, so it
always points to just past the next free location. This illustrated in Figure 7-1, which shows a stack pointer
with a value of 800000 (0xC3500 in hex) and the next free location is the address 799999.

188

Chapter 7

09 557599 Ch07.qxd 4/29/04 11:30 AM Page 188

Figure 7-1

In the following code we have instructed the compiler that we need space in memory to store an integer
and a double, and that these memory locations are to be referred to as nRacingCars and engineSize.
The line that declares each variable indicates the point at which we will start requiring access to this
variable, and the closing curly brace of the block in which the variables are declared identifies the point
at which both variables go out of scope.

{
int nRacingCars = 10;
double engineSize = 3000.0;
// do calculations;

}

Assuming we use the stack shown in Figure 7-1, when the variable nRacingCars comes into scope and
is assigned the value 10, the value 10 is placed in locations 799996 through 799999, the four bytes just
below the location pointed to by the stack pointer. (Four bytes because that’s how much memory is needed
to store an int.) To accommodate this, 4 is subtracted from the value of the stack pointer, so it now points
to the location 799996, just after the new first free location (799995).

The next line of code declares the variable engineSize (a double) and initializes it to the value 3000.0.
A double occupies 8 bytes, so the value 3000.0 will be placed in locations 799988 through 799995 on
the stack, and the stack pointer is decremented by 8, so that once again, it points just after the next free
location on the stack.

When engineSize goes out of scope, the computer knows that it is no longer needed. Due to the way vari-
able lifetimes are always nested, we can guarantee that, whatever else has happened while engineSize
was in scope, the stack pointer is now pointing to the location where engineSize is stored. To remove
engineSize from the stack, the stack pointer is incremented by 8, so that it now points to the location
immediately after the end of engineSize. At this point in our code, we are at the closing curly brace
and so nRacingCars also goes out of scope. The stack pointer gets incremented by 4. When another
variable comes into scope after engineSize and nRacingCars have been removed from the stack, it
would overwrite the memory descending from location 799999, where nRacingCars used to be stored.

If the compiler hits a line like int i, j, the order of coming into scope looks indeterminate. Both variables
are declared at the same time and go out of scope at the same time. In this situation, it doesn’t matter to
us in what order the two variables are removed from memory. The compiler internally always ensures
that the one that was put in memory first is removed last, thus preserving our rule about no crossover of
variable lifetimes.

Stack Pointer

Location

USED

FREE

800000

799999

799998

799997

189

Memory Management and Pointers

09 557599 Ch07.qxd 4/29/04 11:30 AM Page 189

Reference Data Types
While the stack gives very high performance, it is not flexible enough to be used for all variables. The
requirement that the lifetimes of variables must be nested is too restrictive for many purposes. Often,
you will want to use a method to allocate memory to store some data and be able to keep that data avail-
able long after that method has exited. This possibility exists whenever storage space is requested with
the new operator—as is the case for all reference types. That’s where the managed heap comes in.

If you have done any C++ coding that required low-level memory management, you will be familiar with
the heap. The managed heap is not quite the same as the heap C++ uses; the managed heap works under
the control of the garbage collector and provides significant benefits when compared to traditional heaps.

The managed heap (or heap for short) is just another area of memory from the process’s available 4GB. The
following code demonstrates how the heap works and how memory is allocated for reference data types:

void DoWork()
{

Customer arabel;
arabel = new Customer();
Customer mrJones = new Nevermore60Customer();

}

In this code, we have assumed the existence of two classes, Customer and Nevermore60Customer.
These classes are in fact taken from the Mortimer Phones examples in Appendix A (which is posted at
www.wrox.com).

First, we declare a Customer reference called arabel. The space for this will be allocated on the stack,
but remember that this is only a reference, not an actual Customer object. The arabel reference takes
up 4 bytes, enough space to hold the address at which a Customer object will be stored. (We need 4
bytes to represent a memory address as an integer value between 0 and 4GB.)

Then we get to the next line:

arabel = new Customer();

This line of code does several things. First, it allocates memory on the heap to store a Customer object (a
real object, not just an address). Then, it sets the value of the variable arabel to the address of the mem-
ory it has allocated to the new Customer object. (It also calls the appropriate Customer() constructor to
initialize the fields in the class instance, but we won’t worry about that here.)

The Customer instance is not placed on the stack—it is placed on the heap. In this example, we don’t know
precisely how many bytes a Customer object occupies, but let’s say for the sake of argument it is 32. These
32 bytes contain the instance fields of Customer as well as some information that .NET uses to identify and
manage its class instances.

To find a storage location on the heap for the new Customer object, the .NET runtime will look through
the heap and grab the first contiguous, unused block of 32 bytes. For the sake of argument, we will say
that this happens to be at address 200000, and that the arabel reference occupied locations 799996
through 799999 on the stack. This means that before instantiating the arabel object, the memory con-
tents will look similar to Figure 7-2.

190

Chapter 7

09 557599 Ch07.qxd 4/29/04 11:30 AM Page 190

Figure 7-2

After allocating the new Customer object, the contents of memory will look like Figure 7-3. Note that
unlike the stack, memory in the heap is allocated upwards, so the free space can be found above the
used space.

Figure 7-3

The next line of code both declares a Customer reference and instantiates a Customer object. In this
instance, space on the stack for the mrJones reference is allocated at the same time as the space for
mrJones object is allocated on the heap:

Customer mrJones = new Nevermore60Customer();

This line allocates 4 bytes on the stack to hold the mrJones reference, stored at locations 799992 through
799995 The mrJones object is allocated starting at location 200032.

It is clear from the example that the process of setting up a reference variable is more complex than that
for setting up a value variable, and there is a performance overhead. In fact we have somewhat oversim-
plified the process, since the .NET runtime needs to maintain information about the state of the heap, and
this information needs to be updated whenever new data is added to the heap. Despite these overheads,
we now have a mechanism for allocating variables that is not constrained by the limitations of the stack.
By assigning the value of one reference variable to another of the same type, you have two variables that
reference the same object in memory. When a reference variable goes out of scope, it is removed from the
stack as we described in the previous section, but the data for a referenced object is still sitting on the heap.

Stack Pointer

STACK

USED

799996-799999

arabel

FREE

HEAP

FREE

200032

200000-200031

arabel instance

199999

USED

Stack Pointer

STACK

USED

799996-799999

arabel

FREE

HEAP

FREE

200000

199999

USED

191

Memory Management and Pointers

09 557599 Ch07.qxd 4/29/04 11:30 AM Page 191

The data will remain on the heap until either the program terminates, or the garbage collector removes
it, which will only happen when it is no longer referenced by any variables.

That’s the power of reference data types, and you will see this feature used extensively in C# code. It means
that we have a high degree of control over the lifetime of our data, since it is guaranteed to exist in the heap
as long as we are maintaining some reference to it.

Garbage Collection
The previous discussion and diagrams show the managed heap working very much like the stack, to the
extent that successive objects are placed next to each other in memory. This means that we can work out
where to place the next object by using a heap pointer that indicates the next free memory location, and
which gets adjusted as we add more objects to the heap. However, things are complicated because the
lives of the heap-based objects are not coupled to the scope of the individual stack-based variables that
reference them.

When the garbage collector runs, it will remove all those objects from the heap that are no longer refer-
enced. Immediately after it has done this, the heap will have objects scattered on it, mixed up with mem-
ory that has just been freed (see Figure 7-4).

Figure 7-4

If the managed heap stayed like this, allocating space for new objects would be an awkward process,
with the runtime having to search through the heap for a block of memory big enough to store each new
object. However, the garbage collector doesn’t leave the heap in this state. As soon as the garbage collec-
tor has freed up all the objects it can, it compacts the heap by moving all remaining objects to form one
contiguous block of memory. This means that the heap can continue working just like the stack as far as
locating where to store new objects is concerned. Of course, when the objects are moved about, all the
references to those objects need to be updated with the correct new addresses, but the garbage collector
handles that too.

This action of compacting by the garbage collector is where the managed heap really works differently
from old unmanaged heaps. With the managed heap, it is just a question of reading the value of the heap

In use

Free

In use

In use

Free

192

Chapter 7

09 557599 Ch07.qxd 4/29/04 11:30 AM Page 192

pointer, rather than iterating through a linked list of addresses to find somewhere to put the new data.
For this reason, instantiating an object under .NET is much faster. Interestingly, accessing objects tends
to be faster too, since the objects are compacted towards the same area of memory on the heap, resulting
in less page swapping. Microsoft believes that these performance gains more than compensate for the
performance penalty that we get whenever the garbage collector needs to do some work to compact the
heap and change all those references to objects it has moved.

Generally, the garbage collector runs when the .NET runtime determines that a garbage collection is
required. You can force the garbage collector to run at a certain point in your code by calling System
.GC.Collect(). The System.GC class is a .NET class that represents the garbage collector, and the
Collect() method initiates a garbage collection. The GC class is intended for rare situations in which
you know that it’s a good time to call the garbage collector; for example, if you have just dereferenced a
large number of objects in your code. However, the logic of the garbage collector does not guarantee that
all unreferenced objects will be removed form the heap in a single garbage collection pass.

Freeing Unmanaged Resources
The presence of the garbage collector means that you will usually not worry about objects that you no
longer need; you will simply allow all references to those objects to go out of scope and allow the garbage
collector to free memory as required. However, the garbage collector does not know how to free unman-
aged resources (such as file handles, network connections, and database connections). When managed
classes encapsulate direct or indirect references to unmanaged resources, you need to make special pro-
vision to ensure the unmanaged resources are released when an instance of the class is garbage collected.

When defining a class, there are two mechanisms you can use to automate the freeing of unmanaged
resources. These mechanisms are often implemented together as each provides a slightly different
approach to the solution of the problem. The mechanisms are:

❑ Declaring a destructor (or finalizer) as a member of your class

❑ Implementing the System.IDisposable interface in your class

We will discuss each of these mechanisms in turn, and then look at how to implement them together for
best effect.

Destructors
We’ve seen that constructors allow you to specify actions that must take place whenever an instance of a
class is created. Conversely, destructors are called before an object is destroyed by the garbage collector.
Given this behavior, a destructor would initially seem like a great place to put code to free unmanaged
resources and perform a general cleanup. Unfortunately, things are not so straightforward.

Although we talk about destructors in C#, in the underlying .NET architecture, these are known as
finalizers. When you define a destructor in C#, what is emitted into the assembly by the compiler is
actually a method called Finalize(). That’s something that doesn’t affect any of your source code,
but you’ll need to be aware of the fact if you need to examine the contents of an assembly.

193

Memory Management and Pointers

09 557599 Ch07.qxd 4/29/04 11:30 AM Page 193

The syntax for a destructor will be familiar to C++ developers. It looks like a method, with the same
name as the containing class, but prefixed with a tilde (~). It has no return type, and takes no parameters
and no access modifiers. Here is an example:

class MyClass
{

~MyClass()
{

// implementation
}

}

When the C# compiler compiles a destructor, it implicitly translates the destructor code to the equivalent
of a Finalize() method that ensures the Finalize() method of the parent class is executed. The follow-
ing example shows the C# code equivalent to the IL that the compiler would generate for the ~MyClass
destructor:

protected override void Finalize()
{

try
{

// implementation
}
finally
{

base.Finalize();
}

}

As shown, the code implemented in the ~MyClass destructor is wrapped in a try block contained in
the Finalize() method. A call to the parent’s Finalize() method is ensured by placing the call in a
finally block. We discuss try and finally blocks in Chapter 11.

Experienced C++ developers make extensive use of destructors, and sometimes not only to clean up
resources, but also to provide debugging information or perform other tasks. C# destructors are used far
less than their C++ equivalents. The problem with C# destructors when compared with their C++ coun-
terparts is that they are non deterministic. When a C++ object is destroyed, its destructor runs immedi-
ately. However, because of the way the garbage collector works, there is no way to know when an object’s
destructor will actually execute. Hence, you cannot place any code in the destructor that relies on being
run at a certain time, and you shouldn’t rely on the destructor being called for different class instances in
any particular order. When your object is holding scarce and critical resources need to be freed as soon
as possible, you don’t want to wait for garbage collection.

Another problem is that the implementation of a destructor delays the final removal of an object from
memory. Objects that do not have a destructor get removed from memory in one pass of the garbage collec-
tor, but objects that have destructors require two passes to be destroyed: the first one calls the destructor
without removing the object, the second actually deletes the object. In addition, the runtime uses a single
thread to execute the Finalize() methods of all objects. If you use destructors frequently, and use them
to execute lengthy cleanup tasks, the impact on performance can be noticeable.

194

Chapter 7

09 557599 Ch07.qxd 4/29/04 11:30 AM Page 194

The IDisposable Interface
The recommended alternative to using a destructor is using the System.IDisposable interface. The
IDisposable interface defines a pattern (with language-level support) that provides a deterministic
mechanism for freeing unmanaged resources and avoids the garbage collector–related problems inher-
ent with destructors. The IDisposable interface declares a single method named Dispose(), which
takes no parameters and returns void. Here is an implementation for MyClass:

class MyClass : IDisposable
{

public void Dispose()
{

// implementation
}

}

The implementation of Dispose() should explicitly free all unmanaged resources used directly by an
object and call Dispose() on any encapsulated objects that also implement the IDisposable interface.
In this way, the Dispose() method provides precise control over when unmanaged resources are freed.

Suppose we have a class named ResourceGobbler, which relies on the use of some external resource and
implements IDisposable. If we want to instantiate an instance of this class, use it, and then dispose of it,
we could do it like this:

ResourceGobbler theInstance = new ResourceGobbler();

// do your processing

theInstance.Dispose();

Unfortunately, this code fails to free the resources consumed by theInstance if an exception occurs dur-
ing processing, and so we should write the code as follows using a try block (which we discuss fully in
Chapter 11):

ResourceGobbler theInstance = null;

try
{

theInstance = new ResourceGobbler();

// do your processing
}
finally
{

if (theInstance != null) theInstance.Dispose();
}

This version ensures that Dispose() is always called on theInstance and that any resources consumed
by it are always freed, even if an exception occurs during processing. However, it would make for con-
fusing code if you always had to repeat such a construct. C# offers a syntax that you can use to guarantee
that Dispose() will automatically be called against an object that implements IDisposable when its
reference goes out of scope. The syntax to do this involves the using keyword—though now in a very

195

Memory Management and Pointers

09 557599 Ch07.qxd 4/29/04 11:30 AM Page 195

different context, which has nothing to do with namespaces. The following code generates IL code equiva-
lent to the try block just shown:

using (ResourceGobbler theInstance = new ResourceGobbler())
{

// do your processing
}

The using statement, followed in brackets by a reference variable declaration and instantiation, will cause
that variable to be scoped to the accompanying statement block. In addition, when that variable goes out
of scope, its Dispose() method will be called automatically, even if exceptions occur. If you are already
using try blocks to catch other exceptions, it is cleaner and avoids additional code indentation if you
avoid the using statement and simply call Dispose() in the Finally clause of the existing try block.

For some classes, the notion of a Close() method is more logical than Dispose(); for example, when
dealing with files or database connections. In these cases it is common to implement the IDisposable
interface and then implement a separate Close() method that simply calls Dispose(). This approach
provides clarity in the use of your classes, but also supports the using statement provided by C#.

Implementing IDisposable and a Destructor
In the previous sections we discussed two alternatives for freeing unmanaged resources used by the classes
you create:

❑ The execution of a destructor is enforced by the runtime but is nondeterministic and places an
unacceptable overhead on the runtime because of the way garbage collection works.

❑ The IDisposable interface provides a mechanism that allows users of a class to control when
resources are freed, but requires discipline to ensure that Dispose() is called.

In general, the best approach is to implement both mechanisms in order to gain the benefits of both while
overcoming their limitations. You implement IDisposable on the assumption that most programmers
will call Dispose() correctly, but implement a destructor as a safety mechanism in case Dispose() is not
called. Here is an example of a dual implementation:

public class ResourceHolder : IDisposable
{

private bool isDisposed = false;

public void Dispose()
{

Dispose(true);
GC.SuppressFinalize(this);

}

protected virtual void Dispose(bool disposing)
{

if (!isDisposed)
{

if (disposing)
{

196

Chapter 7

09 557599 Ch07.qxd 4/29/04 11:30 AM Page 196

// Cleanup managed objects by calling their
// Dispose() methods.

}
// Cleanup unmanaged objects

}
isDisposed = true;

}

~ResourceHolder()
{

Dispose (false);
}

}

You can see from this code that there is a second protected overload of Dispose(), which takes one
bool parameter—and this is the method that does all cleaning up. Dispose(bool) is called by both the
destructor and by IDisposable.Dispose(). The point of this approach is to ensure that all cleanup
code is in one place.

The parameter passed to Dispose(bool) indicates whether Dispose(bool) has been invoked by the
destructor or by IDisposable.Dispose()—Dispose(bool) should not be invoked from anywhere
else in your code. The idea is this:

❑ If a consumer calls IDisposable.Dispose(), then that consumer is indicating that all managed
and unmanaged resources associated with that object should be cleaned up.

❑ If a destructor has been invoked, then all resources still need to be cleaned up. However, in this
case, we know that the destructor must have been called by the garbage collector and we should
not attempt to access other managed objects because we can no longer be certain of their state.
In this situation, the best we can do is clean up the known unmanaged resources, and hope that
any referenced managed objects also have destructors that will perform their own cleaning up.

The isDisposed member variable indicates whether the object has already been disposed and allows
us to ensure we do not try to dispose of member variables more than once. This simplistic approach is
not thread-safe and depends on the caller ensuring only one thread is calling the method concurrently.
Requiring a consumer to enforce synchronization is a reasonable assumption and one that is used repeat-
edly throughout the .NET class libraries (in the Collection classes for example). We discuss threading and
synchronization in Chapter 15.

Finally, IDisposable.Dispose() contains a call to the method System.GC.SuppressFinalize(). GC
is the class that represents the garbage collector, and the SuppressFinalize() method tells the garbage
collector that a class no longer needs to have its destructor called. Since our implementation of Dispose()
has already done all the cleanup required, there’s nothing left for the destructor to do. Calling Suppress
Finalize() means that the garbage collector will treat that object as if it doesn’t have a destructor at all.

Unsafe Code
As we have just seen, C# is very good at hiding much of the basic memory management from the devel-
oper, thanks to the garbage collector and the use of references. However, there are cases in which you will
want direct access to memory. For example, you might want to access a function in an external (non-.NET)

197

Memory Management and Pointers

09 557599 Ch07.qxd 4/29/04 11:30 AM Page 197

DLL that requires a pointer to be passed as a parameter (as many Windows API functions do), or possibly
for performance reasons. In this section, we will examine C#’s facilities that provide direct access to the
contents of memory.

Pointers
Although we are introducing pointers as if they are a new topic, in reality pointers are not new to us at
all. We have been using references freely in our code, and a reference is simply a type-safe pointer. We
have already seen how variables that represent objects and arrays actually store the address in memory
of where the corresponding data (the referent) is stored. A pointer is simply a variable that stores the
address of something else in the same way as a reference. The difference is that C# does not allow you
direct access to the address contained in a reference variable. With a reference, the variable is treated
syntactically as if it stores the actual contents of the referent.

C# references are designed to make the language simpler to use, and to prevent you from inadvertently
doing something that corrupts the contents of memory. With a pointer, on the other hand, the actual mem-
ory address is available to you. This gives you a lot of power to perform new kinds of operations. For
example, you can add 4 bytes to the address, so that you can examine or even modify whatever data
happens to be stored 4 bytes further on.

There are two main reasons for using pointers:

❑ Backwards compatibility—Despite all of the facilities provided by the .NET runtime, it is still
possible to call native Windows API functions, and for some operations, this may be the only
way to accomplish your task. These API functions are generally written in C and often require
pointers as parameters. However, in many cases it is possible to write the DllImport declara-
tion in a way that avoids use of pointers, for example, by using the System.IntPtr class.

❑ Performance—On those occasions where speed is of the utmost importance, pointers can pro-
vide a route to optimized performance. Provided you know what you are doing, you can ensure
that data is accessed or manipulated in the most efficient way. However, be aware that more often
than not, there are other areas of your code where you can make the necessary performance
improvements without resorting to using pointers. Try using a code profiler to look for the bot-
tlenecks in your code—one comes with Visual Studio .NET.

Low-level memory access comes at a price. The syntax for using pointers is more complex than that for
reference types and pointers are unquestionably more difficult to use correctly. You need good program-
ming skills and an excellent ability to think carefully and logically about what your code is doing in order
to use pointers successfully. If you are not careful, it is very easy to introduce subtle, difficult to find bugs
into your program using pointers. For example, it is easy to overwrite other variables, cause stack over-
flows, access areas of memory that don’t store any variables, or even overwrite information about your
code that is needed by the .NET runtime, thereby crashing your program.

In addition, if you use pointers your code must be granted a high level of trust by the code access secu-
rity mechanism or it will not be allowed to execute. Under the default code access security policy, this is
only possible if your code is running on the local machine. If your code must be run from a remote loca-
tion, such as the Internet, users must grant your code additional permissions for it to work. Unless the
user trusts you and your code, they are unlikely to grant these permissions. We discuss code access secu-
rity more in Chapter 14.

198

Chapter 7

09 557599 Ch07.qxd 4/29/04 11:30 AM Page 198

Despite these issues, pointers remain a very powerful and flexible tool in the writing of efficient code
and are worth learning about.

We strongly advise against using pointers unnecessarily because your code will not only be harder to
write and debug, but it will also fail the memory type-safety checks imposed by the CLR, which we dis-
cussed in Chapter 1.

Writing unsafe code
Due to the risks associated with pointers, C# only allows the use of pointers in blocks of code that you
have specifically marked for this purpose. The keyword to do this is unsafe. You can mark an individ-
ual method as being unsafe like this:

unsafe int GetSomeNumber()
{

// code that can use pointers
}

Any method can be marked as unsafe, irrespective of what other modifiers have been applied to it (for
example, static methods, or virtual methods). In the case of methods, the unsafe modifier applies
to the method’s parameters, allowing you to use pointers as parameters. You can also mark an entire
class or struct as unsafe, which means that all of its members are assumed to be unsafe:

unsafe class MyClass
{

// any method in this class can now use pointers
}

Similarly, you can mark a member as unsafe:

class MyClass
{

unsafe int *pX; // declaration of a pointer field in a class
}

Or you can mark a block of code within a method as unsafe:

void MyMethod()
{

// code that doesn’t use pointers
unsafe
{

// unsafe code that uses pointers here
}
// more ‘safe’ code that doesn’t use pointers

}

Note, however, that you cannot mark a local variable by itself as unsafe:

int MyMethod()
{

unsafe int *pX; // WRONG
}

199

Memory Management and Pointers

09 557599 Ch07.qxd 4/29/04 11:30 AM Page 199

If you want to use an unsafe local variable, you will need to declare and use it inside a method or block
that is unsafe. There is one more step before you can use pointers. The C# compiler rejects unsafe code
unless you tell it that your code includes unsafe blocks. The flag to do this is unsafe. Hence, to compile
a file named MySource.cs that contains unsafe blocks (assuming no other compiler options), the com-
mand is:

csc /unsafe MySource.cs

or:

csc –unsafe MySource.cs

If you are using Visual Studio .NET, you will find the option to compile unsafe code in the project prop-
erties. For the Visual Studio .NET versions of the downloadable samples in this section, you will find
that we have already set the unsafe compilation option.

Pointer syntax
Once you have marked a block of code as unsafe, you can declare a pointer using this syntax:

int* pWidth, pHeight;
double* pResult;
byte*[] pFlags;

This code declares four variables: pWidth and pHeight are pointers to integers, pResult is a pointer to
a double, and pFlags is an array of pointers to bytes. It is common practice to use the prefix p in front
of names of pointer variables to indicate that they are pointers. When used in a variable declaration, the
symbol * indicates that you are declaring a pointer, in other words, something that stores the address of
a variable of the specified type.

C++ developers should be aware of the syntax difference between C++ and C#. The C# statement int*
pX, pY; corresponds to the C++ statement int *pX, *pY;. In C#, the * symbol is associated with
the type rather than the variable name.

Once you have declared variables of pointer types, you can use them in the same way as normal variables,
but first you need to learn two more operators:

❑ & means take the address of, and converts a value data type to a pointer, for example int to *int.
This operator is known as the address operator.

❑ * means get the contents of this address, and converts a pointer to a value data type (for example,
*float to float). This operator is known as the indirection operator (or sometimes as the derefer-
ence operator).

You will see from these definitions that & and * have the opposite effect to one another.

You might be wondering how it is possible to use the symbols & and * in this manner, since these symbols
also refer to the operators of bitwise AND (&) and multiplication (*). Actually, it is always possible for
both you and the compiler to know what is meant in each case, because with the new pointer meanings,
these symbols always appear as unary operators—they only act on one variable and appear in front of
that variable in your code. On the other hand, bitwise AND and multiplication are binary operators—
they require two operands.

200

Chapter 7

09 557599 Ch07.qxd 4/29/04 11:30 AM Page 200

The following code shows examples of how to use these operators:

int x = 10;
int* pX, pY;
pX = &x;
pY = pX;
*pY = 20;

We start off by declaring an integer, x, followed by two pointers to integers, pX and pY. We then set pX to
point to x (in other words, we set the contents of pX to be the address of x). Then we assign the value of
pX to pY, so that pY also points to x. Finally, in the statement *pY = 20, we assign the value 20 as the con-
tents of the location pointed to by pY—in effect changing x to 20 since pY happens to point to x. Note
that there is no particular connection between the variables pY and x. It’s just that at the present time, pY
happens to point to the memory location at which x is held.

To get a better understanding of what is going on, consider that the integer x is stored at memory locations
0x12F8C4 through 0x12F8C7 (1243332 to 1243335 in decimal) on the stack (there are 4 locations because
an int occupies 4 bytes). Since the stack allocates memory downward, this means that the variables pX will
be stored at locations 0x12F8C0 to 0x12F8C3, and pY will end up at locations 0x12F8BC to 0x12F8BF.
Note that pX and pY also occupy 4 bytes each. That is not because an int occupies 4 bytes. It’s because on a
32-bit processor you need 4 bytes to store an address. With these addresses, after executing the previous
code, the stack will look like Figure 7-5.

Figure 7-5

Although we have illustrated this process with integers, which will be stored consecutively on the stack
on a 32-bit processor, this doesn’t happen for all data types. The reason is that 32-bit processors work
best retrieving data from memory in 4-byte chunks. Memory on such machines tends to be divided into
4-byte blocks, and each block is sometimes known under Windows as a DWORD because this was the
name of a 32-bit unsigned int in pre-.NET days. It is most efficient to grab DWORDs from memory—
storing data across DWORD boundaries normally gives a hardware performance hit. For this reason,
the .NET runtime normally pads out data types so that the memory they occupy is a multiple of 4. For
example, a short occupies 2 bytes, but if a short is placed on the stack, the stack pointer will still be decre-
mented by 4, not 2, so that the next variable to go on the stack will still start at a DWORD boundary.

x=20 (=0x14)

pX=0x12F8C4

pY=012F8C4

0x12F8C4-0x12F8C7

0x12F8C0-0x12F8C3

0x12F8BC-0x12F8BF

201

Memory Management and Pointers

09 557599 Ch07.qxd 4/29/04 11:30 AM Page 201

You can declare a pointer to any value type, in other words, any of the predefined types uint, int, byte,
and so on, or to a struct. However, it is not possible to declare a pointer to a class or array; this is because
doing so could cause problems for the garbage collector. In order to work properly, the garbage collector
needs to know exactly what class instances have been created on the heap, and where they are, but if your
code started manipulating classes using pointers, you could very easily corrupt the information on the
heap concerning classes that the .NET runtime maintains for the garbage collector. In this context, any
data type that the garbage collector can access is known as a managed type. Pointers can only be declared
as unmanaged types since the garbage collector cannot deal with them.

Casting pointers to integer types
Since a pointer really stores an integer that represents an address, you won’t be surprised to know that
the address in any pointer can be converted to or from any integer type. Pointer-to-integer-type conver-
sions must be explicit. Implicit conversions are not available for such conversions. For example, it is per-
fectly legitimate to write the following:

int x = 10;
int* pX, pY;
pX = &x;
pY = pX;
*pY = 20;
uint y = (uint)pX;
int* pD = (int*)y;

The address held in the pointer pX is cast to a uint and stored in the variable y. We have then cast y
back to an int* and stored it in the new variable pD. Hence, now pD also points to the value of x.

The primary reason for casting a pointer value to an integer type is in order to display it. The Console.
Write() and Console.WriteLine() methods do not have any overloads that can take pointers, but
will accept and display pointer values that have been cast to integer types:

Console.WriteLine(“Address is “ + pX); // wrong -- will give a
// compilation error

Console.WriteLine(“Address is “ + (uint)pX); // OK

You can cast a pointer to any of the integer types. However, since an address occupies 4 bytes on 32-bit
systems, casting a pointer to anything other than a uint, long, or ulong is almost certain to lead to over-
flow errors. (An int causes problems because its range is from roughly -2 billion to 2 billion, whereas
an address runs from zero to about 4 billion.) When C# is released for 64-bit processors, an address will
occupy 8 bytes. Hence, on such systems, casting a pointer to anything other than ulong is likely to lead to
overflow errors. It is also important to be aware that the checked keyword does not apply to conversions
involving pointers. For such conversions, exceptions will not be raised when overflows occur, even in a
checked context. The .NET runtime assumes that if you are using pointers you know what you are doing
and not worried about possible overflows.

Casting between pointer types
You can also explicitly convert between pointers pointing to different types. For example:

byte aByte = 8;
byte* pByte= &aByte;
double* pDouble = (double*)pByte;

202

Chapter 7

09 557599 Ch07.qxd 4/29/04 11:30 AM Page 202

This is perfectly legal code, though again, if you try something like this, be careful. In the previous exam-
ple, if we look up the double pointed to by pDouble, we will actually be looking up some memory that
contains a byte, combined with some other memory, and treating it as if this area of memory contained a
double, which won’t give a meaningful value. However, you might want to convert between types in
order to implement a union, or you might want to cast pointers to other types into pointers to sbyte
in order to examine individual bytes of memory.

void pointers
If you want to maintain a pointer, but do not want to specify what type of data it points to, you can declare
it as a pointer to a void:

int* pointerToInt;
void* pointerToVoid;
pointerToVoid = (void*)pointerToInt;

The main use of this is if you need to call an API function that requires void* parameters. Within the C#
language, there isn’t a great deal that you can do using void pointers. In particular, the compiler will flag
an error if you attempt to dereference a void pointer using the * operator.

Pointer arithmetic
It is possible to add or subtract integers to and from pointers. However, the compiler is quite clever about
how it arranges for this to be done. For example, suppose you have a pointer to an int, and you try to
add 1 to its value. The compiler will assume you actually mean you want to look at the memory location
following the int, and hence will increase the value by 4 bytes—the size of an int. If it is a pointer to a
double, adding 1 will actually increase the value of the pointer by 8 bytes, the size of a double. Only if
the pointer points to a byte or sbyte (1 byte each) will adding 1 to the value of the pointer actually change
its value by 1.

You can use the operators +, -, +=, -=, ++, and — with pointers, with the variable on the right-hand side
of these operators being a long or ulong.

It is not permitted to carry out arithmetic operations on void pointers.

For example, let’s assume these definitions:

uint u = 3;
byte b = 8;
double d = 10.0;
uint* pUint= &u; // size of a uint is 4
byte* pByte = &b; // size of a byte is 1
double* pDouble = &d; // size of a double is 8

Next, let’s assume the addresses to which these pointers point are:

❑ pUint: 1243332

❑ pByte: 1243328

❑ pDouble: 1243320

203

Memory Management and Pointers

09 557599 Ch07.qxd 4/29/04 11:30 AM Page 203

Then execute this code:

++pUint; // adds (1*4) = 4 bytes to pUint
pByte -= 3; // subtracts (3*1) = 3 bytes from pByte
double* pDouble2 = pDouble + 4; // pDouble2 = pDouble + 32 bytes (4*8 bytes)

The pointers now contain:

❑ pUint: 1243336

❑ pByte: 1243325

❑ pDouble2: 1243352

You need to be aware of the previous rule. If successive values of a given type are stored in successive
memory locations, then pointer addition works very well to allow you to move pointers between mem-
ory locations. If you are dealing with types such as byte or char though, whose sizes are not multiples
of 4, successive values will not by default be stored in successive memory locations.

You can also subtract one pointer from another pointer, provided both pointers point to the same data
type. In this case, the result is a long whose value is given by the difference between the pointer values
divided by the size of the type that they represent:

double* pD1 = (double*)1243324; // note that it is perfectly valid to
// initialize a pointer like this.

double* pD2 = (double*)1243300;
long L = pD1-pD2; // gives the result 3 (=24/sizeof(double))

The sizeof operator
Throughout this section, we have been referring to the sizes of various data types. If you need to use the
size of a type in your code, you can use the sizeof operator, which takes the name of a data type as a
parameter, and returns the number of bytes occupied by that type. For example:

int x = sizeof(double);

This will set x to the value 8.

The advantage of using sizeof is that you don’t have to hardcode data type sizes in your code, making
your code more portable. For the predefined data types, sizeof returns the following values:

sizeof(sbyte) = 1; sizeof(byte) = 1;

sizeof(short) = 2; sizeof(ushort) = 2;

sizeof(int) = 4; sizeof(uint) = 4;

The general rule is that adding a number X to a pointer to type T with value P gives
the result P + X*(sizeof(T)).

204

Chapter 7

09 557599 Ch07.qxd 4/29/04 11:30 AM Page 204

sizeof(long) = 8; sizeof(ulong) = 8;

sizeof(char) = 2; sizeof(float) = 4;

sizeof(double) = 8; sizeof(bool) = 1;

You can also use sizeof for structs that you define yourself, though in that case, the result depends on
what fields are in the struct. You cannot use sizeof for classes, and it can only be used in an unsafe
code block.

Pointers to structs: The pointer member access operator
Pointers to structs work in exactly the same way as pointers to the predefined value types. There is, how-
ever, one condition—the struct must not contain any reference types. This is due to the restriction we
mentioned earlier that pointers cannot point to any reference types. To avoid this, the compiler will flag
an error if you create a pointer to any struct that contains any reference types.

Suppose we had a struct defined like this:

struct MyStruct
{

public long X;
public float F;

}

We could define a pointer to it like this:

MyStruct* pStruct;

Then we could initialize it like this:

MyStruct Struct = new MyStruct();
pStruct = &Struct;

It is also possible to access member values of a struct through the pointer:

(*pStruct).X = 4;
(*pStruct).F = 3.4f;

However, this syntax is a bit complex. For this reason, C# defines another operator that allows you to
access members of structs through pointers using a simpler syntax. It is known as the pointer member
access operator, and the symbol is a dash followed by a greater than sign, so it looks like an arrow: ->.

C++ developers will recognize the pointer member access operator, since C++ uses the same symbol for
the same purpose.

Using the pointer member access operator, the previous code can be rewritten:

pStruct->X = 4;
pStruct->F = 3.4f;

205

Memory Management and Pointers

09 557599 Ch07.qxd 4/29/04 11:30 AM Page 205

You can also directly set up pointers of the appropriate type to point to fields within a struct:

long* pL = &(Struct.X);
float* pF = &(Struct.F);

or, equivalently:

long* pL = &(pStruct->X);
float* pF = &(pStruct->F);

Pointers to class members
We have indicated that it is not possible to create pointers to classes. That’s because the garbage collector
does not maintain any information about pointers, only about references, so creating pointers to classes
could cause garbage collection to not work properly.

However, most classes do contain value type members, and you might wish to create pointers to them.
This is possible, but requires a special syntax. For example, suppose we rewrite our struct from our pre-
vious example as a class:

class MyClass
{

public long X;
public float F;

}

Then you might want to create pointers to its fields, X and F, in the same way as we did earlier. Unfortu-
nately, doing so will produce a compilation error:

MyClass myObject = new MyClass();
long* pL = &(myObject.X); // wrong -- compilation error
float* pF = &(myObject.F); // wrong -- compilation error

Although X and F are unmanaged types, they are embedded in an object, which sits on the heap. During
garbage collection, the garbage collector might move MyObject to a new location, which would leave pL
and pF pointing to the wrong memory addresses. Because of this the compiler will not let you assign
addresses of members of managed types to pointers in this manner.

The solution is to use the fixed keyword, which tells the garbage collector that there may be pointers ref-
erencing members of certain objects, and so those objects must not be moved. The syntax for using fixed
looks like this if we just want to declare one pointer:

MyClass myObject = new MyClass();

fixed (long* pObject = &(myObject.X))
{

// do something
}

We define and initialize the pointer variable in the brackets following the keyword fixed. This pointer
variable (pObject in the example) is scoped to the fixed block identified by the curly braces. In doing
this, the garbage collector knows not to move the myObject object while the code inside the fixed block
is executing.

206

Chapter 7

09 557599 Ch07.qxd 4/29/04 11:30 AM Page 206

If you want to declare more than one pointer, you can place multiple fixed statements before the same
code block:

MyClass myObject = new MyClass();

fixed (long* pX = &(myObject.X))
fixed (float* pF = &(myObject.F))
{

// do something
}

You can nest entire fixed blocks if you want to fix several pointers for different periods:

MyClass myObject = new MyClass();

fixed (long* pX = &(myObject.X))
{

// do something with pX
fixed (float* pF = &(myObject.F))
{

// do something else with pF
}

}

You can also initialize several variables within the same fixed block, provided they are of the same type:

MyClass myObject = new MyClass();
MyClass myObject2 = new MyClass();
fixed (long* pX = &(myObject.X), pX2 = &(myObject2.X))
{

// etc.

In all these cases, it is immaterial whether the various pointers you are declaring point to fields in the
same or different objects or to static fields not associated with any class instance.

Pointer Example: PointerPlayaround
We are now ready to present an example that uses pointers. The following code is a sample named Pointer-
Playaround. It does some simple pointer manipulation and displays the results, allowing us to see what is
happening in memory and where variables are stored:

using System;

namespace Wrox.ProCSharp.Chapter07
{

class MainEntryPoint
{

static unsafe void Main()
{

int x=10;
short y = -1;
byte y2 = 4;

207

Memory Management and Pointers

09 557599 Ch07.qxd 4/29/04 11:30 AM Page 207

double z = 1.5;
int* pX = &x;
short* pY = &y;
double* pZ = &z;

Console.WriteLine(
“Address of x is 0x{0:X}, size is {1}, value is {2}”,
(uint)&x, sizeof(int), x);

Console.WriteLine(
“Address of y is 0x{0:X}, size is {1}, value is {2}”,
(uint)&y, sizeof(short), y);

Console.WriteLine(
“Address of y2 is 0x{0:X}, size is {1}, value is {2}”,
(uint)&y2, sizeof(byte), y2);

Console.WriteLine(
“Address of z is 0x{0:X}, size is {1}, value is {2}”,
(uint)&z, sizeof(double), z);

Console.WriteLine(
“Address of pX=&x is 0x{0:X}, size is {1}, value is 0x{2:X}”,
(uint)&pX, sizeof(int*), (uint)pX);

Console.WriteLine(
“Address of pY=&y is 0x{0:X}, size is {1}, value is 0x{2:X}”,
(uint)&pY, sizeof(short*), (uint)pY);

Console.WriteLine(
“Address of pZ=&z is 0x{0:X}, size is {1}, value is 0x{2:X}”,
(uint)&pZ, sizeof(double*), (uint)pZ);

*pX = 20;
Console.WriteLine(“After setting *pX, x = {0}”, x);
Console.WriteLine(“*pX = {0}”, *pX);

pZ = (double*)pX;
Console.WriteLine(“x treated as a double = {0}”, *pZ);

Console.ReadLine();
}

}
}

This code declares three value variables:

❑ An int x

❑ A short y

❑ A double z

It also declares pointers to these values: pX, pY, and pZ.

Next, we display the values of these variables as well as their sizes and addresses. Note that in taking the
address of pX, pY, and pZ, we are effectively looking at a pointer to a pointer—an address of an address
of a value. Notice that, in accordance with the usual practice when displaying addresses, we have used
the {0:X} format specifier in the Console.WriteLine() commands to ensure that memory addresses
are displayed in hexadecimal format.

208

Chapter 7

09 557599 Ch07.qxd 4/29/04 11:30 AM Page 208

Finally, we use the pointer pX to change the value of x to 20 and do some pointer casting to see what
happens if we try to treat the content of x as if it were a double.

Compiling and running this code results in this output. In this screen output we have demonstrated the
effects of attempting to compile both with and without the /unsafe flag:

csc PointerPlayaround.cs
Microsoft (R) Visual C# .NET Compiler version 7.10.3052.4
for Microsoft (R) .NET Framework version 1.1.4322
Copyright (C) Microsoft Corporation 2001-2002. All rights reserved.

PointerPlayaround.cs(7,26): error CS0227: Unsafe code may only appear if
compiling with /unsafe

csc /unsafe PointerPlayaround.cs
Microsoft (R) Visual C# .NET Compiler version 7.10.3052.4
for Microsoft (R) .NET Framework version 1.1.4322
Copyright (C) Microsoft Corporation 2001-2002. All rights reserved.

PointerPlayaround
Address of x is 0x12F8C4, size is 4, value is 10
Address of y is 0x12F8C0, size is 2, value is -1
Address of y2 is 0x12F8BC, size is 1, value is 4
Address of z is 0x12F8B4, size is 8, value is 1.5
Address of pX=&x is 0x12F8B0, size is 4, value is 0x12F8C4
Address of pY=&y is 0x12F8AC, size is 4, value is 0x12F8C0
Address of pZ=&z is 0x12F8A8, size is 4, value is 0x12F8B4
After setting *pX, x = 20
*pX = 20
x treated as a double = 2.63837073472194E-308

Checking through these results confirms our description of how the stack operates, which we gave in the
Memory Management under the Hood section, earlier in this chapter. It allocates successive variables mov-
ing downward in memory. Notice how it also confirms that blocks of memory on the stack are always
allocated in multiples of 4 bytes. For example, y is a short (of size 2), and has the address 1243328, indi-
cating that the memory locations reserved for it are locations 1243328 through 1243331. If the .NET
runtime had been strictly packing variables up next to each other, then Y would have occupied just two
locations, 1243328 and 1243329.

Adding classes and structs to our example
In this section, we will illustrate pointer arithmetic, as well as pointers to structs and class members, using
a second example, which we will call PointerPlayaround2. To start off, we will define a struct named
CurrencyStruct, which represents a currency value as dollars and cents. We also define an equivalent
class named CurrencyClass:

struct CurrencyStruct
{

public long Dollars;
public byte Cents;

public override string ToString()
{

209

Memory Management and Pointers

09 557599 Ch07.qxd 4/29/04 11:30 AM Page 209

return “$” + Dollars + “.” + Cents;
}

}

class CurrencyClass
{

public long Dollars;
public byte Cents;

public override string ToString()
{

return “$” + Dollars + “.” + Cents;
}

}

Now that we have our struct and class defined, we can apply some pointers to them. Here is the code for
the new example. Since the code is fairly long, we will go through it in detail. We start off by displaying the
size of CurrencyStruct, creating a couple of CurrencyStruct instances and creating some Currency
Struct pointers. We use the pAmount pointer to initialize the members of the amount1 CurrencyStruct,
and then display the addresses of our variables:

public static unsafe void Main()
{

Console.WriteLine(
“Size of CurrencyStruct struct is “ + sizeof(CurrencyStruct));

CurrencyStruct amount1, amount2;
CurrencyStruct* pAmount = &amount1;
long* pDollars = &(pAmount->Dollars);
byte* pCents = &(pAmount->Cents);

Console.WriteLine(“Address of amount1 is 0x{0:X}”, (uint)&amount1);
Console.WriteLine(“Address of amount2 is 0x{0:X}”, (uint)&amount2);
Console.WriteLine(“Address of pAmount is 0x{0:X}”, (uint)&pAmount);
Console.WriteLine(“Address of pDollars is 0x{0:X}”, (uint)&pDollars);
Console.WriteLine(“Address of pCents is 0x{0:X}”, (uint)&pCents);
pAmount->Dollars = 20;
*pCents = 50;
Console.WriteLine(“amount1 contains “ + amount1);

Now we do some pointer manipulation that relies on our knowledge of how the stack works. Due to the
order in which the variables were declared, we know that amount2 will be stored at an address immedi-
ately below amount1. The sizeof(CurrencyStruct) operator returns 16 (as demonstrated in the screen
output coming up), so CurrencyStruct occupies a multiple of 4 bytes. Therefore, after we decrement
our currency pointer, it will point to amount2:

--pAmount; // this should get it to point to amount2
Console.WriteLine(“amount2 has address 0x{0:X} and contains {1}”,

(uint)pAmount, *pAmount);

Notice that when we call Console.WriteLine() we display the contents of amount2 but we haven’t
yet initialized it. What gets displayed will be random garbage—whatever happened to be stored at that
location in memory before execution of the sample. There is an important point here: normally, the C#
compiler would prevent us from using an uninitialized variable, but when you start using pointers, it is

210

Chapter 7

09 557599 Ch07.qxd 4/29/04 11:30 AM Page 210

very easy to circumvent many of the usual compilation checks. In this case we have done so because the
compiler has no way of knowing that we are actually displaying the contents of amount2. Only we know
that, because our knowledge of the stack means we can tell what the effect of decrementing pAmount
will be. Once you start doing pointer arithmetic, you find you can access all sorts of variables and mem-
ory locations that the compiler would usually stop you from accessing, hence the description of pointer
arithmetic as unsafe.

Next we do some pointer arithmetic on our pCents pointer. pCents currently points to amount1.Cents,
but our aim here is to get it to point to amount2.Cents, again using pointer operations instead of directly
telling the compiler that’s what we want to do. To do this we need to decrement the address pCents con-
tains by sizeof(Currency):

// do some clever casting to get pCents to point to cents
// inside amount2
CurrencyStruct* pTempCurrency = (CurrencyStruct*)pCents;
pCents = (byte*) (--pTempCurrency);
Console.WriteLine(“Address of pCents is now 0x{0:X}”, (uint)&pCents);

Finally, we use the fixed keyword to create some pointers that point to the fields in a class instance, and
use these pointers to set the value of this instance. Notice that this is also the first time that we have been
able to look at the address of an item that is stored on the heap rather than the stack:

Console.WriteLine(“\nNow with classes”);
// now try it out with classes
CurrencyClass amount3 = new CurrencyClass();

fixed(long* pDollars2 = &(amount3.Dollars))
fixed(byte* pCents2 = &(amount3.Cents))
{

Console.WriteLine(
“amount3.Dollars has address 0x{0:X}”, (uint)pDollars2);

Console.WriteLine(
“amount3.Cents has address 0x{0:X}”, (uint) pCents2);

*pDollars2 = -100;
Console.WriteLine(“amount3 contains “ + amount3);

}

Compiling and running this code gives output similar to this:

csc /unsafe PointerPlayaround2.cs
Microsoft (R) Visual C# .NET Compiler version 7.10.3052.4
for Microsoft (R) .NET Framework version 1.1.4322
Copyright (C) Microsoft Corporation 2001-2002. All rights reserved.

PointerPlayaround2
Size of CurrencyStruct struct is 16
Address of amount1 is 0x12F698
Address of amount2 is 0x12F688
Address of pAmount is 0x12F684
Address of pDollars is 0x12F680
Address of pCents is 0x12F67C
amount1 contains $20.50

211

Memory Management and Pointers

09 557599 Ch07.qxd 4/29/04 11:30 AM Page 211

amount2 has address 0x12F688 and contains $0.236
Address of pCents is now 0x12F67C

Now with classes
amount3.Dollars has address 0x4B8850C
amount3.Cents has address 0x4B88514
amount3 contains $-100.0

These results were obtained using the .NET Framework version 1.1. You might find that the actual
addresses displayed are different if you run the sample on a different version of .NET.

Notice in this output the uninitialized value of amount2 that we display, and that the size of the Currency
Struct struct is 16—somewhat larger than we would expect given the sizes of its fields (a long and a
byte should total 9 bytes). This is the effect of word alignment that we discussed earlier.

Using Pointers to Optimize Performance
Until now, all of our examples have been designed to demonstrate the various things that you can do with
pointers. We have played around with memory in a way that is probably interesting only to people who
like to know what’s happening under the hood, but doesn’t really help us to write better code. Here we’re
going to apply our understanding of pointers and demonstrate an example in which judicious use of
pointers will have a significant performance benefit.

Creating stack-based arrays
In this section, we are going to look at one of the main areas in which pointers can be useful; creating
high-performance, low overhead arrays on the stack. As discussed in Chapter 2, C# includes rich support
for handling arrays. Although C# makes it very easy to use both one-dimensional and rectangular or
jagged multidimensional arrays, it suffers from the disadvantage that these arrays are actually objects; they
are instances of System.Array. This means that the arrays are stored on the heap with all of the over-
head that this involves. There may be occasions when you need to create a short-lived high-performance
array and don’t want the overhead of reference objects. You can do this using pointers, although as we
will show in this section, this is only easy for one-dimensional arrays.

In order to create a high-performance array we need to use a new keyword: stackalloc. The stackalloc
command instructs the .NET runtime to allocate an amount of memory on the stack. When you call
stackalloc, you need to supply it with two pieces of information:

❑ The type of data you want to store

❑ How many of these data items you need to store

For example, to allocate enough memory to store 10 decimal data items, you can write:

decimal* pDecimals = stackalloc decimal[10];

This command simply allocates the stack memory; it doesn’t attempt to initialize the memory to any
default value. This is fine for our purposes because we are creating a high-performance array, and initial-
izing values unnecessarily would hurt performance.

212

Chapter 7

09 557599 Ch07.qxd 4/29/04 11:30 AM Page 212

Similarly, to store 20 double data items you write:

double* pDoubles = stackalloc double[20];

Although this line of code specifies the number of variables to store as a constant, this can equally be a
quantity evaluated at runtime. So you can write the previous example like this:

int size;
size = 20; // or some other value calculated at run-time
double* pDoubles = stackalloc double[size];

You will see from these code snippets that the syntax of stackalloc is slightly unusual. It is followed
immediately by the name of the data type you want to store (and this must be a value type), and then by
the number of items you need space for in square brackets. The number of bytes allocated will be this
number multiplied by sizeof(data type). The use of square brackets in the above code sample suggests
an array, which isn’t too surprising. If you have allocated space for 20 doubles, then what you have is an
array of 20 doubles. The simplest type of array that you can have is a block of memory that stores one
element after another (see Figure 7-6).

Figure 7-6

In this diagram, we have also shown the pointer returned by stackalloc, which is always a pointer to the
allocated data type that points to the top of the newly allocated memory block. To use the memory block
you simply dereference the returned pointer. For example, to allocate space for 20 doubles and then set the
first element (element 0 of the array) to the value 3.0, write this:

double* pDoubles = stackalloc double [20];
*pDoubles = 3.0;

To access the next element of the array, you use pointer arithmetic. As described earlier, if you add 1 to a
pointer, its value will be increased by the size of whatever data type it points to. In this case, this will be

Pointer
returned by
stackalloc

Element 0 of array

Element 1 of array

Element 2 of array

etc.

Successive
memory

allocations
on the track

213

Memory Management and Pointers

09 557599 Ch07.qxd 4/29/04 11:30 AM Page 213

just enough to take us to the next free memory location in the block that we have allocated. So, we can
set the second element of the array (element number 1) to the value 8.4 like this:

double* pDoubles = stackalloc double [20];
*pDoubles = 3.0;
*(pDoubles+1) = 8.4;

By the same reasoning, you can access the element with index X of the array with the expression
*(pDoubles+X).

Effectively, we have a means by which we can access elements of our array, but for general purpose use
this syntax is too complex. Fortunately, C# defines an alternative syntax using square brackets. C# gives
a very precise meaning to square brackets when they are applied to pointers; if the variable p is any pointer
type and X is an integer, then the expression p[X] is always interpreted by the compiler as meaning
*(p+X). This is true for all pointers, not only those initialized using stackalloc. With this shorthand
notation, we now have a very convenient syntax for accessing our array. In fact, it means that we have
exactly the same syntax for accessing one-dimensional stack-based arrays as we do for accessing heap-
based arrays that are represented by the System.Array class:

double* pDoubles = stackalloc double [20];
pDoubles[0] = 3.0; // pDoubles[0] is the same as *pDoubles
pDoubles[1] = 8.4; // pDoubles[1] is the same as *(pDoubles+1)

This idea of applying array syntax to pointers isn’t new. It has been a fundamental part of both the C
and the C++ languages ever since those languages were invented. Indeed, C++ developers will recog-
nize the stack-based arrays we can obtain using stackalloc as being essentially identical to classic
stack-based C and C++ arrays. It is this syntax and the way it links pointers and arrays which was one
of the reasons why the C language became popular in the 1970s, and the main reason why the use of
pointers became such a popular programming technique in C and C++.

Although our high-performance array can be accessed in the same way as a normal C# array, a word of
caution is in order. The following C# code in C# raises an exception:

double[] myDoubleArray = new double [20];
myDoubleArray[50] = 3.0;

The exception occurs because we are trying to access an array using an index that is out of bounds; the
index is 50, whereas the maximum allowed value is 19. However, if you declare the equivalent array
using stackalloc, there is no object wrapped around the array that can perform bounds checking.
Hence, the following code will not raise an exception:

double* pDoubles = stackalloc double [20];
pDoubles[50] = 3.0;

In this code, we allocate enough memory to hold 20 doubles. Then we set sizeof(double) memory loca-
tions starting at the location given by the start of this memory + 50*sizeof(double) to hold the double
value 3.0. Unfortunately, that memory location is way outside the area of memory that we have allocated
for the doubles. There is no knowing what data might be stored at that address. At best, we may have used
some currently unused memory, but it is equally possible that we may have just overwritten some loca-
tions in the stack that were being used to store other variables or even the return address from the method

214

Chapter 7

09 557599 Ch07.qxd 4/29/04 11:30 AM Page 214

currently being executed. Once again, we see that the high performance to be gained from pointers
comes at a cost; you need to be certain you know what you are doing, or you will get some very strange
runtime bugs.

QuickArray example
We will end our discussion of pointers with a stackalloc example called QuickArray. In this example,
the program simply asks the user how many elements they want to be allocated for an array. The code
then uses stackalloc to allocate an array of longs that size. The elements of this array are populated
with the squares of the integers starting with 0 and the results displayed on the console:

using System;

namespace Wrox.ProCSharp.Chapter07
{

class MainEntryPoint
{

static unsafe void Main()
{

Console.Write(“How big an array do you want? \n> “);
string userInput = Console.ReadLine();
uint size = uint.Parse(userInput);

long* pArray = stackalloc long [(int)size];
for (int i=0 ; i<size ; i++)

pArray[i] = i*i;

for (int i=0 ; i<size ; i++)
Console.WriteLine(“Element {0} = {1}”, i, *(pArray+i));

}
}

}

Here is the output for the QuickArray sample:

QuickArray
How big an array do you want?
> 15
Element 0 = 0
Element 1 = 1
Element 2 = 4
Element 3 = 9
Element 4 = 16
Element 5 = 25
Element 6 = 36
Element 7 = 49
Element 8 = 64
Element 9 = 81
Element 10 = 100
Element 11 = 121
Element 12 = 144
Element 13 = 169
Element 14 = 196

215

Memory Management and Pointers

09 557599 Ch07.qxd 4/29/04 11:30 AM Page 215

Summary
Remember, to become a truly proficient C# programmer, you must have a solid understanding of how
memory allocation and garbage collection works. In this chapter, we’ve provided a description of how
the CLR manages and allocates memory on the heap and the stack. We’ve also discussed how to write
classes that free unmanaged resources correctly, and how to use pointers in C#. These are both advanced
topics that are poorly understood and often implemented incorrectly by novice programmers.

In the next chapter, we discuss strings and a powerful mechanism for string manipulation: regular
expressions.

216

Chapter 7

09 557599 Ch07.qxd 4/29/04 11:30 AM Page 216

Strings and Regular
Expressions

In the beginning part of this book, we have been almost constantly using strings, and have taken
for granted the stated mapping that the string keyword in C# actually refers to the .NET base
class System.String. System.String is a very powerful and versatile class, but it is not by any
means the only string-related class in the .NET armory. In this chapter, we start off by reviewing
the features of System.String, and then we look at some quite nifty things you can do with strings
using some of the other .NET classes—in particular those in the System.Text and System.
Text.RegularExpressions namespaces. We will cover the following areas:

❑ Building strings—If you’re performing repeated modifications on a string, for example in
order to build up a lengthy string prior to displaying it or passing it to some other method
or application, the String class can be very inefficient. For this kind of situation, another
class, System.Text.StringBuilder is more suitable, since it has been designed exactly
for this situation.

❑ Formatting expressions—We will also take a closer look at those formatting expressions that
we have been using in the Console.WriteLine() method throughout these last few
chapters. These formatting expressions are processed using a couple of useful interfaces,
IFormatProvider and IFormattable, and by implementing these interfaces on your
own classes, you can actually define your own formatting sequences so that Console
.WriteLine() and similar classes will display the values of your classes in whatever
way you specify.

❑ Regular expressions—.NET also offers some very sophisticated classes that deal with the
situation in which you need to identify or extract substrings that satisfy certain fairly sophis-
ticated criteria; for example, finding all occurrences within a string where a character or set
of characters is repeated, or finding all words that begin with s and contain at least one n, or
strings that adhere to employee ID or social security number constructions. Although you
can write methods to perform this kind of processing using the String class, such methods
are cumbersome to write. Instead, you can use some classes from System.Text.Regular
Expressions, which are designed specifically to perform this kind of processing.

10 557599 Ch08.qxd 4/29/04 11:27 AM Page 217

218

Chapter 8

System.String
Before we examine the other string classes, we will quickly review some of the available methods on the
String class.

System.String is a class that is specifically designed to store a string, and allow a large number of
operations on the string. Also, because of the importance of this data type, C# has its own keyword and
associated syntax to make it particularly easy to manipulate strings using this class.

You can concatenate strings using operator overloads:

string message1 = “Hello”; // returns “Hello”
message1 += “, There”; // returns “Hello, There”
string message2 = message1 + “!”; // returns “Hello, There!”

C# also allows extraction of a particular character using an indexer-like syntax:

char char4 = message[4]; // returns ‘a’. Note the char is zero-indexed

This enables us to perform such common tasks as replacing characters, removing whitespace, and capi-
talization. The following table introduces the key methods.

Method Purpose

Compare Compares the contents of strings, taking into account the culture (locale) in
assessing equivalence between certain characters

CompareOrdinal As Compare, but doesn’t take culture into account

Format Formats a string containing various values and specifiers for how each
value should be formatted

IndexOf Locates the first occurrence of a given substring or character in the string

IndexOfAny Locates the first occurrence of any one of a set of characters in the string

LastIndexOf As for IndexOf, but finds the last occurrence

LastIndexOfAny As for IndexOfAny, but finds the last occurrence

PadLeft Pads out the string by adding a specified repeated character to the begin-
ning of it

PadRight Pads out the string by adding a specified repeated character to the end of it

Replace Replaces occurrences of a given character or substring in the string with
another character or substring

Split Splits the string into an array of substrings, the breaks occurring wherever
a given character occurs

Substring Retrieves the substring starting at a specified position in the string

ToLower Converts string to lowercase

10 557599 Ch08.qxd 4/29/04 11:27 AM Page 218

Method Purpose

ToUpper Converts string to uppercase

Trim Removes leading and trailing whitespace

Please note that this table is not comprehensive, but is intended to give you an idea of the features
offered by strings.

Building Strings
As we have seen, String is an extremely powerful class that implements a large number of very useful
methods. However, the String class has a shortcoming that makes it very inefficient for making repeated
modifications to a given string—it is actually an immutable data type, which is to say that once you ini-
tialize a string object, that string object can never change. The methods and operators that appear to
modify the contents of a string actually create new strings, copying the contents of the old string if nec-
essary. For example, look at the following code:

string greetingText = “Hello from all the guys at Wrox Press. “;
greetingText += “We do hope you enjoy this book as much as we enjoyed writing it.”;

What happens when this code executes is this: first, an object of type System.String is created and ini-
tialized to hold the text “Hello from all the guys at Wrox Press. “ Note the space after the full stop.
When this happens, the .NET runtime allocates just enough memory in the string to hold this text (39
chars), and we set the variable greetingText to refer to this string instance.

In the next line, syntactically it looks like we’re adding some more text onto the string—we are not. Instead,
we create a new string instance, with just enough memory allocated to store the combined text—that’s 103
characters in total. The original text, “Hello from all the people at Wrox Press. “, is copied into this
new string along with the extra text, “We do hope you enjoy this book as much as we enjoyed writing
it.” Then, the address stored in the variable greetingText is updated, so the variable correctly points to
the new String object. The old String object is now unreferenced—there are no variables that refer to it—
and so will be removed the next time the garbage collector comes along to clean out any unused objects in
your application.

By itself, that doesn’t look too bad, but suppose we wanted to encode that string by replacing each letter
(not the punctuation) with the character which has an ASCII code further on in the alphabet, as part of
some extremely simple encryption scheme. This would turn the string to “Ifmmp gspn bmm uif hvst bu
Xspy Qsftt. Xf ep ipqf zpv fokpz uijt cppl bt nvdi bt xf fokpzfe xsjujoh ju.” There are sev-
eral ways of doing this, but the simplest and (if you are restricting yourself to using the String class)
almost certainly the most efficient way is to use the String.Replace() method, which replaces all
occurrences of a given substring in a string with another substring. Using Replace(), the code to
encode the text looks like this:

string greetingText = “Hello from all the guys at Wrox Press. “;
greetingText += “We do hope you enjoy this book as much as we enjoyed writing it.”;

for(int i = (int)’z’; i>=(int)’a’ ; i--)
{

char old1 = (char)i;

219

Strings and Regular Expressions

10 557599 Ch08.qxd 4/29/04 11:27 AM Page 219

char new1 = (char)(i+1);
greetingText = greetingText.Replace(old1, new1);

}

for(int i = (int)’Z’; i>=(int)’A’ ; i--)
{

char old1 = (char)i;
char new1 = (char)(i+1);
greetingText = greetingText.Replace(old1, new1);

}
Console.WriteLine(“Encoded:\n” + greetingText);

For simplicity, this code doesn’t wrap Z to A or z to a. These letters get encoded to [and {, respectively.

Replace() works in a fairly intelligent way, to the extent that it won’t actually create a new string unless it
does actually make some changes to the old string. Our original string contained 23 different lowercase
characters and 3 different uppercase ones. Replace() will therefore have allocated a new string 26 times
in total, each new string storing 103 characters. That means that as a result of our encryption process
there will be string objects capable of storing a combined total of 2,678 characters now sitting on the
heap waiting to be garbage-collected! Clearly, if you use strings to do text processing extensively, your
applications will run into severe performance problems.

In order to address this kind of issue, Microsoft has supplied the System.Text.StringBuilder class.
StringBuilder isn’t as powerful as String in terms of the number of methods it supports. The pro-
cessing you can do on a StringBuilder is limited to substitutions and appending or removing text
from strings. However, it works in a much more efficient way.

When you construct a string, just enough memory gets allocated to hold the string. The StringBuilder,
however, normally allocates more memory than needed. You have the option to indicate how much mem-
ory to allocate, but if you don’t, then the amount will default to some value that depends on the size of
the string that StringBuilder is initialized with. The StringBuilder class has two main properties:

❑ Length, which indicates the length of the string that it actually contains

❑ Capacity, which indicates the maximum length of the string in the memory allocation

Any modifications to the string take place within the block of memory assigned to the StringBuilder
instance, which makes appending substrings and replacing individual characters within strings very effi-
cient. Removing or inserting substrings is inevitably still inefficient, because it means that the following
part of the string has to be moved. Only if you perform some operation that exceeds the capacity of the
string is it necessary to allocate new memory and possibly move the entire contained string. At the time
of writing, Microsoft has not documented how much extra capacity will be added; based on our experi-
ments the StringBuilder appears to double its capacity if it detects the capacity has been exceeded
and no new value for the capacity has been set.

For example, if we use a StringBuilder object to construct our original greeting string, we might write
this code:

StringBuilder greetingBuilder =
new StringBuilder(“Hello from all the guys at Wrox Press. “, 150);

greetingBuilder.Append(“We do hope you enjoy this book as much as we enjoyed
writing it”);

220

Chapter 8

10 557599 Ch08.qxd 4/29/04 11:27 AM Page 220

In order to use the StringBuilder class, you will need a System.Text reference in your code.

In this code, we have set an initial capacity of 150 for the StringBuilder. It is always a good idea to set
some capacity that covers the likely maximum length of a string, to ensure the StringBuilder doesn’t
need to relocate because its capacity was exceeded. Theoretically, you can set as large a number as you
can pass in an int, although the system will probably complain that it doesn’t have enough memory if
you actually try to allocate the maximum of 2 billion characters (this is the theoretical maximum that a
StringBuilder instance is in principle allowed to contain).

When the above code is executed, we first create a StringBuilder object that looks like Figure 8-1.

Figure 8-1

Then, on calling the Append() method, the remaining text is placed in the empty space, without the need
for more memory allocation. However, the real efficiency gain from using a StringBuilder comes when
we are making repeated text substitutions. For example, if we try to encrypt the text in the same way as
before, then we can perform the entire encryption without allocating any more memory whatsoever:

StringBuilder greetingBuilder =
new StringBuilder(“Hello from all the guys at Wrox Press. “, 150);

greetingBuilder.Append(“We do hope you enjoy this book as much as we enjoyed
writing it”);

for(int i = (int)’z’; i>=(int)’a’ ; i--)
{

char old1 = (char)i;
char new1 = (char)(i+1);
greetingBuilder = greetingBuilder.Replace(old1, new1);

}

for(int i = (int)’Z’; i>=(int)’A’ ; i--)
{

char old1 = (char)i;
char new1 = (char)(i+1);
greetingBuilder = greetingBuilder.Replace(old1, new1);

}
Console.WriteLine(“Encoded:\n” + greetingBuilder.ToString());

This code uses the StringBuilder.Replace() method, which does the same thing as String.
Replace(), but without copying the string in the process. The total memory allocated to hold strings in
the above code is 150 for the StringBuilder instance, as well as the memory allocated during the
string operations performed internally in the final Console.WriteLine() statement.

Normally, you will want to use StringBuilder to perform any manipulation of strings, and String to
store or display the final result.

Hello from all the guys at Wrox Press.

39 characters

<uninitialized>

111 characters

221

Strings and Regular Expressions

10 557599 Ch08.qxd 4/29/04 11:27 AM Page 221

StringBuilder members
We have demonstrated one constructor of StringBuilder, which takes an initial string and capacity as
its parameters. There are others. For example, you can supply only a string:

StringBuilder sb = new StringBuilder(“Hello”);

Or you can create an empty StringBuilder with a given capacity:

StringBuilder sb = new StringBuilder(20);

Apart from the Length and Capacity properties, there is a read-only MaxCapacity property that indi-
cates the limit to which a given StringBuilder instance is allowed to grow. By default, this is given by
int.MaxValue (roughly 2 billion, as noted earlier), but you can set this value to something lower when
you construct the StringBuilder object:

// This will both set initial capacity to 100, but the max will be 500.
// Hence, these StringBuilder can never grow to more than 500 characters,
// otherwise it will raise exception if you try to do that.
StringBuilder sb = new StringBuilder(100, 500);

You can also explicitly set the capacity at any time, though an exception will be raised if you set it to a
value less than the current length of the string, or a value that exceeds the maximum capacity:

StringBuilder sb = new StringBuilder(“Hello”);
sb.Capacity = 100;

The following table lists the main StringBuilder methods.

Method Purpose

Append() Appends a string to the current string

AppendFormat() Appends a string that has been worked out from a format specifier

Insert() Inserts a substring into the current string

Remove() Removes characters from the current string

Replace() Replaces all occurrences of a character by another character or a substring
with another substring in the current string

ToString() Returns the current string cast to a System.String object (overridden
from System.Object)

There are several overloads of many of these methods.

AppendFormat() is actually the method that is ultimately called when you call Console
.WriteLine(), which has responsibility for working out what all the format expressions like {0:D}
should be replaced with. We will examine this method in the next section.

There is no cast (either implicit or explicit) from StringBuilder to String. If you want to output the
contents of a StringBuilder as a String, you must use the ToString() method.

222

Chapter 8

10 557599 Ch08.qxd 4/29/04 11:27 AM Page 222

Format Strings
So far, we have written a large number of classes and structs for the code samples presented in this book,
and we have normally implemented a ToString() method for each of these in order to be able to display
the contents of a given variable. However, quite often users might want the contents of a variable to be dis-
played in different, often culture- and locale-dependent, ways. The .NET base class, System.DateTime,
provides the most obvious example of this. For example, you might want to display the same date as 14
February 2002, 14 Feb 2002, 2/14/02 (USA), 14/2/02 (UK), or 14. Februar 2002 (Germany).

Similarly, for our Vector struct that we wrote in Chapter 3, we implemented the Vector.ToString()
method to display the vector in the format (4, 56, 8). There is, however, another very common way of
writing vectors, in which this vector would appear as 4i + 56j + 8k. If we want the classes that we write
to be user-friendly, then they need to support the facility to display their string representations in any of
the formats that users are likely to want to use. The .NET runtime defines a standard way that this should
be done, the IFormattable interface. Showing how to add this important feature to your classes and
structs is the subject of this section.

As you probably know, you need to specify the format in which you want a variable displayed when you
call Console.WriteLine(). Therefore, we are going to use this method as an example, although most of
our discussion applies to any situation in which you want to format a string. For example, if you want
to display the value of a variable in a list box or text box, you will normally use the String.Format()
method to obtain the appropriate string representation of the variable. However, the actual format speci-
fiers you use to request a particular format are identical to those passed to Console.WriteLine(). Hence,
we will focus on Console.WriteLine() as an example. We start by examining what actually happens
when you supply a format string to a primitive type, and from this we will see how we can plug in format
specifiers for our own classes and structs into the process.

In Chapter 2 we use format strings in Console.Write() and Console.WriteLine() like this:

double d = 13.45;
int i = 45;
Console.WriteLine(“The double is {0,10:E} and the int contains {1}”, d, i);

The format string itself consists mostly of the text to be displayed, but wherever there is a variable to be
formatted, its index in the parameter list appears in braces. You might also include other information
inside the brackets concerning the format of that item. For example, you can include:

❑ The number of characters to be occupied by the representation of the item, prefixed by a comma.
A negative number indicates that the item should be left-justified, while a positive number indi-
cates that it should be right-justified. If the item actually occupies more characters than have
been requested, it will still appear in full.

❑ A format specifier, preceded by a colon. This indicates how we want the item to be formatted.
For example, we can indicate whether we want a number to be formatted as a currency or dis-
played in scientific notation.

The following table lists the common format specifiers for the numeric types, which we briefly discussed
in Chapter 2.

223

Strings and Regular Expressions

10 557599 Ch08.qxd 4/29/04 11:27 AM Page 223

Specifier Applies To Meaning Example

C Numeric types Locale-specific monetary value $4834.50 (USA)
£4834.50 (UK)

D Integer types only General integer 4834

E Numeric types Scientific notation 4.834E+003

F Numeric types Fixed point decimal 4384.50

G Numeric types General number 4384.5

N Numeric types Common locale-specific format 4,384.50 (UK/USA)
for numbers 4 384,50 (continental

Europe)

P Numeric types Percentage notation 432,000.00%

X Integer types only Hexadecimal format 1120 (If you want to
display 0x1120, you
will have to write out
the 0x separately)

If you want an integer to be padded with zeros, you can use the format specifier 0 (zero) repeated as
many times as the number length is required. For example, the format specifier 0000 will cause 3 to be
displayed as 0003, and 99 to be displayed as 0099, and so on.

It is not possible to give a complete list, because other data types can add their own specifiers. Showing
how to define our own specifiers for our own classes is the aim of this section.

How the string is formatted
As an example of how strings are formatted, we will execute the following statement:

Console.WriteLine(“The double is {0,10:E} and the int contains {1}”, d, i);

Console.WriteLine() just passes the entire set of parameters to the static method, String.Format().
This is the same method that you would call if you wanted to format these values for use in a string to
be displayed in a textbox, for example. The implementation of the 3-parameter overload of
WriteLine() basically does this:

// Likely implementation of Console.WriteLine()

public void WriteLine(string format, object arg0, object arg1)
{

Console.WriteLine(string.Format(format, arg0, arg1));
}

The one-parameter overload of this method, which is in turn getting called in the previous code sample,
simply writes out the contents of the string it has been passed, without doing any further formatting on it.

224

Chapter 8

10 557599 Ch08.qxd 4/29/04 11:27 AM Page 224

String.Format() now needs to construct the final string by replacing each format specifier by a suitable
string representation of the corresponding object. However, as we saw earlier, for this process of building
up a string we need a StringBuilder instance rather than a string instance. In this example, a String
Builder instance is created and initialized with the first known portion of the string, the text “The double
is “. Next, the StringBuilder.AppendFormat() method is called, passing in the first format specifier,
{0,10:E}, as well as the associated object, double, in order to add the string representation of this object
to the string object being constructed, and this process continues with StringBuilder.Append() and
StringBuilder.AppendFormat() being called repeatedly until the entire formatted string has been
obtained.

Now comes the interesting part; StringBuilder.AppendFormat() has to figure out how to format
the object. First thing it probes the object to find out whether it implements an interface in the System
namespace called IFormattable. You can find this out quite simply by trying to cast an object to this
interface and seeing whether the cast succeeds, or by using the C# is keyword. If this test fails, then
AppendFormat()calls the object’s ToString() method, which all objects either inherit from System.
Object or override. This is exactly what happens here, since none of the classes we have written so far
have implemented this interface. That is why our overrides of Object.ToString() have been sufficient
to allow our structs and classes from earlier chapters such as Vector to get displayed in
Console.WriteLine() statements.

However, all of the predefined primitive numeric types do implement this interface, which means that
for those types, and in particular for double and int in our example, the basic ToString() method
inherited from System.Object will not be called. To understand what happens instead, we need to
examine the IFormattable interface.

IFormattable defines just one method, which is also called ToString(). However, this method takes
two parameters as opposed to the System.Object version, which doesn’t take any parameters. The fol-
lowing code shows the definition of IFormattable:

interface IFormattable
{

string ToString(string format, IFormatProvider formatProvider);
}

The first parameter that this overload of ToString() expects is a string that specifies the requested for-
mat. In other words, it is the specifier portion of the string that appears inside the braces ({}) in the string
originally passed to Console.WriteLine() or String.Format(). For example, in our example the
original statement was:

Console.WriteLine(“The double is {0,10:E} and the int contains {1}”, d, i);

Hence, when evaluating the first specifier, {0,10:E}, this overload will be called against the double
variable, d, and the first parameter passed to it will be E. StringBuilder.AppendFormat() will pass in
here the text that appears after the colon in the appropriate format specifier from the original string.

We won’t worry about the second ToString() parameter in this book. It is a reference to an object that
implements the IFormatProvider interface. This interface gives further information that ToString()
might need to consider when formatting the object such as culture-specific details (a .NET culture is sim-
ilar to a Windows locale; if you are formatting currencies or dates then you need this information). If

225

Strings and Regular Expressions

10 557599 Ch08.qxd 4/29/04 11:27 AM Page 225

you are calling this ToString() overload directly from your source code, you might want to supply such
an object. However, StringBuilder.AppendFormat() passes in null for this parameter. If format
Provider is null, then ToString() is expected to use the culture specified in the system settings.

Let’s get back to our example. The first item we want to format is a double, for which we are requesting
exponential notation, with the format specifier E. The StringBuilder.AppendFormat() method
establishes that the double does implement IFormattable, and will therefore call the two-parameter
ToString() overload, passing it the string E for the first parameter and null for the second parameter.
It is now up to the double’s implementation of this method to return the string representation of the
double in the appropriate format, taking into account the requested format and the current culture.
StringBuilder.AppendFormat() will then sort out padding the returned string with spaces, if neces-
sary, in order to fill the 10 characters the format string specified.

The next object to be formatted is an int, for which we are not requesting any particular format (the for-
mat specifier was simply {1}). With no format requested, StringBuilder.AppendFormat()passes in a
null reference for the format string. The two-parameter overload of int.ToString() is expected to
respond appropriately. No format has been specifically requested, therefore it will call the no-parameter
ToString() method.

This entire string formatting process is summarized in Figure 8-2.

Figure 8-2

Console.WriteLine("The double is {0, 10:E} and the int contains {1}", D, 1)

String.Format("The double is {0, 10:E} and the int contains {1}", D, 1)

StringBuilder
("The double is")

StringBuilder.AppendFormat
("{0, 10:E}", D)

StringBuilder.Append
(" and the int contains ")

StringBuilder.AppendFormat
("0", D)

226

Chapter 8

10 557599 Ch08.qxd 4/29/04 11:27 AM Page 226

The FormattableVector example
Now that we have established how format strings are constructed, we are going to extend the Vector
example from earlier in the book, so that we can format vectors in a variety of ways. You can download
the code for this example from www.wrox.com. Now that you understand the principles involved, you
will discover the actual coding is quite simple. All you need to do is implement IFormattable and sup-
ply an implementation of the ToString() overload defined by that interface.

The format specifiers we are going to support are:

❑ N—Should be interpreted as a request to supply a quantity known as the Norm of the Vector.
This is just the sum of squares of its components, which for mathematics buffs happens to be
equal to the square of the length of the Vector, and is usually displayed between double verti-
cal bars, like this: ||34.5||.

❑ VE—Should be interpreted as a request to display each component in scientific format, just as
the specifier E applied to a double indicates (2.3E+01, 4.5E+02, 1.0E+00).

❑ IJK—Should be interpreted as a request to display the vector in the form 23i + 450j + 1k.

❑ Anything else should simply return the default representation of the Vector (23, 450, 1.0).

To keep things simple, we are not going to implement any option to display the vector in combined IJK
and scientific format. We will, however, make sure we test the specifier in a case-insensitive way, so that
we allow ijk instead of IJK. Note that it is entirely up to us which strings we use to indicate the format
specifiers.

To achieve this, we first modify the declaration of Vector so it implements IFormattable:

struct Vector : IFormattable
{

public double x, y, z;

Now we add our implementation of the two-parameter ToString() overload:

public string ToString(string format, IFormatProvider formatProvider)
{

if (format == null)
return ToString();

string formatUpper = format.ToUpper();
switch (formatUpper)
{

case “N”:
return “|| “ + Norm().ToString() + “ ||”;

case “VE”:
return String.Format(“({0:E}, {1:E}, {2:E})”, x, y, z);

case “IJK”:
StringBuilder sb = new StringBuilder(x.ToString(), 30);
sb.Append(“ i + “);
sb.Append(y.ToString());
sb.Append(“ j + “);
sb.Append(z.ToString());
sb.Append(“ k”);
return sb.ToString();

227

Strings and Regular Expressions

10 557599 Ch08.qxd 4/29/04 11:27 AM Page 227

default:
return ToString();

}
}

That is all we have to do! Notice how we take the precaution of checking whether format is null before
we call any methods against this parameter—we want this method to be as robust as reasonably possi-
ble. The format specifiers for all the primitive types are case-insensitive, so that’s the behavior that other
developers are going to expect from our class too. For the format specifier VE, we need each component
to be formatted in scientific notation, so we just use String.Format() again to achieve this. The fields
x, y, and z are all doubles. For the case of the IJK format specifier, there are quite a few substrings to be
added to the string, so we use a StringBuilder object to improve performance.

For completeness, we will also reproduce the no-parameter ToString() overload that we developed
earlier:

public override string ToString()
{

return “(“ + x + “ , “ + y + “ , “ + z + “)”;
}

Finally, we need to add a Norm() method that computes the square (norm) of the vector, since we didn’t
actually supply this method when we developed the Vector struct:

public double Norm()
{

return x*x + y*y + z*z;
}

Now we can try out our formattable vector with some suitable test code:

static void Main()
{

Vector v1 = new Vector(1,32,5);
Vector v2 = new Vector(845.4, 54.3, -7.8);
Console.WriteLine(“\nIn IJK format,\nv1 is {0,30:IJK}\nv2 is {1,30:IJK}”,

v1, v2);
Console.WriteLine(“\nIn default format,\nv1 is {0,30}\nv2 is {1,30}”, v1,

v2);
Console.WriteLine(“\nIn VE format\nv1 is {0,30:VE}\nv2 is {1,30:VE}”, v1,

v2);
Console.WriteLine(“\nNorms are:\nv1 is {0,20:N}\nv2 is {1,20:N}”, v1,

v2);
}

The result of running this sample is this:

FormattableVector
In IJK format,
v1 is 1 i + 32 j + 5 k
v2 is 845.4 i + 54.3 j + -7.8 k

228

Chapter 8

10 557599 Ch08.qxd 4/29/04 11:27 AM Page 228

In default format,
v1 is (1 , 32 , 5)
v2 is (845.4 , 54.3 , -7.8)

In VE format
v1 is (1.000000E+000, 3.200000E+001, 5.000000E+000)
v2 is (8.454000E+002, 5.430000E+001, -7.800000E+000)

Norms are:
v1 is || 1050 ||
v2 is || 717710.49 ||

This shows that our custom specifiers are being picked up correctly.

Regular Expressions
Regular expressions are part of those small technology areas that is incredibly useful in a wide range of
programs, yet rarely used among developers. One can think of regular expressions as a mini-program-
ming language with one specific purpose: to locate substrings within a large string expression. It is not a
new technology; it originated in the UNIX environment and is commonly used with the Perl language.
Microsoft ported it onto Windows, where up until now it has been used mostly with scripting languages.
Regular expressions are, however, supported by a number of .NET classes in the namespace System.
Text.RegularExpressions.

Many readers will not be familiar with the regular expressions language, so we will use this section as a
very basic introduction to both regular expressions and their related .NET classes. If you are already
familiar with regular expressions then you’ll probably want to just skim through this section to pick out
the references to the .NET base classes. You might like to know that the .NET regular expression engine
is designed to be mostly compatible with Perl 5 regular expressions, though it has a few extra features.

Introduction to Regular Expressions
The regular expressions language is a language designed specifically for string processing. It contains
two features:

❑ A set of escape codes for identifying specific types of characters. You will be familiar with the use
of the * character to represent any substring in DOS expressions. (For example, the DOS com-
mand Dir Re* lists the names of files with names beginning with Re.) Regular expressions use
many sequences like this to represent items such as any one character, a word break, one optional
character, and so on.

❑ A system for grouping parts of substrings and intermediate results during a search operation.

With regular expressions, you can perform quite sophisticated and high-level operations on strings. For
example, you can:

❑ Identify (and perhaps either flag or remove) all repeated words in a string (for example, “The
computer books books” to “The computer books”)

❑ Convert all words to title case (for example, “this is a Title” to “This Is A Title”)

229

Strings and Regular Expressions

10 557599 Ch08.qxd 4/29/04 11:27 AM Page 229

❑ Convert all words longer than three characters long to title case (for example, “this is a Title” to
“This is a Title”)

❑ Ensure that sentences are properly capitalized

❑ Separate the various elements of a URI (for example, given http://www.wrox.com, extract the
protocol, computer name, file name, and so on)

These are all of course, tasks that can be performed in C# using the various methods on System.String
and System.Text.StringBuilder. However, in some cases, this would involve writing a fair amount
of C# code. If you use regular expressions, this code can normally be compressed to just a couple of lines.
Essentially, you instantiate a System.Text.RegularExpressions.RegEx object (or, even simpler, invoke
a static RegEx() method), pass it the string to be processed, and pass in a regular expression (a string
containing the instructions in the regular expressions language), and you’re done.

A regular expression string looks at first sight rather like a regular string, but interspersed with escape
sequences and other characters that have a special meaning. For example, the sequence \b indicates the
beginning or end of a word (a word boundary), so if we wanted to indicate we were looking for the
characters th at the beginning of a word, we would search for the regular expression, \bth. (that is, the
sequence word boundary-t-h). If we wanted to search for all occurrences of th at the end of a word, we
would write th\b (the sequence t-h-word boundary). However, regular expressions are much more
sophisticated than that, and include, for example, facilities to store portions of text that are found in a
search operation. In this section, we will merely scratch the surface of the power of regular expressions.

Suppose your application needed to convert U.S. phone numbers to an international format. In the United
States, the phone numbers have this format: 314-123-1234, which is often written as (314) 123-1234. When
converting this national format to an international format you have to +1 (the country code of the United
States) and add brackets around the area code: +1 (314) 123-1234. As find-and-replace operations go, that’s
not too complicated, but would still require some coding effort if you were going to use the String class
for this purpose (which would mean that you would have to write your code using the methods avail-
able on System.String).The regular expressions language allows us to construct a short string that
achieves the same result.

This section is intended only as a very simple example, so we will concentrate on searching strings to
identify certain substrings, not on modifying them.

The RegularExpressionsPlayaround Example
For the rest of this section, we will develop a short example that illustrates some of the features of regu-
lar expressions and how to use the .NET regular expressions engine in C# by performing and displaying
the results of some searches. The text we are going to use as our sample document the Web page intro-
duction to a Wrox Press book on ASP.NET (Professional ASP.NET 1.1, ISBN 0-7645-5890-0):

string Text =
@”This comprehensive compendium provides a broad and thorough investigation of all
aspects of programming with ASP.NET. Entirely revised and updated for the 1.1
Release of .NET, this book will give you the information you need to master ASP.NET
and build a dynamic, successful, enterprise Web application.”;

The previous code is valid C# code, despite all the line breaks. It nicely illustrates the utility of verbatim
strings that are prefixed by the @ symbol.

230

Chapter 8

10 557599 Ch08.qxd 4/29/04 11:27 AM Page 230

We will refer to this text as the input string. To get our bearings and get used to the regular expressions
.NET classes, we will start with a basic plain text search that doesn’t feature any escape sequences or reg-
ular expression commands. Suppose that we want to find all occurrences of the string ion. We will refer
to this search string as the pattern. Using regular expressions and the Text variable declared above, we
can write this:

string Pattern = “ion”;
MatchCollection Matches = Regex.Matches(Text, Pattern,

RegexOptions.IgnoreCase |
RegexOptions.ExplicitCapture);

foreach (Match NextMatch in Matches)
{

Console.WriteLine(NextMatch.Index);
}

In this code, we have used the static method Matches() of the Regex class in the System.Text.Regular
Expressions namespace. This method takes as parameters some input text, a pattern, and a set of
optional flags taken from the RegexOptions enumeration. In this case, we have specified that all search-
ing should be case-insensitive. The other flag, ExplicitCapture, modifies the way that the match is
collected in a way that, for our purposes, makes the search a bit more efficient—we will see why this is
later (although it does have other uses that we won’t explore here). Matches() returns a reference to a
MatchCollection object. A match is the technical term for the results of finding an instance of the pattern
in the expression. It is represented by the class System.Text.RegularExpressions.Match. Therefore,
we return a MatchCollection that contains all the matches, each represented by a Match object. In the
previous code, we simply iterate over the collection, and use the Index property of the Match class,
which returns the index in the input text of where the match was found. Running this code results in
three matches.

So far, there is not really anything new here apart from some new .NET base classes. However, the power
of regular collections really comes from that pattern string. The reason is that the pattern string doesn’t
only have to contain plain text. As hinted at earlier, it can also contain what are known as meta-characters,
which are special characters that give commands, as well as escape sequences, which work in much the
same way as C# escape sequences. They are characters preceded by a backslash (\) and have special
meanings.

For example, suppose we wanted to find words beginning with n. We could use the escape sequence \b,
which indicates a word boundary (a word boundary is just a point where an alphanumeric character
precedes or follows a whitespace character or punctuation symbol). We would write this:

string Pattern = @”\bn”;
MatchCollection Matches = Regex.Matches(Text, Pattern,

RegexOptions.IgnoreCase |
RegexOptions.ExplicitCapture);

Notice the @ character in front of the string. We want the \b to be passed to the .NET regular expressions
engine at runtime—we don’t want the backslash intercepted by a well-meaning C# compiler that thinks
it’s an escape sequence intended for itself! If we want to find words ending with the sequence ion, then
we write this:

string Pattern = @”ion\b”;

231

Strings and Regular Expressions

10 557599 Ch08.qxd 4/29/04 11:27 AM Page 231

If we want to find all words beginning with the letter a and ending with the sequence ion (which has as
its only match the word application in our example), we will have to put a bit more though into our code.
We clearly need a pattern that begins with \ba and ends with ion\b, but what goes in the middle? We
need to somehow tell the application that between the n and the ion there can be any number of charac-
ters as long as none of them are whitespace. In fact, the correct pattern looks like this:

string Pattern = @”\ba\S*ion\b”;

Eventually you will get used to seeing weird sequences of characters like this when working with regular
expressions. It actually works quite logically. The escape sequence \S indicates any character that is not a
whitespace character. The * is called a quantifier. It means that the preceding character can be repeated any
number of times, including zero times. The sequence \S* means any number of characters as long as they are
not whitespace characters. The previous pattern will, therefore, match any single word that begins with a
and ends with ion.

The following table lists some of the main special characters or escape sequences that you can use. It is
not comprehensive, but a fuller list is available in the MSDN documentation.

Symbol Meaning Example Matches

^ Beginning of input text ^B B, but only if first character in text

$ End of input text X$ X, but only if last character in text

. Any single character except i.ation isation, ization
the newline character (\n)

* Preceding character may be ra*t rt, rat, raat, raaat, and so on
repeated 0 or more times

+ Preceding character may be ra+t rat, raat, raaat and so on, (but not
repeated 1 or more times rt)

? Preceding character may be ra?t rt and rat only
repeated 0 or 1 times

\s Any whitespace character \sa [space]a, \ta, \na (\t and \n have
the same meanings as in C#)

\S Any character that isn’t a \SF aF, rF, cF, but not \tf
whitespace

\b Word boundary ion\b Any word ending in ion

\B Any position that isn’t a \BX\B Any X in the middle of a word
word boundary

If you want to search for one of the meta-characters, you can do so by escaping the corresponding character
with a backslash. For example, . (a single period) means any single character other than the newline char-
acter, while \. means a dot.

232

Chapter 8

10 557599 Ch08.qxd 4/29/04 11:27 AM Page 232

You can request a match that contains alternative characters by enclosing them in square brackets. For
example [1|c] means one character that can be either 1 or c. If you wanted to search for any occurrence
of the words map or man, you would use the sequence ma[n|p]. Within the square brackets, you can also
indicate a range, for example [a-z] to indicate any single lowercase letter, [A-E] to indicate any upper-
case letter between A and E, or [0-9] to represent a single digit. If you want to search for an integer (that
is, a sequence that contains only the characters 0 through 9), you could write [0-9]+ (note the use of the
+ character to indicate there must be at least one such digit, but there may be more than one—so this
would match 9, 83, 854, and so on).

Displaying Results
In this section we will code our RegularExpressionsPlayaround example, so you can get a feel for
how the regular expressions work.

The core of the example is a method called WriteMatches(), which writes out all the matches from a
MatchCollection in a more detailed format. For each match, it displays the index of where the match
was found in the input string, the string of the match, and a slightly longer string, which consists of the
match plus up to ten surrounding characters from the input text—up to 5 characters before the match
and up to 5 afterwards (it is less than 5 characters if the match occurred within 5 characters of the begin-
ning or end of the input text). In other words, a match on the word messaging that occurs near the end
of the input text quoted earlier would display and messaging of d (five characters before and after the
match), but a match on the final word data would display g of data. (only one character after the match),
because after that we get to the end of the string. This longer string lets you see more clearly where the
regular expression locates the match:

static void WriteMatches(string text, MatchCollection matches)
{

Console.WriteLine(“Original text was: \n\n” + text + “\n”);
Console.WriteLine(“No. of matches: “ + matches.Count);
foreach (Match nextMatch in matches)
{

int Index = nextMatch.Index;
string result = nextMatch.ToString();
int charsBefore = (Index < 5) ? Index : 5;
int fromEnd = text.Length - Index - result.Length;
int charsAfter = (fromEnd < 5) ? fromEnd : 5;
int charsToDisplay = charsBefore + charsAfter + result.Length;

Console.WriteLine(“Index: {0}, \tString: {1}, \t{2}”,
Index, result,
text.Substring(Index - charsBefore, charsToDisplay));

}
}

The bulk of the processing in this method is devoted to the logic of figuring out how many characters in
the longer substring it can display without overrunning the beginning or end of the input text. Note that
we use another property on the Match object, Value, which contains the string identified for the match.
Other than that, RegularExpressionsPlayaround simply contains a number of methods with names

233

Strings and Regular Expressions

10 557599 Ch08.qxd 4/29/04 11:27 AM Page 233

like Find1, Find2, and so on, which perform some of the searches based on the examples in this section.
For example, Find2 looks for any string that contains a at the beginning of a word:

static void Find2()
{

string text = @”This comprehensive compendium provides a broad and thorough
investigation of all aspects of programming with ASP.NET. Entirely revised and
updated for the 1.0 Release of .NET, this book will give you the information
you need to master ASP.NET and build a dynamic, successful, enterprise Web
application.”;

string pattern = @”\ba”;
MatchCollection matches = Regex.Matches(text, pattern,

RegexOptions.IgnoreCase);
WriteMatches(text, matches);

}

Along with this comes a simple Main() method that you can edit to select one of the Find<n>() methods:

static void Main()
{

Find1();
Console.ReadLine();

}

The code also makes use of the RegularExpressions namespace:

using System;
using System.Text.RegularExpressions;

Running the example with the Find1() method as above gives these results:

RegularExpressionsPlayaround
Original text was:

This comprehensive compendium provides a broad and thorough investigation of all
aspects of programming with ASP.NET. Entirely revised and updated for the 1.1
Release of .NET, this book will give you the information you need to master ASP.NET
and build a dynamic, successful, enterprise Web application.

No. of matches: 1
Index: 291, String: application, Web application.

Matches, Groups, and Captures
One nice feature of regular expressions is that you can group characters. It works the same way as com-
pound statements in C#. In C# you can group any number of statements by putting them in braces, and
the result is treated as one compound statement. In regular expression patterns, you can group any char-
acters (including meta-characters and escape sequences), and the result is treated as a single character.
The only difference is you use parentheses instead of braces. The resultant sequence is known as a group.

For example, the pattern (an)+ locates any recurrences of the sequence an. The + quantifier applies only
to the previous character, but because we have grouped the characters together, it now applies to repeats

234

Chapter 8

10 557599 Ch08.qxd 4/29/04 11:27 AM Page 234

of an treated as a unit. This means that if we apply (an)+ to the input text, bananas came to Europe
late in the annals of history , the anan from bananas is identified. On the other hand, if we write
an+, the program selects the ann from annals, as well as two separate sequences of an from bananas.
The expression (an)+ identifies occurrences of an, anan, ananan, and so on, while the expression an+
identifies occurrences of an, ann, annn, and so on.

You might wonder why with the previous example, (an)+, picks out anan from the word banana, but
doesn’t identify either of the two occurrences of an from the same word. The rule is that matches must
not overlap. If there are a couple of possibilities that would overlap, then by default the longest possible
sequence will be matched.

However, groups are actually more powerful than that. By default, when you form part of the pattern
into a group, you are also asking the regular expression engine to remember any matches against just
that group, as well as any matches against the entire pattern. In other words you are treating that group
as a pattern to be matched and returned in its own right. This can actually be extremely useful if you
want to break up strings into component parts.

For example, URIs have the format: <protocol>://<address>:<port>, where the port is optional. An exam-
ple of this is http://www.wrox.com:4355. Suppose you want to extract the protocol, the address, and the
port from a URI, where you know that there may or may not be whitespace, (but no punctuation) immedi-
ately following the URI. You could do so using this expression:

\b(\S+)://(\S+)(?::(\S+))?\b

Here is how this expression works: First, the leading and trailing \b sequences ensure that we only con-
sider portions of text that are entire words. Within that, the first group, (\S+):// identifies one or more
characters that don’t count as whitespace, and which are followed by ://—the http:// at the start of
an HTTP URI. The brackets cause the http to be stored as a group. The subsequent (\S+) identifies the
string www.wrox.com in the URI. This group will end either when it encounters the end of the word (the
closing \b) or a colon (:) as marked by the next group.

The next group identifies the port (:4355). The following ? indicates that this group is optional in the
match—if there is no :xxxx then this won’t prevent a match from being marked. This very important,
because the port number is not always specified in a URI—in fact it is absent most of the time. However,
things are a bit more complicated than that. We want to indicate that the colon might or might not appear
too, but we don’t want to store this colon in the group. We’ve achieved this by having two nested groups.
The inner (\S+) identifies anything that follows the colon (for example, 4355). The outer group con-
tains the inner group preceded by the colon, and this group in turn is preceded by the sequence ?:. This
sequence indicates that the group in question should not be saved (we only want to save 4355; we don’t
need :4355 as well!). Don’t get confused by the two colons following each other—the first colon is part
of the ?: sequence that says “don’t save this group,” and the second is text to be searched for.

If you run this pattern on the following string, you’ll get one match: http://www.wrox.com.

Hey I’ve just found this amazing URI at http:// what was it -- oh yes
http://www.wrox.com

Within this match, you will find the three groups just mentioned as well as a fourth group, which repre-
sents the match itself. Theoretically, it is possible that each group itself might return no, one, or more
than one match. Each of these individual matches is known as a capture. So, the first group, (\S+), has

235

Strings and Regular Expressions

10 557599 Ch08.qxd 4/29/04 11:27 AM Page 235

one capture, http. The second group also has one capture (www.wrox.com). The third group, however,
has no captures, since there is no port number on this URI.

Notice that the string contains a second http://. Although this does match up to our first group, it will
not be captured by the search because the entire search expression does not match this part of the text.

We don’t have space to show any examples of C# code that uses groups and captures, but we will men-
tion that the .NET RegularExpressions classes support groups and captures, through classes known
as Group and Capture. There are also the GroupCollection and CaptureCollection classes, which
represent collections of groups and captures. The Match class exposes the Groups() method, which
returns the corresponding GroupCollection object. The Group class correspondingly implements the
Captures() method, which returns a CaptureCollection. The relationship between the objects is as
shown in Figure 8-3.

Figure 8-3

You might not want to return a Group object every time you just want to group some characters. There’s
a fair amount of overhead involved in instantiating the object, which is not necessary if all you want is to
group some characters as part of your search pattern. You can disable this by starting the group with the
character sequence ?: for an individual group, as we did for our URI example, or for all groups by spec-
ifying the RegExOptions.ExplicitCaptures flag on the RegEx.Matches() method, as we did in the
earlier examples.

MatchCollectionRegEx

Matches()
method

Match()
method Match

GroupCollection

Group

CaptureCollection

Capture

236

Chapter 8

10 557599 Ch08.qxd 4/29/04 11:27 AM Page 236

Summary
You have quite a number of available data types at your disposal when working with the .NET Frame-
work. One of the most used types in your applications (especially apps that focus on the submission and
retrieval of data) is the String data type. The string, being as important as it is, was the reason that
this book has a complete chapter focused on how to use the string data type and manipulate it in your
applications.

When working with strings in the past, it was quite common just to slice and dice the strings as needed
using concatenation. With the .NET Framework, you can use the new StringBuilder class to accom-
plish a lot of this task with better performance than before.

Last, but hardly least, advanced string manipulation using regular expressions are an excellent tool to
search through and validate your strings.

237

Strings and Regular Expressions

10 557599 Ch08.qxd 4/29/04 11:27 AM Page 237

10 557599 Ch08.qxd 4/29/04 11:27 AM Page 238

Collections

There are situations when it is necessary to hold more than a single item in your data collection.
There are moments where you are going to want to hold a group or collection of data that is related
in some fashion in a larger construct. The C# language and the .NET Framework provide you with a
number of opportunities for performing this type of value sorting in your code.

This chapter shows you how to work with groups of objects. We will take a close look at array lists,
dictionaries, and collections as well as how to use them properly in your C# code for the best pos-
sible performance.

Examining Groups of Objects
Let’s start by looking at how the .NET base classes support data structures that consist of a group
of similar objects. Chapter 3 introduces the ordinary array, the simplest data structure of this kind.
The ordinary array is an instance of the class System.Array namespace, but C# wraps its own
syntax around this class. System.Array has two advantages: it is relatively efficient for accessing
an individual element given its index, and it has its own C# syntax, which obviously makes using
it more intuitive. However, it also has a huge disadvantage: You must specify its size when you
instantiate it. There is no facility for adding, inserting, or removing elements later on. You also have
to have a numeric index in order to be able to access an element. This is not particularly useful if,
for example, you are dealing with a set of employee records and need to look up a given record
from the name of the employee.

.NET has quite extensive support for a number of other data structures that are useful in different
circumstances. Not only that, but there are also a number of interfaces that classes can implement
in order to declare that they support all the functionality of a particular type of data structure. In
this chapter, we are going to survey three of these structures:

❑ Array lists

❑ Collections

❑ Dictionaries (also sometimes known as maps)

11 557599 Ch09.qxd 4/29/04 11:33 AM Page 239

With the exception of the basic System.Array, all the data structure classes are located in the System.
Collections namespace.

The name System.Collections reflects another of those terminology ambiguities that plague comput-
ing. Collection is often used informally to denote any data structure. However, it also has the more specific
meaning of a class that implements IEnumerable or ICollection—a particular type of data structure
that we will investigate later in this chapter. In this chapter, we will always use the term collection to refer
to the more specific meaning, except where .NET base class names force us to use it in the general sense.

Array Lists
An array list is very similar to an array, except that it has the ability to grow. It is represented by the class
System.Collections.ArrayList.

The ArrayList class also has some similarities with the StringBuilder class. Just as a StringBuilder
allocates enough space in memory to store a certain number of characters, and allows you to manipulate
characters within the space, the ArrayList allocates enough memory to store a certain number of object
references. You can then efficiently manipulate these object references . If you try to add more objects to
the ArrayList than permitted, then it will automatically increase its capacity by allocating a new area of
memory big enough to hold twice as many elements as the current capacity, and relocate the objects to this
new location.

You can instantiate an array list by indicating the initial capacity you want. For this example, we will
assume we are creating a list of Vectors:

ArrayList vectors = new ArrayList(20);

If you don’t specify the initial size, it defaults to 16:

ArrayList vectors = new ArrayList(); // capacity of 16

You can then add elements using the Add() method:

vectors.Add(new Vector(2,2,2));
vectors.Add(new Vector(3,5,6));

The ArrayList treats all its elements as object references. That means you can store whatever objects
you like in an ArrayList, but when accessing the objects, you will need to cast them back to the appro-
priate data type:

Vector element1 = (Vector)vectors[1];

This example also shows that ArrayList defines an indexer, so that you can access its elements with an
array-like syntax. You can also insert elements into the ArrayList:

vectors.Insert(1, new Vector(3,2,2)); // inserts at position 1

There is also a useful override of Insert that allows you to insert all the elements of a collection into an
ArrayList, given an ICollection interface reference.

240

Chapter 9

11 557599 Ch09.qxd 4/29/04 11:33 AM Page 240

You can remove elements:

vvectors.RemoveAt(1); // removes object at position 1

You can also supply an object reference to another method, Remove().However, this takes longer since it
will cause the ArrayList to make a linear search through the array to find the object.

Note that adding or removing an element causes all subsequent elements to have to be correspondingly
shifted in memory, even if no reallocation of the entire ArrayList is needed.

You can modify or read the capacity with the Capacity property:

vectors.Capacity = 30;

Note, however, that changing the capacity causes the entire ArrayList to be reallocated to a new block
of memory with the required capacity.

The number of elements in the ArrayList can be obtained with the Count property:

int nVectors = vectors.Count;

An array list can be really useful if you need to build up an array of objects but you do not know in
advance how big the array is going to be. In that case, you can construct the array in an ArrayList, and
then copy the ArrayList back to a plain old array when you have finished, provided that you actually
need the data as an array (this would be the case, for example, if the array is to be passed to a method
that expects an array as a parameter). The relationship between ArrayList and Array is in many ways
similar to that between StringBuilder and String.

Unfortunately, unlike the StringBuilder class, there is no single method to do this conversion from an
array list to an array. You have to use a loop to manually copy back references. Note, however, that you
are only copying the references not the objects, so this should not result in much of a performance hit:

// vectors is an ArrayList instance being used to store Vector instances
Vector [] vectorsArray = new Vector[vectors.Count];
for (int i=0 ; i< vectors.Count ; i++)

vectorsArray[i] = (Vector)vectors [i];

Collections
The idea of a collection is that it represents a set of objects that you can access by stepping through each
element in turn. In particular, it is the set of objects that you access using a foreach loop. In other
words, when you write something like the following code, you are assuming that the variable
messageSet is a collection.

foreach (string nextMessage in messageSet)
{

DoSomething(nextMessage);
}

The ability to use a foreach loop is the main purpose of collections. They offer little in the way of addi-
tional features.

241

Collections

11 557599 Ch09.qxd 4/29/04 11:33 AM Page 241

Over the next couple of pages, we are going to look in more detail at what a collection is and implement
our own collection by converting our Vector example. The broad concepts behind collections are actu-
ally not new to the .NET Framework. Collections have been a part of COM for years and have also been
used in Visual Basic 6 with the convenient For...Each syntax. Java also has a foreach loop, and in
both cases the underlying architecture is very similar to that for .NET collections.

What is a collection?
Internally, an object is a collection if it is able to supply a reference to a related object, known as an enu-
merator, which is able to step through the items in the collection. More specifically, a collection must
implement the interface System.Collections.IEnumerable. IEnumerable defines just one method
and looks like this:

interface IEnumerable
{

IEnumerator GetEnumerator();
}

The purpose of GetEnumerator() is to return the enumerator object. As you can gather from the previous
code, the enumerator object is expected to implement an interface, System.Collections.IEnumerator.

There is an additional collections interface, ICollection, which is derived from IEnumerable. More
sophisticated collections will implement this interface as well. Besides GetEnumerator(), it implements
a property that returns the number of elements in the collection. It also features support for copying the
collection to an array and can supply information indicating if it is thread-safe. However, here we will only
consider the simpler collection interface, IEnumerable.

IEnumerator looks like this:

interface IEnumerator
{

object Current { get; }
bool MoveNext();
void Reset();

}

IEnumerator is intended to work like this: the object that implements it should be associated with one
particular collection. When this object is first initialized, it does not yet refer to any elements in the collec-
tion, and you must call MoveNext(), which moves the enumerator so that it refers to the first element in
the collection. You can then retrieve this element with the Current property. Current returns an object ref-
erence, so you will have to cast it to the type of object you are expecting to find in the collection. You can do
whatever you want with that object then move to the next item in the collection by calling MoveNext()
again. You repeat this process until there are no more items in the collection—you will know this has hap-
pened when the Current property returns null. You can return to the start of the collection by calling the
Reset() method at any time. Note that Reset() actually returns to just before the start of the collection so
if you call this method, you must call MoveNext() again to get to the first element.

You can see from this example that the point of the collection is simply to provide a way of stepping
through all the elements when you don’t want to supply an index, and you are happy to rely on the col-
lection itself to choose the order in which the elements are returned to you. This usually means that you

242

Chapter 9

11 557599 Ch09.qxd 4/29/04 11:33 AM Page 242

are not bothered about the order in which the elements are retrieved, as long as you get to see all of them,
although in some cases a particular collection might be instructed to return the elements in a certain
order. In one sense, a collection is a very basic type of group of objects, because it does not allow you to
add or remove items from the group. All you can do is retrieve the items in an order determined by the
collection, and examine them. It is not even possible to replace or modify items in the collection, because
the Current property is read-only. The most frequent use of the collection is to give you the syntactical
convenience of the foreach loop.

Arrays are also collections, as should be obvious because the foreach command works successfully
with arrays. For the particular case of arrays, the enumerator supplied by the System.Array class steps
through the elements in increasing order of index from zero upwards.

In fact, the previous foreach loop in C# is just a syntactical shortcut for writing the following code:

{
IEnumerator enumerator = MessageSet.GetEnumerator();
string nextMessage;
enumerator.MoveNext();
while ((nextMessage = enumerator.Current) != null)
{

DoSomething(nextMessage); // NB. We only have read access
// toNextMessage

enumerator.MoveNext();
}

}

Note the enclosing curly braces framing the previous code snippet. We have supplied them in order to
ensure that this code has exactly the same effect as the earlier foreach loop. If we hadn’t included them,
then this code would have differed to the extent that the nextMessage and enumerator variables
would have remained in scope after the loop had finished being executed.

One important aspect of collections is that the enumerator is returned as a separate object. It should not
be the same object as the collection itself. The reason is to allow for the possibility that more than one
enumerator might be applied simultaneously to the same collection.

Adding collection support to the Vector struct
Our Vector struct that we started in Chapter 3 is about to get another extension with collection support.

So far our Vector struct contains a Vector instance with three components, x, y, and z, and because
we defined an indexer in Chapter 3, it is possible to treat a Vector instance as an array, so that we can
access the x-component by writing SomeVector[0], the y-component by writing SomeVector[1], and
the z-component by writing SomeVector[2].

We will now extend the Vector struct into a new code sample, the VectorAsCollection project, in
which it is also possible to iterate through the components of a Vector by writing code like this:

foreach (double component in someVector)
Console.WriteLine(“Component is “ + component);

243

Collections

11 557599 Ch09.qxd 4/29/04 11:33 AM Page 243

Our first task is to mark Vector as a collection by having it implement the IEnumerable interface. We
start by modifying the declaration of the Vector struct:

struct Vector : IFormattable, IEnumerable
{

public double x, y, z;

Note that the IFormattable interface is present because we added support for string format specifiers
earlier. Now we need to implement the IEnumerable interface:

public IEnumerator GetEnumerator()
{

return new VectorEnumerator(this);
}

The implementation of GetEnumerator() could hardly be simpler, but it depends on the existence of a
new class, VectorEnumerator, which we need to define. Since VectorEnumerator is not a class that
any outside code has to see directly, we declare it as a private class inside the Vector struct. Its defini-
tion looks like this:

private class VectorEnumerator : IEnumerator
{

Vector theVector; // Vector object that this enumerator refers to
int location; // which element of theVector the enumerator is

// currently referring to

public VectorEnumerator(Vector theVector)
{

this.theVector = theVector;
location = -1;

}

public bool MoveNext()
{

++location;
return (location > 2) ? false : true;

}

public object Current
{

get
{

if (location < 0 || location > 2)
throw new InvalidOperationException(

“The enumerator is either before the first element or “ +
“after the last element of the Vector”);

return theVector[(uint)location];
}

}

public void Reset()

244

Chapter 9

11 557599 Ch09.qxd 4/29/04 11:33 AM Page 244

private class VectorEnumerator : IEnumerator
{

location = -1;
}

}

As required for an enumerator, VectorEnumerator implements the IEnumerator interface. It also con-
tains two member fields, theVector, which is a reference to the Vector (the collection) that this enu-
merator is to be associated with, and location, an int that indicates the enumerator’s reference point
in the collection—put differently, whether the Current property should retrieve the x, y, or z compo-
nent of the vector.

The way we will work in this case is by treating location as an index and internally implementing the
enumerator to access Vector as an array. When accessing Vector as an array, the valid indices are 0, 1,
and 2—we will extend this by using -1 as the value that indicates where the enumerator is before the
start of the collection, and 3 to indicate that it is beyond the end of the collection. Hence, the initializa-
tion of this field to -1 in the VectorEnumerator constructor:

public VectorEnumerator(Vector theVector)
{

this.theVector = theVector;
location = -1;

}

Notice the constructor also takes a reference to the Vector instance that we are to enumerate—this was
supplied in the Vector.GetEnumerator() method:

public IEnumerator GetEnumerator()
{

return new VectorEnumerator(this);
}

Dictionaries
Dictionaries represent a very sophisticated data structure that allows you to access an element based on
some key, which can be of any data type you want. They are also known as maps or hash tables. Dictionar-
ies are great if you want to store objects as if they were an array, but where you want to use some other
data type rather than a numeric type to index into the structure. They also allow you to add and remove
items freely, a bit like an ArrayList, but without the performance overhead of having to shift subse-
quent items in memory.

We will illustrate the kinds of situations in which dictionaries can be useful using the example that we
will develop later in this section, the MortimerPhonesEmployees example. This example assumes that
Mortimer Phones (the mobile phone company that we first introduced in Chapter 3) has some software
that processes details of its employees. To that end, we need a data structure—something like an array—
that contains data for employees. We assume that each Mortimer Phones employee is identified by an
employee ID, which is a set of characters such as B342 or W435, and is stored as an EmployeeID object.
Each employee’s details are stored as an EmployeeData object; for our example, this just contains the
employee’s ID, name, and salary.

245

Collections

11 557599 Ch09.qxd 4/29/04 11:33 AM Page 245

Suppose we have this EmployeeID:

EmployeeID id = new EmployeeID(“W435”);

and a variable called employees, which we can treat syntactically as an array of EmployeeData objects.
In actuality, this is not an array; it is a dictionary, and because it is a dictionary, we can get the details of
an employee with the previously declared ID like this:

EmployeeData theEmployee = employees[id];
// Note that id is NOT a numeric type – it is an EmployeeID instance

That’s the power of dictionaries. They look like arrays (but are more powerful than that; they are more
like ArrayLists since you can dynamically set their capacity, and add and remove elements), but you
don’t have to use an integer to index into them; you can use any data type you want. For a dictionary,
this is called a key rather than an index. Roughly speaking, what happens is that the dictionary takes the
key supplied when you access an element (in the previous example this is the ID object) and it does some
processing on the value of this key. This processing returns an integer that depends on the value of the
key, and is used to work out where in the array the entry should be stored or retrieved from. Here is a
short list of other examples where you might want to use a dictionary to store objects:

❑ If you want to store details of employees or other people, indexed by their social security num-
bers. Although the social security number is basically an integer, you cannot use an array with
social security numbers as the index because a U.S. social security number theoretically can go
up to the value of 999999999. On a 32-bit system you’d never fit an array that big in a program’s
address space! Most of the array would be empty anyway. Using a dictionary, you can have a
social security number to index an employee, but still keep the dictionary size small.

❑ If you want to store addresses, indexed by zip code. In the United States, zip codes are just
numbers, but in Canada and the United Kingdom they use letters and numbers together.

❑ If you want to store any data for objects or people, indexed by the name of the object or person.

Although the effect of a dictionary is that it looks to client code much like a dynamic array with a very
flexible means of indexing into it, there is a lot of work that goes on behind the scenes to bring this about.
In principle you can use an object of any class as an index key for dictionaries. However, you must imple-
ment certain features on a class before it can be used as a key. This also pertains to the GetHashCode()
method that all classes and structs inherit from System.Object. In this section, we will take a closer
look under the hood at what a dictionary is, how it works, and how GetHashCode() is involved. Then,
we will move on to our MortimerPhonesEmployees example, which demonstrates how to use a dictio-
nary and how to set up a class so that it can be used as a key.

Dictionaries in real life
The term dictionary is used because the structure is very similar to a real-life dictionary’s. In a real dictio-
nary you will normally want to look up the meaning of a word (or in the case of a foreign dictionary, the
details of how to translate a word). The couple of lines of text that give the meaning (or the translation)
are the data you are really interested in. The fact that a large dictionary will have tens of thousands of
data items in it is no problem when you want to look up a meaning, because you just look for the word
in alphabetical order. In a sense, the word you are looking up is equivalent to the key that you use to get
at the data you are really interested in. It is not really the word itself you are interested in so much as the
data associated with it. The word just provides the means to locate the entry in the dictionary. This means
that there are really three things here that you need to build a dictionary:

246

Chapter 9

11 557599 Ch09.qxd 4/29/04 11:33 AM Page 246

❑ The data you want to look up

❑ The key

❑ The algorithm that allows you to find where the data is in the dictionary

The algorithm is a crucial part of the dictionary. Just knowing what the key is is not sufficient—you also
need a way that you can use the key to find out the location of the item in the data structure. In real-life
dictionaries, this algorithm is provided by arranging words in alphabetical order.

Dictionaries in .NET
In .NET, the basic dictionary is represented by the class Hashtable, which works on the same principles
as a real-life dictionary, except that it assumes that the key and item are both of type Object. This means
that a Hashtable can store whatever data structure you want. By contrast, a real-life dictionary uses
strings as the keys.

Although Hashtable represents the generic will-store-anything dictionary, it is permissible to define your
own more specialized dictionary classes. Microsoft has provided an abstract base class, DictionaryBase,
which provides basic dictionary functionality, and from which you can derive your classes. There is also a
ready-made .NET base class, System.Collections.Specialized.StringDictionary, which you
should use in place of Hashtable if your keys are strings.

When you create a Hashtable object, you can indicate its initial capacity, just as you would for String
Builder and ArrayList:

Hashtable employees = new Hashtable(53);

As usual there are many other constructors, but this is the one you will probably use most often. Notice
the unusual size of the initial capacity that we’ve chosen: 53. There is a good reason for this. Due to the
internal algorithms used in dictionaries, they work most efficiently if their capacity is a prime number.

Adding an object to the Hashtable is done with the Add() method, but Hashtable.Add() takes two
parameters, both of them are object references. The first is a reference to the key; the second is a reference
to the data. Carrying on with the EmployeeID and EmployeeData classes from the example that we will
develop soon:

EmployeeID id;
EmployeeData data;

// initialize id and data to refer to some employee
// assume employees is a Hashtable instance
//that contains EmployeeData references

employees.Add(id, data);

In order to retrieve the data for an item, you need to supply the key. Hashtable implements an indexer
so that you can retrieve data—this is how we get the array syntax we discussed earlier:

EmployeeData data = employees[id];

247

Collections

11 557599 Ch09.qxd 4/29/04 11:33 AM Page 247

You can also remove items from the dictionary by supplying the key of the object to be removed:

employees.Remove(id);

You can also find out how many items are in the hash table using the Count property:

int nEmployees = employees.Count;

Notice, however, that there is no Insert() method. We have not yet looked at how a dictionary works
internally, but there is no difference between adding and inserting data. Unlike an array or an ArrayList,
you don’t find one big block of data at the beginning of the structure and an empty block at the end.
Instead, the situation looks more like the diagram in Figure 9-1, in which any unmarked parts of the dic-
tionary are empty.

Figure 9-1

When you add an entry, it will actually be placed at some location that could be anywhere in the dictionary.
How the location is worked out from the key is something that you don’t need to know about when you
are using the dictionary. The important point is that the algorithm used to work out the location of an item
is reliable. As long as you remember what the key is, you can just hand it to the Hashtable object, and it
will be able to use the key to quickly work out where the item is and retrieve it for you. We will examine
how the algorithm works later in this section. Hint: It relies on the key’s GetHashCode() method.

Note that the above diagram is simplified. Each key/entry pair is not actually stored inside the dictio-
nary structure—as is common for reference types, what is stored are the object references that indicate
where on the heap the objects themselves are located.

How the dictionary works
So far, we’ve seen that dictionaries (hash tables) are extremely convenient to use, but there is a snag:
Hashtable (and indeed any other dictionary class) uses some sort of algorithm to work out where to

DICTIONARY

Key + Entry

Key + Entry

Key + Entry

Key + Entry

248

Chapter 9

11 557599 Ch09.qxd 4/29/04 11:33 AM Page 248

place each object based on the key, and that algorithm isn’t entirely provided by the Hashtable class. It
has two stages, and the code for one of these stages must be provided by the key class. If you are using a
class that Microsoft has written, and which can be used as a key (such as String), then there’s no prob-
lem (Microsoft will have written all the code already). However, if the key class is one that you have
written yourself, then you will have to write this part of the algorithm yourself.

In computer parlance, the part of the algorithm implemented by the key class is known as a hash (hence the
term hash table), and the Hashtable class looks in a very particular place for the hash algorithm. It looks
in your object’s GetHashCode() method, which it inherits from System.Object. Whenever a dictionary
class needs to work out where an item should be located, it simply calls the key object’s GetHashCode()
method. This is why we emphasized when we were discussing System.Object() that if you override
GetHashCode(), there are fairly stringent requirements on how you do it, because your implementation
needs to behave in certain ways for dictionary classes to work correctly. (If you don’t intend your class to
ever be used as a key in a dictionary, there’s no need to override GetHashCode().)

The way it works is that GetHashCode() returns an int, and it somehow uses the value of the key to
generate this int. Hashtable will take this int and do some other processing on it that involves some
sophisticated mathematical calculations, and which returns the index of where in the dictionary an item
with the given hash should be stored. We won’t go into this part of the algorithm—that part has already
been coded by Microsoft, so we don’t need to know about it. What you should know is that it involves
prime numbers and is the reason why the hash table capacity should be a prime number.

For this to work properly, there are some fairly strict requirements for the GetHashCode() override,
which we will look at here. These requirements are going to sound quite abstract and daunting, but
don’t worry too much. As our MortimerPhonesEmployees example demonstrates, it is not at all diffi-
cult to code a key class that satisfies these requirements:

❑ It should be fast (because placing or retrieving entries in a dictionary is supposed to be fast).

❑ It must be consistent; if you regard two keys as representing the same value, then they must
give the same value for the hash.

❑ It should ideally give values that are likely to be evenly distributed across the entire range of
numbers that an int can store.

The reason for this last condition is because of a potential problem; what happens if you get two entries
in the dictionary whose hashes both give the same index?

If this happens, the dictionary class will have to start fiddling about looking for the nearest available free
location to store the second item—and will have to do some searching in order to retrieve this item later
on. This is obviously going to hurt performance, and clearly, if lots of your keys are tending to give the
same indexes for where they should be stored, this kind of clash becomes more likely. However, because
of the way Microsoft’s part of the algorithm works, this risk is minimized when the calculated hash val-
ues are evenly distributed between int.MinValue and int.MaxValue.

The risk of clashes between keys also increases as the dictionary gets fuller, so it’s normally a good idea
to make sure the capacity of the dictionary is substantially greater than the number of elements actually
in it. For this reason, Hashtable will automatically relocate in order to increase its capacity well before
it actually becomes full. The proportion of the table that is full is termed the load, and you can set the

249

Collections

11 557599 Ch09.qxd 4/29/04 11:33 AM Page 249

maximum value that you want the load to reach before Hashtable relocates in another of the Hashtable
constructors:

// capacity =50, Max Load = 0.5

Hashtable employees = new Hashtable(50, 0.5);

The smaller the maximum load, the more efficiently your hash table works and the more memory it
occupies. Incidentally, when a hash table relocates in order to increase its capacity, it always chooses a
prime number as its new capacity.

Another important point we mentioned earlier is that the hashing algorithm must be consistent. If two
objects contain what you regard as the same data, then they must give the same hash value, and this is
where we come to the important restrictions on how you override the Equals() and GetHashCode()
methods of System.Object. You see, the way that the Hashtable determines whether two keys A and
B are equal is that it calls A.Equals(B). This means you must ensure that the following is always true:

This probably seems a fairly subtle point, but it is crucial. If you contrived some way of overriding these
methods so that the previous statement is not always true, then a hash table that uses instances of this
class as its keys will simply not work properly. Instead, you’ll find funny things happening. For exam-
ple, you might place an object in the hash table and then discover that you can never retrieve it, or you
might try to retrieve an entry and get the wrong entry returned.

For this reason, the C# compiler will display a compilation warning if you supply an override for
Equals() but don’t supply an override for GetHashCode().

For System.Object this condition is true, because Equals() simply compares references, and GetHash
Code() actually returns a hash that is based solely on the address of the object. This means that hash tables
based on a key that doesn’t override these methods will work correctly. However, the problem with this
way of doing things is that keys are regarded as equal only if they are the same object. That means that
when you place an object in the dictionary, you then have to hang on to the reference to the key. You can’t
simply instantiate another key object later that has the same value, because the same value is defined as
meaning the very same instance. This means that if you don’t override the Object versions of Equals()
and GetHashCode(), your class won’t be very convenient to use in a hash table. It makes more sense to
implement GetHashCode() to generate a hash based on the value of the key rather than its address in
memory. This is why you will invariably need to override GetHashCode() and Equals() for any class
that you want to be used as a key.

Incidentally, System.String has had these methods overloaded appropriately. Equals() has been
overloaded to provide value comparison, and GetHashCode() has also been correspondingly overloaded
to return a hash based on the value of the string. For this reason it is convenient to use strings as keys in
a dictionary.

If A.Equals(B) is true, then A.GetHashCode() and B.GetHashCode() must always
return the same hash code.

250

Chapter 9

11 557599 Ch09.qxd 4/29/04 11:33 AM Page 250

The MortimerPhonesEmployees example
The MortimerPhonesEmployees example is a program that sets up a dictionary of employees. As men-
tioned earlier, the dictionary is indexed using EmployeeID objects, and each item stored in the dictionary is
an EmployeeData object that stores details of an employee. The program simply instantiates a dictionary,
adds a couple of employees to it, and then invites the user to type in employee IDs. For each ID the user
types in, the program attempts to use the ID to index a dictionary and retrieve the employee’s details.
The process iterates until the user types in X. The example, when run, looks like this:

MortimerPhonesEmployees
Enter employee ID (format:A999, X to exit)> B001
Employee: B001: Mortimer $100,000.00

Enter employee ID (format:A999, X to exit)> W234
Employee: W234: Arabel Jones $10,000.00

Enter employee ID (format:A999, X to exit)> X

This example contains a number of classes. In particular, we need the EmployeeID class, which is the
key used to identify employees, and the EmployeeData class that stores employee data. We will exam-
ine the EmployeeID class first, since this is the one where all the action happens in terms of preparing it
to be used as a dictionary key. The definition of this class is as follows:

class EmployeeID
{

private readonly char prefix;
private readonly int number;

public EmployeeID(string id)
{

prefix = (id.ToUpper())[0];
number = int.Parse(id.Substring(1,3));

}

public override string ToString()
{

return prefix.ToString() + string.Format(“{0,3:000}”, number);
}

public override int GetHashCode()
{

return ToString().GetHashCode();
}

public override bool Equals(object obj)
{

EmployeeID rhs = obj as EmployeeID;
if (rhs == null)

return false;
if (prefix == rhs.prefix && number == rhs.number)

return true;
return false;

}
}

251

Collections

11 557599 Ch09.qxd 4/29/04 11:33 AM Page 251

The first part of the class definition simply stores the actual ID. Remember that the ID takes a format such
as B001 or W234. In other words, it consists of a single letter prefix, followed by three numeric characters.
We store this as a char for the prefix and an int for the remainder of the code.

The constructor simply takes a string and breaks it up to form these fields. Note that to keep the example
simple, no error checking is performed. We will just assume the string passed into the constructor is in
the correct format. The ToString() method simply returns the ID as a string:

return prefix.ToString() + string.Format(“{0,3:000}”, number);

Note the format specifier (3:000) that ensures the int containing the number is padded with zeros, so
we get for example B001, and not B1.

Now we come to the two method overrides that we need for the dictionary. First, we have overridden
Equals() so that it compares the values of EmployeeID instances:

public override bool Equals(object obj)
{

EmployeeID rhs = obj as EmployeeID;
if (rhs == null)

return false;
if (prefix == rhs.prefix && number == rhs.number)

return true;
return false;

}
}

This is the first time we have seen an example of an override of Equals(). Notice that our first task is to
check whether the object passed as a parameter is actually an EmployeeID instance. If it isn’t, then it
obviously isn’t going to equal this object, so we return false. We test the type by attempting to cast it to
EmployeeID using C#’s as keyword. Once we have established that we have an EmployeeID object, we
just compare the values of the fields to see if they contain the same values as this object.

Next, we look at GetHashCode(). The implementation of this is shorter, though at first sight it is perhaps
harder to understand what’s going on:

public override int GetHashCode()
{

string str = this.ToString();
return str.GetHashCode();

}

Earlier, we listed some strict requirements that the calculated hash code had to satisfy. Of course, there are
all sorts of ways to devise simple and efficient hashing algorithms. Generally, taking the fields, multiply-
ing them by large prime numbers, and adding the results together is a good way to do this. However, for
our convenience, Microsoft has already implemented a sophisticated, yet efficient hashing algorithm for
the String class, so we may as well take advantage of that. String.GetHashCode() produces well-dis-
tributed numbers based on the contents of the string. It satisfies all the requirements of a hash code.

The only disadvantage of leveraging this method is that there is some performance loss associated with
converting our EmployeeID class to a string in the first place. If you are concerned about that and

252

Chapter 9

11 557599 Ch09.qxd 4/29/04 11:33 AM Page 252

need the last ounce of performance in your hashing algorithms, you will need to design your own hash.
Designing hashing algorithms is a complex topic that we cannot discuss in depth in this book. However,
we will suggest one simple approach to the problem, which is to multiply numbers based on the compo-
nent fields of the class by different prime numbers (for mathematical reasons, multiplying by different
prime numbers helps to prevent different combinations of values of the fields from giving the same hash
code). The following snippet shows a suitable implementation of GetHashCode():

public override int GetHashCode() // alternative implementation
{

return (int)prefix*13 + (int)number*53;
}

This particular example, will work more quickly than the ToString()-based algorithm that we use in
the example, but has the disadvantage that the hash codes generated by different EmployeeIDs are less
likely to be evenly spread across the range of int. Incidentally, the primitive numeric types do have
GetHashCode() methods defined, but these methods simply return the value of the variable, and are
hence not particularly useful. The primitive types aren’t really intended to be used as keys.

Notice that our GetHashCode() and Equals() implementations do between them satisfy the require-
ments for equality that we mentioned earlier. With our override of Equals(), two EmployeeID objects
will be considered equal if, and only if they have the same values of prefix and number. However, in
that case ToString() provides the same value for both of them, and so they will give the same hash code.
That’s the crucial test that must be satisfied.

Next, we can look at the class that contains the employee data. The definition of this class is fairly basic
and intuitive:

class EmployeeData
{

private string name;
private decimal salary;
private EmployeeID id;

public EmployeeData(EmployeeID id, string name, decimal salary)
{

this.id = id;
this.name = name;
this.salary = salary;

}

public override string ToString()
{

StringBuilder sb = new StringBuilder(id.ToString(), 100);
sb.Append(“: “);
sb.Append(string.Format(“{0,-20}”, name));
sb.Append(“ “);
sb.Append(string.Format(“{0:C}”, salary));
return sb.ToString();

}
}

253

Collections

11 557599 Ch09.qxd 4/29/04 11:33 AM Page 253

Notice how once again for performance reasons, we use a StringBuilder object to generate the string
representation of an EmployeeData object. Finally, we create the test harness. This is defined in the
TestHarness class:

class TestHarness
{

Hashtable employees = new Hashtable(31);

public void Run()
{

EmployeeID idMortimer = new EmployeeID(“B001”);
EmployeeData mortimer = new EmployeeData(idMortimer, “Mortimer”,

100000.00M);
EmployeeID idArabel = new EmployeeID(“W234”);
EmployeeData arabel= new EmployeeData(idArabel, “Arabel Jones”,

10000.00M);

employees.Add(idMortimer, mortimer);
employees.Add(idArabel, arabel);

while (true)
{

try
{

Console.Write(“Enter employee ID (format:A999, X to exit)> “);
string userInput = Console.ReadLine();
userInput = userInput.ToUpper();
if (userInput == “X”)

return;
EmployeeID id = new EmployeeID(userInput);
DisplayData(id);

}
catch (Exception e)
{

Console.WriteLine(“Exception occurred. Did you use the correct
format for the employee ID?”);

Console.WriteLine(e.Message);
Console.WriteLine();

}

Console.WriteLine();
}

}

private void DisplayData(EmployeeID id)
{

object empobj = employees[id];
if (empobj != null)
{

EmployeeData employee = (EmployeeData)empobj;
Console.WriteLine(“Employee: “ + employee.ToString());

}
else

254

Chapter 9

11 557599 Ch09.qxd 4/29/04 11:33 AM Page 254

Console.WriteLine(“Employee not found: ID = “ + id);
}

}

TestHarness contains the member field, which actually is the dictionary.

As usual for a dictionary, we have set the initial capacity to a prime number; in this case, 31. The guts of the
test harness are in the Run() method. This method first sets up details for two employees—mortimer and
arabel—and adds their details to the dictionary:

employees.Add(idMortimer, mortimer);

employees.Add(idArabel, arabel);

Next, we enter the while loop that repeatedly asks the user to input an employeeID. There is a try block
inside the while loop, which is just there to trap any problems caused by the user typing in something
that’s not the correct format for an EmployeeID, which would cause the EmployeeID constructor to throw
an exception when it tries to construct an ID from the string:

string userInput = Console.ReadLine();
userInput = userInput.ToUpper();
if (userInput == “X”)

return;
EmployeeID id = new EmployeeID(userInput);

If the EmployeeID was constructed correctly, we display the associated employee by calling a method,
DisplayData(). This is the method in which we finally get to access the dictionary with array syntax.
Indeed, retrieving the employee data for the employee with this ID is the first thing we do in this method:

private void DisplayData(EmployeeID id)
{

object empobj = employees[id];

If there is no employee with that ID in the dictionary, then employees[id] will return null, which is
why we check for a null reference and display an appropriate error message if we find one. Otherwise,
we simply cast our returned empobj reference to an EmployeeData. (Remember that Hashtable is a
very generic dictionary class; it is storing objects, so retrieving an element from it will return an object
reference, which we need to cast back to the type that we originally placed in the dictionary.) Once we
have our EmployeeID reference, we can simply display the employee data using the EmployeeData.
ToString() method:

EmployeeData employee = (EmployeeData)empobj;
Console.WriteLine(“Employee: “ + employee.ToString());

We have one final part of the code—the Main() method that kicks the whole sample off. This simply
instantiates a TestHarness object and runs it:

static void Main()
{

TestHarness harness = new TestHarness();
harness.Run();

}

255

Collections

11 557599 Ch09.qxd 4/29/04 11:33 AM Page 255

Summary
This chapter took a look at working with different sorts of collections in your code. We discussed array
lists, dictionaries, and collections. In addition to these types of collections, if you look in the SDK docu-
mentation of all the collections that implement the ICollection or IEnumerable interfaces, you will
actually find a long list of available classes at your disposal. Included in this list of classes, you will find
a collection that should satisfy your needs. For example, in addition to the ArrayList and Hashtable
classes, you will find other great collection objects such as the SortedList, Queue, and Stack classes.
When implementing a collection in your code, think through the size, type, and performance that your
collection requires and consider all your options. The .NET Framework provides a tremendous amount
of possibilities for this type of work.

256

Chapter 9

11 557599 Ch09.qxd 4/29/04 11:33 AM Page 256

Reflection

Reflection is a generic term that describes the ability to inspect and manipulate program elements
at runtime. For example, reflection allows you to:

❑ Enumerate the members of a type

❑ Instantiate a new object

❑ Execute the members of an object

❑ Find out information about a type

❑ Find out information about an assembly

❑ Inspect the custom attributes applied to a type

❑ Create and compile a new assembly

This list represents a great deal of functionality and encompasses some of the most powerful and
complex capabilities provided by the .NET Framework class library. Unfortunately, we do not have
the space to cover all the capabilities of reflection in this chapter and so we will focus on those ele-
ments you will use most frequently.

We begin with a discussion of custom attributes, a mechanism that allows you to associate custom
metadata with program elements. This metadata is created at compile time and embedded in an
assembly. You can then inspect the metadata at runtime using some of the capabilities of reflection.

After looking at custom attributes we look at some of the fundamental classes that enable reflec-
tion, including the System.Type and System.Reflection.Assembly classes, which provide the
access points for much of what you can do with reflection.

12 557599 Ch10.qxd 4/29/04 11:31 AM Page 257

To demonstrate custom attributes and reflection, we will develop an example based on a company that
regularly ships upgrades to its software, and wants to have details of these upgrades documented auto-
matically. In the example, we will define custom attributes that indicate the date when program ele-
ments where last modified, and what changes were made. We will then use reflection to develop an
application that looks for these attributes in an assembly, and can automatically display all the details
about what upgrades that have been made to the software since a given date.

Another example we will discuss considers an application that reads from or writes to a database and
uses custom attributes as a way of marking which classes and properties correspond to which database
tables and columns. By reading these attributes from the assembly at runtime, the program is able to
automatically retrieve or write data to the appropriate location in the database, without requiring spe-
cific logic for each table or column.

Custom Attributes
We’ve discussed how you can define attributes on various items within your program. These attributes
have been defined by Microsoft as part of the .NET Framework class library, many of which receive spe-
cial support by the C# compiler. This means that for those particular attributes, the compiler could cus-
tomize the compilation process in specific ways; for example, laying out a struct in memory according to
the details in the StructLayout attributes.

The .Net Framework also allows you to define your own attributes. Clearly, these attributes will not have
any effect on the compilation process, because the compiler has no intrinsic awareness of them. However,
these attributes will be emitted as metadata in the compiled assembly when they are applied to program
elements. By itself, this metadata might be useful for documentation purposes, but what makes attributes
really powerful is that using reflection, your code can read this metadata and use it to make decisions
at runtime. This means that the custom attributes that you define can have a direct effect on how your
code runs.

Writing Custom Attributes
In order to understand how to write custom attributes, it is useful to know what the compiler does when
it encounters an element in your code that has a custom attribute applied to it. To take our database
example, suppose you have a C# property declaration that looks like this:

[FieldName(“SocialSecurityNumber”)]
public string SocialSecurityNumber
{

get {
// etc.

When the C# compiler recognizes that this property has an attribute applied to it (FieldName), it will start
by appending the string Attribute to this name, forming the combined name FieldNameAttribute.
The compiler will then search all the namespaces in its search path (those namespaces that have been
mentioned in a using statement) for a class with the specified name. Note that if you mark an item with
an attribute whose name already ends in the string Attribute, then the compiler won’t add the string

258

Chapter 10

12 557599 Ch10.qxd 4/29/04 11:31 AM Page 258

to the name a second time, leaving the attribute name unchanged. Therefore, the previous code is equiv-
alent to this:

[FieldNameAttribute(“SocialSecurityNumber”)]
public string SocialSecurityNumber
{

get {
// etc.

The compiler expects to find a class with this name and it expects this class to be derived from System.
Attribute. The compiler also expects that this class contains information that governs the use of the
attribute. In particular, the attribute class needs to specify:

❑ The types of program elements to which the attribute can be applied (classes, structs, properties,
methods, and so on).

❑ Whether it is legal for the attribute to be applied more than once to the same program element.

❑ Whether the attribute, when applied to a class or interface, is inherited by derived classes and
interfaces.

❑ The compulsory and optional parameters the attribute takes.

If the compiler cannot find a corresponding attribute class or it finds one, but the way that you have
used that attribute doesn’t match the information in the attribute class, then the compiler will raise a
compilation error. For example, if the attribute class indicates that the attribute can only be applied to
classes, but you have applied it to a struct definition, a compilation error will occur.

To continue with our example, let’s assume we have defined the FieldName attribute like this:

[AttributeUsage(AttributeTargets.Property,
AllowMultiple=false,
Inherited=false)]

public class FieldNameAttribute : Attribute
{

private string name;
public FieldNameAttribute(string name)
{

this.name = name;
}

}

We will discuss each element of this definition in the following sections.

AttributeUsage attribute
The first thing to note is that our attribute class itself is marked with an attribute—the System.Attribute
Usage attribute. This is an attribute defined by Microsoft for which the C# compiler provides special
support. (You could argue that AttributeUsage isn’t an attribute at all; it is more like a meta-attribute,
because it applies to other attributes, not simply to any class.) The primary purpose of AttributeUsage is
to indicate which types of program elements your custom attribute can be applied to. This information is
given by the first parameter of the AttributeUsage attribute—this parameter is mandatory, and is of an

259

Reflection

12 557599 Ch10.qxd 4/29/04 11:31 AM Page 259

enumerated type, AttributeTargets. In the previous example, we have indicated that the FieldName
attribute can be applied only to properties, which is fine, because that is exactly what we have applied it to
in our earlier code fragment. The members of the AttributeTargets enumeration are:

public enum AttributeTargets
{

All = 0x00003FFF,
Assembly = 0x00000001,
Class = 0x00000004,
Constructor = 0x00000020,
Delegate = 0x00001000,
Enum = 0x00000010,
Event = 0x00000200,
Field = 0x00000100,
Interface = 0x00000400,
Method = 0x00000040,
Module = 0x00000002,
Parameter = 0x00000800,
Property = 0x00000080,
ReturnValue = 0x00002000,
Struct = 0x00000008

}

This list identifies all of the program elements to which you can apply attributes. Note that when apply-
ing the attribute to a program element, we place the attribute in square brackets immediately before the
element. However, there are two values in the above list that do not correspond to any program element:
Assembly and Module. An attribute can be applied to an assembly or module as a whole instead of to an
element in your code; in this case the attribute can be placed anywhere in your source code, but needs to
be prefixed with the Assembly or Module keyword:

[assembly:SomeAssemblyAttribute(Parameters)]
[module:SomeAssemblyAttribute(Parameters)]

When indicating the valid target elements of a custom attribute, you can combine these values using the
bitwise OR operator. For example, if we wanted to indicate that our FieldName attribute could be applied
to both a properties and fields, we could write:

[AttributeUsage(AttributeTargets.Property | AttributeTargets.Field,

AllowMultiple=false,
Inherited=false)]

public class FieldNameAttribute : Attribute

You can also use AttributeTargets.All to indicate that your attribute can be applied to all types of
program elements. The AttributeUsage attribute also contains two other parameters, AllowMultiple
and Inherited. These are specified using the syntax of <ParameterName>=<ParameterValue>, instead
of simply giving the values for these parameters. These parameters are optional parameters—you can
omit them if you want.

The AllowMultiple parameter indicates whether an attribute can be applied more than once to the
same item. The fact that it is set to false here indicates that the compiler should raise an error if it sees
something like this:

260

Chapter 10

12 557599 Ch10.qxd 4/29/04 11:31 AM Page 260

[FieldName(“SocialSecurityNumber”)]
[FieldName(“NationalInsuranceNumber”)]
public string SocialSecurityNumber
{

// etc.

If the Inherited parameter is set to true, an attribute that is applied to a class or interface will also auto-
matically be applied to all derived classes or interfaces. If the attribute is applied to a method or property,
then it will automatically apply to any overrides of that method or property, and so on.

Specifying attribute parameters
Now let’s examine how we can specify the parameters that our custom attribute takes. The way it works
is that when the compiler encounters a statement such as

[FieldName(“SocialSecurityNumber”)]
public string SocialSecurityNumber
{

// etc.

it examines the parameters passed into the attribute—in this case a string—and looks for a constructor
for the attribute that takes exactly those parameters. If the compiler finds an appropriate constructor, the
compiler will emit the specified metadata to the assembly. If the compiler doesn’t find an appropriate
constructor, a compilation error occurs. As we discuss later in this chapter, reflection involves reading
metadata (attributes) from assemblies and instantiating the attribute classes they represent. Because of
this, the compiler must ensure an appropriate constructor exists that will allow the runtime instantiation
of the specified attribute.

In our case, we have supplied just one constructor for FieldNameAttribute, and this constructor takes
one string parameter. Therefore, when applying the FieldName attribute to a property, we must supply
one string as a parameter, as we have done in the previous sample code.

If you want to allow a choice of what types of parameters should be supplied with an attribute, you can
provide different constructor overloads, although normal practice is to supply just one constructor, and
use properties to define any other optional parameters, as we explain next.

Specifying optional attribute parameters
We demonstrated with reference to the AttributeUsage attribute, there is an alternative syntax by which
optional parameters can be added to an attribute. This syntax involves specifying the names and values of
the optional parameters. It works through public properties or fields in the attribute class. For example,
suppose we modified our definition of the SocialSecurityNumber property as follows:

[FieldName(“SocialSecurityNumber”, Comment=”This is the primary key field”)]
public string SocialSecurityNumber
{

// etc.

261

Reflection

12 557599 Ch10.qxd 4/29/04 11:31 AM Page 261

In this case, the compiler recognizes the <ParameterName>= <ParameterValue> syntax of the second
parameter, and does not attempt to match this parameter to a FieldNameAttribute constructor. Instead,
it looks for a public property or field (although public fields are not considered good programming
practice, so normally you will work with properties) of that name that it can use to set the value of this
parameter. If we want the above code to work, we have to add some code to FieldNameAttribute:

[AttributeUsage(AttributeTargets.Property,
AllowMultiple=false,
Inherited=false)]

public class FieldNameAttribute : Attribute
{

private string comment;
public string Comment
{

get
{

return comment;
}
set
{

comment = value;
}

}

// etc.

Custom Attribute Example: WhatsNewAttributes
In this section, we will start developing the WhatsNewAttributes example described earlier, which
provides for an attribute that indicates when a program element was last modified. This is a rather more
ambitious code sample than many of the others we use in that it consists of three separate assemblies:

❑ The WhatsNewAttributes assembly, which contains the definitions of the attributes.

❑ The VectorClass assembly, which contains the code to which the attributes have been applied.
(This is similar to the Vector sample that we have used in other chapters.)

❑ The LookUpWhatsNew assembly, which contains the project that displays details of items that
have changed.

Of these, only LookUpWhatsNew is a console application of the type that we have used up until now. The
remaining two assemblies are libraries—they each contain class definitions, but no program entry point.
For the VectorClass assembly, this means that we have taken the VectorAsCollection sample and
removed the entry point and test harness class, leaving only the Vector class.

Managing three related assemblies by compiling at the command line is tricky; and although we provide
the commands for compiling all these source files separately, you might prefer to edit the code sample
(which you can download from the Wrox Web site at www.wrox.com) as a combined Visual Studio .NET
solution as discussed in Chapter 12. The download includes the required Visual Studio .NET solution files.

262

Chapter 10

12 557599 Ch10.qxd 4/29/04 11:31 AM Page 262

The WhatsNewAttributes library assembly
We will start off with the core WhatsNewAttributes assembly. The source code is contained in the file
WhatsNewAttributes.cs. The syntax for doing this is quite simple. At the command line we supply the
flag target:library to the compiler. To compile WhatsNewAttributes, type in:

csc /target:library WhatsNewAttributes.cs

The WhatsNewAttributes.cs file defines two attribute classes, LastModifiedAttribute and Supports
WhatsNewAttribute. LastModifiedAttribute is the attribute that we can use to mark when an item
was last modified. It takes two mandatory parameters (parameters that are passed to the constructor):
the date of the modification, and a string containing a description of the changes. There is also one optional
parameter named issues (for which a public property exists), which can be used to describe any out-
standing issues for the item.

In real life you would probably want this attribute to apply to anything. In order to keep our code sim-
ple, we are going to limit its usage here to classes and methods. We will allow it to be applied more than
once to the same item, however, (AllowMultiple=true) since an item might be modified more than once,
and each modification will have to be marked with a separate attribute instance.

SupportsWhatsNew is a smaller class representing an attribute that doesn’t take any parameters. The
idea of this attribute is that it’s an assembly attribute that is used to mark an assembly for which we are
maintaining documentation via the LastModifiedAttribute. This way, the program that will examine
this assembly later on knows that the assembly it is reading is one on which we are actually using our
automated documentation process. Here is the complete source code for this part of the example:

using System;

namespace Wrox.ProCSharp.WhatsNewAttributes
{

[AttributeUsage(
AttributeTargets.Class | AttributeTargets.Method,
AllowMultiple=true, Inherited=false)]

public class LastModifiedAttribute : Attribute
{

private DateTime dateModified;
private string changes;
private string issues;

public LastModifiedAttribute(string dateModified, string changes)
{

this.dateModified = DateTime.Parse(dateModified);
this.changes = changes;

}

public DateTime DateModified
{

get
{

return dateModified;
}

}

263

Reflection

12 557599 Ch10.qxd 4/29/04 11:31 AM Page 263

public string Changes
{

get
{

return changes;
}

}

public string Issues
{

get
{

return issues;
}
set
{

issues = value;
}

}
}

[AttributeUsage(AttributeTargets.Assembly)]
public class SupportsWhatsNewAttribute : Attribute
{
}

}

This code should be clear with reference to our previous descriptions. Notice, however, that we have not
bothered to supply set accessors to the Changes and DateModified properties. There is no need for
these accessors, since we are requiring these parameters to be set in the constructor as compulsory
parameters. (In case you’re wondering why we need the get accessors, we use them so we can read the
values of these attributes if necessary.)

The VectorClass assembly
Next, we need to use these attributes. To this end, we use a modified version of the earlier VectorAs
Collection sample. Note that we need to reference the WhatsNewAttributes library that we have just
created. We also need to indicate the corresponding namespace with a using statement so the compiler
can recognize the attributes:

using System;
using Wrox.ProCSharp.WhatsNewAttributes;
using System.Collections;
using System.Text;
[assembly: SupportsWhatsNew]

In this code, we have also added the line that will mark the assembly itself with the SupportsWhatsNew
attribute.

Now for the code for the Vector class. We are not making any major changes to this class; we only add a
couple of LastModified attributes to mark out the work that we have done on this class in this chapter,
and we define Vector as a class instead of a struct to simplify the code (of the next iteration of our sample)

264

Chapter 10

12 557599 Ch10.qxd 4/29/04 11:31 AM Page 264

that displays the attributes. (In the VectorAsCollection sample, Vector is a struct, but its enumerator is
a class. This means the next iteration of our sample would have had to pick out both classes and structs
when looking at the assembly, which would have made the example less straightforward.)

namespace Wrox.ProCSharp.VectorClass
{

[LastModified(“14 Feb 2002”, “IEnumerable interface implemented “ +
“So Vector can now be treated as a collection”)]

[LastModified(“10 Feb 2002”, “IFormattable interface implemented “ +
“So Vector now responds to format specifiers N and VE”)]

class Vector : IFormattable, IEnumerable
{

public double x, y, z;

public Vector(double x, double y, double z)
{

this.x = x;
this.y = y;
this.z = z;

}

[LastModified(“10 Feb 2002”,
“Method added in order to provide formatting support”)]

public string ToString(string format, IFormatProvider formatProvider)
{

if (format == null)
return ToString();

We also mark the contained VectorEnumerator class as new:

[LastModified(“14 Feb 2002”,
“Class created as part of collection support for Vector”)]

private class VectorEnumerator : IEnumerator
{

That’s as far as we can get with this sample for now. We can’t run anything yet, because all we have are
two libraries. We will develop the final part of the example, in which we look up and display these
attributes, as soon as we’ve had a look at how reflection works.

In order to compile this code from the command line you should type the following:

csc /target:library /reference:WhatsNewAttributes.dll VectorClass.cs

Reflection
In this section, we take a closer look at the System.Type class, which lets you access information con-
cerning the definition of any given data type. We will then discuss the System.Reflection.Assembly
class, which you can use to access information about an assembly, or to load that assembly into your
program. Finally, we will combine the code in this section with the code of the previous section to com-
plete the WhatsNewAttributes sample.

265

Reflection

12 557599 Ch10.qxd 4/29/04 11:31 AM Page 265

The System.Type Class
So far we have used the Type class only to hold the reference to a type as follows:

Type t = typeof(double);

Although we have previously referred to Type as a class, it is an abstract base class. Whenever you
instantiate a Type object, you are actually instantiating a class derived from Type. Type has one derived
class corresponding to each actual data type, though in general the derived classes simply provide dif-
ferent overloads of the various Type methods and properties that return the correct data for the corre-
sponding data type. They do not generally add new methods or properties. In general, there are three
common ways of obtaining a Type reference that refers to any given type:

❑ You can use the C# typeof operator as in the previous code. This operator takes the name of the
type (not in quote marks however) as a parameter.

❑ You can use the GetType() method, which all classes inherit from System.Object:

double d = 10;
Type t = d.GetType();

GetType() is called against a variable, rather than taking the name of a type. Note, however,
that the Type object returned is still associated with only that data type. It does not contain any
information that relates to that instance of the type. The GetType() method can be useful if you
have a reference to an object, but are not sure what class that object is actually an instance of.

❑ You can call the static method of the Type class, GetType():

Type t = Type.GetType(“System.Double”);

Type is really the gateway to much of the reflection technology. It implements a huge number of methods
and properties—far too many to provide a comprehensive list here. However, the following sub-sections
should give you some idea of the kind of things you can do with the Type class. Note that the available
properties are all read-only; you use Type to find out about the data type—you can’t use it to make any
modifications to the type!

Type properties
You can split the properties implemented by Type into three categories:

❑ There are a number of properties that retrieve the strings containing various names associated
with the class:

Property Returns

Name The name of the data type

FullName The fully qualified name of the data type (including the namespace name)

Namespace The name of the namespace in which the data type is defined

266

Chapter 10

12 557599 Ch10.qxd 4/29/04 11:31 AM Page 266

❑ It is also possible to retrieve references to further type objects that represent related classes:

Property Returns Type Reference Corresponding To

BaseType Immediate base type of this type

UnderlyingSystemType The type that this type maps to in the .NET runtime (recall that
certain .NET base types actually map to specific predefined types
recognized by IL)

❑ There are a number of Boolean properties that indicate whether or not this type is, for example,
a class, an enum, and so on. These properties include IsAbstract, IsArray, IsClass, IsEnum,
IsInterface, IsPointer, IsPrimitive (one of the predefined primitive data types),
IsPublic, IsSealed, and IsValueType.

For example, using a primitive data type:

Type intType = typeof(int);
Console.WriteLine(intType.IsAbstract); // writes false
Console.WriteLine(intType.IsClass); // writes false
Console.WriteLine(intType.IsEnum); // writes false
Console.WriteLine(intType.IsPrimitive); // writes true
Console.WriteLine(intType.IsValueType); // writes true

Or using our Vector class:

Type intType = typeof(Vector);
Console.WriteLine(intType.IsAbstract); // writes false
Console.WriteLine(intType.IsClass); // writes true
Console.WriteLine(intType.IsEnum); // writes false
Console.WriteLine(intType.IsPrimitive); // writes false
Console.WriteLine(intType.IsValueType); // writes false

You can also retrieve a reference to the assembly that the type is defined in. This is returned as a
reference to an instance of the System.Reflection.Assembly class, which we will examine
shortly:

Type t = typeof (Vector);
Assembly containingAssembly = new Assembly(t);

Methods
Most of the methods of System.Type are used to obtain details of the members of the corresponding
data type—the constructors, properties, methods, events, and so on. There are quite a large number of
methods, but they all follow the same pattern. For example, there are two methods that retrieve details
of the methods of the data type: GetMethod() and GetMethods(). GetMethod() returns a reference to
a System.Reflection.MethodInfo object, which contains details of a method. GetMethods() returns
an array of such references. The difference is that GetMethods() returns details of all the methods, while
GetMethod() returns details of just one method with a specified parameter list. Both methods have
overloads that take an extra parameter, a BindingFlags enumerated value that indicates which members
should be returned—for example, whether to return public members, instance members, static members,
and so on.

267

Reflection

12 557599 Ch10.qxd 4/29/04 11:31 AM Page 267

So for example, the simplest overload of GetMethods() takes no parameters and returns details of all
the public methods of the data type:

Type t = typeof(double);
MethodInfo [] methods = t.GetMethods();
foreach (MethodInfo nextMethod in methods)
{

// etc.

Following the same pattern are the following member methods of Type:

Type of Object Returned Methods (The Method with the Plural Name Returns an Array)

ConstructorInfo GetConstructor(), GetConstructors()

EventInfo GetEvent(), GetEvents()

FieldInfo GetField(), GetFields()

InterfaceInfo GetInterface(), GetInterfaces()

MemberInfo GetMember(), GetMembers()

MethodInfo GetMethod(), GetMethods()

PropertyInfo GetProperty(), GetProperties()

The GetMember() and GetMembers() methods return details of any or all members of the data type,
irrespective of whether these members are constructors, properties, methods, and so on. Finally, note
that it is possible to invoke members either by calling the InvokeMember() method of Type, or by call-
ing the Invoke() method of the MethodInfo, PropertyInfo, and the other classes.

The TypeView Example
We will now demonstrate some of the features of the Type class by writing a short example, TypeView,
which we can use to list the members of a data type. We will demonstrate how to use TypeView for a
double; however, we can swap this type with any other data type just by changing one line of the code
for the sample. TypeView displays far more information than can be displayed in a console window, so
we’re going to take a break from our normal practice and display the output in a message box. Running
TypeView for a double produces the results shown in Figure 10-1.

The message box displays the name, full name, and namespace of the data type as well as the name of
the underlying type and the base type. Next, it simply iterates through all the public instance members
of the data type, displaying for each member the declaring type, the type of member (method, field, and
so on) and the name of the member. The declaring type is the name of the class that actually declares the
type member (in other words, System.Double if it is defined or overridden in System.Double, or the
name of the relevant base type if the member is simply inherited from some base class).

268

Chapter 10

12 557599 Ch10.qxd 4/29/04 11:31 AM Page 268

Figure 10-1

TypeView does not display signatures of methods because we are retrieving details of all public instance
members through MemberInfo objects, and information about parameters is not available through a
MemberInfo object. In order to retrieve that information, we would need references to MethodInfo
and other more specific objects, which means we would need to obtain details of each type of member
separately.

TypeView does display details of all public instance members, but it happens that for doubles, the only
ones defined are fields and methods. We will compile TypeView as a console application—there is no
problem with displaying a message box from a console application. However, the fact that we are using
a message box means that we need to reference the base class assembly System.Windows.Forms.dll,
which contains the classes in the System.Windows.Forms namespace in which the MessageBox class
that we will need is defined. The code for TypeView is as follows; to begin, we need to add a couple of
using statements:

using System;
using System.Text;
using System.Windows.Forms;
using System.Reflection;

269

Reflection

12 557599 Ch10.qxd 4/29/04 11:31 AM Page 269

We need System.Text because we will be using a StringBuilder object to build up the text to be dis-
played in the message box, and System.Windows.Forms for the message box itself. The entire code is in
one class, MainClass, which has a couple of static methods, and one static field, a StringBuilder
instance called OutputText, which will be used to build up the text to be displayed in the message box.
The main method and class declaration look like this:

class MainClass
{

static void Main()
{

// modify this line to retrieve details of any
// other data type
Type t = typeof(double);

AnalyzeType(t);
MessageBox.Show(OutputText.ToString(), “Analysis of type “

+ t.Name);
Console.ReadLine();

}

The Main() method implementation starts by declaring a Type object to represent our chosen data type.
We then call a method, AnalyzeType(), which extracts the information from the Type object and uses it
to build up the output text. Finally, we show the output in a message box. Using it is fairly intuitive. We
just call its static Show() method, passing it two strings, which will, respectively, be the text in the box
and the caption. AnalyzeType() is where the bulk of the work is done:

static void AnalyzeType(Type t)
{

AddToOutput(“Type Name: “ + t.Name);
AddToOutput(“Full Name: “ + t.FullName);
AddToOutput(“Namespace: “ + t.Namespace);
Type tBase = t.BaseType;
if (tBase != null)

AddToOutput(“Base Type:” + tBase.Name);
Type tUnderlyingSystem = t.UnderlyingSystemType;
if (tUnderlyingSystem != null)

AddToOutput(“UnderlyingSystem Type:” + tUnderlyingSystem.Name);

AddToOutput(“\nPUBLIC MEMBERS:”);
MemberInfo [] Members = t.GetMembers();
foreach (MemberInfo NextMember in Members)
{

AddToOutput(NextMember.DeclaringType + “ “ +
NextMember.MemberType + “ “ + NextMember.Name);

}
}

We implement this method by calling various properties of the Type object to get the information we need
concerning the names, then call the GetMembers() method to get an array of MemberInfo objects that we
can use to display the details of each method. Note that we use a helper method, AddToOutput(), to build
up the text to be displayed in the message box:

270

Chapter 10

12 557599 Ch10.qxd 4/29/04 11:31 AM Page 270

static void AddToOutput(string Text)
{

OutputText.Append(“\n” + Text);
}

Compile the TypeView assembly using this command:

csc /reference:System.Windows.Forms.dll TypeView.cs

The Assembly Class
The Assembly class is defined in the System.Reflection namespace, and allows you access to the
metadata for a given assembly. It also contains methods to allow you to load and even execute an assem-
bly, assuming the assembly is an executable. Like the Type class, Assembly contains a large number of
methods and properties—too many for us to cover here. Instead, we will confine ourselves to covering
those methods and properties that you need to get started, and which we will use to complete the
WhatsNewAttributes sample.

Before you can do anything with an Assembly instance, you need to load the corresponding assembly
into the running process. You can do this with either the static members Assembly.Load() or
Assembly.LoadFrom(). The difference between these methods is that Load()takes the name of the
assembly, and the runtime searches in a variety of locations in an attempt to locate the assembly. These
locations include the local directory and the global assembly cache. LoadFrom() takes the full path
name of an assembly and does not attempt to find the assembly in any other location:

Assembly assembly1 = Assembly.Load(“SomeAssembly”);
Assembly assembly2 = Assembly.LoadFrom

(@”C:\My Projects\Software\SomeOtherAssembly”);

There are a number of other overloads of both methods, which supply additional security information.
Once you have loaded an assembly, you can use various properties on it to find out, for example, its full
name:

string name = assembly1.FullName;

Finding out about types defined in an assembly
One nice feature of the Assembly class is that it allows you to obtain details of all the types that are
defined in the corresponding assembly. You simply call the Assembly.GetTypes() method, which
returns an array of System.Type references containing details of all the types. You can then manipulate
these Type references just as you would with a Type object obtained from the C# typeof operator, or
from Object.GetType():

Type[] types = theAssembly.GetTypes();
foreach(Type definedType in types)
{

DoSomethingWith(definedType);
}

271

Reflection

12 557599 Ch10.qxd 4/29/04 11:31 AM Page 271

Finding out about custom attributes
The methods you use to find out which custom attributes are defined on an assembly or type depend
on what type of object the attribute is attached to. If you want to find out what custom attributes are
attached to an assembly as a whole, you need to call a static method of the Attribute class, GetCustom
Attributes(), passing in a reference to the assembly:

Attribute[] definedAttributes =
Attribute.GetCustomAttributes(assembly1);
// assembly1 is an Assembly object

This is actually quite significant. You may have wondered why, when we defined custom attributes, we
had to go to all the trouble of actually writing classes for them, and why Microsoft hadn’t come up with
some simpler syntax. Well, the answer is here. The custom attributes do genuinely exist as objects, and
when an assembly is loaded you can read in these attribute objects, examine their properties, and call
their methods.

GetCustomAttributes(),used to get assembly attributes, has a couple of overloads. If you call it without
specifying any parameters other than an assembly reference, then it will simply return all the custom
attributes defined for that assembly. You can also call GetCustomAttributes() specifying a second
parameter, which is a Type object that indicates the attribute class in which you are interested. In this case
GetCustomAttributes() returns an array consisting of all the attributes present that are of that type.

Note that all attributes are retrieved as plain Attribute references. If you want to call any of the methods
or properties you defined for your custom attributes, then you will need to cast these references explicitly
to the relevant custom attribute classes. You can obtain details of custom attributes that are attached to a
given data type by calling another overload of Assembly.GetCustomAttributes(), this time passing a
Type reference that describes the type for which you want to retrieve any attached attributes. On the other
hand, if you want to obtain attributes that are attached to methods, constructors, fields, and so on, then you
will need to call a GetCustomAttributes() method that is a member of one of the classes MethodInfo,
ConstructorInfo, FieldInfo, and so on.

If you only expect a single attribute of a given type, you can call the GetCustomAttribute() method
instead, which returns a single Attribute object. We will use GetCustomAttribute() in the Whats
NewAttributes example in order to find out whether the SupportsWhatsNew attribute is present in the
assembly. To do this, we call GetCustomAttribute(), passing in a reference to the WhatsNewAttributes
assembly, and the type of the SupportWhatsNewAttribute attribute. If this attribute is present, we get an
Attribute instance. If there are no instances of it defined in the assembly, then we get null. And if there
are two or more instances found, GetCustomAttribute() throws a
System.Reflection.AmbiguousMatchException:

Attribute supportsAttribute =
Attribute.GetCustomAttributes(assembly1,
typeof(SupportsWhatsNewAttribute));

Completing the WhatsNewAttributes Sample
We now have enough information to complete the WhatsNewAttributes sample by writing the source
code for the final assembly in the sample, the LookUpWhatsNew assembly. This part of the application is
a console application. However, it needs to reference the other assemblies of WhatsNewAttributes and

272

Chapter 10

12 557599 Ch10.qxd 4/29/04 11:31 AM Page 272

VectorClass. Although this is going to be a command-line application, we will follow the previous
TypeView sample in actually displaying our results in a message box, since there is a lot of text output—
too much to show in a console window screenshot.

The file is called LookUpWhatsNew.cs, and the command to compile it is:

csc /reference:WhatsNewAttributes.dll /reference:VectorClass.dll LookUpWhatsNew.cs

In the source code of this file, we first indicate the namespaces we want to infer. System.Text is there
because we need to use a StringBuilder object again:

using System;
using System.Reflection;
using System.Windows.Forms;
using System.Text;
using Wrox.ProCSharp.VectorClass;
using Wrox.ProCSharp.WhatsNewAttributes;

namespace Wrox.ProCSharp.LookUpWhatsNew
{

The class that contains the main program entry point as well as the other methods is WhatsNewChecker.
All the methods we define are in this class, which also has two static fields: outputText, which contains
the text as we build it up in preparation for writing it to the message box, and backDateTo, which stores
the date we have selected. All modifications made since this date will be displayed. Normally, we would
display a dialog box inviting the user to pick this date, but we don’t want to get sidetracked into that
kind of code. For this reason, backDateTo is hard-coded to a value of 1 Feb 2002. You can easily change
this date if you want when you download the code:

class WhatsNewChecker
{

static StringBuilder outputText = new StringBuilder(1000);
static DateTime backDateTo = new DateTime(2002, 2, 1);

static void Main()
{

Assembly theAssembly = Assembly.Load(“VectorClass”);
Attribute supportsAttribute =

Attribute.GetCustomAttribute(
theAssembly, typeof(SupportsWhatsNewAttribute));

string Name = theAssembly.FullName;

AddToMessage(“Assembly: “ + Name);
if (supportsAttribute == null)
{

AddToMessage(
“This assembly does not support WhatsNew attributes”);

return;
}
else

AddToMessage(“Defined Types:”);

273

Reflection

12 557599 Ch10.qxd 4/29/04 11:31 AM Page 273

Type[] types = theAssembly.GetTypes();
foreach(Type definedType in types)

DisplayTypeInfo(theAssembly, definedType);

MessageBox.Show(outputText.ToString(),
“What\’s New since “ + backDateTo.ToLongDateString());

Console.ReadLine();
}

The Main() method first loads the VectorClass assembly, and verifies that it is indeed marked with
the SupportsWhatsNew attribute. We know VectorClass has the SupportsWhatsNew attribute applied
to it because we have only recently compiled it, but this is a check that would be worth making if the
user was given a choice of what assembly to check.

Assuming all is well, we use the Assembly.GetTypes() method to get an array of all the types defined in
this assembly, and then loop through them. For each one, we call a method that we have written, Display
TypeInfo(), which will add the relevant text, including details of any instances of LastModified
Attribute, to the outputText field. Finally, we show the message box with the complete text. The
DisplayTypeInfo() method looks like this:

static void DisplayTypeInfo(Assembly theAssembly, Type type)
{

// make sure we only pick out classes
if (!(type.IsClass))

return;
AddToMessage(“\nclass “ + type.Name);

Attribute [] attribs = Attribute.GetCustomAttributes(type);
if (attribs.Length == 0)

AddToMessage(“No changes to this class\n”);
else

foreach (Attribute attrib in attribs)
WriteAttributeInfo(attrib);

MethodInfo [] methods = type.GetMethods();
AddToMessage(“CHANGES TO METHODS OF THIS CLASS:”);
foreach (MethodInfo nextMethod in methods)
{

object [] attribs2 =
nextMethod.GetCustomAttributes(

typeof(LastModifiedAttribute), false);
if (attribs2 != null)
{

AddToMessage(
nextMethod.ReturnType + “ “ + nextMethod.Name + “()”);

foreach (Attribute nextAttrib in attribs2)
WriteAttributeInfo(nextAttrib);

}
}

}

Notice that the first thing we do in this method is check whether the Type reference we have been
passed actually represents a class. Since, in order to keep things simple, we have specified that the

274

Chapter 10

12 557599 Ch10.qxd 4/29/04 11:31 AM Page 274

LastModified attribute can only be applied to classes or member methods, we would be wasting our
time doing any processing if the item is not a class (it could be a class, delegate, or enum).

Next, we use the Attribute.GetCustomAttributes() method to find out if this class does have any
LastModifiedAttribute instances attached to it. If it does, we add their details to the output text,
using a helper method, WriteAttributeInfo().

Finally, we use the Type.GetMethods() method to iterate through all the member methods of this data
type, and then do the same with each method as we did for the class—check if it has any LastModified
Attribute instances attached to it and, if so, display them using WriteAttributeInfo().

The next bit of code shows the WriteAttributeInfo() method, which is responsible for working out
what text to display for a given LastModifiedAttribute instance. Note that this method is passed an
Attribute reference, so it needs to cast this to a LastModifiedAttribute reference first. After it has
done that, it uses the properties that we originally defined for this attribute to retrieve its parameters. It
checks that the date of the attribute is sufficiently recent before actually adding it to the text for display:

static void WriteAttributeInfo(Attribute attrib)
{

LastModifiedAttribute lastModifiedAttrib =
attrib as LastModifiedAttribute;

if (lastModifiedAttrib == null)
return;

// check that date is in range
DateTime modifiedDate = lastModifiedAttrib.DateModified;
if (modifiedDate < backDateTo)

return;

AddToMessage(“ MODIFIED: “ +
modifiedDate.ToLongDateString() + “:”);

AddToMessage(“ “ + lastModifiedAttrib.Changes);
if (lastModifiedAttrib.Issues != null)

AddToMessage(“ Outstanding issues:” +
lastModifiedAttrib.Issues);

}

Finally, here is the helper AddToMessage() method:

static void AddToMessage(string message)
{

outputText.Append(“\n” + message);
}

Running this code produces these results shown in Figure 10-2.

Notice that when we list the types defined in the VectorClass assembly, we actually pick up two classes:
Vector, and the embedded VectorEnumerator class. Also notice that since the backDateTo date of 1 Feb
is hard-coded in this example, we actually pick up the attributes that are dated 14 Feb (when we added the
collection stuff), but not those dated 14 Jan (when we added the IFormattable interface).

275

Reflection

12 557599 Ch10.qxd 4/29/04 11:31 AM Page 275

Figure 10-2

Summary
In this chapter, we did not attempt to cover the entire topic of reflection. Reflection is an extensive sub-
ject worthy of a book of its own. Instead, we looked at the Type and Assembly classes, which are the
primary entry points through which you can access the extensive capabilities provided by reflection.

In addition, we demonstrated a specific aspect of reflection that you are likely to use more often than
any other—the inspection of custom attributes. We showed you how to define and apply your own cus-
tom attributes, and how to retrieve information about custom attributes at runtime.

In the next chapter, we look at exceptions and structured exception handing.

276

Chapter 10

12 557599 Ch10.qxd 4/29/04 11:31 AM Page 276

Errors and Exceptions

Errors happen, and it isn’t always because of the person who coded the application. Sometimes
your application will generate an error because of an action that was initiated by the end user of
your application. In any case, you should anticipate errors occurring in your applications and
code accordingly.

The .NET Framework has enhanced the ways in which you deal with errors. C#’s mechanism for
handling error conditions allows us to provide custom handling for each type of error condition
as well as to separate code that identifies errors from the code that handles them.

The main topics covered in this chapter include:

❑ Looking at the exception classes

❑ Using try – catch – finally to capture exceptions

❑ Creating user-defined exceptions

By the end of the chapter, you will have a good handle on advanced exception handling in your
C# applications.

Looking into Errors and
Exception Handling

No matter how good your coding is, your programs will always have to be able to handle possible
errors. For example, in the middle of some complex processing your code may discover that it
doesn’t have permission to read a file, or while it is sending network requests the network may go
down. In such exceptional situations, it is not enough for a method to simply return an appropri-
ate error code—there might be 15 or 20 nested method calls, so what you really want the program
to do is jump back up through all those 15 or 20 calls in order to exit the task completely and take

13 557599 Ch11.qxd 4/29/04 11:27 AM Page 277

the appropriate counter actions. The C# language has very good facilities to handle this kind of situa-
tion, through the mechanism known as exception handling.

Error-handling facilities in Visual Basic 6 are very restricted and essentially limited to the On Error
GoTo statement. If you are coming from a Visual Basic 6 background, you will find C# exceptions open
up a whole new world of error handling in your programs. On the other hand, Java and C++ developers
will be familiar with the principle of exceptions since these languages also handle errors in a similar
way to C#. Developers using C++ are sometimes wary of exceptions because of possible C++ perfor-
mance implications, but this is not the case in C#. Using exceptions in C# code in general does not
adversely affect performance. Visual Basic .NET developers will find that working with exceptions in
C# is very similar using exceptions in Visual Basic .NET (except for the syntax differences).

Exception Classes
In C#, an exception is an object created (or thrown) when a particular exceptional error condition occurs.
This object contains information that should help track down the problem. Although we can create our
own exception classes (and we will be doing so later), .NET provides us with many predefined exception
classes.

Base class exception classes
In this section, we will provide a quick survey of some of the exceptions that are available in the base
classes. Microsoft has provided a large number of exception classes in .NET—too many to provide a
comprehensive list here. This class hierarchy diagram in Figure 11-1 shows but a few of these classes, to
give you a sense of the general pattern.

All the classes in Figure 11-1 are part of the System namespace, with the exception of IOException and
the classes derived from IOException, which are part of the namespace System.IO. The System.IO
namespace deals with reading and writing data to files. In general, there is no specific namespace for
exceptions; exception classes should be placed in whatever namespace is appropriate to the classes that
can generate them—hence IO-related exceptions are in the System.IO namespace, and you will find
exception classes in quite a few of the base class namespaces.

The generic exception class, System.Exception is derived from System.Object, as we would expect
for a .NET class. In general, you should not throw generic System.Exception objects in your code,
because they provide no specifics of the error condition.

There are two important classes in the hierarchy that are derived from System.Exception:

❑ System.SystemException—This class is for exceptions that are usually thrown by the .NET
runtime, or which are considered to be of a generic nature and might be thrown by almost any
application. For example, StackOverflowException will be thrown by the .NET runtime if it
detects the stack is full. On the other hand, you might choose to throw ArgumentException or
its subclasses in your own code, if you detect that a method has been called with inappropriate
arguments. Subclasses of System.SystemException include classes that represent both fatal
and non-fatal errors.

❑ System.ApplicationException—This class is important, because it is the intended base for
any class of exception defined by third parties. Hence, if you define any exceptions covering
error conditions unique to your application, you should derive these directly or indirectly from
System.ApplicationException.

278

Chapter 11

13 557599 Ch11.qxd 4/29/04 11:27 AM Page 278

Figure 11-1

Other exception classes that might come in handy include the following:

❑ StackOverflowException—This exception is thrown when the area of memory allocated to the
stack is full. A stack overflow can occur if a method continuously calls itself recursively. This is
generally a fatal error, since it prevents your application from doing anything apart from termi-
nating (in which case it is unlikely that even the finally block will execute). Trying to handle
errors like this yourself is usually pointless.

❑ EndOfStreamException— The usual cause of an EndOfStreamException is an attempt to
read past the end of a file. A stream represents a flow of data between data sources. We cover
streams in detail in Chapter 31.

❑ OverflowException—An OverflowException is what happens if you attempt to cast an int
containing a value of -40 to a uint in a checked context.

We are not going to discuss all of the other exception classes shown in Figure 11-1; you should be able to
guess their purposes by looking at their names.

Object

Exception

SystemException

10Exception

ArgumentExeption

FileLoadException

OverflowException

ArithmeticException

ArgumentNullException

FileNotFoundException

EndOfStreamException

DirectoryNotFoundException

ApplicationException

Derive your own
exception classes

from here

StackOverflowException

ArgumentOutOfRangeException

UnauthorizedAccessException

279

Errors and Exceptions

13 557599 Ch11.qxd 4/29/04 11:27 AM Page 279

The class hierarchy for exceptions is somewhat unusual in that most of these classes do not add any func-
tionality to their respective base classes. However, in the case of exception handling, the common reason
for adding inherited classes is to indicate more specific error conditions, and there is often no need to over-
ride methods or add any new ones (although it is not uncommon to add extra properties that carry extra
information about the error condition). For example, you might have a base ArgumentException class
intended for method calls where inappropriate values are passed in, and an ArgumentNullException
class derived from it, which is intended to handle a null argument if passed.

Catching Exceptions
Given that .NET includes a spade of predefined base class exception objects, how do you use them in
your code to trap error conditions? In order to deal with possible error conditions in C# code, you will
normally divide the relevant part of your program into blocks of three different types:

❑ try blocks contain code that forms part of the normal operation of your program, but which
might encounter some serious error conditions.

❑ catch blocks contain the code that deals with the various error conditions for the errors that
your code might encounter by working through the code in the try block.

❑ finally blocks contain the code that cleans up any resources or takes any other action that you
will normally want done at the end of a try or catch block. It is important to understand that
the finally block is executed whether or not an exception is thrown. Since the aim is that the
finally block contains cleanup code that should always be executed, the compiler will flag an
error if you place a return statement inside a finally block. For example you might close any
connections that were opened in the try block within the finally block. The finally block is
optional.

So how do these blocks fit together to trap error conditions? Here’s how:

1. The execution flow enters a try block.

2. If no errors occur, execution proceeds normally through the try block, and when the end of the
try block is reached, the flow of execution jumps to the finally block (Step 5). However, if an
error occurs within the try block, execution jumps to a catch block (next step).

3. The error condition is handled in the catch block.

4. At the end of the catch block, execution automatically transfers to the finally block.

5. The finally block is executed.

The C# syntax used to bring all this about looks roughly like this:

try
{

// code for normal execution
}
catch
{

// error handling
}
finally

280

Chapter 11

13 557599 Ch11.qxd 4/29/04 11:27 AM Page 280

{
// clean up

}

Actually, there are a few variations on this theme:

❑ You can omit the finally block since it is optional.

❑ You can also supply as many catch blocks as you want to handle specific types of errors.

❑ You can omit the catch blocks altogether, in which case the syntax serves not to identify excep-
tions, but as a way of guaranteeing that code in the finally block will be executed when exe-
cution leaves the try block. This is useful if the try block contains several exit points.

So far so good, but the question that has yet to be answered is this: If the code is running in the try
block, how does it know when to switch to the catch block if an error has occurred? If an error is
detected, the code does something that is known as throwing an exception. In other words, it instantiates
an exception object class and throws it:

throw new OverflowException();

Here we have instantiated an exception object of the OverflowException class. As soon as the com-
puter encounters a throw statement inside a try block, it immediately looks for the catch block associ-
ated with that try block. If there is more than one catch block associated with the try block, it
identifies the correct catch block by checking which exception class the catch block is associated with.
For example, when the OverflowException object is thrown, execution jumps to the following catch
block:

catch (OverflowException e)
{

In other words, the computer looks for the catch block that indicates a matching exception class
instance of the same class (or of a base class).

With this extra information, we can expand the try block we have just demonstrated. Let’s assume, for
the sake of argument, that there are two possible serious errors that can occur in the try block: an over-
flow and an array out of bounds. We will assume that our code contains two Boolean variables,
Overflow and OutOfBounds, which indicate whether these conditions exist. We have already seen that
a predefined exception class exists to indicate overflow (OverflowException); similarly, an
IndexOutOfRangeException class exists to handle an array out-of-bounds.

Now our try block looks like this:

try
{

// code for normal execution

if (Overflow == true)
throw new OverflowException();

// more processing

if (OutOfBounds == true)

281

Errors and Exceptions

13 557599 Ch11.qxd 4/29/04 11:27 AM Page 281

throw new IndexOutOfRangeException();

// otherwise continue normal execution
}
catch (OverflowException e)
{

// error handling for the overflow error condition
}
catch (IndexOutOfRangeException e)
{

// error handling for the index out of range error condition
}
finally
{

// clean up
}

So far, this might not look that much different from what we could have done with the Visual Basic 6 On
Error GoTo statement (with the exception perhaps that the different parts in the code are separated).
C#, however, provides a far more powerful and flexible mechanism for error handling.

This is because we can have throw statements that are nested in several method calls inside the try
block, but the same try block continues to apply even as execution flow enters these other methods. If
the computer encounters a throw statement, it immediately goes back up through all the method calls
on the stack, looking for the end of the containing try block and the start of the appropriate catch
block. During this process, all the local variables in the intermediate method calls will correctly go out of
scope. This makes the try...catch architecture well suited to the situation we described at the begin-
ning of this section, where the error occurs inside a method call that is nested inside 15 or 20 method
calls, and processing has to stop immediately.

As you can probably gather from the previous discussion, try blocks can play a very significant part in
controlling the flow of execution of your code. However, it is important to understand that exceptions
are intended for exceptional conditions, hence their name. You wouldn’t want to use them as a way of
controlling when to exit a do...while loop.

Implementing multiple catch blocks
The easiest way to see how try...catch...finally blocks work in practice is with a couple of exam-
ples. Our first example is called SimpleExceptions. It repeatedly asks the user to type in a number and
then displays it. However, for the sake of this example, we will imagine that the number has to be
between 0 and 5, otherwise the program won’t be able to process the number properly. Therefore we will
throw an exception if the user types in anything outside this range.

The program will then continue to ask for more numbers for processing until the user simply presses the
Enter key without entering anything.

You should note that this code does not provide a good example of when to use exception handling. As
we have already indicated, the idea of exceptions is that they are provided for exceptional circumstances.
Users are always typing in silly things, so this situation doesn’t really count. Normally, your program
will handle incorrect user input by performing an instant check and asking the user to retype the input
if there is a problem. However, generating exceptional situations is difficult in a small sample that you
can read through in a few minutes! So, we will tolerate this bad practice for now in order to demon-
strate how exceptions work. The examples that follow present more realistic situations.

282

Chapter 11

13 557599 Ch11.qxd 4/29/04 11:27 AM Page 282

The code for SimpleExceptions looks like this:

using System;

namespace Wrox.ProCSharp.AdvancedCSharp
{

public class MainEntryPoint
{

public static void Main()
{

string userInput;
while (true)
{

try
{

Console.Write(“Input a number between 0 and 5 “ +
“(or just hit return to exit)> “);

userInput = Console.ReadLine();
if (userInput == “”)

break;
int index = Convert.ToInt32(userInput);
if (index < 0 || index > 5)

throw new IndexOutOfRangeException(
“You typed in “ + userInput);

Console.WriteLine(“Your number was “ + index);
}
catch (IndexOutOfRangeException e)
{

Console.WriteLine(“Exception: “ +
“Number should be between 0 and 5. “ + e.Message);

}
catch (Exception e)
{

Console.WriteLine(
“An exception was thrown. Message was: “ + e.Message);

}
catch
{

Console.WriteLine(“Some other exception has occurred”);
}
finally
{

Console.WriteLine(“Thank you”);
}

}
}

}
}

The core of this code is a while loop, which continually uses Console.ReadLine() to ask for user
input. ReadLine() returns a string, so our first task is to convert it to an int using the System.Convert.
ToInt32() method. The System.Convert class contains various useful methods to perform data con-
versions and provides an alternative to the int.Parse() method. In general, System.Convert contains
methods to perform various type conversions. Recall that the C# compiler resolves int to instances of
the System.Int32 base class.

283

Errors and Exceptions

13 557599 Ch11.qxd 4/29/04 11:27 AM Page 283

It is also worth pointing out that the parameter passed to the catch block is scoped to that catch block—
which is why we are able to use the same parameter name, e, in successive catch blocks in the
previous code.

In the previous example, we also check for an empty string, since this is our condition for exiting the
while loop. Notice how the break statement actually breaks right out of the enclosing try block as well
as the while loop—this is valid. Of course, as execution breaks out of the try block, the Console.
WriteLine() statement in the finally block is executed. Although we just display a greeting here,
more commonly, you will be doing tasks like closing file handles and calling the Dispose() method of
various objects in order to perform any cleaning up. Once the computer leaves the finally block, it
simply carries on executing unto the next statement that it would have executed, had the finally block
not been present. In this case, we iterate back to the start of the while loop, and enter the try block
again (unless the finally block was entered as a result of executing the break statement in the while
loop, in which case we simply exit the while loop).

Next, we check for our exception condition:

if (index < 0 || index > 5)
throw new IndexOutOfRangeException(“You typed in “ + userInput);

When throwing an exception, we need to choose what type of exception to throw. Although the class
System.Exception is available, it is only intended as a base class; it is considered bad programming
practice to throw an instance of this class as an exception, because it conveys no information about the
nature of the error condition. Instead, the .NET Framework contains many other exception classes that
are derived from System.Exception. Each of these matches a particular type of exception condition,
and you are free to define your own ones as well. The idea is that you give as much information as pos-
sible about the particular exception condition by throwing an instance of a class that matches the partic-
ular error condition. In this case we have picked System.IndexOutOfRangeException as the best
choice in the circumstances. IndexOutOfRangeException has several constructor overloads. The one
we have chosen takes a string, which describes the error. Alternatively, we might choose to derive our
own custom Exception object that describes the error condition in the context of our application.

Suppose the user then types in a number that is not between 0 and 5. This will be picked up by the if
statement and an IndexOutOfRangeException object will be instantiated and thrown. At this point the
computer will immediately exit the try block and hunt for a catch block that handles
IndexOutOfRangeException. The first catch block it encounters is this:

catch (IndexOutOfRangeException e)
{

Console.WriteLine(
“Exception: Number should be between 0 and 5.” + e.Message);

}

Since this catch block takes a parameter of the appropriate class, the catch block will be passed the
exception instance and executed. In this case, we display an error message and the Exception.Message
property (which corresponds to the string we passed to IndexOutOfRange’s constructor). After execut-
ing this catch block, control switches to the finally block, just as if no exception had occurred.

284

Chapter 11

13 557599 Ch11.qxd 4/29/04 11:27 AM Page 284

Notice that we have also provided another catch block:

catch (Exception e)
{

Console.WriteLine(“An exception was thrown. Message was: “ + e.Message);
}

This catch block would also be capable of handling an IndexOutOfRangeException if it weren’t for
the fact that such exceptions will already have been caught by the previous catch block@@a reference to
a base class can also refer to any instances of classes derived from it, and all exceptions are derived from
System.Exception. So why doesn’t this catch block get executed? The answer is that the computer
executes only the first suitable catch block it finds. So why is this second catch block here? Well, it is
not only our code that is covered by the try block; inside the block, we actually make three separate
calls to methods in the System namespace (Console.ReadLine(), Console.Write(), and
Convert.ToInt32()), and any of these methods might throw an exception.

If we type in something that’s not a number—say a or hello—then the Convert.ToInt32() method
will throw an exception of the class System.FormatException to indicate that the string passed into
ToInt32() is not in a format that can be converted to an int. When this happens, the computer will
trace back through the method calls, looking for a handler that can handle this exception. Our first
catch block (the one that takes an IndexOutOfRangeException) won’t do. The computer then looks at
the second catch block. This one will do because FormatException is derived from Exception, so a
FormatException instance can be passed in as a parameter here.

The structure of our example is actually fairly typical of a situation with multiple catch blocks. We start
off with catch blocks that are designed to trap very specific error conditions. Then, we finish with more
general blocks that will cover any errors for which we have not written specific error handlers. Indeed,
the order of the catch blocks is important. If we had written the previous two blocks in the opposite
order, the code would not have compiled, because the second catch block is unreachable (the Exception
catch block would catch all exceptions). Therefore, the uppermost catch blocks should be the most
granular options available and ending with the most general options.

However, in the previous example, we have a third catch block listed in the code:

catch
{

Console.WriteLine(“Some other exception has occurred”);
}

This is the most general catch block of all—it doesn’t take any parameter. The reason this catch block
is here is to catch exceptions thrown by other code that isn’t written in C#, or isn’t even managed code
at all. You see, it is a requirement of the C# language that only instances of classes that are derived from
System.Exception can be thrown as exceptions, but other languages might not have this restriction—
C++, for example, allows any variable whatsoever to be thrown as an exception. If your code calls into
libraries or assemblies that have been written in other languages, then it might find an exception has been
thrown that is not derived from System.Exception, although in many cases, the .NET PInvoke mecha-
nism will trap these exceptions and convert them into .NET Exception objects. However, there is not that
much that this catch block can do, because we have no idea what class the exception might represent.

285

Errors and Exceptions

13 557599 Ch11.qxd 4/29/04 11:27 AM Page 285

For our particular example, there is no point in adding this catch-all catch handler. Doing this is useful
if you are calling into some other libraries that are not .NET-aware and which might throw exceptions.
However, we have included it in our example to illustrate the principle.

Now that we have analyzed the code for our example, we can run it. The following output illustrates
what happens with different inputs and demonstrates both the IndexOutOfRangeException and the
FormatException being thrown:

SimpleExceptions
Input a number between 0 and 5 (or just hit return to exit)> 4
Your number was 4
Thank you
Input a number between 0 and 5 (or just hit return to exit)> 0
Your number was 0
Thank you
Input a number between 0 and 5 (or just hit return to exit)> 10
Exception: Number should be between 0 and 5. You typed in 10
Thank you
Input a number between 0 and 5 (or just hit return to exit)> hello
An exception was thrown. Message was: Input string was not in a correct format.
Thank you
Input a number between 0 and 5 (or just hit return to exit)>
Thank you

Catching exceptions from other code
In our previous example, we have demonstrated the handling of two exceptions. One of them,
IndexOutOfRangeException, was thrown by our own code. The other, FormatException, was
thrown from inside one of the base classes. It is very common for code in a library to throw an exception
if it detects that some problem has occurred, or if one of the methods has been called inappropriately by
being passed the wrong parameters. However, library code rarely attempts to catch exceptions; this is
regarded as the responsibility of the client code.

Often, you will find that exceptions get thrown from the base class libraries while you are debugging.
The process of debugging to some extent involves determining why exceptions have been thrown and
removing the causes. Your aim should be to ensure that by the time the code is actually shipped, excep-
tions do occur only in very exceptional circumstances, and if at all possible, are handled in some appro-
priate way in your code.

System.Exception properties
In our example, we have only illustrated the use of the Message property of the exception object.
However, a number of other properties are available in System.Exception:

Property Description

HelpLink This is a link to a help file that provides more information about the exception.

Message This is text that describes the error condition.

Source This is the name of the application or object that caused the exception.

286

Chapter 11

13 557599 Ch11.qxd 4/29/04 11:27 AM Page 286

Property Description

StackTrace This provides details of the method calls on the stack (to help track down the
method that threw the exception).

TargetSite This is a .NET reflection object that describes the method that threw the
exception.

InnerException If this exception was thrown inside a catch block, it contains the exception
object that sent the code into that catch block.

Of these properties, StackTrace and TargetSite are supplied automatically by the .NET runtime if a
stack trace is available. Source will always be filled in by the .NET runtime as the name of the assembly
in which the exception was raised (though you might want to modify the property in your code to give
more specific information), while Message, HelpLink, and InnerException must be filled in by the
code that threw the exception, by setting these properties immediately before throwing the exception.
For example, the code to throw an exception might look something like this:

if (ErrorCondition == true)
{

Exception myException = new ClassmyException(“Help!!!!”);
myException.Source = “My Application Name”;
myException.HelpLink = “MyHelpFile.txt”;
throw myException;

}

Here, ClassMyException is the name of the particular exception class you are throwing. Note that it is
common practice for the names of all exception classes to end with Exception.

What happens if an exception isn’t handled?
Sometimes an exception might be thrown, but there might not be a catch block in your code that is able
to handle that kind of exception. Our SimpleExceptions example can serve to illustrate this. Suppose,
for example, we omitted the FormatException and catch-all catch blocks, and only supplied the block
that traps an IndexOutOfRangeException. In that event, what would happen if a FormatException
got thrown?

The answer is that the .NET runtime would catch it. Later in this section we explain how you can nest
try blocks, and in fact, there is already a nested try block behind the scenes in the sample. The .NET
runtime has effectively placed our entire program inside another huge try block—it does this for every
.NET program. This try block has a catch handler that can catch any type of exception. If an exception
occurs that your code doesn’t handle, then the execution flow will simply pass right out of your pro-
gram and get trapped by this catch block in the .NET runtime. However, the results probably won’t be
what you wanted. It means execution of your code will be terminated promptly and the user will see a
dialog box that complains that your code hasn’t handled the exception, as well as any details about the
exception the .NET runtime was able to retrieve. At least the exception will have been caught though!
This is what actually happened earlier in Chapter 2 in the Vector example when our program threw an
exception.

287

Errors and Exceptions

13 557599 Ch11.qxd 4/29/04 11:27 AM Page 287

In general, if you are writing an executable, you should try to catch as many exceptions as you reason-
ably can, and handle them in a sensible way. If you are writing a library, it is normally best not to handle
exceptions (unless a particular exception represents something wrong in your code that you can handle),
but to assume instead that the calling code will handle them. However, you may nevertheless want to
catch any Microsoft-defined exceptions, so that you can throw your own exception objects that give
more specific information to the client code.

Nested try blocks
One nice feature of exceptions is that you can nest try blocks inside each other, like this:

try
{

// Point A
try
{

// Point B
}
catch
{

// Point C
}
finally
{

// clean up
}
// Point D

}
catch
{

// error handling
}
finally
{

// clean up
}

Although each try block is only accompanied by one catch block in the example above, we could
string several catch blocks together too. Let’s take a closer look at how nested try blocks work.

If an exception is thrown inside the outer try block but outside the inner try block (points A and D),
then the situation is no different to any of the scenarios we have seen before: either the exception is
caught by the outer catch block and the outer finally block is executed, or the finally block is exe-
cuted and the .NET runtime handles the exception.

If an exception is thrown in the inner try block (point B), and there is a suitable inner catch block to
handle the exception, then again we are in familiar territory: the exception is handled there, and the
inner finally block is executed before execution resumes inside the outer try block (at point D).

Now suppose an exception occurs in the inner try block but there isn’t a suitable inner catch block to
handle it. This time, the inner finally block is executed as usual, but then the .NET runtime will have
no choice but to leave the entire inner try block in order to search for a suitable exception handler. The

288

Chapter 11

13 557599 Ch11.qxd 4/29/04 11:27 AM Page 288

next obvious place to look is in the outer catch block. If the system finds one here, then that handler
will be executed and then the outer finally block. If there is no suitable handler here, then the search
for one will go on. In this case it means the outer finally block will be executed, and then, since there
are no more catch blocks, control will transfer to the .NET runtime. Note that at no point is the code
beyond point D in the outer try block executed.

An even more interesting thing happens if an exception is thrown at point C. If the program is at point C
then it must be already processing an exception that was thrown at point B. It is in fact quite legitimate
to throw another exception from inside a catch block. In this case, the exception is treated as if it had
been thrown by the outer try block, so flow of execution will immediately leave the inner catch block,
and execute the inner finally block, before the system searches the outer catch block for a handler.
Similarly, if an exception is thrown in the inner finally block, control will immediately transfer to the
best appropriate handler, with the search starting at the outer catch block.

Although we have shown the situation with just two try blocks, the same principles hold no matter
how many try blocks you nest inside each other. At each stage, the .NET runtime will smoothly transfer
control up through the try blocks, looking for an appropriate handler. At each stage, as control leaves a
catch block, any cleanup code in the corresponding finally block will be executed, but no code out-
side any finally block will be run until the correct catch handler has been found and run.

We have now shown how having nested try blocks can work. The obvious next question is why would
you want to do that? There are two reasons:

❑ To modify the type of exception thrown

❑ To enable different types of exception to be handled in different places in your code

Modifying the type of exception
Modifying the type of the exception can be useful when the original exception thrown does not ade-
quately describe the problem. What typically happens is that something—possibly the .NET runtime—
throws a fairly low level exception that says something like an overflow occurred (OverflowException)
or an argument passed to a method was incorrect (a class derived from ArgumentException). However,
because of the context in which the exception occurred, you will know that this reveals some other under-
lying problem (for example, an overflow can only have happened at that point in your code because a file
you have just read contained incorrect data). In that case, the most appropriate thing that your handler for
the first exception can do is throw another exception that more accurately describes the problem, so that
another catch block further along can deal with it more appropriately. In this case, it can also forward the
original exception through a property implemented by System.Exception called InnerException.
InnerException simply contains a reference to any other related exception that was thrown—in case
the ultimate handler routine will need this extra information.

Of course there is also the situation where an exception occurs inside a catch block. For example, you
might normally read in some configuration file that contains detailed instructions for handling the error,
and it might turn out that this file is not there.

It is perfectly legitimate to throw exceptions from catch and finally blocks.

289

Errors and Exceptions

13 557599 Ch11.qxd 4/29/04 11:27 AM Page 289

Handling different exceptions in different laces
The second reason for having nested try blocks is so that different types of exceptions can be handled at
different locations in your code. A good example of this is if you have a loop where various exception
conditions can occur. Some of these might be serious enough that you need to abandon the entire loop,
while others might be less serious and simply require that you abandon that iteration and move on to
the next iteration around the loop. You could achieve this by having one try block inside the loop,
which handles the less serious error conditions, and an outer try block outside the loop, which handles
the more serious error conditions. We will see how this works in the exceptions example that we are
going to unveil next.

User-Defined Exception Classes
We are now ready to look at a second example that illustrates exceptions. This example, called
MortimerColdCall, contains two nested try blocks and also illustrates the practice of defining our
own custom exception classes, and throwing another exception from inside a try block.

For this example, we are going to return to the Mortimer Phones mobile phone company that we used in
Chapter 4. We are going to assume that Mortimer Phones wants to have additional customers. Its sales
team is going to ring up a list of people in order to invite them to become customers, a practice known in
sales jargon as cold-calling people. To this end, we have a text file available that contains the names of
the people to be cold-called. The file should be in a well-defined format in which the first line contains
the number of people in the file and each subsequent line contains the name of the next person. In other
words a correctly formatted file of names might look like this:

4
George Washington
Zbigniew Harlequin
John Adams
Thomas Jefferson

Since this is only an example, we are not really going to cold-call these people! Our version of cold-call-
ing is designed to display the name of the person on the screen (perhaps for the sales guy to read). That’s
why we only put names, and not phone numbers in the file.

Our program will ask the user for the name of the file, and will then simply read it in and display the
names of people.

That sounds like a simple task, but even so there are a couple of things that can go wrong and require us
to abandon the entire procedure:

❑ The user might type in the name of a file that doesn’t exist. This will be caught as a
FileNotFound exception.

❑ The file might not be in the correct format. There are two possible problems here. Firstly, the
first line of the file might not be an integer. Secondly, there might not be as many names in the
file as the first line of the file indicates. In both cases, we want to trap this oddity as a custom
exception that we have written specially for this purpose, ColdCallFileFormatException.

There is also something else that could go wrong which won’t cause us to abandon the entire process but
will mean we need to abandon that person and move on to the next person in the file (and hence this

290

Chapter 11

13 557599 Ch11.qxd 4/29/04 11:27 AM Page 290

will need to be trapped by an inner try block). Some people are spies working for rival land-line tele-
phone companies, and obviously, we wouldn’t want to let these people know what we are up to by acci-
dentally phoning one of them. Our research has indicated that we can identify who the land-line spies
are because their names begin with Z. Such people should have been screened out when the data file
was first prepared, but just in case any have slipped through, we will need to check each name in the file
and throw a LandLineSpyFoundException if we detect a land-line spy. This, of course, is another cus-
tom exception object.

Finally, we will implement this sample by coding a class, ColdCallFileReader, which maintains the
connection to the cold-call file and retrieves data from it. We will code this class in a very safe way,
which means its methods will all throw exceptions if they are called inappropriately; for example, if a
method that will read a file is called before the file has even been opened. For this purpose, we will write
another exception class, UnexpectedException.

Catching the user-defined exceptions
Let’s start with the Main() method of the MortimerColdCall sample, which catches our user-defined
exceptions. Note that we will need to call up file-handling classes in the System.IO namespace as well
as the System namespace.

using System;
using System.IO;

namespace Wrox.ProCSharp.AdvancedCSharp
{

class MainEntryPoint
{

static void Main()
{

string fileName;
Console.Write(“Please type in the name of the file “ +

“containing the names of the people to be cold-called > “);
fileName = Console.ReadLine();
ColdCallFileReader peopleToRing = new ColdCallFileReader();

try
{

peopleToRing.Open(fileName);
for (int i=0 ; i<peopleToRing.NPeopleToRing; i++)
{

peopleToRing.ProcessNextPerson();
}
Console.WriteLine(“All callers processed correctly”);

}
catch(FileNotFoundException e)
{

Console.WriteLine(“The file {0} does not exist”, fileName);
}
catch(ColdCallFileFormatException e)
{

Console.WriteLine(
“The file {0} appears to have been corrupted”, fileName);

Console.WriteLine(“Details of problem are: {0}”, e.Message);
if (e.InnerException != null)

291

Errors and Exceptions

13 557599 Ch11.qxd 4/29/04 11:27 AM Page 291

Console.WriteLine(
“Inner exception was: {0}”, e.InnerException.Message);

}
catch(Exception e)
{

Console.WriteLine(“Exception occurred:\n” + e.Message);
}
finally
{

peopleToRing.Dispose();
}
Console.ReadLine();

}
}

This code is basically little more than a loop to process people from the file. We start off by asking the
user for the name of the file. Then we instantiate an object of a class called ColdCallFileReader that
we will define later. This is the class that handles the file reading. Notice that we do this outside the ini-
tial try block—that’s because the variables that we instantiate here need to be available in the subse-
quent catch and finally blocks, and if we declared them inside the try block they’d go out of scope at
the closing curly brace of the try block.

In the try block we open the file (using the ColdCallFileReader.Open() method) and loop over all
the people in it. The ColdCallFileReader.ProcessNextPerson() method reads in and displays the
name of the next person in the file, while the ColdCallFileReader.NPeopleToRing property tells us
how many people should be in the file (obtained by reading the first line of the file).

There are three catch blocks, one for FileNotFoundException, one for
ColdCallFileFormatException, and one to trap any other .NET exceptions.

In the case of a FileNotFoundException, we display a message to that effect. Notice that in this catch
block, we don’t actually use the exception instance at all. The reason is that I decided to use this catch
block to illustrate the user-friendliness of our application. Exception objects generally contain technical
information that is useful for developers, but not the sort of stuff you want to show to your end users. So
in this case, we create a simpler message of our own.

For the ColdCallFileFormatException handler, we have done the opposite, and illustrated how to
give fuller technical information, including details of the inner exception, if one is present.

Finally, if we catch any other generic exceptions, we display a user-friendly message, instead of letting
any such exceptions fall through to the .NET runtime. Note that we have chosen not to handle any other
exceptions not derived from System.Exception, since we are not calling directly into non-.NET code.

The finally block is there to clean up resources. In this case, this means closing any open file—per-
formed by the ColdCallFileReader.Dispose() method.

Throwing the user-defined exceptions
Now let’s have a look at the definition of the class that handles the file reading and (potentially) throws
our user-defined exceptions: ColdCallFileReader. Since this class maintains an external file connec-
tion, we will need to make sure it gets disposed of correctly in accordance with the principles we laid
down for the disposing of objects in Chapter 4. Hence we derive this class from IDisposable.

292

Chapter 11

13 557599 Ch11.qxd 4/29/04 11:27 AM Page 292

First, we declare some variables:

class ColdCallFileReader :IDisposable
{

FileStream fs;
StreamReader sr;
uint nPeopleToRing;
bool isDisposed = false;
bool isOpen = false;

FileStream and StreamReader, both in the System.IO namespace, are the base classes that we will
use to read the file. FileStream allows us to connect to the file in the first place, while StreamReader is
specially geared up to reading text files, and implements a method, StreamReader(), which reads a
line of text from a file. We will look at StreamReader more closely in Chapter 31 when we discuss file
handling in depth.

The isDisposed field indicates whether the Dispose() method has been called. We have chosen to
implement ColdCallFileReader so that once Dispose() has been called, it is not permitted to reopen
connections and reuse the object. isOpen is also used for error checking—in this case, checking whether
the StreamReader actually connects to an open file.

The process of opening the file and reading in that first line—the one that tells us how many people are
in the file—is handled by the Open() method:

public void Open(string fileName)
{

if (isDisposed)
throw new ObjectDisposedException(“peopleToRing”);

fs = new FileStream(fileName, FileMode.Open);
sr = new StreamReader(fs);
try
{

string firstLine = sr.ReadLine();
nPeopleToRing = uint.Parse(firstLine);
isOpen = true;

}
catch (FormatException e)
{

throw new ColdCallFileFormatException(
“First line isn\’t an integer”, e);

}
}

The first thing we do in this method (as with all other ColdCallFileReader methods) is check whether
the client code has inappropriately called it after the object has been disposed of, and throw a predefined
ObjectDisposedException object if that has occurred. The Open() method checks the isDisposed
field to see whether Dispose() has already been called. Since calling Dispose() implies the caller has
now finished with this object, we regard it as an error to attempt to open a new file connection if
Dispose() has been called.

Next, the method contains the first of two inner try blocks. The purpose of this one is to catch any errors
resulting from the first line of the file not containing an integer. If that problem arises, the .NET runtime
will throw a FormatException, which we trap and convert to a more meaningful exception that indicates

293

Errors and Exceptions

13 557599 Ch11.qxd 4/29/04 11:27 AM Page 293

there is actually a problem with the format of the cold-call file. Note that System.FormatException is
there to indicate format problems with basic data types, not with files, and so is not a particularly useful
exception to pass back to the calling routine in this case. The new exception thrown will be trapped by the
outermost try block. Since there is no cleanup needed here, there is no need for a finally block.

If everything is fine, we set the isOpen field to true to indicate that there is now a valid file connection
from which data can be read.

The ProcessNextPerson() method also contains an inner try block:

public void ProcessNextPerson()
{

if (isDisposed)
throw new ObjectDisposedException(“peopleToRing”);

if (!isOpen)
throw new UnexpectedException(

“Attempt to access cold call file that is not open”);
try
{

string name;
name = sr.ReadLine();
if (name == null)

throw new ColdCallFileFormatException(“Not enough names”);
if (name[0] == ‘Z’)
{

throw new LandLineSpyFoundException(name);
}
Console.WriteLine(name);

}
catch(LandLineSpyFoundException e)
{

Console.WriteLine(e.Message);
}

finally
{
}

}

There are two possible problems with the file here (assuming there actually is an open file connection;
the ProcessNextPerson() method checks this first). First, we might read in the next name and dis-
cover that it is a land-line spy. If that condition occurs, the exception is trapped by the first of the catch
blocks in this method. Since that exception has been caught here, inside the loop, it means that execution
can subsequently continue in the Main() method of the program, and the subsequent names in the file
will continue to be processed.

A problem might also occur if we try to read the next name and discover that we have already reached
the end of the file. The way that the StreamReader’s ReadLine() method works, is if it has gone
past the end of the file, it doesn’t throw an exception, but simply returns null. So if we find a null
string, we know that the format of the file was incorrect because the number in the first line of the file
indicated a larger number of names than were actually present in the file. If that happens, we throw a
ColdCallFileFormatException, which will be caught by the outer exception handler (which will
cause execution to terminate).

294

Chapter 11

13 557599 Ch11.qxd 4/29/04 11:27 AM Page 294

Once again, we don’t need a finally block here since there is no cleanup to do; however, this time we
have put an empty one in, just to show that you can do so, if you want.

We have nearly finished the example. We have just two more members of ColdCallFileReader to look
at: the NPeopleToRing property, which returns the number of people supposed to be in the file, and the
Dispose() method, which closes an open file. Notice that the Dispose() method just returns if it has
already been called—this is the recommended way of implementing it. It also checks that there actually
is a file stream to close before closing it. This example is here to illustrate defensive coding techniques, so
that’s what we are doing!

public uint NPeopleToRing
{

get
{

if (isDisposed)
throw new ObjectDisposedException(“peopleToRing”);

if (!isOpen)
throw new UnexpectedException(

“Attempt to access cold call file that is not open”);
return nPeopleToRing;

}
}

public void Dispose()
{

if (isDisposed)
return;

isDisposed = true;
isOpen = false;
if (fs != null)
{

fs.Close();
fs = null;

}
}

Defining the exception classes
Finally, we need to define our own three exception classes. Defining our own exception is quite easy,
since there are rarely any extra methods to add. It is just a case of implementing a constructor to ensure
that the base class constructor is called correctly. Here is the full implementation of
LandLineSpyFoundException:

class LandLineSpyFoundException : ApplicationException
{

public LandLineSpyFoundException(string spyName)
: base(“LandLine spy found, with name “ + spyName)

{
}

public LandLineSpyFoundException(
string spyName, Exception innerException)

295

Errors and Exceptions

13 557599 Ch11.qxd 4/29/04 11:27 AM Page 295

: base(
“LandLine spy found with name “ + spyName, innerException)

{
}

}

Notice we’ve derived it from ApplicationException, as you would expect for a custom exception. In
fact, if we’d been going about this even more formally, we would probably have put in an intermediate
class, something like ColdCallFileException, derived from ApplicationException, and derived
both of our exception classes from this class, just to make sure that the handling code has that extra fine
degree of control over which exception handler handles which exception. However, to keep the example
simple, we won’t do that.

We have done one bit of processing in LandLineSpyFoundException. We have assumed the message
passed into its constructor is just the name of the spy found, and so we turn this string into a more
meaningful error message. We have also provided two constructors, one that simply takes a message,
and one that also takes an inner exception as a parameter. When defining your own exception classes, it
is best to include as a minimum, at least these two constructors (although we won’t actually be using the
second LandLineSpyFoundException constructor in this example).

Now for the ColdCallFileFormatException. This follows the same principles as the previous excep-
tion, except that we don’t do any processing on the message:

class ColdCallFileFormatException : ApplicationException
{

public ColdCallFileFormatException(string message)
: base(message)

{
}

public ColdCallFileFormatException(
string message, Exception innerException)
: base(message, innerException)

{
}

}

And finally, UnexpectedException, which looks much the same as ColdCallFileFormatException:

class UnexpectedException : ApplicationException
{

public UnexpectedException(string message)
: base(message)

{
}

public UnexpectedException(string message, Exception innerException)
: base(message, innerException)

{
}

}

296

Chapter 11

13 557599 Ch11.qxd 4/29/04 11:27 AM Page 296

Now we are ready to test the program. First, we try the people.txt file whose contents we displayed
earlier. This has four names (which match the number given in the first line of the file) including one
spy. Then, we will try the following people2.txt file, which has an obvious formatting error:

49
George Washington
Zbigniew Harlequin
John Adams
Thomas Jefferson

Finally, we will try the example but specify the name of a file that does not exist, people3.txt, say.
Running the program three times for the three filenames gives these results:

MortimerColdCall
Please type in the name of the file containing the names of the people to be cold-
called > people.txt
George Washington
LandLine spy found, with name Zbigniew Harlequin
John Adams
Thomas Jefferson
All callers processed correctly

MortimerColdCall
Please type in the name of the file containing the names of the people to be cold-
called > people2.txt
George Washington
LandLine spy found, with name Zbigniew Harlequin
John Adams
Thomas Jefferson
The file people2.txt appears to have been corrupted
Details of the problem are: Not enough names

MortimerColdCall
Please type in the name of the file containing the names of the people to be cold-
called > people3.txt
The file people3.txt does not exist

In the end, this little application shows you a number of different ways in which you can handle the
errors and exceptions that you might find in your own applications.

Summary
This chapter took a close look at the rich mechanism C# has for dealing with error conditions through
exceptions. You are not limited to the generic error codes that could be output from your code, but you
have the ability to go in and uniquely handle the most granular of error conditions. Sometimes these error
conditions are provided to you through the .NET Framework itself, but at other times, you might want to

297

Errors and Exceptions

13 557599 Ch11.qxd 4/29/04 11:27 AM Page 297

go in and code your own error conditions as was shown here in this chapter. In either case, you have a lot
of ways of protecting the workflow of your applications from unnecessary and dangerous faults.

In the next chapter, we will take a look at the main integrated development environment (IDE) for work-
ing in the .NET world—Visual Studio .NET 2003. This new IDE allows you to build any type of C# appli-
cation at your disposal including Windows Forms, Web Forms, Classes, XML Web services, and more.

298

Chapter 11

13 557599 Ch11.qxd 4/29/04 11:27 AM Page 298

Part II: The .NET
Environment

Chapter 12: Visual Studio .NET

Chapter 13: Assemblies

Chapter 14: .NET Security

Chapter 15: Threading

Chapter 16: Distributed Applications with .NET Remoting

Chapter 17: Localization

Chapter 18: Deployment

14 557559 PP02.qxd 4/29/04 11:24 AM Page 299

14 557559 PP02.qxd 4/29/04 11:24 AM Page 300

Visual Studio .NET

At this point we’ve familiarized ourselves with the C# language itself and are almost ready to
move on to the applied sections of the book, in which we will look at how to use C# to program a
variety of applications. Before we do that, however, we need to examine how we can use Visual
Studio .NET and some of the features provided by the .NET environment to get the best from our
programs.

In this chapter we look at what programming in the .NET environment means in practice. We
cover Visual Studio .NET, the main development environment in which you will write, compile,
debug, and optimize your C# programs, and provide guidelines for writing good applications.
Visual Studio .NET is the main. For more details on Windows Forms and how to write user inter-
face code see Chapter 19.

Working with Visual Studio .NET 2003
Visual Studio .NET 2003 is a fully integrated development environment. It is designed to make the
process of writing your code, debugging it, and compiling it to an assembly to be shipped, as easy
as possible. What this means in practice is that Visual Studio .NET gives you a very sophisticated
multiple-document-interface application in which you can do just about everything related to
developing your code. It offers these features:

❑ Text editor. Using this editor you can write your C# (as well as Visual Basic .NET, J#, and
C++) code. This text editor is quite sophisticated. For example, as you type, it automati-
cally lays out your code by indenting lines, matching start and end brackets of code
blocks, and color-coding keywords. It also performs some syntax checks as you type and
underlines code that causes compilation errors, also known as design-time debugging. In
addition it features IntelliSense, which automatically displays the names of classes, fields,
or methods as you begin to type them. As you start typing parameters to methods, it will
also show you the parameter lists for the available overloads. Figure 12-1 shows the
IntelliSense feature in action with one of the .NET base classes, ListBox.

15 557599 Ch12.qxd 4/29/04 11:29 AM Page 301

Figure 12-1

❑ Design view editor. This editor enables you to place user-interface and data-access controls in
your project; Visual Studio .NET automatically adds the necessary C# code to your source files
to instantiate these controls in your project. (This is possible because all.NET controls are
instances of particular base classes.)

❑ Supporting windows. These windows allow you to view and modify aspects of your project,
such as the classes in your source code as well as the available properties (and their startup val-
ues) for Windows Forms and Web Forms classes. You can also use these windows to specify
compilation options, such as which assemblies your code needs to reference.

❑ The ability to compile from within the environment. Instead of having to run the C# compiler
from the command line, you can simply select a menu option to compile the project and Visual
Studio .NET will call the compiler for you and pass all the relevant command-line parameters to
the compiler, detailing such things as which assemblies to reference and what type of assembly
you want to be emitted (executable or library .dll, for example). If you want, it can also run the
compiled executable for you so you can see whether it runs satisfactorily. You can even choose
between different build configurations, for example, a release or debug build.

❑ Integrated debugger. It’s in the nature of programming that your code won’t run correctly the
first time you try it. Or the second time. Or the third time. Visual Studio .NET seamlessly links
up to a debugger for you, allowing you to set breakpoints and watches on variables from within
the environment.

❑ Integrated MSDN help. Visual Studio .NET enables you to access the MSDN documentation from
within the IDE. For example, if you’re not sure of the meaning of a keyword while using the text
editor, simply select the keyword and press the F1 key, and Visual Studio .NET accesses MSDN to
show you related topics. Similarly, if you’re not sure what a certain compilation error means, you
can bring up the documentation for that error by selecting the error message and pressing F1.

A useful shortcut to remember is that by pressing CTRL+SPACE, you can bring back
the IntelliSense list box if you need it and for any reason it’s not visible.

302

Chapter 12

15 557599 Ch12.qxd 4/29/04 11:29 AM Page 302

❑ Access to other programs. Visual Studio .NET can also access a number of other utilities that
allow you to examine and modify aspects of your computer or network, without you having to
leave the developer environment. Among the tools available, you can check running services
and database connections, look directly into your SQL Server tables, and even browse the Web
using an Internet Explorer window.

If you’ve developed previously using C++ or Visual Basic, you will already be familiar with the relevant
Visual Studio 6 version of the IDE and many of the previous features will not be new to you. What is
new in Visual Studio .NET is that it combines all the features that were previously available across all
Visual Studio 6 development environments. This means that whatever language you used in Visual
Studio 6, you’ll find some new features in Visual Studio .NET. For example, in the older Visual Basic
environment, you could not compile separate debug and release builds. On the other hand, if you are
coming to C# from a background of C++, much of the support for data access and the ability to drop
controls into your application with a click of the mouse, which has long been part of the Visual Basic
developers experience, will be new to you. In the C++ development environment drag-and-drop sup-
port is limited to the most common user-interface controls.

C++ developers will miss two Visual Studio 6 features in Visual Studio .NET: edit-and-continue debug-
ging and an integrated profiler. Visual Studio .NET also does not include a full profiler application.
Instead, you will find a number of .NET classes that assist with profiling in the
System.Diagnostics namespace. The perfmon profiling tool is available from the command line
(just type perfmon) and has a number of new .NET-related performance monitors.

Whatever your background, you will find the overall look of the Visual Studio .NET 2002 and 2003
developer environment has changed since days of Visual Studio 6 to accommodate the new features, the
single cross-language IDE, and the integration with .NET. There are new menu and toolbar options, and
many of the existing ones from Visual Studio 6 have been renamed. So you’ll have to spend some time
familiarizing yourself with the layout and commands available in Visual Studio .NET.

The differences between Visual Studio .NET 2002 and Visual Studio .NET 2003 are limited to a few nice
additions that facilitate working in Visual Studio .NET 2003Visual Studio .NET. The biggest changes in
Visual Studio .NET 2003 include the ability to build smart device applications using the .NET Compact
Framework as well as ASP.NET Mobile Device applications which used to require a separate Microsoft
Mobile Internet Toolkit. Other new items include the addition of the J# language, a Java-like language
that has been put on par with the likes of C# and Visual Basic .NET, enabling Visual Studio .NET 2003
developers can use the J# language to build Web applications, Windows Forms, and XML Web services
just as you can with the other core .NET languages.

One of the biggest items to notice with your installation of Visual Studio .NET 2003 is that this new IDE
works with the .NET Framework 1.1. In fact, when you install Visual Studio .NET 2003, you will also be
installing the .NET Framework 1.1 if it isn’t already installed. Visual Studio .NET 2003 is not built to
work with version 1.0 of the .NET Framework, which means that if you still want to develop 1.0 applica-
tions, then you will want to keep Visual Studio .NET 2002 installed on your machine. Installing Visual
Studio .NET 2003 installs a complete and new copy of Visual Studio .NET and does not upgrade the pre-
vious Visual Studio .NET 2002 IDE. The two copies of Visual Studio .NET will then run side-by-side.

Note that if you attempt to open your Visual Studio .NET 2002 projects using Visual Studio .NET 2003,
the IDE will warn you that your solution will be upgraded to Visual Studio .NET 2003 if you continue
(see Figure 12-2).

303

Visual Studio .NET

15 557599 Ch12.qxd 4/29/04 11:29 AM Page 303

Figure 12-2

Be careful when upgrading your solutions from Visual Studio .NET 2002 to Visual Studio .NET 2003—
you will not be able to revert to the previous version. Don’t upgrade production solutions without test-
ing your programs first in a staging environment to ensure your application will not be affected by the
changes between versions 1.0 and 1.1 of the .NET Framework.

Since this is a professional-level book, we are not going to look in detail at every feature or menu option
available in Visual Studio .NET 2003. Surely you will be able to find your way around the IDE. The real
aim of our Visual Studio .NET coverage is to ensure that you are sufficiently familiar with the concepts
involved when building and debugging a C# application, so you can make the most of working with
Visual Studio .NET 2003. Figure 12-3 shows what your screen might look like when working in Visual
Studio .NET 2003. (Note that since the appearance of Visual Studio .NET is highly customizable, the
windows might not be in the same locations or different windows might be visible when you launch this
development environment.)

In the following sections we are going to go through the process of creating, coding, and debugging a
project, seeing what Visual Studio .NET can do to help you at each stage.

Creating a Project
Once you have installed Visual Studio .NET 2003, you will want to start your first project. With Visual
Studio .NET, you rarely start with a blank file and then add C# code, in the way that we’ve been doing in
the previous chapters in this book. (Of course, the option of asking for an empty application project is there
if you really do want to start writing your code from scratch.) Instead, the idea is that you tell Visual Studio
.NET roughly what type of project you want to create, and then Visual Studio .NET generates the files and
C# code that provides a framework for the type of project you want to create. You then work by adding
your code to this outline. For example, if you want to build a Windows GUI-interface-based application (or,
in .NET terminology, a Windows Form), Visual Studio .NET will start you off with a file containing C#
source code that creates a basic form. This form is capable of talking to Windows and receiving events. It
can be maximized, minimized, or resized; all you have to do is add the controls and functionality you
want. If your application is intended to be a command-line utility (a console application) then Visual
Studio .NET will give you a basic namespace, class, and Main() method to start you off.

304

Chapter 12

15 557599 Ch12.qxd 4/29/04 11:29 AM Page 304

Figure 12-3

Last, but hardly least, when you create your project Visual Studio .NET also sets up the compilation
options that you are likely to supply to the C# compiler—whether it is to compile to a command-line
application, a library, or a Windows application. It will also tell the compiler which base class libraries
you will need to reference (a Windows GUI application will need to reference many of the
Windows.Forms-related libraries; a console application probably won’t). You can of course modify all
these settings as you are editing, if you need to.

The first time you start Visual Studio .NET, you will be presented with what is known as the Start Page
(see Figure 12-4). The Start Page is an HTML page that contains various links to useful Web sites and
enables you to set the appearance and configuration of Visual Studio .NET (the My Profile tab), open
existing projects, or start a new project.

305

Visual Studio .NET

15 557599 Ch12.qxd 4/29/04 11:29 AM Page 305

Figure 12-4

Figure 12-4 shows the type of Start Page you get after you’ve used Visual Studio .NET; it includes a list
of the most recently edited projects. You can just click on one of these projects to open it again.

Under the My Profile option, you can even change the appearance of Visual Studio .NET to match what
you might have been used to in your previous developer environment. For example you can set up Visual
Studio .NET so its user interface looks a bit like the older Visual Basic or C++ IDEs. Note, however, that
this option only really changes where the various windows are positioned on the screen. You’ll still find
that most of the menu and toolbar options, as well as the detailed features of each window, are new.

Selecting a project type
You can create a new project either by clicking the New Project button on the start page or by selecting
New➪Project from the File menu. Either way, you will get the New Project dialog box (see Figure
12-5)—and your first inkling of the variety of different projects you can create.

306

Chapter 12

15 557599 Ch12.qxd 4/29/04 11:29 AM Page 306

Figure 12-5

Using this dialog box, you effectively select the initial framework files and code you want Visual Studio
.NET to generate for you, the type of compilation options you want, and the compiler you want to com-
pile your code with—the C#, Visual Basic .NET, J#, or Visual C++ .NET compiler. You can immediately
see the language integration that Microsoft has promised for .NET at work here! For this particular
example, we’ve opted for a C# console application.

We don’t have space to cover all the various options for different types of projects here. On the C++ side,
all the old C++ project types are there—MFC application, ATL project, and so on. On the Visual Basic
.NET side, the options have changed somewhat. For example, you can create a Visual Basic .NET com-
mand-line application (Console Application), a .NET component (Class Library), or a .NET control
(Windows Control Library). However, you can not create an old-style COM-based control (the .NET
control is intended to replace such ActiveX controls).

The following table lists all the options that are available to you under Visual C# Projects as well as the
chapters in which these options are discussed in detail. Note that there are some other more specialized
C# template projects available under the Other Projects option.

If you choose . . . You get the C# code and compilation options to generate . . . See chapter

Windows A basic empty form that responds to events. 19
Application

Class Library A .NET class that can be called up by other code. 13

Windows Control A .NET class that can be called up by other code and which 19
Library has a user interface. (Like an old-style ActiveX control.)

Smart Device An application type for building smart device applications
Application that utilize the .NET Compact Framework.

Table continued on following page

307

Visual Studio .NET

15 557599 Ch12.qxd 4/29/04 11:29 AM Page 307

If you choose . . . You get the C# code and compilation options to generate . . . See chapter

ASP.NET Web An ASP.NET-based Web site: ASP.NET pages and C# classes that 25
Application generate the HTML response sent to browsers from those pages.

ASP.NET Web A C# class that acts as a fully operational Web service. 27
Service

ASP.NET Mobile An application type that allows you to build ASP.NET 27
Web Application pages that target mobile devices.

Web Control Library A control that can be called up by ASP.NET pages, to generate 26
the HTML code that gives the appearance of a control when
displayed on a browser.

Console Application An application that runs at the command-line prompt, or in a 12
console window.

Windows Service A service that runs in the background on Windows NT and 32
Windows 2000.

Empty Project Installs nothing. You have to write all your code from scratch; but —
you still get the benefit of all the Visual Studio .NET facilities when
you are writing.

Empty Web Project The same as Empty Project, but the compilation settings are set —
to instruct the compiler to generate code for ASP.NET pages.

New Project In New project files for an empty project. Use this option if you —
Existing Folder have some straight C# source code (for example typed in a text

editor) and want to turn it into a Visual Studio .NET project.

The newly created console project
When we click OK after selecting the Console Application option, Visual Studio .NET gives us a number
of files, including a source code file, Class1.cs, which contains the initial framework code.

Figure 12-6 shows what code Visual Studio .NET has written for us.

As you can see, we have here a C# program that doesn’t do anything yet, but which contains the basic
items required in any C# executable program: a namespace and a class that contains the Main() method,
which is the program’s entry point. (Strictly speaking, the namespace isn’t necessary, but it would be
very bad programming practice not to declare one.) This code is all ready to compile and run, which you
can do immediately by pressing the F5 key or by selecting the Debug menu and choosing Start.
However, before we do that we’ll add one line of code—to make our application actually do something!

static void Main(string[] args)
{

//
// TODO: Add code to start application here
//
Console.WriteLine(“Hello from all the editors at Wrox Press”);

}

308

Chapter 12

15 557599 Ch12.qxd 4/29/04 11:29 AM Page 308

Figure 12-6

If you compile and run the project, you’ll see a console window that stays barely long enough onscreen
so you have time to read the message. The reason this happens is that Visual Studio .NET, remembering
the settings you specified when you created the project, arranged for it to be compiled and run as a con-
sole application. Windows then realizes that it has to run a console application but doesn’t have a con-
sole window to run it from. So Windows creates a console window and runs the program. As soon as the
program exits, Windows recognizes that it doesn’t need the console window any more and promptly
removes it. That’s all very logical but doesn’t help you very much if you actually want to look at the out-
put from your project!

A good way to avoid this problem is to insert the following line just before the Main() method returns
in your code.

static void Main(string[] args)
{

//
// TODO: Add code to start application here
//
Console.WriteLine(“Hello from all the editors at Wrox Press”);
Console.ReadLine();

}

309

Visual Studio .NET

15 557599 Ch12.qxd 4/29/04 11:29 AM Page 309

That way, your code will run, display its output, and then it will come across the Console.ReadLine()
statement, at which point it will wait for you to press the Return (or Enter) key before the program exits.
This means that the console window will hang around until you press Return.

Note that all this is only an issue for console applications that you test-run from Visual Studio .NET—if
you are writing a Windows application then the window displayed by the application will automatically
remain on screen until you exit it. Similarly, if you run a console application from the command line
prompt, you won’t have any problems about the window disappearing.

Other files created
The Class1.cs source code file isn’t the only file that Visual Studio .NET has created for you. If you have
a look in the folder in which you asked Visual Studio .NET to create your project, you will see not just
the C# file, but a complete directory structure that looks like what is shown here in Figure 12-7:

Figure 12-7

The two folders, bin and obj, store compiled and intermediate files. Subfolders of obj hold various tem-
porary or intermediate files; subfolders of bin hold the compiled assemblies.

Traditionally, Visual Basic developers would simply write the code then run it. Before shipping, the code
would then have to be compiled into an executable; Visual Basic tended to hide the process of compila-
tion when debugging. In C#, it’s more explicit: to run the code, you have to compile (or build) it first,
which means an assembly must be created somewhere.

The remaining files in the project’s main folder, BasicConsoleApp, are there for Visual Studio .NET’s
benefit. They contain information about the project (for example, the files it contains) so that Visual
Studio .NET knows how to have the project compiled, and how to read it in the next time you open
the project.

310

Chapter 12

15 557599 Ch12.qxd 4/29/04 11:29 AM Page 310

Solutions and Projects
One important distinction you must understand is that between a project and a solution.

❑ A project is a set of all the source code files and resources that will compile into a single assem-
bly (or in some cases, a single module). For example, a project might be a class library, or a
Windows GUI application.

❑ A solution is the set of all the projects that make up a particular software package (application).

To understand this distinction look at what happens when you ship a project—the project consists of
more than one assembly. For example, you might have a user interface, custom controls, and other com-
ponents that ship as libraries of the parts of the application. You might even have a different user inter-
face for administrators. Each of these parts of the application might be contained in a separate assembly,
and hence, they are regarded by Visual Studio .NET as a separate project. However, it is quite likely that
you will be coding these projects in parallel and in conjunction with each other. Thus it is quite useful
to be able to edit them all as one single unit in Visual Studio .NET. Visual Studio .NET allows this by
regarding all the projects as forming one solution, and treats the solution as the unit that it reads in
and allows you to work on.

Up until now we have been loosely talking about creating a console project. In fact, in the example we
are working on, Visual Studio .NET has actually created a solution for us—though this particular solu-
tion contains just one project. We can see the situation in a window in Visual Studio .NET known as the
Solution Explorer (see Figure 12-8), which contains a tree structure that defines your solution.

Figure 12-8

Figure 12-2 shows that the project contains our source file, Class1.cs, as well as another C# source file,
AssemblyInfo.cs, which allows us to provide information that describes the assembly as well as the
ability to specify versioning information. (We’ll look at this file in detail in Chapter 13.) The Solution
Explorer also indicates the assemblies that our project references according to namespace. You can see
this by expanding the References folder in the Solution Explorer.

If you haven’t changed any of the default settings in Visual Studio .NET you will probably find the
Solution Explorer in the top-right corner of your screen. If you can’t see it, just go to the View menu and
select Solution Explorer.

311

Visual Studio .NET

15 557599 Ch12.qxd 4/29/04 11:29 AM Page 311

The solution is described by a file with the extension .sln—in the case of our example, it’s
BasicConsoleApp.sln. The project is described by various other files in the project’s main folder.
If you attempt to edit these files using Notepad, you’ll find that they are mostly plain text files; and, in
accordance with the principle that .NET and .NET tools rely on open standards wherever possible, they
are mostly in XML format.

C++ developers will recognize that a Visual Studio .NET solution corresponds to an old Visual C++
project workspace (stored in a .dsw file) and a Visual Studio .NET project corresponds to an old C++
project (.dsp file). By contrast, Visual Basic developers will recognize that a solution corresponds to an
old Visual Basic project group (.vbg file), and the .NET project corresponds to an old Visual Basic pro-
ject (.vbp file). Visual Studio .NET differs from the old Visual Basic IDE in that it always creates a solu-
tion for you automatically. In Visual Studio 6, Visual Basic developers would get a project; however,
they would have to request a project group from the IDE separately.

Adding another project to the solution
As we work through the following sections we will demonstrate how Visual Studio .NET works with
Windows applications as well as console ones. To that end, we will create a Windows project called
BasicForm that we will add to our current solution, BasicConsoleApp.

This means we’ll end up with a solution containing a Windows application and a console application. That’s
not a very common scenario—you’re more likely to have one application and a number of libraries—but it
allows us to demonstrate more code! You might, however, create a solution like ours if, for example, you are
writing a utility that you want to run either as a Windows application or as a command-line utility.

There are two ways of creating the new project. You can select New➪Project from the File menu (as
we’ve done already) or you can right-click the name of the solution in the Solution Explorer and select
Add – New Project from the context menu. Either option brings up the familiar New Project dialog box;
this time, however, you’ll notice two radio buttons near the bottom of the dialog box (see Figure 12-9).
These buttons allow us to specify whether we want to create a new solution for this project or add it to
the existing solution.

Figure 12-9

312

Chapter 12

15 557599 Ch12.qxd 4/29/04 11:29 AM Page 312

If we select Add to Solution, we will get a new project so that the BasicConsoleApp solution now con-
tains a console application and a Windows application.

In accordance with the language-independence of Visual Studio .NET, the new project doesn’t have to
be a C# project. It’s perfectly acceptable to put a C# project, a Visual Basic .NET project and a C++ pro-
ject in the same solution. But we’ll stick with C# here since this is a C# book!

Of course, this means that BasicConsoleApp isn’t really an appropriate name for the solution any more! To
change the name, we can right-click on the name of the solution and select Rename from the context menu.
We’ll call the new solution DemoSolution. The Solution Explorer window now looks like Figure 12-10.

Figure 12-10

We can see from this that Visual Studio .NET has made our newly added Windows project automatically
reference some of the extra base classes that are important for Windows Forms functionality.

You’ll notice if you look in Windows Explorer that the name of the solution file has changed to
DemoSolution.sln. In general, if you want to rename any files, the Solution Explorer window is the
best place to do so, because Visual Studio .NET will then automatically update any references to that file
in the other project files. If you just rename files using Windows Explorer, you might find you break the
solution because Visual Studio .NET won’t be able to locate all the files it needs to read in. You will then
have to manually edit the project and solution files to update the file references.

Setting the startup project
One thing you’ll need to bear in mind if you have multiple projects in a solution is that only one of them
can be run at a time! When you compile the solution, all the projects in it will be compiled. However, you
have to specify which one is the one you want Visual Studio .NET to start running when you press F5 or

313

Visual Studio .NET

15 557599 Ch12.qxd 4/29/04 11:29 AM Page 313

select Start. If you have one executable and several libraries that it calls, then this will clearly be the exe-
cutable. In our case, where we have two independent executables in the project, we’d simply have to
debug each in turn.

You can tell Visual Studio .NET which project to run by right-clicking on that project in the Solution
Explorer window and selecting Set as Startup Project from the context menu. You can tell which one is
the current startup project—it is the one that appears in bold in the Solution Explorer
window (BasicConsoleApp in Figure 12-10).

Windows Application Code
A Windows application contains a lot more code right from the start than a console application when
Visual Studio .NET first creates it. That’s because creating a window is an intrinsically more complex
process. We discuss the code for a Windows application in detail in Chapter 19; for now, take a look at
the code in the Form1 class in the BasicForm project to see for yourself how much is auto-generated.

Reading in Visual Studio 6 Projects
If you are coding in C#, then you won’t need to read in any old Visual Studio 6 projects, since C# doesn’t
exist in Visual Studio 6. However, language interoperability is a key part of the .NET Framework, so you
might want your C# code to work alongside code written in Visual Basic or in C++. In that situation you
might have to edit projects that were created with Visual Studio 6.

Visual Studio .NET has no problems reading in and upgrading Visual Studio 6 projects and workspaces.
The situation is different for C++, Visual Basic, and J++ projects.

❑ In Visual C++, no change to the source code is needed. All your old Visual C++ code still works
fine with the new C++ compiler. Obviously it is not managed code, but it will still compile to code
that runs outside the .NET runtime; if you want your code to integrate with the .NET Framework,
then you will need to edit it. If you get Visual Studio .NET to read in an old Visual C++ project, it
will simply add a new solution file and updated project files. It will leave the old .dsw and .dsp
files unchanged so that the project can still be edited by Visual Studio 6, if necessary.

❑ In the case of Visual Basic, things are a bit more complicated. As we mentioned in Chapter 1,
although Visual Basic .NET has been designed very much around Visual Basic and shares much of
the same syntax, it is in many ways a new language. In Visual Basic, the source code largely con-
sisted of the event handlers for the controls. In Visual basic, the code that actually instantiates the
main window and many of its controls is not part of Visual Basic, but is instead hidden behind the
scenes as part of the configuration of your project. In contrast, Visual Basic .NET works in the
same way as C#, by putting the entire program out in the open as source code, so all the code that
displays the main window and all the controls on it needs to be in the source file. Also, like C#,
Visual Basic .NET requires everything to be object-oriented and part of a class, whereas VB didn’t
even recognize the concept of classes in the .NET sense. If you try to read a Visual Basic project
with Visual Studio .NET, it will have to upgrade the entire source code to Visual Basic .NET before
it can handle it—and this involves making a lot of changes to the Visual Basic code. Visual Studio
.NET can, to a large extent, make these changes automatically and will then create a new Visual
Basic .NET solution for you. You will find that the source code it gives you looks very different
from the corresponding Visual Basic code, and you will still need to check carefully through the

314

Chapter 12

15 557599 Ch12.qxd 4/29/04 11:29 AM Page 314

generated code to make sure the project still works correctly. You might even find areas of code
where Visual Studio .NET has left comments to the effect that it can’t figure out exactly what you
wanted the code to do, and you might have to edit the code manually.

❑ As far as Microsoft is concerned, J++ is now an obsolete language and is not directly supported
in .NET. However, in order that existing J++ code can continue to operate, separate tools are
available to allow J++ code to work with .NET. Visual Studio .NET 2003 includes the J# develop-
ment environment and will work with J++ code. There is also a utility that can convert legacy
J++ code to C# code—similar to the Visual Basic 6 to Visual Basic .NET upgrade facility. These
tools are grouped under the name JUMP (Java User Migration Path) and at the time of writing
are neither bundled with .NET nor Visual Studio .NET; you can download them instead as at
http://msdn.microsoft.com/visualj/jump/default.asp.

Exploring and Coding a Project
In this section we will look at the features that Visual Studio .NET provides to help us add code to our
project.

The folding editor
One really exciting feature of Visual Studio .NET is its use of a folding editor as its default code editor
(see Figure 12-11).

Figure 12-11

315

Visual Studio .NET

15 557599 Ch12.qxd 4/29/04 11:29 AM Page 315

Figure 12-11 shows the code for the console application that we generated earlier. Notice those little minus
signs on the left-hand side of the window. These signs mark the points where the editor assumes a new
block of code (or documentation comment) begins. You can click on these icons to close up the view of
the corresponding block of code just as you would close a node in a tree control (see Figure 12-12).

Figure 12-12

This means that while you are editing you can focus on just the areas of code you want to look at, and
you can hide the bits of code you’re not interested in. If you don’t like the way the editor has chosen to
block off your code, you can indicate your own blocks of collapsing code with the C# preprocessor direc-
tives, #region and #endregion, which we examined earlier in the book. For example, if we wanted to
collapse the code inside the Main() method, we would add the code shown in Figure 12-13.

The code editor will automatically detect the #region block and place a new minus sign by the
#region directive as shown in Figure 12-13, allowing you to close the region. Enclosing this code in a
region means that we can get the editor to close the block of code (see Figure 12-14), marking the area
with the comment we specified in the #region directive. The compiler, however, ignores the directives
and compiles the Main() method as normal.

316

Chapter 12

15 557599 Ch12.qxd 4/29/04 11:29 AM Page 316

Figure 12-13

Figure 12-14

317

Visual Studio .NET

15 557599 Ch12.qxd 4/29/04 11:29 AM Page 317

Besides the folding editor feature, Visual Studio .NET’s code editor brings across all the familiar func-
tionality from Visual Studio 6. In particular it features IntelliSense, which not only saves you typing, but
also ensures that you use the correct parameters. C++ developers will notice that the Visual Studio .NET
IntelliSense feature is a bit more robust than the Visual Studio 6 version and also works more quickly.
You will also notice that IntelliSense has been improved in Visual Studio .NET 2003. It is now smarter in
that it remembers your preferred choices and starts off with this choice instead of starting directly at the
beginning of the sometimes rather lengthy lists that IntelliSense can now provide.

The code editor also performs some syntax checking on your code and underlines most syntax errors
with a short wavy line, even before you compile the code. Hovering the mouse pointer over the under-
lined text brings up a small box telling you what the error is. Visual Basic developers have been familiar
with this feature known as design-time debugging for years; now C# and C++ developers can benefit from
it as well.

Other windows
Besides the code editor, Visual Studio .NET provides a number of other windows that allow you to view
your project from different points of view.

For the rest of this section we’ll be describing a number of other windows. If one of these windows is not
visible on your screen, you can select it from the View menu. To show the Design View and Code Editor,
right-click on the file name in the Solution Explorer and select View Designer or View Code from the
context menu, or select the item from the toolbar at the top of the Solution Explorer. The Design View
and Code Editor both share the same tabbed window.

The Design View window
If you are designing a user interface application, such as a Windows application, Windows control
library, or an ASP.NET application, then you will use the Design View window. This window presents a
visual overview of what your form will look like. You normally use the Design View window in con-
junction with a window known as the Toolbox. The Toolbox contains a large number of .NET compo-
nents that you can drag onto your program (see Figure 12-15).

The principle of the Toolbox was applied in all development environments in Visual Studio 6, but with
.NET the number of components available from the toolbox has vastly increased. The categories of com-
ponents available through the Toolbox depend, to some extent, on the type of project you are editing—
for example, you’ll get a far wider range when you are editing the BasicForm project in the
DemoSolution solution than you do when you are editing the BasicConsoleApp project. The most
important ranges of items available include:

❑ Data Components. Classes that allow you to connect to data sources and manage the data they
contain. Here you will find components for working with Microsoft SQL Server, Oracle, and any
OleDb data source.

❑ Windows Forms Components. Classes that represent visual controls such as text boxes, list
boxes, or tree views for working with thick-client applications.

❑ Web Forms Components. Classes that basically do the same thing as Windows controls, but
which work in the context of Web browsers, and which work by sending HTML output to simu-
late the controls to the browser.

❑ Components. Miscellaneous .NET classes that perform various useful tasks on your machine,
such as connecting to directory services or to the event log.

318

Chapter 12

15 557599 Ch12.qxd 4/29/04 11:29 AM Page 318

Figure 12-15

You can also add your own custom categories to the Toolbox by right-clicking on any category and
selecting Add Tab from the context menu. You can also place other tools in the Toolbox by selecting
Customize Toolbox from the same context menu—this is particularly useful for adding your favorite
COM components and ActiveX controls, which are not present in the Toolbox by default. If you add a
COM control, you can still click to place it in your project just as you would with a .NET control. Visual
Studio .NET automatically adds all the required COM interoperability code to allow your project to call
up the control. In this case, what is actually added to your project is a .NET control that Visual Studio
.NET creates behind the scenes, and which acts as a wrapper for your COM control.

C++ developers will recognize the Toolbox as Visual Studio .NET’s (much enhanced) version of the
resource editor. Visual Basic developers might not be that impressed at first; after all, Visual Studio 6
also has a Toolbox. However, the Toolbox in Visual Studio .NET has a dramatically different effect on
your source code than its precursor.

To see how the Toolbox works, we place a text box in our basic form project. We simply click on the
TextBox control contained within the Toolbox and then click again to place it in the form in the design
view (or if you prefer, you can simply drag and drop the control directly onto the design surface). Now
the design view looks like Figure 12-16, showing roughly what BasicForm will look like if we compile
and run it.

319

Visual Studio .NET

15 557599 Ch12.qxd 4/29/04 11:29 AM Page 319

Figure 12-16

If we look at the code view of our form, we see that Visual Studio .NET has added the code that instanti-
ates a TextBox object to go on the form. There’s a new member variable in the Form1 class:

public class Form1 : System.Windows.Forms.Form
{

private System.Windows.Forms.TextBox textBox1;

There is also some code to initialize it in the method, InitializeComponent(), which is called from
the Form1 constructor:

/// <summary>
/// Required method for Designer support - do not modify
/// the contents of this method with the code editor.
/// </summary>
private void InitializeComponent()
{

320

Chapter 12

15 557599 Ch12.qxd 4/29/04 11:29 AM Page 320

this.textBox1 = new System.Windows.Forms.TextBox();
this.SuspendLayout();
//
// textBox1
//
this.textBox1.Location = new System.Drawing.Point(8, 8);
this.textBox1.Name = “textBox1”;
this.textBox1.TabIndex = 0;
this.textBox1.Text = “textBox1”;

//
// Form1
//
this.AutoScaleBaseSize = new System.Drawing.Size(5, 13);
this.ClientSize = new System.Drawing.Size(292, 268);
this.Controls.AddRange(new System.Windows.Forms.Control[] {

this.textBox1});

In one sense there is no difference between the code editor and the design view: they simply present
different views of the same code. What actually happened when we clicked to add the TextBox into
the design view is that the editor has placed the above extra code in our C# source file for us. The design
view simply reflects this change because Visual Studio .NET is able to read our source code and deter-
mine from it what controls should be around when the application starts up. This is a fundamental shift
from the old Visual Basic way of looking at things, in which everything was based around the visual
design. Now, your C# source code is what fundamentally controls your application, and the design
view is just a different way of viewing the source code. Incidentally, if you do write any Visual Basic
.NET code with Visual Studio .NET, you’ll find the same principles at work.

If we’d wanted to, we could have worked the other way round: if we manually added the same code as
above to our C# source files, then Visual Studio .NET would have automatically detected from the code
that our application contained a TextBox control, and would have shown it in the design view at the
designated position. It is best to add these controls visually, and let Visual Studio handle the initial code
generation—it’s a lot quicker and less error-prone to click the mouse button a couple of times than to
type a few lines of code!

Another reason for adding these controls visually is that, in order to recognize that they are there, Visual
Studio .NET does need the relevant code to conform to certain criteria—and code that you write by hand
might not do so. In particular, you’ll notice that the InitializeComponent() method that contains the
code to initialize the TextBox is commented to warn you against modifying it. That’s because this is the
method that Visual Studio .NET looks at in order to determine what controls are around when your
application starts up. If you create and define a control somewhere else in your code, Visual Studio .NET
won’t be aware of it and you won’t be able to edit it in the design view or certain other useful windows.

In fact, despite the warnings, you can modify the code in InitializeComponent(), provided you are
careful. There’s generally no harm in changing the values of some of the properties, for example, so that
a control displays different text or so that it is a different size. In practice, the developer studio is pretty
robust when it comes to working around any other code you place in this method. Just be aware that if
you make too many changes to InitializeComponent(), you do run the risk that Visual Studio .NET
won’t recognize some of your controls. We should stress that this won’t affect your application whatso-
ever when it is compiled, but it might disable some of the editing features of Visual Studio .NET for
those controls. Hence, if you want to add any other substantial initialization, it’s probably better to do so
in the Form1 constructor or in some other method.

321

Visual Studio .NET

15 557599 Ch12.qxd 4/29/04 11:29 AM Page 321

The Properties window
This is another window that has its origins in the old Visual Basic IDE. We know from the first part of
the book that .NET classes can implement properties. In fact, as we’ll discover when building Windows
Forms (see Chapter 19), the .NET base classes that represent forms and controls have a lot of properties
that define their action or appearance—properties such as Width, Height, Enabled (whether the user
can type input to the control), and Text (the text displayed by the control)—and Visual Studio .NET
knows about many of these properties. The Properties window, shown in Figure 12-17, displays and
allows you to edit the initial values of most of these properties for the controls that Visual Studio .NET
has been able to detect by reading your source code.

Figure 12-17

The Properties window can also show events. You can view events for what you are
focused on in the IDE or selected in the drop-down list box directly in the Properties
window by clicking the icon that looks like a lightning flash at the top of the window.

322

Chapter 12

15 557599 Ch12.qxd 4/29/04 11:29 AM Page 322

At the top of the Properties window is a list box that allows you to select which control you want to
view. We’ve selected Form1, the main form class for our BasicForm project, and have edited the text to
“Basic Form—Hello!” If we now check the source code we can see that what we have actually done is
edit the source code—using a more friendly user interface:

this.AutoScaleBaseSize = new System.Drawing.Size(5, 13);
this.ClientSize = new System.Drawing.Size(292, 268);
this.Controls.AddRange(new System.Windows.Forms.Control[]

{this.textBox1});
this.Name = “Form1”;
this.Text = “Basic Form - Hello!”;

Not all the properties shown in the Properties window are explicitly mentioned in our source code. For
those that aren’t, Visual Studio .NET will display the default values that were set when the form was cre-
ated and which are set when the form is actually initialized. Obviously, if you change a value for one of
these properties in the Properties window, a statement explicitly setting that property will magically
appear in your source code—and vice versa. It is interesting to note that if a property is changed from its
original value, this property will then appear in bold type within the list box of the Properties window.
Sometimes double-clicking the property in the Property window returns the value back to its original
value.

The Properties window provides a convenient way to get a broad overview of the appearance and prop-
erties of a particular control or window.

It is interesting to note that the Properties window is implemented as a System.Windows.Forms
.PropertyGrid instance, which will internally use the reflection technology we described in Chapter
10 to identify the properties and property values to display.

The Class View window
Unlike the Properties window, the Class View window, shown in Figure 12-18, owes its origins to the
C++ (and J++) developer environments. This window will be new to Visual Basic developers since
Visual Basic 6 did not even support the concept of the class, other than in the sense of a COM compo-
nent. The Class View is not actually treated by Visual Studio .NET as a window in its own right—rather
it is an additional tab to the Solution Explorer window. The Class View shows the hierarchy of the
namespaces and classes in your code. It gives you a tree view that you can expand out to see what
namespaces contain what classes and what classes contain what members.

A nice feature of the Class View is that if you right-click on the name of any item for which you have
access to the source code, the context menu features the Go To Definition option, which takes you to the
definition of the item in the code editor. Alternatively, you can do this by double-clicking the item in
Class View (or, indeed, by right-clicking the item you want in the source code editor and choosing the
same option from the resulting context menu). The context menu also gives you the option to add a
field, method, property, or indexer to a class. This means that you specify the details of the relevant
member in a dialog box, and the code gets added for you. This might not be that useful in the case of
fields or methods, which can be quickly added to your code; however, you might find this feature help-
ful in the case of properties and indexers, where it can save you quite a bit of typing.

323

Visual Studio .NET

15 557599 Ch12.qxd 4/29/04 11:30 AM Page 323

Figure 12-18

The Object Browser window
One important aspect of programming in the .NET environment is being able to find out what methods
and other code items are available in the base classes and any other libraries that you are referencing
from your assembly. This feature is available through a window called the Object Browser. You can
access this window by selecting Object Browser from the View menu in Visual Studio .NET 2003.

The Object Browser window is quite similar to the Class View window in that it displays a tree view that
gives the class structure of your application, allowing you to inspect the members of each class. The user
interface is slightly different in that it displays class members in a separate pane rather than in the tree
view itself. The real difference is that it lets you look at not just the namespaces and classes in your pro-
ject, but also the ones in all the assemblies that are referenced by the project. Figure 12-19 shows the
Object Browser viewing the SystemException class from the .NET base classes.

The only point you have to watch with the Object Browser is that it groups classes by the assembly in
which they are located first and by namespace second. Unfortunately, since namespaces for the base
classes are often spread across several assemblies, this means you might have trouble locating a particu-
lar class unless you know what assembly it is in.

324

Chapter 12

15 557599 Ch12.qxd 4/29/04 11:30 AM Page 324

Figure 12-19

The Object Browser is there to view .NET objects. If for any reason you want to investigate installed
COM objects, you’ll find that the OLEView tool previously used in the C++ IDE is still available—it’s
located in the Tools menu (the OLE/COM Object Viewer menu item), along with several other similar
utilities.

Visual Basic developers should not confuse the .NET Object Browser with the Object Browser of the
Visual Basic 6 IDE. The .NET Object Viewer is there to view .NET classes, whereas the tool of that
name in Visual Basic 6 is used to view COM components. If you want the functionality of the old
Object Browser, you should now use the OLEView tool.

The Server Explorer window
You can use the Server Explorer window, shown in Figure 12-20, to find out about aspects of the com-
puters in your network while coding.

325

Visual Studio .NET

15 557599 Ch12.qxd 4/29/04 11:30 AM Page 325

Figure 12-20

As you can see from the screenshot, among the things you can access through the Server Explorer are
database connections, information about services, Web Services, and running processes.

The Server Explorer is linked to the Properties window so that if you open the Services node, for exam-
ple, and click on a particular service, the properties of that service will be displayed in the Properties
window.

Pin buttons
While exploring Visual Studio .NET you might have noticed that many of the windows we are describ-
ing have some interesting functionality more reminiscent of toolbars. In particular, apart from the code
editor, they can all be docked. Another, very new, feature of them is that when they are docked, they
have an extra icon that looks like a pin next to the minimize button in the top-right corner of each win-
dow. This icon really does act like a pin—it can be used to pin the windows open. When they are pinned
(the pin is displayed vertically), they behave just like the regular windows that you are used to. When
they are unpinned, however, (the pin is displayed horizontally), they only remain open as long as they
have the focus. As soon as they lose the focus (because you clicked or moved your mouse somewhere
else) they smoothly retreat into the main border around the entire Visual Studio .NET application. (You
can also feel the speed of your computer by how fast or slow they open and close).

Pinning and unpinning windows provides another way of making the best use of the limited space on
your screen. It’s not really been seen a great deal in Windows before, though a few third-party applica-
tions such as PaintShop Pro have used similar concepts. Pinned windows have, however, been around
on many Unix-based systems for quite a while.

Building a Project
In this section, we’ll examine the options that Visual Studio .NET gives you for building your project.

326

Chapter 12

15 557599 Ch12.qxd 4/29/04 11:30 AM Page 326

Building, compiling, and making
Before we examine the various build options, we want to clarify some terminology. You’ll often see three
different terms used in connection with the process of getting from your source code to some sort of exe-
cutable code: compiling, building, and making. The origin of these various terms comes from the fact
that until recently, the process of getting from source code to executable code involved more than one
step (and this is still the case in C++). This was due in large part to the number of source files in a pro-
gram. In C++, for example, each source file needs to be compiled individually. This leads to what are
known as object files, each containing something like executable code, but where each object file relates
to only one source file. In order to generate an executable, these object files need to be linked together, a
process that is officially known as linking. The combined process was usually referred to—at least on the
Windows platform—as building your code. However, in C# terms the compiler is more sophisticated
and is able to read in and treat all your source files as one block. Hence there isn’t really a separate link-
ing stage, so in the context of C# the terms compile and build are used interchangeably.

In addition to this, the term make basically means the same as build, though it’s not really used in the
context of C#. The term originated on old mainframe systems on which, when a project was composed
of many source files, a separate file would be written that contained instructions to the compiler on how
to build a project—which files to include and what libraries to link to and so on. This file was generally
known as a make file and is still quite standard on Unix systems. Make files are not normally needed on
Windows though you can still write them (or get Visual Studio .NET to generate them) if you need to.

Debug and release builds
The idea of having separate builds is very familiar to C++ developers and less so to those with a Visual
Basic background. The point here is that when you are debugging you typically want your executable to
behave differently than it does when you are ready to ship the software. When you are ready to ship
your ware, you want the size of the executable to be as small as possible and the executable itself to be as
fast as possible. Unfortunately, these requirements aren’t really compatible with your needs when you
are debugging code, as we will explain in the following sections.

Optimization
High performance is achieved partly by the compiler doing a lot of optimizations on the code. This
means that the compiler actively looks at your source code as it’s compiling in order to identify places
where it can modify the precise details of what you’re doing in a way that doesn’t change the overall
effect, but which makes things more efficient. For example, if the compiler encountered the following
source code:

double InchesToCm(double Ins)
{

return Ins*2.54;
}

// later on in the code

Y = InchesToCm(X);

327

Visual Studio .NET

15 557599 Ch12.qxd 4/29/04 11:30 AM Page 327

it might replace it with this:

Y = X * 2.54;

Or it might replace this code:

{
string Message = “Hi”;
Console.WriteLine(Message);

}

with this:

Console.WriteLine(“Hi”);

By doing so, it bypasses having to declare an unnecessary object reference in the process.

It’s not possible to exactly pin down what optimizations the C# compiler does—nor whether the two
previous examples actually would occur with any particular example, because those kinds of details are
not documented (chances are that for managed languages such as C#, the above optimizations would
occur at JIT compilation time, not when the C# compiler compiles source code to assembly). For obvious
commercial reasons, companies that write compilers are usually quite reluctant to give too many details
about the tricks that their compilers use. We should stress that optimizations do not affect your source
code—they affect only the contents of the executable code. However, the previous examples should give
you a good idea of what to expect from optimizations.

The problem is that while optimizations like the previous ones help a great deal in making your code
run faster, they aren’t that helpful for debugging. Suppose with the first example, that you want to set a
breakpoint inside the InchesToCm() method to see what’s going on in there. How can you possibly do
that if the executable code doesn’t actually have an InchesToCm() method because the compiler has
removed it? And how can you set a watch on the Message variable when that doesn’t exist in the com-
piled code either?

Debugger symbols
When you’re debugging, you often have to look at values of variables, and you will specify them by
their source code names. The trouble is that executable code generally doesn’t contain those names—the
compiler replaces the names with memory addresses. .NET has modified this situation somewhat, to the
extent that certain items in assemblies are stored with their names, but this is only true of a small minor-
ity of items—such as public classes and methods—and those names will still be removed when the
assembly is JIT-compiled. Asking the debugger to tell you what the value is in the variable called
HeightInInches isn’t going to get you very far if, when the debugger examines the executable code, it
sees only addresses and no reference to the name HeightInInches anywhere. So, in order to debug
properly, you need to have extra debugging information made available in the executable. This informa-
tion includes, among other things, names of variables and line information that allows the debugger to
match up which executable machine assembly language instructions correspond to those of your origi-
nal source code instructions. You won’t, however, want that information in a release build, both for com-
mercial reasons (debugging information makes it a lot easier for other people to disassemble your code)
and because it increases the size of the executable.

328

Chapter 12

15 557599 Ch12.qxd 4/29/04 11:30 AM Page 328

Extra source code debugging commands
A related issue is that quite often while you are debugging there will be extra lines in your code to dis-
play crucial debugging-related information. Obviously you want the relevant commands removed
entirely from the executable before you ship the software. You could do this manually but wouldn’t it be
so much easier if you could simply mark those statements in some way so that the compiler ignores
them when it is compiling your code to be shipped. We’ve already seen in the first part of the book how
this can be done in C# by defining a suitable processor symbol, and possibly using this in conjunction
with the Conditional attribute, giving you what is known as conditional compilation.

What all these factors add up to is that you need to compile almost all commercial software in a slightly
different way when debugging, compared to the final product that is shipped. Visual Studio .NET is able
to take this into account because, as we have already seen, it stores details of all the options that it is sup-
posed to pass to the compiler when it has your code compiled. All that Visual Studio has to do in order
to support different types of build is to store more than one set of such details. The different sets of build
information are referred to as configurations. When you create a project Visual Studio .NET automati-
cally gives you two configurations, called Debug and Release.

❑ The Debug configuration commonly specifies that no optimizations are to take place, extra debug-
ging information is to be present in the executable, and the compiler is to assume that the debug
preprocessor symbol Debug is present unless it is explicitly #undefined in the source code

❑ The Release configuration specifies that the compiler should optimize, that there should be no
extra debugging information in the executable, and that the compiler should not assume that
any particular preprocessor symbol is present

You can define your own configurations as well. You might want to do this, for example if you want to
set up professional-level builds and enterprise-level builds so you can ship two versions of the software.
In the past, because of issues concerning the Unicode character encodings being supported on Windows
NT but not on Windows 95, it was common for C++ projects to feature a Unicode configuration and an
MBCS (multibyte character set) configuration.

Selecting a configuration
One obvious question is that, since Visual Studio .NET stores details of more than one configuration, how
does it determine which one to use when arranging for a project to be built? The answer is that there is
always an active configuration, which is the configuration that will be used when you ask Visual Studio
.NET to build a project. (Note that configurations are set for each project rather than for each solution.)

By default, when you create a project, the debug configuration is the active configuration. You can
change which configuration is the active one by clicking on the Build menu option and selecting the item
Configuration Manager. It is also available through a dropdown menu in the main Visual Studio .NET
toolbar.

Editing configurations
Besides choosing the active configuration you can also examine and edit the configurations. To do this,
you select the relevant project in the Solution Explorer, and then select the Properties from the Project
menu. This brings up a very sophisticated dialog box. (Alternatively, you can access the same dialog box
by right-clicking the name of the project in the Solution Explorer, and then selecting Properties from the
context menu.)

329

Visual Studio .NET

15 557599 Ch12.qxd 4/29/04 11:30 AM Page 329

This dialog contains a tree view, which allows you to select quite a lot of different general areas to exam-
ine or edit. We don’t have space to show all of these areas but we will show a couple of the most impor-
tant ones.

Figure 12-21 shows the tree view with two top-level nodes, Common Properties and Configuration
Properties. Common properties are those properties that are common across all the configurations; con-
figuration properties are specific to a particular configuration.For this screenshot we are showing the
general cross-configuration compiler options for the BasicConsoleApp project that we created earlier in
the chapter.

Figure 12-21

Among the points to note are that we can select the name of the assembly, as well as the type of assem-
bly to be generated. The options here are Console Application, Windows Application, and Class Library.
You can, of course, change the assembly type if you want. (Though arguably, if you want, you might
wonder why you didn’t pick the correct project type at the time that you asked Visual Studio .NET to
generate the project for you in the first place!)

Figure 12-22 shows the build configuration properties. You’ll notice that a list box near the top of the dia-
log box allows you to specify which configuration you want to look at. In this case we can see—in the case
of the Debug configuration —that the compiler assumes that the DEBUG and TRACE preprocessor symbols
have been defined. Also, the code is not optimized and extra debugging information is generated.

In general, it’s not that often that you’ll have to adjust the configuration settings. However, if you ever
do need to use them, you now know the difference between the available configuration properties.

330

Chapter 12

15 557599 Ch12.qxd 4/29/04 11:30 AM Page 330

Figure 12-22

Debugging
After the long discussion about building and build configurations, you might be surprised to learn that
we’re not going to spend a great deal of time discussing debugging itself. The reason for that is that the
principles and the process of debugging—setting breakpoints and examining the values of variables—
isn’t really significantly different in Visual Studio .NET from in any of the various Visual Studio 6 IDEs.
Instead we will briefly review the features offered by Visual Studio .NET, focusing on those areas that
might be new to some developers. We will also discuss how to deal with exceptions, since these can
cause problems during debugging.

In C#, as in pre-.NET languages, the main technique involved in debugging is simply setting break-
points and using them to examine what is going on in your code at a certain point in its execution.

Breakpoints
You can set breakpoints from Visual Studio .NET on any line of your code that is actually executed.
The simplest way is to click the line in the code editor, within the shaded area towards the far left of the
document window (or press the F9 key when the appropriate line is selected). This sets up a breakpoint
on that particular line, which causes execution to break and control to be transferred to the debugger as
soon as that line is reached in the execution process. As in previous versions of Visual Studio, a break-
point is indicated by a large circle to the left of the line in the code editor. Visual Studio .NET also high-
lights the line by displaying the text and background in a different color. Clicking the circle again
removes the breakpoint.

331

Visual Studio .NET

15 557599 Ch12.qxd 4/29/04 11:30 AM Page 331

If breaking every time at a particular line isn’t adequate for your particular problem, you can also set
conditional breakpoints. To do this, select Debug➪Windows➪Breakpoints. This brings up a dialog box
asking you for details of the breakpoint you wish to set. Among the options available you can:

❑ Specify that execution should break only after the breakpoint has been passed a certain number
of times.

❑ Specify that the breakpoint should come into effect only every so-many times that the line is
reached, for example every twentieth time that a line is executed. (This is useful when debug-
ging large loops.)

❑ Set the breakpoints relative to a variable rather than to an instruction. In this case, the value of
the variable will be monitored and the breakpoints will be triggered whenever the value of this
variable changes. You might find, however, that using this option slows your code down con-
siderably. Checking whether the value of a variable has changed after every instruction adds a
lot of processor time.

Watches
After a breakpoint has been hit you will usually want to investigate the values of variables. The simplest
way to do this is to simply hover the mouse cursor over the name of the variable in the code editor. This
causes a little box that shows the value of that variable to pop up. However, you might also prefer to use
the Watch window to examine the contents of variables. The Watch window (shown in Figure 12-23) is a
tabbed window that appears only when the program is running under the debugger.

Figure 12-23

Variables that are classes or structs are shown with a + icon next to them, which you can click to expand
the variable and see the values of its fields.

The three tabs to this window are each designed to monitor different variables:

❑ Autos monitors the last few variables that have been accessed as the program was executing.

❑ Locals monitors variables that are accessible in the method currently being executed.

❑ Watch monitors any variables that you have explicitly specified by typing their names into the
Watch window.

332

Chapter 12

15 557599 Ch12.qxd 4/29/04 11:30 AM Page 332

Exceptions
Exceptions are great when you ship your application and making sure that error conditions are handled
in an appropriate way within your application. Used well, they can ensure that your application copes
with difficulties well and the user never gets presented with a technical dialog box. Unfortunately,
exceptions are not so great when you’re trying to debug your application. The problem is twofold.

❑ If an exception occurs when you’re debugging, then you often don’t want it to be handled auto-
matically—especially if automatically handling it means retiring gracefully and terminating exe-
cution! Rather, you want the debugger to help you find out why the exception has occurred. Of
course the trouble is that if you have written good, robust, defensive code, then your program
will automatically handle almost anything—including the bugs that you want to detect!

❑ If an exception occurs that you haven’t written a handler for, the .NET runtime will still go off
looking for a handler. But by the time it discovers that there isn’t one, it will have terminated
your program. There won’t be a call stack left and you won’t be able to look at the values of any
of your variables, because they will all have gone out of scope.

Of course, you can set breakpoints in your catch blocks, but that often doesn’t help very much because
when the catch block is reached, flow of execution will, by definition, have exited the corresponding
try block. That means that the variables you probably wanted to examine the values of in order to find
out what’s gone wrong will have gone out of scope. You won’t even be able to look at the stack trace to
find out what method was being executed when the throw statement occurred—because control will
have left that method. Setting the breakpoints at the throw statement will of course solve this, except
that if you are coding defensively there will be a lot of throw statements in your code. How can you tell
which one is the one that threw the exception?

In fact, Visual Studio provides a very neat answer to all of this. If you look into the main Debug menu,
you’ll find a menu item called Exceptions. This item opens the Exceptions dialog box (see Figure 12-24),
which allows you to specify what happens when an exception is thrown. You can choose to continue
execution or to stop and start debugging—in which case execution stops and the debugger steps in at
the throw statement itself.

What makes this a really powerful tool is that you can customize the behavior according to which class
of exception is thrown. For example, in Figure 12-24, we’ve told Visual Studio .NET to break into the
debugger whenever it encounters any exception thrown by a .NET base class, but not to break into the
debugger if the exception is an AppDomainUnloadedException.

Visual Studio .NET knows about all the exception classes available in the .NET base classes, and also
about quite a few exceptions that can be thrown outside the .NET environment. Visual Studio .NET isn’t
automatically aware of your own custom exception classes that you write, but you can manually add
your exception classes to the list and thereby specify which of your exceptions should cause execution to
stop immediately. To do this you just click the Add button (which is enabled when you have selected a
top-level node from the tree) and type in the name of your exception class.

333

Visual Studio .NET

15 557599 Ch12.qxd 4/29/04 11:30 AM Page 333

Figure 12-24

Other .NET Tools
We’ve spent a lot of time exploring Visual Studio .NET, because you will be spending a lot of your develop-
ment time using it. However, there are a number of other tools available to assist with your programming.

The ASP.NET Web Matrix Project
Besides Visual Studio .NET, Microsoft has provided another IDE for building .NET applications called
the ASP.NET Web Matrix Project (see Figure 12-25). You can download this lightweight IDE for free at
http://www.asp.net. Microsoft created this IDE because it provides hobbyist developers a quick-and-
easy way of learning and working with .NET.

The Web Matrix does not do everything that Visual Studio .NET does. The Web Matrix does not allow
you to build Windows Forms; however, it does allow you to build XML Web services and Web Forms.
The other big downer of the Web Matrix is that it does not support Intellisense, so you need to know
what you are typing because you cannot depend on the IDE to complete your code for you. But you
can’t beat the price!

334

Chapter 12

15 557599 Ch12.qxd 4/29/04 11:30 AM Page 334

Figure 12-25

For Web Forms development, you will find three new controls included in the Web Matrix—the
MxDataGrid control, the SqlDataSourceControl and the AccessDataSourceControl. The MxDataGrid con-
trol is a super-smart datagrid that allows you to apply sorting and paging easily to your tables just by sim-
ply setting a property of the control. The SqlDataSourceControl and the AccessDataSourceControl allow
you to easily connect to and pull data from Microsoft SQL Server or Access with little effort involved.

WinCV
You can use the WinCV utility (see Figure 12-26), which Microsoft has provided, to explore the base
classes and see what methods are available. It is very similar to the Visual Studio .NET object browser,
except that it is an independent application, and it will show you all the base classes, whereas the object
browser shows only those in the assemblies that are referenced by your project.

335

Visual Studio .NET

15 557599 Ch12.qxd 4/29/04 11:30 AM Page 335

Figure 12-26

WinCV is quite easy to use. You run it from the Visual Studio .NET command line prompt by typing in
wincv. Then, when it is running, you simply type in some text in the list box near the top of the wincv
window. As you type, wincv will search through the base classes and pick out all the classes whose
name includes the word you have typed in. These classes are displayed in the left-hand list box. If you
click on a particular class, its members are displayed, roughly in a format that corresponds to C# syntax,
on the right.

You’ll find the Visual Studio .NET command prompt under Microsoft Visual Studio .NET in the Start
menu. It is an ordinary command prompt, but with a couple of extra environment variables defined to
allow you to use various .NET tools. You won’t be able to run wincv (or other .NET tools) from the
usual command prompt.

336

Chapter 12

15 557599 Ch12.qxd 4/29/04 11:30 AM Page 336

Summary
In this chapter we’ve looked at one of the most important programming tools in the .NET environ-
ment—Visual Studio .NET 2003. We spent the bulk of the chapter examining how this tool facilitates
writing code in C# (and C++ and Visual Basic .NET). We also briefly covered the Web Matrix, which you
can use when working with Web Forms and XML Web services, as well as wincv, a useful utility that
allows you to examine the base classes.

In the next chapter, we will take a look at assemblies in detail.

337

Visual Studio .NET

15 557599 Ch12.qxd 4/29/04 11:30 AM Page 337

15 557599 Ch12.qxd 4/29/04 11:30 AM Page 338

Assemblies

In this chapter we discuss assemblies. An assembly is the .NET term for a deployment and configu-
ration unit. We’ll discuss exactly what they are, how they can be used, and why they are such a
useful feature. In particular, we will cover:

❑ The innovations offered by assemblies over previous technologies

❑ How to create and view assemblies

❑ What the Common Language Specification means, and how cross-language support is
made possible

❑ How to share assemblies

Let’s begin this chapter with an overview of assemblies:

What Are Assemblies?
Before the .NET platform was introduced you had to deal with the predecessors of assemblies:
normal DLLs exporting global functions, and COM DLLs exporting COM classes. Microsoft itself
introduced the phrase “DLL Hell” to describe traditional problems with DLLs—problems that are
known all too well.

Often applications break because a newly installed application overwrites a DLL that has also been
used by another application. Sometimes it happens that the installation replaces a new DLL with
an old one, because the installation program does not correctly check the versions, or the versions
are not correctly set. More often, an old DLL is replaced by a new version. Normally this shouldn’t
be a problem—the new DLL should be backwardly compatible with the old version; however,
often that is not the case.

16 557599 Ch13.qxd 4/29/04 11:31 AM Page 339

Windows 2000 introduced the side-by-side feature that allows the installation of DLLs in the application’s
directory. With side-by-side, you can install a different version of an already installed, shared DLL to the
directory of the application. The LoadLibrary() Win32 API call was rewritten so that it first checks for
a .local file in the application directory. If it is found, the API first checks if a DLL was in the same
directory of the application, before the other mechanisms are used to find a shared DLL. This also modi-
fies the fixed path that is in the registry for COM DLLs. Side-by-side is an afterthought, and doesn’t
solve all of the issues, and even introduces some new problems with COM DLLs. Another feature of
Windows 2000 or later Windows operating systems that deals with DLL Hell is file protection: system
DLLs are protected from being overwritten by unauthorized parties. All of these features deal with the
symptoms and not with the causes.

The versioning problems of DLLs exist because it’s not clear which version of a specific DLL each appli-
cation needs. Dependencies are not tracked or enforced with the traditional DLL architecture. COM
DLLs seem to solve a lot of the DLL problems because of a better separation of the implementation and
the interface. The interface is a contract between the client and the component, which, according to COM
rules, should never be changed, and thus can’t break. However, even with COM, changes of implemen-
tations can break existing applications.

Side-by-side also supports COM DLLs. If you have ever tried side-by-side with COM DLLs, you have
seen that it’s just a hack. New problems arise when using side-by-side COM DLLs. If we’re installing
the same DLL over the old one (without uninstalling the old DLL), what happens when two versions
of the same component use different threading configurations? The configuration information is taken
from the last installed version. This problem exists because the configuration of a COM component is
not stored in the component DLL itself, but in the Registry.

The Answer to DLL Hell
The .NET platform’s answer to DLL Hell and to all of its problems is assemblies. Assemblies are self-
describing installation units, consisting of one or more files. One assembly could be a single DLL or
EXE that includes metadata, or it can be made of different files, for example, resource files, metadata,
DLLs, and an EXE. Installation of an assembly can be as simple as copying all of its files. An xcopy instal-
lation can be done. Another big feature of assemblies is that they can be private or shared. With COM this
differentiation doesn’t exist, since practically all COM components are shared. If you search for a COM
component in the Registry or use OleView, you have to walk through hundreds and hundreds of com-
ponents. Only a small number of these components were ever meant to be used from more than one
application; however, every component must have a global unique identifier (GUID).

There’s a big difference between private and shared assemblies. Many developers will be happy with
just private assemblies. No special management, registration, versioning, and so on needs to be done
with private assemblies. The only application that could have version problems with private assemblies
is your own application. The private components you use within your application are installed at the
same time as the application itself. Local application directories are used for the assemblies of the com-
ponents, so you shouldn’t have any versioning problems. No other application will ever overwrite your
private assemblies. Of course it is still a good idea to use version numbers for private assemblies too.
This helps a lot with code changes, but this is not a requirement of .NET.

With private assemblies you can still have versioning problems during development time. Let’s see an
example: if a component you use in your application references version 1 of assembly X, and you use
version 2 of assembly X in your application, which version of the assembly is copied to your application
directory?

340

Chapter 13

16 557599 Ch13.qxd 4/29/04 11:31 AM Page 340

The answer to this question depends on what assembly you have referenced first—this versioning prob-
lem must be solved during development time. On the installed system, a hot fix can be easily applied to
an application by simply replacing a private assembly with a new version. The only application that
could have problems with the new version is the one where this fix is applied, as no other applications
can be influenced.

When using shared assemblies, several applications can use this assembly and have a dependency on it.
With shared assemblies, many rules must be fulfilled. A shared assembly must have a special version
number, a unique name, and usually it’s installed in the global assembly cache.

Features of Assemblies
The features of assemblies can be summarized as follows:

❑ Assemblies are self-describing. It’s no longer necessary to pay attention to Registry keys for
apartments, to get the type library from some other place, and so on. Assemblies include meta-
data that describes the assembly. The metadata includes the types exported from the assembly
and a manifest; we’ll look at exactly what a manifest is in the next section.

❑ Version dependencies are recorded inside an assembly manifest. By storing the version of any
referenced assemblies in the manifest of the assembly, we are able to know exactly the version
number of the referenced assembly that was used during development. The version of the refer-
enced assembly that will be used can be configured by the developer and the system adminis-
trator. In a later section of this chapter, we will look at which version policies are available, and
how they work.

❑ Assemblies can be loaded side-by-side. Using Windows 2000 we already have a side-by-side
feature where different versions of the same DLL can be used on a system. .NET extends this
functionality of Windows 2000, allowing different versions of the same assembly to be used
inside a single process! Maybe you’re asking where this could be useful? If assembly A refer-
ences version 1 of the shared assembly Shared, and assembly B uses version 2 of the shared
assembly Shared, and you are using both assembly A and B, you need both versions of the
shared assembly Shared in your application—and with .NET both versions are loaded and used.

❑ Application isolation is ensured using application domains. With application domains a number
of applications can run independently inside a single process. Faults in one application cannot
directly affect other applications inside the same process.

❑ Installation can be as easy as copying the files that belong to an assembly. An xcopy can be
enough. This feature is named no-touch deployment. However, there are cases when no-touch
deployment cannot be applied, and a normal Windows installation is required. We discuss
deployment of applications in Chapter 18.

Application Domains and Assemblies
Before .NET, processes were used as isolation boundaries, with every process having its private virtual
memory; an application running in one process cannot write to the memory of another application and
thereby crash the other application. The process is used as an isolation and security boundary between
applications. With the .NET architecture we have a new boundary for applications: application domains.
With managed IL code the runtime can ensure that access to the memory of another application inside
a single process can’t happen. Multiple applications can run in a single process within multiple applica-
tion domains (see Figure 13-1).

341

Assemblies

16 557599 Ch13.qxd 4/29/04 11:31 AM Page 341

Figure 13-1

An assembly is loaded into an application domain. In Figure 13-1 you can see process 4711 with two
application domains. In application domain A, the objects one and two are instantiated, one in assembly
One, and two in assembly Two. The second application domain in process 4711 has an instance one. To
minimize memory consumption, the code of assemblies is only loaded once into an application domain.
Instance and static members are not shared between application domains. It’s not possible to directly
access objects within another application domain; a proxy is needed instead. So in Figure 13-1, the object
one in application domain B cannot directly access the objects one or two in application domain A with-
out a proxy.

You can read more about proxies and communication across application domains in Chapter 16.

The AppDomain class is used to create and terminate application domains, load and unload assemblies
and types, and to enumerate assemblies and threads in a domain. Let’s program a small example to see
application domains in action.

First, create a C# Console Application AssemblyA. In the Main() method add a Console.WriteLine()
so that you can see when this method gets called. In addition, add a constructor with two int values as
arguments, which will be used to create instances with the AppDomain class. The AssemblyA.exe assem-
bly will be loaded from the second application that will be created.

using System;

namespace Wrox.ProCSharp.Assemblies.AppDomains
{

class Class1
{

public Class1(int val1, int val2)
{

Console.WriteLine(“Constructor with the values {0}, {1}” +
“ in domain {2} called”, val1, val2,
AppDomain.CurrentDomain.FriendlyName);

}

Process 4711

AppDomain A

one

two

AppDomain B

one

Process 4712

AppDomain C

two

342

Chapter 13

16 557599 Ch13.qxd 4/29/04 11:31 AM Page 342

[STAThread]
static void Main(string[] args)
{

Console.WriteLine(“Main in domain {0} called”,
AppDomain.CurrentDomain.FriendlyName);

}
}

}

The second project created is again a C# Console Application: DomainTest. First, display the name of the
current domain using the property FriendlyName of the AppDomain class. With the CreateDomain()
method, a new application domain with the friendly name New AppDomain is created. Then load the
assembly AssemblyA into the new domain and call the Main() method by calling ExecuteAssembly():

using System;
namespace Wrox.ProCSharp.Assemblies.AppDomains
{

class Test
{

[STAThread]
static void Main(string[] args)
{

AppDomain currentDomain = AppDomain.CurrentDomain;
Console.WriteLine(currentDomain.FriendlyName);
AppDomain secondDomain =

AppDomain.CreateDomain(“New AppDomain”);
secondDomain.ExecuteAssembly(“AssemblyA.exe”);

}
}

}

Before starting the program DomainTest.exe, copy the assembly AssemblyA.exe to the directory of
DomainTest.exe so that the assembly can be found. It’s not possible to add a reference to AssemblyA.exe,
because Visual Studio .NET only supports adding references to assemblies stored in DLL formats, and
not EXE formats. However, this is possible from the command line. If the assembly cannot be found, a
System.IO.FileNotFoundException exception is thrown.

When DomainTest.exe is run, you get the console output shown in Figure 13-2. DomainTest.exe is the
friendly name of the first application domain. The second line is the output of the newly loaded assem-
bly in the New AppDomain. With a process viewer you will not see the process AssemblyA.exe execut-
ing because there’s no new process created. AssemblyA is loaded into the process DomainTest.exe.

Figure 13-2

343

Assemblies

16 557599 Ch13.qxd 4/29/04 11:31 AM Page 343

Instead of calling the Main() method in the newly loaded assembly, you can also create a new instance.
In the following example replace the ExecuteAssembly() method with a CreateInstance(). The first
argument is the name of the assembly, AssemblyA. The second argument defines the type that should be
instantiated: Wrox.ProCSharp.Assemblies.AppDomains.Class1. The third argument, true, means
that case is ignored. System.Reflection.BindingFlags.CreateInstance is a binding flag enumer-
ation value to specify that the constructor should be called:

AppDomain secondDomain =
AppDomain.CreateDomain(“New AppDomain”);

// secondDomain.ExecuteAssembly(“AssemblyA.exe”);
secondDomain.CreateInstance(“AssemblyA”,

“Wrox.ProCSharp.Assemblies.AppDomains.Class1”, true,
System.Reflection.BindingFlags.CreateInstance,
null, new object[] {7, 3}, null, null, null);

Figure 13-3 shows the result of a successful run of the application.

Figure 13-3

Now you have seen how to create and call application domains. In runtime hosts, application domains are
created automatically. ASP.NET creates an application domain for each Web application that runs on a Web
server. Internet Explorer creates application domains in which managed controls will run. For applications,
it can be useful to create application domains if you want to unload an assembly. Unloading assemblies can
only be done by terminating an application domain.

Assembly Structure
An assembly consists of assembly metadata describing the complete assembly, type metadata describing
the exported types and methods, MSIL code, and resources. All these parts can be inside of one file or
spread across several files.

In this example (see Figure 13-4), the assembly metadata, type metadata, MSIL Code, and resources are
all in one file—Component.dll. The assembly consists of a single file.

The second example shows a single assembly spread across three files (see Figure 13-5). Component.dll
has assembly metadata, type metadata, and MSIL code, but no resources. The assembly uses a picture
from picture.jpeg that is not embedded inside Component.dll, but is referenced from within the assem-
bly metadata. The assembly metadata also references a module called util.netmodule, which itself
includes only type metadata and MSIL code for a class. A module has no assembly metadata. Thus the
module itself has no version information; it also cannot be installed separately. All three files in this
example make up a single assembly. The assembly is the installation unit. It would also be possible to
put the manifest in a different file.

344

Chapter 13

16 557599 Ch13.qxd 4/29/04 11:31 AM Page 344

Figure 13-4

Figure 13-5

Component.dll

Assembly
Metadata

Type Metadata

IL Code

Utl.netmodule

Type Metadata

IL Code

Picture.jpeg

Resource

Component.dll

Assembly
Metadata

Type Metadata

IL Code

Resources

345

Assemblies

16 557599 Ch13.qxd 4/29/04 11:31 AM Page 345

Assembly Manifests
An important part of an assembly is a manifest, which is part of the metadata. It describes the assembly
with all the information that’s needed to reference it and lists all its dependencies. The parts of the mani-
fest are:

❑ Identity (name, version, culture, and public key)

❑ A list of files belonging to this assembly. A single assembly must have at least one file, but may
contain a number of files.

❑ A list of referenced assemblies. Documented inside the manifest are all assemblies that are
used from the assembly, including the version number, and the public key. The public key is
used to uniquely identify assemblies. We will discuss the public key later.

❑ A set of permission requests. These are the permissions needed to run this assembly. We will
not talk about permissions in this chapter. More information can be found in Chapter 14.

❑ Exported types, provided that they are defined within a module, and the module is referenced
from the assembly. Otherwise they are not part of the manifest. A module is a unit of reuse. The
type description is stored as metadata inside the assembly. We can get the structures and classes
with the properties and methods from the metadata. This replaces the type library that was
used with COM to describe the types. For the use of COM clients it’s easy to generate a type
library out of the manifest. The reflection mechanism uses the information about the exported
types for late binding to classes. See Chapter 10 for more information about reflection.

Namespaces, Assemblies, and Components
Maybe you’re now confused by the meanings of namespaces, types, assemblies, and components. How
does a namespace fit into the assembly concept? The namespace is completely independent of an assem-
bly. You can have different namespaces in a single assembly, but the same namespace can be spread
across assemblies. The namespace is just an extension of the type name—it belongs to the name of the
type. Thus, the real name of the class Class1 we used before is Wrox.ProCSharp.Assemblies.
AppDomains.Class1.

The diagram in Figure 13-6 should help to make this concept clearer. It shows three assemblies,
which we will build later in this chapter—an assembly written with managed C++, one with
Visual Basic .NET, and one with C#. All these assemblies have classes in the same namespace:
Wrox.ProCSharp.Assemblies.CrossLanguage. The assembly HelloCSharp in addition, has a
class Math that’s in the namespace Wrox.Utils.

346

Chapter 13

16 557599 Ch13.qxd 4/29/04 11:31 AM Page 346

Figure 13-6

Private and Shared Assemblies
Assemblies can be shared or private. A private assembly is found either in the same directory as the appli-
cation, or within one of its subdirectories. With a private assembly, it’s not necessary to think about
naming conflicts with other classes or versioning problems. The assemblies that are referenced during
the build process are copied to the application directory. Private assemblies are the normal way to build
assemblies, especially when applications and components are built within the same company.

When using shared assemblies, you have to be aware of some rules. The assembly must be unique, and
therefore have a unique name called a strong name. Part of the strong name is a mandatory version num-
ber. Shared assemblies will mostly be used when a vendor, different from that of the application, builds
the component, or where a large application is split into subprojects.

Viewing Assemblies
Assemblies can be viewed using the command line utility ildasm, the MSIL disassembler. An assembly
can be opened by starting ildasm from the command line, with the assembly as argument or by selecting
the menu File➪Open.

Figure 13-7 shows ildasm opening the example that we are about to build, HelloCSharp.exe. ildasm
shows the manifest and the HelloCSharp type in the Wrox.ProCSharp.Assemblies.CrossLanguage
namespace. Opening the manifest, you can see the version number, and the assembly attributes as
well as the referenced assemblies and their versions. Opening the methods of the class, you can see
the MSIL code.

assembly
HelloMCPP

class
HelloMCPP

assembly
HelloVB

assembly
HelloCSharp

class
HelloVB

namespace Wrox.ProCSharp.Assemblies.CrossLanguage

class
HelloCSharp

namespace
Wrox.Utils

class Math

347

Assemblies

16 557599 Ch13.qxd 4/29/04 11:31 AM Page 347

Figure 13-7

ildasm symbols
The following table lists the symbols that are used with ildasm.

Symbol Description

Represents a namespace.

Represents a reference type, a class. Similar symbols are used by value types
(structs) that have a light color, delegates that are real classes with the MSIL code,
interfaces that have an “I” in the graphic, and enumerations with an “E.”

Represents a method and get and set accessors of a property; an “S” in the
graphic means that this method is static.

Represents a field.

Represents an event.

Represents a property.

This means that more information is available, for example manifest information
or information about a class declaration.

Building Assemblies
You have learned what assemblies are, now it is time to build some. Of course, you have already built
assemblies in previous chapters, because a .NET executable counts as an assembly. Now, however, we
take a look at special options for assemblies.

348

Chapter 13

16 557599 Ch13.qxd 4/29/04 11:31 AM Page 348

Creating modules and assemblies
All C# project types in Visual Studio .NET create an assembly. Whether you choose a DLL or EXE project
type, an assembly is always created. With the command line C# compiler csc, it’s also possible to create
modules. A module is a DLL without assembly attributes (so it’s not an assembly, but it can be added to
assemblies at a later time). The command

csc /target:module hello.cs

creates a module hello.netmodule. You can view this module using ildasm.

A module also has a manifest, but there is no .assembly entry inside the manifest (except for the exter-
nal assemblies that are referenced), since a module has no assembly attributes. It’s not possible to config-
ure versions or permissions with modules; that can only be done at the assembly scope. In the manifest
of the module, references to assemblies can be found. With the /addmodule option of csc, it’s possible to
add modules to existing assemblies.

To compare modules to assemblies, create a simple class A and compile it by using:

csc /target:module A.cs

The compiler generates the file A.netmodule, which doesn’t include assembly information (as you can
see using ildasm looking at the manifest information). The manifest of the module shows the referenced
assembly mscorlib and the .module entry in Figure 13-8.

Figure 13-8

Next, create an assembly B that includes the module A.netmodule. It’s not necessary to have a source
file to generate this assembly. The command to build the assembly is:

csc /target:library /addmodule:A.netmodule /out:B.dll

When looking at the assembly using ildasm, you can only find a manifest. In the manifest, the assembly
mscorlib is referenced. Next we see the assembly section with a hash algorithm and the version. The
number of the algorithm defines the type of the algorithm that was used to create the hash code of the

349

Assemblies

16 557599 Ch13.qxd 4/29/04 11:31 AM Page 349

assembly. When creating an assembly programmatically it is possible to select the algorithm. Part of the
manifest is a list of all modules belonging to the assembly. In Figure 13-9 we see .module A.netmodule
that belongs to the assembly. Classes exported from modules are part of the assembly manifest; classes
exported from the assembly itself are not.

Figure 13-9

What’s the purpose of modules? Modules can be used for faster startup of assemblies because not all
types are inside a single file. The modules are only loaded when needed. Another reason to use modules
is if you want to create an assembly with more than one programming language; one module could be
written using Visual Basic .NET, another module using C#, and these two modules can be included in a
single assembly.

Creating assemblies using Visual Studio .NET
As already mentioned, all project types in Visual Studio .NET create assemblies. With Visual Studio
.NET 2003 there’s no support for creating modules directly.

When creating a Visual Studio .NET project, the source file AssemblyInfo.cs is generated automatically.
You can use the normal source code editor to configure the assembly attributes in this file. This is the file
generated from the wizard:

using System.Reflection;
using System.Runtime.CompilerServices;
//
// General Information about an assembly is controlled through the
// following set of attributes. Change these attribute values to modify
// the information associated with an assembly.
//
[assembly: AssemblyTitle(“”)]

350

Chapter 13

16 557599 Ch13.qxd 4/29/04 11:31 AM Page 350

[assembly: AssemblyDescription(“”)]
[assembly: AssemblyConfiguration(“”)]
[assembly: AssemblyCompany(“”)]
[assembly: AssemblyProduct(“”)]
[assembly: AssemblyCopyright(“”)]
[assembly: AssemblyTrademark(“”)]
[assembly: AssemblyCulture(“”)]
//
// Version information for an assembly consists of the following four
// values:
//
// Major Version
// Minor Version
// Build Number
// Revision
//
// You can specify all the values or you can default the Revision and
// Build Numbers by using the ‘*’ as shown below:
[assembly: AssemblyVersion(“1.0.*”)]
//
// In order to sign your assembly you must specify a key to use. Refer to the
// Microsoft .NET Framework documentation for more information on assembly signing.
//
// Use the attributes below to control which key is used for signing.
//
// Notes:
// (*) If no key is specified - the assembly cannot be signed.
// (*) KeyName refers to a key that has been installed in the Crypto
// Service Provider (CSP) on your machine.
// (*) If the key file and a key name attributes are both specified,
// the following processing occurs:
// (1) If the KeyName can be found in the CSP - that key is used.
// (2) If the KeyName does not exist and the KeyFile does exist,
// the key in the file is installed into the CSP and used.
// (*) Delay Signing is an advanced option - see the Microsoft .NET
// Framework documentation for more information on this.
//
[assembly: AssemblyDelaySign(false)]
[assembly: AssemblyKeyFile(“”)]
[assembly: AssemblyKeyName(“”)]

This file is used for configuration of the assembly manifest. The compiler reads the assembly attributes
to inject the specific information into the manifest.

[assembly], and [module] are assembly level attributes. Assembly level attributes are, in contrast to the
other attributes, not attached to a specific language element. The arguments that can be used for the assem-
bly attribute are classes of the namespaces System.Reflection, System.Runtime.CompilerServices,
and System.Runtime.InteropServices.

In Chapter 10 you can read more about attributes and how to create and use custom attributes.

351

Assemblies

16 557599 Ch13.qxd 4/29/04 11:31 AM Page 351

Here’s a list of assembly attributes that are defined within the System.Reflection namespace.

Assembly Attribute Description

AssemblyCompany Specifies the company name.

AssemblyConfiguration Specifies build information such as retail or debugging information.

AssemblyCopyright and Hold the copyright and trademark information.
AssemblyTrademark

AssemblyDefaultAlias Can be used if the assembly name is not easily readable (such as a
GUID when the assembly name is created dynamically). With this
attribute an alias name can be specified.

AssemblyDescription Describes the assembly or the product. Looking at the properties
of the executable file this value shows up as Comments.

AssemblyProduct Specifies the name of the product where the assembly belongs.

AssemblyInformational This attribute isn’t used for version checking when assemblies
Version are referenced, it is for information only. It is very useful to specify

the version of an application that uses multiple assemblies. Open-
ing the properties of the executable we can see this value as the
Product Version.

AssemblyTitle Used to give the assembly a friendly name. The friendly name can
include spaces. With the file properties we can see this value as
Description.

Here’s an example of how these attributes might be configured:

[assembly: AssemblyTitle(“Professional C#”)]
[assembly: AssemblyDescription(“”)]
[assembly: AssemblyConfiguration(“Retail version”)]
[assembly: AssemblyCompany(“Wrox Press”)]
[assembly: AssemblyProduct(“Wrox Professional Series”)]
[assembly: AssemblyCopyright(“Copyright (C) Wrox Press 2003”)]
[assembly: AssemblyTrademark(“Wrox is a registered trademark of John Wiley & Sons,
Inc.”)]
[assembly: AssemblyCulture(“en-US”)]

The following attributes correspond to classes in the System.Runtime.CompilerServices namespace:

❑ AssemblyCulture tells about the culture of the assembly. Cultures are discussed in Chapter 17.

❑ AssemblyDelaySign, AssemblyKeyFile, and AssemblyKeyName are used to create strong
names for shared assemblies.

❑ AssemblyVersion specifies the version number of the assembly. Versioning plays an important
part for shared assemblies.

Additional COM interoperability attributes within the System.Runtime.InteropServices
namespace can be used to make .NET types visible to COM, to specify application IDs for example.
COM interoperability is the subject of Chapter 28.

352

Chapter 13

16 557599 Ch13.qxd 4/29/04 11:31 AM Page 352

Cross-Language Support
One of the best features of COM is its support for multiple languages. It’s possible to create a COM com-
ponent with Visual Basic and to make use of it from within a scripting client such as JScript. On the other
hand, it’s also possible to create a COM component using C++ that a Visual Basic program can’t make
use of. A scripting client has different requirements than a Visual Basic client, and a C++ client is able
to use many more COM features than any other client language.

When writing COM components it’s always necessary to have the client programming language in mind.
The server must be developed for a specific client language, or for a group of client languages. If design-
ing a COM component for a scripting client, this component can also be used from within C++, but then
the C++ client has some disadvantages. Many rules must be followed when different clients should be
supported, and the compiler can’t help with COM; the COM developer has to know the requirements of
the client language and has to create the interfaces accordingly.

How does this compare with the .NET platform? With the Common Type System (CTS), .NET defines how
value types and reference types can be defined from a .NET language, the memory layout of such types.
But the CTS does not guarantee that a type which is defined from any language can be used from any
other language. This is the role of the Common Language Specification (CLS). The CLS defines the minimum
requirement of types that must be supported by a .NET language.

We briefly mention the CTS and CLS in Chapter 2. In this section, we shall go deeper and explore:

❑ Both CTS and CLS.

❑ Language independence in action by creating a C++, Visual Basic .NET and a C# class that
derive from each other. We look at the MSIL code that’s generated from these compilers.

❑ The requirements of the CLS.

The CTS and the CLS
All types are declared with the guidance of the CTS. The CTS defines a set of rules that language compil-
ers must follow to define, reference, use, and store reference and value types. Therefore, by following the
CTS, objects written in different languages can interact with each other.

However, not all types are available to all programming languages. To build components that are acces-
sible from all .NET languages use the CLS. With the CLS the compiler can check for valid code according
to the CLS specification.

Any language that supports .NET isn’t just restricted to the common subset of features that is defined
with the CLS; even with .NET it’s still possible to create components that can’t be used from different
languages. Supporting all languages is much easier with .NET than it was with COM. If you do restrict
yourself to the CLS, it’s guaranteed that this component can be used from all languages. It is most likely
that libraries written by third parties will restrict themselves to the CLS to make the library available to
all languages.

The .NET Framework was designed from the ground up to support multiple languages. During the
design phase of .NET, Microsoft invited many compiler vendors to build their own .NET languages.
Microsoft itself delivers Visual Basic .NET, managed C++, C#, J#, and JScript .NET. In addition, more

353

Assemblies

16 557599 Ch13.qxd 4/29/04 11:31 AM Page 353

than 40 languages from different vendors, such as COBOL, Smalltalk, Perl, and Eiffel are available. Each
of these languages has its specific advantages and many different features. The compilers of all these
languages have been extended to support .NET.

Most, but not all, of the classes in the .NET Framework are CLS compliant. The non-compliant classes and
methods are specially marked as not compliant in the MSDN documentation. One example is the UInt32
structure in the System namespace. UInt32 represents a 32-bit unsigned integer. Not all languages
(including Visual Basic .NET or J#) support unsigned data types; such data types are not CLS compliant.

Figure 13-10 shows the relation of the CLS to the CTS, and how types of programming languages relate.

Figure 13-10

Language Independence in Action
Let’s see CLS in action. The first assembly created includes a base class with Visual C++. The second
assembly has a Visual Basic .NET class that inherits from the C++ class. The third assembly is a C# console
application with a class deriving from the Visual Basic .NET code, and a Main function that’s using the C#
class. The implementation should just show how the languages make use of .NET classes, and how they
handle numbers, so all these classes have a simple Hello() method where the System.Console class is
used, and an Add() method where two numbers are added. Figure 13-11 shows the UML class diagram
with these classes and methods.

Common Type
System

CLS

Cobol with .NET
Extensions

Managed C + +

The CLS is the minimum specification of requirements that a language must sup-
port. This means that if we restrict our public methods to the CLS, all languages
supporting .NET can use our classes!

354

Chapter 13

16 557599 Ch13.qxd 4/29/04 11:31 AM Page 354

Figure 13-11

Writing the managed C++ class
The first project type you can create for this sample is a .NET Class Library, which is created from the
Visual C++ Projects project type of Visual Studio .NET, and given the name HelloMCPP (see Figure 13-12).

Figure 13-12

HelloMCPP

+Hello()
+Hello2()
+Add()

HelloCSharp

+Hello()
+Add()
+Main()

HelloVB

+Hello()
+Add()

355

Assemblies

16 557599 Ch13.qxd 4/29/04 11:31 AM Page 355

With Visual Studio .NET 2003 you can create pure managed code with C++. In this example we will mix
native and managed code inside one file, so some project properties needs to be changed.

❑ The C Runtime Library must be added to the linker. This is done by adding msvcrt.lib to addi-
tional dependencies with the Linker➪Input configuration.

❑ From the same configuration nochkclr.obj must be removed. This is a security check if the C
Runtime Library is not used.

❑ Using C functions an entry point is needed. Add __DllMainCRTStartup@12 to Force Symbol
References.

❑ The necessary configuration changes can be seen in Figure 13-13.

Visual Studio .NET 2003 enables you to create purely managed code with C++. This was not possible
with Visual Studio .NET 2002, where the configuration changes are not needed.

Figure 13-13

The application wizard generates a class HelloMCPP that is marked with __gc to make the class a man-
aged type. Without a special attribute, the class would be a normal unmanaged C++ class generating
native code. This class is in the file HelloMCPP.h:

// HelloMCPP.h
#pragma once
using namespace System;
namespace HelloMCPP
{

public __gc class Class1
{

// TODO: Add your methods for this class here.

356

Chapter 13

16 557599 Ch13.qxd 4/29/04 11:31 AM Page 356

};
}

For demonstration purposes, change the namespace and class name, and add three methods to the class.
The virtual method Hello2() uses a C runtime function printf() that demonstrates the use of native
code within a managed class. To make this method available the header file stdio.h must be included.
Within the Hello() method we are using the Console managed class from the System namespace. The
C++ using namespace statement is similar to the C# using statement. using namespace System opens
the System namespace, so we don’t have to write System::Console::WriteLine(). Mark the method
Hello() with the virtual keyword, so that it can be overridden. Hello() will be overridden in the
Visual Basic and C# classes. Similar to C#, C++ member functions are not virtual by default. Add a
third method, Add(), which returns the sum of two int arguments, to the class so that we can compare
the generated MSIL to the different languages to see how they handle numbers. All three examples use
the same namespace Wrox.ProCSharp.Assemblies.CrossLanguage.

// HelloMCPP.h
#pragma once

#include <stdio.h>
using namespace System;
namespace Wrox
{

namespace ProCSharp
{

namespace Assemblies
{

namespace CrossLanguage
{

public __gc class HelloMCPP
{
public:

virtual void Hello()
{

Console::WriteLine(S”Hello, Managed C++”);
}
virtual void Hello2()
{

printf(“Hello, calling native code\n”);
}
int Add(int val1, int val2)
{

return val1 + val2;
}

};
}

}
}

}

To compare the programs with running code we are using the release build instead of the debug config-
uration. With debug configurations you can see some non-optimized IL code. Looking at the generated
DLL using ildasm (see Figure 13-14), besides the class HelloMCPP with its members we see one static
method printf(). This method calls a native unmanaged function using pinvoke. The private field
$ArrayType$0xf2eda509 holds our native string “Hello, calling native code\n”.

357

Assemblies

16 557599 Ch13.qxd 4/29/04 11:31 AM Page 357

Figure 13-14

The Hello2() method (see Figure 13-15) pushes the address of the field $ArrayType$0xf2eda509,
that keeps the string on the stack. In line IL_0005 a call to the static printf() method can be seen
where a pointer to the string “Hello, calling native code” is passed.

Figure 13-15

printf() itself is called via the platform invoke mechanism (see Figure 13-16). With the platform invoke,
you can call all native functions like the C runtime and Win32 API calls.

Figure 13-16

358

Chapter 13

16 557599 Ch13.qxd 4/29/04 11:31 AM Page 358

The Hello() method (see Figure 13-17) is completely made up of MSIL code; there’s no native code.
Because the string was prefixed with an “S”, a managed string is written into the assembly and it is put
onto the stack with ldstr. In line IL_0005 we are calling the WriteLine() method of the
System.Console class using the string from the stack:

Figure 13-17

To demonstrate how numbers are used within Managed C++, we’re now going to take a look at the
MSIL code of the Add() method (see Figure 13-18). The passed arguments are put on the stack with
ldarg.1 and ldarg.2, add adds the stack values and puts the result on the stack, and in line IL_0003 the
result is returned.

Figure 13-18

What’s the advantage of using managed C++ compared to C# and other languages of the .NET frame-
work? Managed C++ makes it easier to make traditional C++ code available to .NET. MSIL code and
native code can be mixed easily.

Writing the Visual Basic .NET class
Now we’re going to use Visual Basic .NET to create a class. Again, use the Class Library wizard, and
name the project HelloVB (see Figure 13-19).

Change the namespace of the class to Wrox.ProCSharp.Assemblies.CrossLanguage. In a Visual
Basic .NET project this can be done by changing the root namespace of the project in the project proper-
ties as can be seen in Figure 13-20.

359

Assemblies

16 557599 Ch13.qxd 4/29/04 11:31 AM Page 359

Figure 13-19

Figure 13-20

To make it possible to derive the class from HelloMCPP a reference to HelloMCPP.dll is needed. Add the
reference to the C++ project by selecting Project➪Add Reference. When building the assembly the refer-
ence can be seen inside the manifest: .assembly extern HelloMCPP. Adding the reference to the pro-
ject copies the referenced assembly to the output directory of the Visual Basic .NET project, so that we
are independent of later changes made to the original referenced assembly.

360

Chapter 13

16 557599 Ch13.qxd 4/29/04 11:31 AM Page 360

Figure 13-21

Create the class HelloVB using the following code. The class HelloVB inherits from HelloMCPP. Visual
Basic .NET uses the keyword Inherits to derive from a base class. Inherits must be in the line after the
Class statement. Override the Hello() method in the base class. The Visual Basic .NET Overrides key-
word does the same thing as the C# override keyword. In the implementation of the Hello() method,
the Hello() method of the base class is called using the Visual Basic .NET keyword MyBase. The MyBase
keyword is the same as base in C#. The method Add() is implemented so that we can examine the gener-
ated MSIL code to see how Visual Basic .NET works with numbers. The Add() method from the base class
is not virtual, so it can’t be overridden. Visual Basic .NET uses the keyword Shadows to hide a method of
a base class. Shadows is similar to C#’s new modifier. The C# new modifier is introduced in Chapter 4.

Public Class HelloVB
Inherits HelloMCPP

Public Overrides Sub Hello()
MyBase.Hello()
Console.WriteLine(“Hello, VB.NET”)

End Sub

Public Shadows Function Add(ByVal val1 As Integer, _
ByVal val2 As Integer) As Integer

Return val1 + val2
End Function

End Class

Let’s look at the MSIL code that is generated from the Visual Basic .NET compiler.

361

Assemblies

16 557599 Ch13.qxd 4/29/04 11:31 AM Page 361

The HelloVB.Hello() method (see Figure 13-22) first calls the Hello() method of the base class
HelloMCPP. In line IL_0006, a string stored in the metadata is pushed on the stack using ldstr.

Figure 13-22

The other method (see Figure 13-23) we are looking at is Add(). Visual Basic .NET uses add.ovf instead
of the add method that was used in the managed C++-generated MSIL code. This is just a single MSIL
statement that’s different between C++ and Visual Basic .NET, but the statement add.ovf generates
more lines of native code, as add.ovf performs overflow checking. If the result of the addition of the
two arguments is too large to be represented in the target type, add.ovf generates an exception of type
OverflowException. In contrast, add just performs an addition of the two values, whether or not the
target fits. In the case where the target is not big enough, the true value of the summation is lost, and the
result is a wrong number. So, add is faster, but add.ovf is safer.

Figure 13-23

Writing the C# class
The third class is created using C#, which is the language this book is written about. For this project,
create a C# Console Application HelloCSharp. Add a reference to the HelloVB and the HelloMCPP
assembly, because the C# class will derive from the Visual Basic .NET class.

362

Chapter 13

16 557599 Ch13.qxd 4/29/04 11:31 AM Page 362

Create the class HelloCSharp according to the code below. The methods implemented in the C# class
are similar to the managed C++ and the Visual Basic .NET classes. Hello() is an overridden method of
the base class; Add() is a new method:

using System;

namespace Wrox.ProCSharp.Assemblies.CrossLanguage
{

public class HelloCSharp : HelloVB
{

public HelloCSharp()
{
}
public override void Hello()
{

base.Hello();
Console.WriteLine(“Hello, C#”);

}
public new int Add(int val1, int val2)
{

return val1 + val2;
}
[STAThread]
public static void Main()
{

HelloCSharp hello = new HelloCSharp();
hello.Hello();

}
}

}

As you can see in Figure 13-24, the generated MSIL code for the Hello() method is the same as the
MSIL code from the Visual Basic .NET compiler.

Figure 13-24

The Add() method (see Figure 13-25) differs, and yet is similar to the MC++ code. When doing calcula-
tions, the C# compiler doesn’t use the methods with overflow; checking with the default compiler settings
in a Visual Studio .NET project. The faster MSIL method add is used instead of add.ovf; but it’s possible

363

Assemblies

16 557599 Ch13.qxd 4/29/04 11:31 AM Page 363

to change this option by using the configuration properties of C# and Visual Basic .NET projects. By set-
ting Check for overflow underflow to true in a C# project, the MSIL code that the C# compiler generates
for our example will be the same as that generated by the Visual Basic .NET compiler. Unlike Visual Basic
.NET, with C# it’s also possible to choose this option on an expression-by-expression basis with the
checked and unchecked operators. We discuss the checked and unchecked operators in Chapter 5.

Figure 13-25

Finally, in Figure 13-26 you can see the console application output.

Figure 13-26

Because all the .NET languages generate MSIL code and all the languages make use of the classes in the
.NET Framework, it’s often said that there is no difference regarding performance. As you can see, how-
ever, small differences are still there. First, depending on the language, some languages support different
data types from others. Second, the generated MSIL code can still be different. One example that we’ve
seen is that the number calculations are implemented differently: while the default configuration of
Visual Basic .NET is for safety, the default for C# is for speed. C# is also more flexible.

CLS Requirements
We’ve just seen the CLS in action when we looked at cross-language inheritance between managed C++,
Visual Basic .NET, and C#. Until now we didn’t pay any attention to the CLS requirements when build-
ing our project. We were lucky—the methods we defined in the base classes were callable from the
derived classes. If a method had the System.UInt32 data type as one of its arguments, we wouldn’t be
able to use it from Visual Basic .NET. Unsigned data types are not CLS-compliant; for a .NET language,
it’s not necessary to support this data type.

The CLS exactly defines the requirements to make a component CLS compliant, which enables it to be
used with different .NET languages. With COM we had to pay attention to language-specific require-
ments when designing a component. JScript had different requirements from Visual Basic 6, and the

364

Chapter 13

16 557599 Ch13.qxd 4/29/04 11:31 AM Page 364

requirements of Visual J++ were different again. That’s no longer the case with .NET. When designing a
component that should be used from other languages, we just have to make it CLS compliant; it’s guar-
anteed that this component can be used from all .NET languages. If we mark a class as CLS compliant,
the compiler can warn us about non-compliant methods.

All .NET languages must support the CLS. When talking about .NET languages we have to differentiate
between .NET consumer and .NET extender tools.

A .NET consumer language just uses classes from the .NET Framework—it can’t create .NET classes that
can be used from other languages. A consumer tool can use any CLS-compliant class. A .NET extender
tool has the requirements of a consumer and can in addition inherit any CLS-compliant .NET class and
define new CLS-compliant classes that can be used by consumers. C++, Visual Basic .NET, and C# all are
extender tools. With these languages, it’s possible to create CLS-compliant classes.

The CLSCompliant attribute
With the CLSCompliant attribute, we can mark our assembly to be CLS compliant. Doing this guaran-
tees that the classes in this assembly can be used from all .NET consumer tools. The compiler issues
warnings when we are using non-CLS compliant data types in public and protected methods. The data
types we use in the private implementation don’t matter—when using other languages outside of the
class, we don’t have direct access to private methods anyway.

To get compiler warnings when a data type is not compliant in public and protected methods, we set the
attribute CLSCompliant in the assembly by adding this attribute to the file AssemblyInfo.cs:

[assembly: System.CLSCompliant(true)]

This way, all the defined types and public methods inside the assembly must be compliant. Using a non-
compliant uint type as argument type, we get this error from the compiler:

error CS3001: Argument type uint is not CLS-compliant

When we mark an assembly as compliant, it’s still possible to define methods that are not compliant.
This can be useful if you want to override some method to make it available with both compliant and
non-compliant argument data types. The methods that are not compliant must be marked, within the
class, by the CLSCompliant attribute with a value of false. The CLSCompliant attribute can be
applied to types, methods, properties, fields, and events:

[CLSCompliant(false)]
void Method(uint i)
{

//...

CLS rules
The requirements for an assembly to be CLS compliant are the following:

❑ All types appearing in a method prototype must be CLS compliant.

❑ Array elements must have a CLS-compliant element type. Arrays must also be 0-indexed.

❑ A CLS-compliant class must inherit from a CLS-compliant class. System.Object is CLS
compliant.

365

Assemblies

16 557599 Ch13.qxd 4/29/04 11:31 AM Page 365

❑ Although method names in CLS-compliant classes are not case-sensitive, method names may
not only be different in their case.

❑ Enumerations must be of type Int16, Int32, or Int64. Enumerations of other types are not
compliant.

All the listed requirements only apply to public and protected members. The private implementation
itself doesn’t matter—non-compliant types can be used there, and the assembly is still compliant.

Besides these requirements, there are the more general naming guidelines discussed in Chapter 12.
These guidelines do not define that classes should be CLS compliant, but they make life much easier.

In addition to these naming guidelines to support multiple languages, it’s necessary to pay attention to
method names where the type is part of the name. Data type names are language-specific, for example,
the C# int, long, and float types are equivalent to the Visual Basic .NET Integer, Long, and Single
types. When a data type name is used in a name of a method, the universal type names—Int32, Int64,
and Single—and not the language-specific type names should be used:

int ReadInt32();
long ReadInt64();
float ReadSingle();

As you can see when complying with the CLS specs and guidelines, it’s easy to create components that
can be used from multiple languages. It’s not necessary to test the component by using all .NET con-
sumer languages.

Global Assembly Cache
The global assembly cache is, as the name implies, a cache for globally available assemblies. Most shared
assemblies are installed inside this cache, but some private assemblies can also be found here. If a pri-
vate assembly is compiled to native code using the native image generator, the compiled native code
goes into this cache, too!

In this section, we explore:

❑ Creating native images at installation time

❑ Viewing shared assemblies with the Global Assembly Cache Viewer and the Global Assembly
Cache Utility

Native Image Generator
With the native image generator Ngen.exe we can compile the IL code to native code at installation time.
This way the program can start faster because the compilation during runtime is no longer necessary. The
ngen utility installs the native image in the native image cache, which is part of the global assembly cache.

Creating native images with ngen only makes sense if native images are created for
all assemblies used by the application. Otherwise the JIT compiler would have to be
started anyway.

366

Chapter 13

16 557599 Ch13.qxd 4/29/04 11:31 AM Page 366

With ngen myassembly, we can compile the MSIL code to native code and install it into the native image
cache. This should be done from an installation program if we would like to put the assembly in the
native image cache.

With ngen we can also display all assemblies from the native image cache with the option /show. If we
add an assembly name to the /show option we get the information about all installed versions of this
assembly as can be seen in Figure 13-27.

Figure 13-27

Global Assembly Cache Viewer
The global assembly cache can be displayed using shfusion.dll, which is a Windows shell extension to view
and manipulate the contents of the cache. A Windows shell extension is a COM DLL that integrates with
the Windows explorer. You just have to start the explorer and go to the <windir>/assembly directory.

Figure 13-28 shows the Assembly Cache Viewer.

Figure 13-28

After compiling the assembly to native code you cannot delete the original assembly
with the MSIL code because the native code assembly doesn’t include metadata with
.NET 1.1, and metadata is still needed. If the security changes on the system, the
native code needs to be rebuilt.

367

Assemblies

16 557599 Ch13.qxd 4/29/04 11:31 AM Page 367

With the Assembly Cache Viewer, the Global Assembly Name, Type, Version, Culture, and the Public
Key Token can be seen. With the Type we can see if the assembly was installed using the native image
generator. Using the context menu when selecting an assembly, it’s possible to delete an assembly and
to view the properties (see Figure 13-29).

Figure 13-29

The real files and directories behind the assembly cache can be seen by viewing the directory from the
command line. Inside the <windir>\assembly directory there’s a GAC and NativeImages_<runtime ver-
sion> directory. GAC is the directory for shared assemblies, and in NativeImages_<runtime version> you
can find the assemblies compiled to native code. If you go deeper in the directory structure you will find
directory names that are similar to the assembly names, and below that a version directory and the assem-
blies themselves. This makes it possible that different versions of the same assembly can be installed.

Global Assembly Cache Utility (gacutil.exe)
The assembly viewer can be used to view and delete assemblies using the Windows explorer, but it’s not
possible to use it from scripting code, such as to create installation programs. gacutil.exe is a utility to
install, uninstall, and list assemblies using the command line.

The following list explains some of the gacutil options:

❑ gacutil /l lists all assemblies from the assembly cache

❑ gacutil /i mydll installs the shared assembly mydll into the assembly cache

❑ gacutil /u mydll uninstalls the assembly mydll

❑ gacutil /ungen mydll uninstalls the assembly from the native image cache

368

Chapter 13

16 557599 Ch13.qxd 4/29/04 11:31 AM Page 368

Creating Shared Assemblies
Assemblies can be isolated for use by a single application—not sharing an assembly is the default. When
using private assemblies it’s not necessary to pay attention to any requirements that are necessary for
sharing.

In this section, we explore:

❑ Strong names as a requirement for shared assemblies

❑ Creating shared assemblies

❑ Installing shared assemblies in the global assembly cache

❑ Delayed signing of shared assemblies

Shared Assembly Names
The goal of a shared assembly name is that it must be globally unique, and it must be possible to protect
the name. At no time may any other person create an assembly using the same name.

COM solved only the first problem by using a globally unique identifier (GUID). The second problem,
however, still existed as anyone could steal the GUID and create a different object with the same identi-
fier. Both problems are solved with strong names of .NET assemblies.

A strong name is made of these items:

❑ The name of the assembly itself.

❑ A version number. This makes it possible to use different versions of the same assembly at the
same time. Different versions can also work side-by-side and can be loaded concurrently inside
the same process.

❑ A public key guarantees that the strong name is unique. It also guarantees that a referenced
assembly can’t be replaced from a different source.

❑ A culture. Cultures are discussed in Chapter 17.

A strong (shared) name is a simple text name accompanied by a version number, a public key, and a cul-
ture. You wouldn’t create a new public key with every assembly, but you’d have one in the company, so
the key uniquely identifies your company’s assemblies.

However, this key cannot be used as a trust key. Assemblies can carry Authenticode signatures to build
up a trust. The key for the Authenticode signature can be a different one from the key used for the strong
name.

For development purposes a different public key can be used and later exchanged easily with the real
key. We discuss this feature later in this chapter, in the Delayed Signing of Assemblies section.

A shared assembly must have a strong name to uniquely identify the assembly.

369

Assemblies

16 557599 Ch13.qxd 4/29/04 11:31 AM Page 369

To uniquely identify the assemblies in your companies, a useful namespace hierarchy should be used to
name your classes. Here is a simple example showing how to organize namespaces: Wrox Press can use
the major namespace Wrox for its classes and namespaces. In the hierarchy below the namespace, the
namespaces must be organized so that all classes are unique. Every chapter of this book uses a different
namespace of the form Wrox.ProCSharp.<Chapter>; this chapter uses Wrox.ProCSharp.Assemblies.
So if there is a class Hello in two different chapters there’s no conflict because of different namespaces.
Utility classes that are used across different books can go into the namespace Wrox.Utilities.

A company name that is commonly used as the first part of the namespace is not necessarily unique, so
something more must be used to build a strong name. For this the public key is used. Because of the
public/private key principle in strong names, no one without access to your private key can destruc-
tively create an assembly that could be unintentionally called by the client.

Public key cryptography
If you already know about public key cryptography, you can skip this section. For the rest of you, this is
a simple introduction to keys. For encryption we have to differentiate between symmetric encryption and
public/private key encryption.

With a symmetric key, the same key can be used for encryption and decryption, but this is not the case
with a public/private key pair. If something is encrypted using a public key, it can be decrypted by
using the corresponding private key, but it is not possible with the public key. This also works the other
way around: if something is encrypted using a private key, it can be decrypted by using the correspond-
ing public key, but not the private key.

Public and private keys are always created as a pair. The public key can be made available to everybody,
and it can even be put on a Web site, but the private key must be safely locked away. Let’s look at some
examples where these public and private keys are used.

If Sarah sends a mail to Julian, and Sarah wants to make sure that no one else but Julian can read the
mail, she uses Julian’s public key. The message is encrypted using Julian’s public key. Julian opens the
mail and can decrypt it using his secretly stored private key. This guarantees that no one else except
Julian can read Sarah’s mail.

There’s one problem left: Julian can’t be sure that the mail comes from Sarah. Anyone could use Julian’s
public key to encrypt mails sent to Julian. We can extend this principle. Let’s start again with Sarah send-
ing a mail to Julian. Before Sarah encrypts the mail using Julian’s public key, she adds her signature and
encrypts the signature using her own private key. Then she encrypts the mail using Julian’s public key.
Therefore, it is guaranteed that no one else but Julian can read the mail. When Julian decrypts the mail,
he detects an encrypted signature. The signature can be decrypted using Sarah’s public key. For Julian
it’s not a problem to access Sarah’s public key, because this key is public. After decrypting the signature,
Julian can be sure that Sarah has sent the mail.

Next we will look at how this public/private key principle is used with assemblies.

Integrity using strong names
When creating a shared component, a public/private key pair must be used. The compiler writes the
public key to the manifest, creates a hash of all files that belong to the assembly, and signs the hash with
the private key. The private key is not stored within the assembly. This way it is guaranteed that no one
can change your assembly. The signature can be verified with the public key.

370

Chapter 13

16 557599 Ch13.qxd 4/29/04 11:31 AM Page 370

During development, the client assembly must reference the shared assembly. The compiler writes the
public key of the referenced assembly to the manifest of the client assembly. To reduce storage, it is not
the public key that is written to the manifest of the client assembly, but a public key token. The public
key token is the last eight bytes of a hash of the public key, and that is unique.

At runtime, during loading of the shared assembly (or at install-time if the client is installed using the
native image generator), the hash of the shared component assembly can be verified by using the public
key stored inside the client assembly. Only the owner of the private key can change the shared compo-
nent assembly. There is no way a component Math that was created by vendor A and referenced from a
client can be replaced by a component from a hacker. Only the owner of the private key can replace the
shared component with a new version. Integrity is guaranteed in so far as the shared assembly is from
the expected publisher.

Figure 13-30 shows a shared component with a public key that is referenced by a client assembly that
has a public key token of the shared assembly inside the manifest.

Figure 13-30

Creating a Shared Assembly
In the next example you will create a shared assembly and a client that uses it.

If you want to create a shared assembly, there are not a lot of differences to creating private assemblies.
Create a simple Visual C# Class Library project with the name SharedDemo. Change the namespace to
Wrox.ProCSharp.Assemblies.Sharing, and the class name to SharedDemo. Enter the following code.
In the constructor of the class all lines of a file are read into a StringCollection. The name of the file is
passed as an argument to the constructor. The method GetQuoteOfTheDay() just returns a random
string of the collection.

using System;
using System.Collections.Specialized;
using System.IO;

namespace Wrox.ProCSharp.Assemblies.Sharing
{

public class SharedDemo
{

private StringCollection quotes;
private Random random;

Client Assembly

Manifest

Reference
PK:3 B BA 32

Shared Component

signature

Manifest

PK:3 B BA 32

371

Assemblies

16 557599 Ch13.qxd 4/29/04 11:31 AM Page 371

public SharedDemo(string filename)
{

quotes = new StringCollection();
Stream stream = File.OpenRead(filename);
StreamReader streamReader = new StreamReader(stream);
string quote;
while ((quote = streamReader.ReadLine()) != null)
{

quotes.Add(quote);
}
streamReader.Close();
stream.Close();
random = new Random();

}

public string GetQuoteOfTheDay()
{

int index = random.Next(1, quotes.Count);
return quotes[index];

}
}

}

Create a strong name
To share this assembly a strong name is needed. You can create such a name with the strong name utility (sn):

sn -k mykey.snk

The strong name utility generates and writes a public/private key pair, and writes this pair to a file; here
the file is mykey.snk. Now we can set the AssemblyKeyFile attribute in the wizard-generated file
Assemblyinfo.cs. The attribute must be either set to an absolute path to the key file, or the key file must
be addressed relatively from the %ProjectDirectory%\obj\<configuration> directory, so ../../mykey.snk
references a key in the project directory. When starting a build of the project, the key is installed in the
Crypto Service Provider (CSP). As soon as the key is installed in the CSP, it’s possible to use the
AssemblyKeyName attribute instead.

Here are the changes to AssemblyInfo.cs. The attribute AssemblyKeyFile is set to the file mykey.snk:

[assembly: AssemblyDelaySign(false)]
[assembly: AssemblyKeyFile(“../../mykey.snk”)]
[assembly: AssemblyKeyName(“”)]

After rebuilding, the public key can be found inside the manifest. You can verify this using ildasm as can
be seen in Figure 13-31.

372

Chapter 13

16 557599 Ch13.qxd 4/29/04 11:31 AM Page 372

Figure 13-31

Install the shared assembly
With a public key in the assembly, you can now install it in the global assembly cache using the global
assembly cache tool gacutil with the /i option:

gacutil /i SharedDemo.dll

Then you can use the Global Assembly Cache Viewer to check the version of the shared assembly, and
check if it is successfully installed.

Using the shared assembly
To use the shared assembly create a C# Console Application called Client. Instead of adding the new pro-
ject to the previous solution, create a new solution so that the shared assembly doesn’t get rebuilt when
rebuilding the client. Change the name of the namespace to Wrox.ProCSharp.Assemblies.Sharing,
and the name of the class to Client.

Reference the assembly SimpleShared in the same way as private assemblies are referenced: select
Project➪Add Reference, or use the context menu in Solution Explorer. Then click the Browse button to
find the assembly SimpleShared, and add it to the references.

Here’s the code for the client application:

using System;
namespace Wrox.ProCSharp.Assemblies.Sharing
{

class Client

With shared assemblies the reference property CopyLocal can be set to False. This
way the assembly is not copied to the directory of the output files but will be loaded
from the global assembly cache instead.

373

Assemblies

16 557599 Ch13.qxd 4/29/04 11:31 AM Page 373

{
[STAThread]
static void Main(string[] args)
{

SharedDemo quotes =
new SharedDemo(@”C:\ProCSharp\Assemblies\Quotes.txt”);

for (int i=0; i < 3; i++)
{

Console.WriteLine(quotes.GetQuoteOfTheDay());
Console.WriteLine();

}
}

}
}

When viewing the manifest in the client assembly using ildasm (see Figure 13-32) we can see the refer-
ence to the shared assembly SharedDemo: .assembly extern SharedDemo. Part of this referenced
information is the version number we will talk about next, and the token of the public key.

Figure 13-32

The token of the public key can also be seen within the shared assembly using the strong name utility:
sn –T shows the token of the public key in the assembly, sn –Tp shows the token, and the public key. Pay
attention to the use of the uppercase T!

The result of our program with a sample quotes file is shown in Figure 13-33.

Figure 13-33

374

Chapter 13

16 557599 Ch13.qxd 4/29/04 11:31 AM Page 374

Delayed signing of assemblies
The private key of a company should be safely stored. Most companies don’t give all developers access
to the private key; just a few security people have access to it. That’s why the signature of an assembly
can be added at a later date, such as before distribution. When the global assembly attribute
AssemblyDelaySign is set to true, no signature is stored in the assembly, but enough free space is
reserved so that it can be added later. However, without using a key, we can’t test the assembly and
install it in the global assembly cache; but we can use a temporary key for testing purposes, and replace
this key with the real company key later.

The following steps are required to delay signing of assemblies:

1. Create a public/private key pair with the strong name utility sn. The generated file mykey.snk
includes both the public and private key.

sn –k mykey.snk

2. Extract the public key to make it available to developers. The option –p extracts the public key
of the keyfile. The file mykeypub.snk only holds the public key.

sn –p mykey.snk mykeypub.snk

All developers in the company can use this keyfile mykeypub.snk and set the
AssemblyDelaySign and AssemblyKeyFile attributes in the file AssemblyInfo.cs:

[assembly: AssemblyDelaySign(true)]
[assembly: AssemblyKeyFile(“../../mykeypub.snk”)]

3. Turn off the verification of the signature, because the assembly doesn’t have a signature.

sn –Vr SharedDemo.dll

4. Before distribution the assembly can be re-signed with the sn utility. Use the –R option to re-sign
previously signed or delayed signed assemblies.

sn –R MyAssembly.dll mykey.snk

References
The Properties dialog box (see Figure 13-29) also lists a reference count. This reference count is responsi-
ble for the fact that a cached assembly cannot be deleted if it is still needed by an application. For exam-
ple, if a shared assembly is installed by a Microsoft installer package (MSI file), it can only be deleted by
uninstalling the application, but not by deleting it from the global assembly cache. Trying to delete the
assembly from the global assembly cache results in the error message “Assembly <name> could not be
uninstalled because it is required by other applications.”

The signature verification should only be turned off during the development pro-
cess. Never distribute an assembly without verification, as it would be possible that
this assembly is replaced by a malicious one.

375

Assemblies

16 557599 Ch13.qxd 4/29/04 11:31 AM Page 375

A reference to the assembly can be set using the gacutil utility with the option /r. The option /r requires
a reference type, a reference id, and a description. The type of the reference can be one of three options:
UNINSTALL_KEY, FILEPATH, or OPAQUE. UNINSTALL_KEY is used by MSI where a registry key is
defined that is also needed with the uninstallation. With FILEPATH a directory can be specified. A useful
directory would be the one of the application. The OPAQUE reference type allows you to set any type of
reference.

The command line

gacutil /i shareddemo.dll /r FILEPATH c:\ProCSharp\Assemblies\Client “Shared Demo”

installs the assembly shareddemo in the global assembly cache with a reference to the directory of the
client application. Another installation of the same assembly can happen with a different path, or an
OPAQUE id like in this command line:

gacutil /i shareddemo.dll OPAQUE 4711 “Opaque installation”

Now the assembly is only once in the global assembly cache, but it has two references. To delete the
assembly from the global assembly cache, both references must be removed:

gacutil /u shareddemo OPAQUE 4711 “Opaque installation”

gacutil /u shareddemo FILEPATH c:\ProCSharp\Assemblies\Client “Shared Demo”

In Chapter 18 we deal with deployment of assemblies, where the reference count is being dealt with in
an MSI package.

Configuration
COM components used the registry to configure components. Configuration of .NET applications is
done by using configuration files. With registry configurations, an xcopy-deployment is not possible.
The configuration files use XML syntax to specify startup and runtime settings for applications.

In this section, we explore:

❑ What you can configure using the XML base configuration files

❑ How you can redirect a strong named referenced assembly to a different version

❑ How you can specify the directory of assemblies to find private assemblies in subdirectories and
shared assemblies in common directories or on a server

Configuration Categories
We can group the configuration into these categories:

❑ Startup settings enable us to specify the version of the required runtime. It’s possible that dif-
ferent versions of the runtime could be installed on the same system. With the <startup> ele-
ment, the version of the runtime can be specified.

376

Chapter 13

16 557599 Ch13.qxd 4/29/04 11:31 AM Page 376

❑ Runtime settings enable us to specify how garbage collection is performed by the runtime, and
how the binding to assemblies works. We can also specify the version policy and the code base
with these settings. We will take a more detailed look into the runtime settings later in this
chapter.

❑ Remoting settings are used to configure applications using .NET Remoting. We deal with these
configurations in Chapter 16.

❑ Security settings are introduced in Chapter 14, and configuration for cryptography and permis-
sions is done there.

These settings can be provided in three types of configuration files:

❑ Application configuration files include specific settings for an application, such as binding
information to assemblies, configuration for remote objects, and so on. Such a configuration file
is placed into the same directory as the executable; it has the same name as the executable with
a .config extension appended. ASP.NET configuration files are named web.config.

❑ Machine configuration files are used for system-wide configurations. We can also specify
assembly binding and remoting configurations here. During a binding process, the machine
configuration file is consulted before the application configuration file. The application configu-
ration can override settings from the machine configuration. The application configuration file
should be the preferred place for application-specific settings so that the machine configuration
file stays smaller and manageable. A machine configuration file is located in %runtime
_install_path%\config\Machine.config.

❑ Publisher policy files can be used by a component creator to specify that a shared assembly is
compatible with older versions. If a new assembly version just fixes a bug of a shared compo-
nent, it is not necessary to put application configuration files in every application directory that
uses this component; the publisher can mark it as compatible by adding a publisher policy file
instead. In case that the component doesn’t work with all applications it is possible to override
the publisher policy setting in an application configuration file. In contrast to the other configu-
ration files, publisher policy files are stored in the global assembly cache.

How are these configuration files used? How a client finds an assembly (also called binding) depends on
whether the assembly is private or shared. Private assemblies must be in the directory of the application
or in a subdirectory thereof. A process called probing is used to find such an assembly. For probing, the
version number is not used, but the culture is an important aspect.

Shared assemblies can be installed in the global assembly cache, placed in a directory, a network share,
or on a Web site. We specify such a directory with the configuration of the codeBase, as we discuss
shortly. The public key, version, and culture are all important aspects when binding to a shared assem-
bly. The reference of the required assembly is recorded in the manifest of the client assembly, including
the name, the version, and the public key token. All configuration files are checked to apply the correct
version policy. The global assembly cache and code bases specified in the configuration files are checked,
followed by the application directories, and probing rules are then applied.

Versioning
For private assemblies, versioning is not important because the referenced assemblies are copied with
the client. The client uses the assembly it has in its private directories.

377

Assemblies

16 557599 Ch13.qxd 4/29/04 11:31 AM Page 377

This is, however, different for shared assemblies. Let’s look at the traditional problems that can occur
with sharing. Using shared components, more than one client application can use the same component.
The new version can break existing clients when updating a shared component with a newer version.
We can’t stop shipping new versions because new features are requested and introduced with new ver-
sions of existing components. We can try to program carefully to be backward compatible, but that’s not
always possible.

A solution to this dilemma could be an architecture that allows installation of different versions of
shared components, with clients using the version that they referenced during the build process. This
solves a lot of problems, but not all of them. What happens if we detect a bug in a component that’s ref-
erenced from the client? We would like to update this component and make sure that the client uses the
new version instead of the version that was referenced during the build process.

Therefore, depending on the type in the fix of the new version, sometimes we want to use a newer ver-
sion, and sometimes we want to use the older referenced version. All this is possible with the .NET
architecture.

In .NET, the original referenced assembly is used by default. We can redirect the reference to a different
version using configuration files. Versioning plays a key role in the binding architecture—how the client
gets the right assembly where the components live.

Version numbers
Assemblies have a four-part version number, for example, 1.0.479.36320. The parts are:

<Major>.<Minor>.<Build>.<Revision>

How these numbers are used depends on your application configuration.

A good policy would be that you change the major or minor number on changes incompatible with the previous ver-
sion, but just the build or revision number with compatible changes. This way we can assume that redirecting an
assembly to a new version where just the build and revision changed is safe.

The version number is specified in the assembly with the assembly attribute AssemblyVersion. In
Visual Studio .NET projects this attribute is in the file AssemblyInfo.cs:

[assembly: AssemblyVersion(“1.0.*”)]

The first two numbers specify the major and minor version, and the asterisk (*) means that the build and
revision numbers are auto-generated. The build number is the number of days since January 1, 2000, and
the revision is the number of two seconds since midnight. Of course, you can also specify four values,
but then you have to be sure to change the version number when rebuilding the assembly manually.

This version is stored in the .assembly section of the manifest.

Referencing the assembly in the client application stores the version of the referenced assembly in the
manifest of the client application.

378

Chapter 13

16 557599 Ch13.qxd 4/29/04 11:31 AM Page 378

Getting the version programmatically
To make it possible to check the version of the assembly that is used from our client application, add the
method GetAssemblyFullName() to the SharedDemo class created earlier to return the strong name of
the assembly. For easy use of the Assembly class, you have to add the System.Reflection namespace:

public string GetAssemblyFullName()
{

Assembly assembly = Assembly.GetExecutingAssembly();
return assembly.FullName;

}

The FullName property of the Assembly class holds the name of the class, the version, the locality, and
the public key token as you see in the following output, when calling GetAssemblyFullName() in our
client application.

In the client application, just add a call to GetAssemblyFullName() in the Main() method after creat-
ing the shared component:

static void Main(string[] args)
{

SharedDemo quotes = new
SharedDemo(@”C:\ProCSharp\Assemblies\Quotes.txt”);

Console.WriteLine(quotes.GetAssemblyFullName());

Be sure to register the new version of the shared assembly SharedDemo again in the global assembly
cache using gacutil. If the referenced version cannot be found, you will get a System.IO
.FileLoadException, because the binding to the correct assembly failed.

With a successful run, you can see the full name of the referenced assembly similar to Figure 13-34.

Figure 13-34

This client program can now be used to test different configurations of this shared component.

Application configuration files
With a configuration file you can specify that the binding should happen to a different version of a
shared assembly. Let’s say you create a new version of the shared assembly SharedDemo with major and
minor versions 1.1. Maybe you don’t want to rebuild the client, but instead just the new version of the
assembly should be used with the existing client. This is useful in cases where either a bug is fixed with
the shared assembly, or you just want to get rid of the old version because the new version is compatible.

Figure 13-35 shows the global assembly cache viewer, where the versions 1.0.1318.24054, 1.0.1330.27544,
and 1.1.1330.27636 are installed for the SharedDemo assembly.

379

Assemblies

16 557599 Ch13.qxd 4/29/04 11:31 AM Page 379

Figure 13-35

Figure 13-36 shows the manifest of the client application where the client references version
1.0.1318.27763 of the assembly SharedDemo.

Figure 13-36

Now an application configuration file is needed. It is not necessary to work directly with XML; the .NET
Framework Configuration tool can create application and machine configuration files. Figure 13-37
shows the .NET Framework Configuration tool that is an MMC Snap-in. You can start this tool from the
Administrative Tools in the Control Panel.

When you select Applications on the left side, and then select Action➪Add, you’ll get a list that shows
all .NET applications that have been previously started on this computer. Select the application
Client.exe to create an application configuration file for this application. After adding the client applica-
tion to the .NET Admin tool, the assembly dependencies can be listed as is shown in Figure 13-38.

380

Chapter 13

16 557599 Ch13.qxd 4/29/04 11:31 AM Page 380

Figure 13-37

Figure 13-38

Selecting Configured Assemblies and the menu Action | Add... configure the dependency of the assembly
SharedDemo from the dependency list as is shown in Figure 13-39.

For the Requested Version, specify the version that’s referenced in the manifest of the client assembly.
New Version specifies the new version of the shared assembly. In Figure 13-39 it is defined that the ver-
sion 1.1.1330.27636 should be used instead of any version in the range of 1.0.0.0 to 1.0.999.99999.

381

Assemblies

16 557599 Ch13.qxd 4/29/04 11:31 AM Page 381

Figure 13-39

Now you can find the application configuration file Client.exe.config in the directory of the Client.exe
application that includes this XML code:

<?xml version=”1.0”?>
<configuration>

<runtime>
<assemblyBinding xmlns=”urn:schemas-microsoft-com:asm.v1”>

<dependentAssembly>
<assemblyIdentity name=”SharedDemo”

publicKeyToken=”be9f9ce7b9a0a62f” />
<bindingRedirect oldVersion=”1.0.0.0-1.0.999.99999”

newVersion=”1.1.1330.27636” />
</dependentAssembly>

</assemblyBinding>
</runtime>

</configuration>

With the <runtime> element, runtime settings can be configured. The subelement of <runtime> is
<assemblyBinding>, which in turn has a subelement <dependentAssembly>. <dependentAssembly>
has a required subelement <assemblyIdentity>. We specify the name of the referenced assembly with
<assemblyIdentity>. name is the only mandatory attribute for <assemblyIdentity>. The optional
attributes are publicKeyToken and culture. The other subelement of <dependentAssembly> that’s
needed for version redirection is <bindingRedirect>. With this element the old and the new version of
the dependent assembly is specified.

Starting the client with this configuration file, you will get the new version of the referenced shared
assembly.

382

Chapter 13

16 557599 Ch13.qxd 4/29/04 11:31 AM Page 382

Publisher policy files
Using assemblies that are shared in the global assembly cache you can also use publisher policies to
override versioning issues. Let’s assume that we have a shared assembly that is used by some applica-
tions. What if a bug is found in the shared assembly? We have seen that it is not necessary to rebuild all
the applications that use this shared assembly as we can use configuration files to redirect to the new
version of this shared assembly. Maybe we don’t know all the applications that use this shared assembly,
but we want to get the bug fix to all of them. In that case we can create publisher policy files to redirect
all applications to the new version of the shared assembly.

To set up publisher policies we have to:

❑ Create a publisher policy file.

❑ Create a publisher policy assembly.

❑ Add the publisher policy assembly to the global assembly cache.

Create a Publisher Policy File
A publisher policy file is an XML file that redirects an existing version or version range to a new version.
The syntax used is the same as for application configuration files, so we can use the same file we created
earlier to redirect the old versions 1.0.0.0 through 1.0.999.99999 to the new version 1.1.1330.27636.

Rename the previously created file to mypolicy.config to use it as a publisher policy file.

<?xml version=”1.0”?>
<configuration>

<runtime>
<assemblyBinding xmlns=”urn:schemas-microsoft-com:asm.v1”>

<dependentAssembly>
<assemblyIdentity name=”SharedDemo”

publicKeyToken=”be9f9ce7b9a0a62f” />
<bindingRedirect oldVersion=”1.0.0.0-1.0.999.99999”

newVersion=”1.1.1330.27636” />
</dependentAssembly>

</assemblyBinding>
</runtime>

</configuration>

Create a Publisher Policy Assembly
To associate the publisher policy file with the shared assembly it is necessary to create a publisher policy
assembly, and put it into the global assembly cache. The tool that can be used to create such files is the
assembly linker al. The option /linkresource adds the publisher policy file to the generated assembly.
The name of the generated assembly must start with policy, followed by the major and minor version
number of the assembly that should be redirected, and the filename of the shared assembly. In our case

Publisher policy files only apply to shared assemblies installed into the global
assembly cache.

383

Assemblies

16 557599 Ch13.qxd 4/29/04 11:31 AM Page 383

the publisher policy assembly must be named policy.1.0.SharedDemo.dll to redirect the assemblies
SharedDemo with the major version 1, and minor version 0. The key that must be added to this pub-
lisher key with the option /keyfile is the same key that was used to sign the shared assembly
SharedDemo to guarantee that the version redirection is from the same publisher.

al /linkresource:mypolicy.config /out:policy.1.0.SharedDemo.dll
/keyfile:..\..\mykey.snk

Add the Publisher Policy Assembly to the Global Assembly Cache
The publisher policy assembly can now be added to the global assembly cache with the utility gacutil.

gacutil –i policy.1.0.SharedDemo.dll

Now remove the application configuration file that was placed in the directory of the client application,
and start the client application. Although the client assembly references 1.0.1318.24054 we use the new
version 1.1.1330.27636 of the shared assembly because of the publisher policy.

Overriding Publisher Policies
With a publisher policy, the publisher of the shared assembly guarantees that a new version of the
assembly is compatible with the old version. As we know from changes of traditional DLLs, such guar-
antees don’t always hold. Maybe all but one application is working with the new shared assembly. To fix
the one application that has a problem with the new release, the publisher policy can be overridden by
using an application configuration file.

With the .NET Framework configuration tool you can override the publisher policy by deselecting the
check box Enable Publisher Policy as shown in Figure 13-40.

Figure 13-40

384

Chapter 13

16 557599 Ch13.qxd 4/29/04 11:31 AM Page 384

Disabling the publisher policy with the .NET Framework Configuration results in a configuration file
with the XML element <publisherPolicy> and the attribute apply=”no”.

<?xml version=”1.0”?>
<configuration>

<runtime>
<assemblyBinding xmlns=”urn:schemas-microsoft-com:asm.v1”>

<dependentAssembly>
<assemblyIdentity name=”SharedDemo” publicKeyToken=”be9f9ce7b9a0a62f” />

<publisherPolicy apply=”no” />

</dependentAssembly>
</assemblyBinding>

</runtime>
</configuration>

Disabling the publisher policy we can configure different version redirection in the application configu-
ration file.

Fixing an application
If an application doesn’t run because a configuration is wrong or because newly installed assemblies let
it fail, the .NET Framework Configuration has an option to fix .NET applications. Clicking the Fix an
Application hyperlink lists all .NET applications that were running previously and it allows you to
restore the last version of the application configuration file (see Figure 13-41), or select any previous con-
figuration. Selecting the Application SafeMode disables publisher policies.

Figure 13-41

Runtime version
Installing and using multiple versions is not only possible with assemblies, but also with the .NET run-
time. Both versions 1.0 and 1.1 (and future versions) of the .NET runtime can be installed on the same
operating system side by side. Visual Studio .NET 2003 by default targets applications running on .NET
1.1. However, this can be changed by modifying the values in the application configuration file.

385

Assemblies

16 557599 Ch13.qxd 4/29/04 11:31 AM Page 385

An application that was built using .NET 1.0 may run without changes on .NET 1.1. If an operating sys-
tem has both versions of the runtime installed, the application will use the version with which it was
built. However, if only version 1.1 is installed with the operating system, and the application was built
with version 1.0, it tries to run with the newer version. The registry key HKEY_LOCAL_MACHINE
\Software\Microsoft\.NETFramework\policy lists the ranges of the versions that will be used for a
specific runtime.

If an application was built using .NET 1.1, it may run without changes on .NET 1.0, in case no classes or
methods are used that are only available with .NET 1.1. To make this possible, an application configura-
tion file is needed.

In an application configuration file, it’s not only possible to redirect versions of referenced assemblies;
we can also define the required version of the runtime. Different .NET runtime versions can be installed
on a single machine. We can specify the version that’s required for the application in an application con-
figuration file. The element <supportedVersion> marks the runtime versions that are supported by the
application.

<?xml version=”1.0”?>
<configuration>

<startup>
<supportedRuntime version=”v1.1.4322” />
<supportedRuntime version=”v1.0.3512” />

</startup>
</configuration>

However, with .NET 1.0 instead of the element <supportedVersion> the element
<requiredRuntime> was used to specify the needed runtime. Configuring the .NET Framework ver-
sions in the project properties (see Figure 13-42) adds both <supportedRuntime> and
<requiredRuntime> elements as well as assembly binding information we discussed earlier.

<?xml version=”1.0”?>
<configuration>

<startup>
<supportedRuntime version=”v1.1.4322”/>
<supportedRuntime version=”v1.0.3705”/>

<requiredRuntime version=”v1.0.3512” safeMode=”true” />
</startup>

</configuration>

<requiredRuntime> does not overrule the configuration for <supportedRuntime> as it may look
like, because <requiredRuntime> is used only with .NET 1.0, while <supportedRuntime> is
used by .NET 1.1 and later versions.

386

Chapter 13

16 557599 Ch13.qxd 4/29/04 11:31 AM Page 386

Figure 13-42

Configuring Directories
We’ve already seen how to redirect referenced assemblies to a different version so that we can locate our
assemblies, but there are more options to configure! For example, it’s not necessary to install a shared
assembly in the global assembly cache. It’s also possible that shared assemblies can be found with the
help of specific directory settings in configuration files. This feature can be used if you want to make the
shared components available on a server. Another possible scenario is if you want to share an assembly
between your applications, but you don’t want to make it publicly available in the global assembly
cache, so you put it into a shared directory instead.

There are two ways to find the correct directory for an assembly: the codeBase element in an XML con-
figuration file, or through probing. The codeBase configuration is only available for shared assemblies,
and probing is done for private assemblies.

<codeBase>
The <codeBase> can also be configured using the .NET Admin Tool. Codebases can be configured by
selecting the properties of the configured application, SimpleShared, inside the Configured Assemblies
in the Applications tree. Similar to the Binding Policy, we can configure lists of versions with the
Codebases tab. In the following screen we have configured that the version 1.0 should be loaded from
the Web server http://www.christiannagel.com/WroxUtils:

387

Assemblies

16 557599 Ch13.qxd 4/29/04 11:31 AM Page 387

Figure 13-43

The .NET Admin tool creates this application configuration file:

<?xml version=”1.0”?>
<configuration>

<runtime>
<assemblyBinding xmlns=”urn:schemas-microsoft-com:asm.v1”>

<dependentAssembly xmlns=””>
<assemblyIdentity name=”SimpleShared”

publicKeyToken=”6ca9587197f6f8c2” />
<codeBase version=”1.0” href=”http://www.christiannagel.com/WroxUtils” />

</dependentAssembly>
</assemblyBinding>

</runtime>
</configuration>

The <dependentAssembly> element is the same used previously for the version redirection. The
<codeBase> element has the attributes version and href. With version, the original referenced ver-
sion of the assembly must be specified. With href, we can define the directory from where the assembly
should be loaded. In our example, a path using the HTTP protocol is used. A directory on a local system
or a share is specified using href=”file:C:/WroxUtils”.

When using that assembly loaded from the network a System.Security.Permissions exception occurs.
You must configure the required permissions for assemblies loaded from the network. In Chapter 14 we
show how to configure security for assemblies.

388

Chapter 13

16 557599 Ch13.qxd 4/29/04 11:31 AM Page 388

<probing>
When the <codeBase> is not configured and the assembly is not stored in the global assembly cache, the
runtime tries to find an assembly with probing. The .NET runtime tries to find an assembly with either a
.dll or an .exe file extension in the application directory, or in one of its subdirectories, that has the same
name as the assembly searched for. If the assembly is not found here, the search continues. You can con-
figure search directories with the <probing> element in the <runtime> section of application configura-
tion files. This XML configuration can also be done easily by selecting the properties of the application
with the .NET Framework Configuration tool. You can configure the directories where the probing
should occur by using the search path in the .NET Framework configuration (see Figure 13-44).

Figure 13-44

The XML file produced has these entries:

<?xml version=”1.0”?>
<configuration>

<runtime>
<gcConcurrent enabled=”enabled” />
<assemblyBinding xmlns=”urn:schemas-microsoft-com:asm.v1”>

<probing privatePath=”bin;utils;” xmlns=”” />
</assemblyBinding>

</runtime>
</configuration>

The <probing> element has just a single required attribute: privatePath. This application configura-
tion file tells the runtime that assemblies should be searched for in the base directory of the application,
followed by the bin and the util directory. Both directories are subdirectories of the application base

389

Assemblies

16 557599 Ch13.qxd 4/29/04 11:31 AM Page 389

directory. It’s not possible to reference a private assembly outside the application base directory or a sub-
directory thereof. An assembly outside of the application base directory must have a shared name and
can be referenced using the <codeBase> element as we’ve done before.

Summary
Assemblies are the new installation unit for the .NET platform. Microsoft learned from problems with
previous architectures and did a complete redesign to avoid the old problems. In this chapter we dis-
cussed the features of assemblies: they are self-describing and no type library and registry information is
needed. Version dependencies are exactly recorded so that with assemblies, the DLL Hell we had with
old DLLs no longer exists. Because of these features, not only development but also deployment and
administration have become a lot easier.

We discussed cross-language support and created a C# class that derives from a Visual Basic .NET class
that makes use of a managed C++ class, and looked at the differences in the generated MSIL code.

We discussed the differences between private and shared assemblies and explained how shared assem-
blies can be created. With private assemblies we don’t have to pay attention to uniqueness and version-
ing issues as these assemblies are copied and only used by a single application. Sharing assemblies has
the requirement to use a key for uniqueness, and to define the version. We looked at the global assembly
cache that can be used as an intelligent store for shared assemblies.

We looked at overriding versioning issues to use a version of an assembly different from the one that
was used during development; this is done through publisher policies and application configuration
files. Finally we discussed how probing works with private assemblies.

390

Chapter 13

16 557599 Ch13.qxd 4/29/04 11:31 AM Page 390

.NET Security

You’re sitting at your machine and you click a button on an application you’re using. Behind the
scenes, your application responds to the fact that you are attempting to use a feature for which it
does not have the relevant module. It connects to the Internet, downloads the module into the
Download Assembly Cache, and begins executing—all without prompting you.

This kind of behind-the-scenes upgrade functionality is already used with many .NET applica-
tions, but clearly there is a concern here over the security implications relating to what we call
mobile code. In clear terms, what evidence do you actually have that you can trust the code your
computer is downloading? How do you know that the module you requested is, in fact, the one
that you are receiving? What does the CLR do behind the scenes to ensure, for example, that a con-
trol on a Web site is not reading your private e-mails?

.NET enforces a security policy around assemblies. It uses the evidence it has about assemblies,
such as where they are from or who publishes them, to split the assemblies into groups with simi-
lar characteristics. For example, the runtime places all code from the local intranet into a specific
group. It then uses the security policy (normally defined by a system administrator using the Code
Access Security Policy Tool [caspol.exe] command line utility, or the Microsoft Management
Console) to decide what permissions the code should be granted at a very granular level. What do
you have to do to enable security on a machine or for a specific application? Nothing—all code
automatically runs within the security context of the CLR, although you can turn off security if
necessary.

In addition to high levels of confidence that the code we are executing can be trusted, it is also
important to permit the application users access to the features they need, but no more. By virtue
of its role-based security, .NET facilitates effective management of users and roles.

In this chapter we look through the features available in .NET to help us manage security, includ-
ing how .NET protects us from malicious code, how to administer security policies, and how to
access the security subsystem programmatically. We also take a look at deploying .NET applica-
tions securely and see a number of short example applications to solidify the concepts in this chap-
ter for you.

17 557599 Ch14.qxd 4/29/04 11:25 AM Page 391

Code Access Security
Code access security is a feature of .NET that manages code, dependent on our level of trust. If the CLR
trusts the code enough to allow it to run, it will begin executing the code. Depending on the permissions
provided to the assembly, however, it might run within a restricted environment. If the code is not
trusted enough to run, or if it runs but then attempts to perform an action, for which it does not have the
relevant permissions, a security exception (of type SecurityException, or a subclass of it) is thrown.
The code access security system means that we can stop malicious code running, but we can also allow
code to run within a protected environment where we are confident that it cannot do any damage.

For example, if a user attempted to run an application that attempted to execute code downloaded from
the Internet, the default security policy would raise an exception and the application would fail to start.
In a similar way, if the user ran an application from a network drive it would begin executing, but if the
application then attempted to access a file on the local drive, the runtime would raise an exception and,
depending on the error handling in the application, would either gracefully degrade or exit.

For most applications, .NET’s code access security is a significant benefit, but one that sits at the back of
the room quietly helping out. It provides high levels of protection from malicious code, but generally,
you do not need to get involved. However, one area you will be involved in is the management of secu-
rity policy, and this is especially true when configuring desktops to trust code from the locations of soft-
ware suppliers who are delivering applications to you.

Another area where code access security is a very important aspect is when you are building an applica-
tion that includes an element whose security you want to control closely. For example, if there is a
database within your organization containing extremely sensitive data, you would use code access secu-
rity to state what code is allowed to access that database, and what code must not access it.

It is important to realize how code access security is about protecting resources (local drive, network,
user interface) from malicious code; it is not primarily a tool for protecting software from users. For
security in relation to users, you will generally use the built-in Windows 2000 user security subsystem,
or make use of .NET role-based security, which we discuss later in this chapter.

Code access security is based on two high-level concepts: code groups and permissions. Let’s look at these
before we start since they form the foundations of the following:

❑ Code groups bring together code with similar characteristics, although the most important
property is usually where the code came from. Two examples for code groups are Internet and
Intranet. The group Internet defines code that is sourced from the Internet, the group Intranet
defines code sourced from the LAN. The information used to place assemblies into code groups
is called evidence. Other evidence is collected by the CLR, including the publisher of the code,
the strong name, and (where applicable) the URI from which it was downloaded. Code groups
are arranged in a hierarchy, and assemblies are nearly always matched to several code groups.
The code group at the root of the hierarchy is called All Code and contains all other code
groups. The hierarchy is used for deciding which code groups an assembly belongs to; if an
assembly does not provide evidence that matches it to a group in the tree, no attempt is made to
match it to code groups below.

❑ Permissions are the actions we allow each code group to perform. For example, permissions
include “able to access the user interface” and “able to access local storage.” The system admin-
istrator usually manages the permissions at the enterprise, machine, and user levels.

392

Chapter 14

17 557599 Ch14.qxd 4/29/04 11:25 AM Page 392

The Virtual Execution System within the CLR loads and runs programs. It provides the functionality
required to execute managed code and uses assembly metadata to connect modules together at run time.
When the VES loads an assembly, the VES matches the assembly to one or more of a number of code
groups. Each code group is assigned to one or more permissions that specify what actions assemblies
can do in that code group. For example, if the MyComputer code group is assigned the permission
FileIOPermission, this means that assemblies from the local machine can read and write to the local file
system.

Code Groups
Code groups have an entry requirement called membership condition. For an assembly to be filed into a
code group, it must match the group’s membership condition. Membership conditions include “the
assembly is from the site www.microsoft.com” or “the publisher of this software is Microsoft
Corporation.”

Each code group has one, and only one, membership condition. The following list provides the types of
code group membership conditions available in .NET:

❑ Zone—The region from which the code originated.

❑ Site—The Web site from which the code originated.

❑ Strong name—A unique, verifiable name for the code. Strong names are discussed in Chapter 13.

❑ Publisher—The publisher of the code.

❑ URL—The specific location from which the code originated.

❑ Hash value—The hash value for the assembly.

❑ Skip verification—This condition requests that it bypasses code verification checks. Code veri-
fication ensures the code accesses types in a well-defined and acceptable way. The runtime can-
not enforce security on code that is not type safe.

❑ Application directory —The location of the assembly within the application.

❑ All code—All code fulfills this condition.

❑ Custom—A user-specified condition.

The first, and most commonly used, type of membership condition in the list is the Zone condition. A
zone is the region of origin of a piece of code and refers to one of the following: MyComputer, Internet,
Intranet, Trusted, or Untrusted. These zones can be managed by using the security options in Internet
Explorer. We discuss zones in more detail later in this chapter, when we look at how to manage the secu-
rity policy. Although the settings are managed within Internet Explorer, they apply to the entire
machine. Clearly, these configuration options are not available in non-Microsoft browsers and, in fact,
in-page controls written using the .NET Framework will not work in browsers other than Internet
Explorer.

Code groups are arranged hierarchically with the All Code membership condition at the root (see Figure
14-1). You can see that each code group has a single membership condition and specifies the permissions
that the code group has been granted. Note that if an assembly does not match the membership condi-
tion in a code group, the CLR does not attempt to match code groups below it.

393

.NET Security

17 557599 Ch14.qxd 4/29/04 11:25 AM Page 393

Figure 14-1

caspol.exe—The Code Access Security Policy tool
We’ll spend a good deal of time in this chapter looking at the command line Code Access Security Policy
tool. To get a list of options for the tool, just type the following at the command prompt:

caspol.exe -?

To send the output to a text file use:

caspol.exe > caspol.txt

.NET also includes a snap-in for the Microsoft Management Console to manage code access security.
However, we will restrict ourselves to the command line utility, because the examples are easier to fol-
low, and you’ll also be in a position to create scripts to alter the security policy, which is very useful
when applying policies to large numbers of machines.

Let’s look at the code groups on a machine using caspol.exe. The output of the command lists the hierar-
chical structure of the code groups on the machine, and next to each group is a description of the code
group. Type this command:

caspol.exe –listdescription

Alternatively, the -listdescription parameter has a shortcut: -ld. You will see something like this:

Microsoft (R) .NET Framework CasPol 1.1.4322.535
Copyright (C) Microsoft Corporation 1998-2002. All rights reserved.

Code Group: All Code

Permission: Nothing

Membership Condition: All Code

Code Group: Intranet

Permission: LocalIntranet

Membership Condition: Zone

Code Group: MyComputer

Permission: FullTrust

Membership Condition: Zone

Code Group: Intranet

Permission: Intranet

Membership Condition: Zone

Code Group: https://intranet/

Permission: FullTrust

Membership Condition: Site

Code Group: Microsoft Corp.

Permission: FullTrust

Membership Condition: Publisher

394

Chapter 14

17 557599 Ch14.qxd 4/29/04 11:25 AM Page 394

Security is ON
Execution checking is ON
Policy change prompt is ON

Level = Machine

Full Trust Assemblies:

1. All_Code: Code group grants no permissions and forms the root of the code
group tree.

1.1. My_Computer_Zone: Code group grants full trust to all code originating
on the local computer

1.1.1. Microsoft_Strong_Name: Code group grants full trust to code signed
with the Microsoft strong name.

1.1.2. ECMA_Strong_Name: Code group grants full trust to code signed with
the ECMA strong name.

1.2. LocalIntranet_Zone: Code group grants the intranet permission set to
code from the intranet zone. This permission set grants intranet code
the right to use isolated storage, full UI access, some capability to do
reflection, and limited access to environment variables.

1.2.1. Intranet_Same_Site_Access: All intranet code gets the right to
connect back to the site of its origin.

1.2.2. Intranet_Same_Directory_Access: All intranet code gets the right to
read from its install directory.

1.3. Internet_Zone: Code group grants code from the Internet zone the
Internet permission set. This permission set grants Internet code the right
to use isolated storage and limited UI access.

1.3.1. Internet_Same_Site_Access: All Internet code gets the right to
connect back to the site of its origin.

1.4. Restricted_Zone: Code coming from a restricted zone does not receive any
permissions.

1.5. Trusted_Zone: Code from a trusted zone is granted the Internet
permission set. This permission set grants the right to use isolated
storage and limited UI access.

1.5.1. Trusted_Same_Site_Access: All Trusted Code gets the right to
connect back to the site of its origin.

Success

The .NET security subsystem ensures that code from each code group is allowed to do only certain
things. For example, code from the Internet zone will, by default, have much stricter limits than code
from the local drive. Code from the local drive is normally granted access to data stored on the local
drive, but assemblies from the Internet are not granted this permission by default.

Using caspol, and its equivalent in the Microsoft Management Console, you can specify what level of
trust you have for each code access group, as well as managing code groups and permissions in a more
granular fashion.

Let’s take another look at the code access groups, but this time in a slightly more compact view. Make
sure you’re logged in as a local administrator, go to a command prompt, and type this command:

caspol.exe –listgroups

395

.NET Security

17 557599 Ch14.qxd 4/29/04 11:25 AM Page 395

You will see something like this:

Microsoft (R) .NET Framework CasPol 1.1.4322.535
Copyright (C) Microsoft Corporation 1998-2002. All rights reserved.

Security is ON
Execution checking is ON
Policy change prompt is ON

Level = Machine

Code Groups:

1. All code: Nothing
1.1. Zone - MyComputer: FullTrust

1.1.1. StrongName - 00240000048000009400000006020000002400005253413100040
0000100010007D1FA57C4AED9F0A32E84AA0FAEFD0DE9E8FD6AEC8F87FB03766C834C99921EB23BE
79AD9D5DCC1DD9AD236132102900B723CF980957FC4E177108FC607774F29E8320E92EA05ECE4E82
1C0A5EFE8F1645C4C0C93C1AB99285D622CAA652C1DFAD63D745D6F2DE5F17E5EAF0FC4963D261C8
A12436518206DC093344D5AD293: FullTrust

1.1.2. StrongName - 00000000000000000400000000000000: FullTrust
1.2. Zone - Intranet: LocalIntranet

1.2.1. All code: Same site Web.
1.2.2. All code: Same directory FileIO - Read, PathDiscovery

1.3. Zone - Internet: Internet
1.3.1. All code: Same site Web.

1.4. Zone - Untrusted: Nothing
1.5. Zone - Trusted: Internet

1.5.1. All code: Same site Web.
Success

You’ll notice that near the start of the output it says, Security is ON. Later in the chapter, you will see
that it can be turned off and then turned on again.

The Execution Checking setting is on by default, which means all assemblies must be granted the per-
mission to execute before they can run. If execution checking is turned off using caspol (caspol.exe
–execution on|off), assemblies that do not have the permission to run can execute, although they might
cause security exceptions if they attempt to act contrary to the security policy later in their execution.

The Policy change prompt option specifies whether you see an “Are you sure” warning message when
you attempt to alter the security policy.

As code is broken down into these groups, you can manage security at a more granular level, and apply
full trust to a much smaller percentage of code. Note that each group has a label (for example, 1.2). These
labels are auto-generated by .NET, and can differ between machines. Generally security is not managed
for each assembly; it is managed using a code group instead.

When a machine has several side-by-side installations of .NET, the copy of caspol.exe that you run will
only alter the security policy for the installation of .NET with which it is associated. To keep security pol-
icy management simpler, you might want to remove previous copies of .NET as you install successive
versions.

396

Chapter 14

17 557599 Ch14.qxd 4/29/04 11:25 AM Page 396

Viewing an assembly’s code groups
Assemblies are matched to code groups dependent on the membership conditions they match. If we go
back to our example code groups and load an assembly from the https://intranet/ Web site, it
would match the code groups shown in Figure 14-2. The assembly is a member of the root code group
(All Code); since it came from the local network it is also a member of the Intranet code group. However,
because it was loaded from the specific site https://intranet, it is also granted FullTrust, which
means it can run unrestrictedly.

Figure 14-2

You can easily view the code groups that an assembly is a member of using this command:

caspol.exe –resolvegroup assembly.dll

Running this command on an assembly on the local drive produces this output:

Microsoft (R) .NET Framework CasPol 1.1.4322.535
Copyright (C) Microsoft Corporation 1998-2002. All rights reserved.

Level = Enterprise

Code Groups:

1. All code: FullTrust

Level = Machine

Code Groups:

Code Group: All Code

Permission: Nothing

Membership Condition: All Code

Code Group: Intranet

Permission: LocalIntranet

Membership Condition: Zone

Code Group: MyComputer

Permission: FullTrust

Membership Condition: Zone

Code Group: Intranet

Permission: Intranet

Membership Condition: Zone

Code Group: https://intranet/

Permission: FullTrust

Membership Condition: Site

Code Group: Microsoft Corp.

Permission: FullTrust

Membership Condition: Publisher

397

.NET Security

17 557599 Ch14.qxd 4/29/04 11:25 AM Page 397

1. All code: Nothing
1.1. Zone - MyComputer: FullTrust

Level = User

Code Groups:

1. All code: FullTrust

Success

You’ll notice that code groups are listed on three levels—Enterprise, Machine, and User. For now, stay
focused on the machine level. We’ll look at the other two in more detail later in this chapter. If you are
curious about the relationship between the three, the effective permission given to an assembly is the
intersection of the permissions from the three levels. For example, if you remove the FullTrust permis-
sion from the Internet zone at the enterprise-level policy, all permissions are revoked for code from the
Internet zone, and the settings of the other two levels become irrelevant.

Now let’s use this command once more with the same assembly to read the code groups. However, this
time the assembly is accessed from a Web server using the HTTP protocol. You can see the assembly is a
member of different groups that have much more restrictive permissions:

caspol.exe –resolvegroup http://server/assembly.dll

Microsoft (R) .NET Framework CasPol 1.1.4322.535
Copyright (C) Microsoft Corporation 1998-2002. All rights reserved.

Level = Enterprise

Code Groups:

1. All code: FullTrust
Level = Machine

Code Groups:

1. All code: Nothing
1.1. Zone - Internet: Internet

1.1.1. All code: Same site Web.

Level = User

Code Groups:

1. All code: FullTrust

Success

The assembly grants the Internet and the Same Site Web permissions. The intersection of the permissions
allows the code limited UI access. It also permits it to establish connections to the site it originated from.

Let’s take a closer look at permissions.

398

Chapter 14

17 557599 Ch14.qxd 4/29/04 11:25 AM Page 398

Code Access Permissions and Permissions Sets
Imagine yourself administering security policy on a network of desktop machines in a large enterprise
scenario. In this environment it’s immensely useful for the CLR to collect evidence information on code
before it executes it. Likewise, you as the administrator must have the opportunity to control what code
is allowed to do on the several hundred machines you manage once the CLR has identified its origin.
This is where permissions come in.

After an assembly has been matched to code groups, the CLR looks at the security policy to calculate the
permissions it grants to an assembly. When managing permissions in Windows you generally don’t
want to apply permissions to users, but instead you apply permissions to user groups. The same is true
with assemblies; permissions are applied to code groups rather than to individual assemblies, which
makes the management of security policy in .NET a much easier task.

The security policy specifies what actions assemblies are permitted to perform in a code group. The fol-
lowing list summarizes the code access permissions provided by the CLR; as you can see, you have quite
a bit of control over what code is and is not permitted to do:

❑ DirectoryServicesPermission controls the ability to access Active Directory through the
System.DirectoryServices classes.

❑ DnsPermission controls the ability to use the TCP/IP Domain Name System (DNS).

❑ EnvironmentPermission controls the ability to read and to write environment variables.

❑ EventLogPermission controls the ability to read and to write to the event log.

❑ FileDialogPermission controls the ability to access files that have been selected by the user in
the Open dialog box. This permission is commonly used when FileIOPermission is not
granted to allow limited access to files.

❑ FileIOPermission controls the ability to work with files (reading, writing, and appending to
file, as well as creating and altering folders and accessing).

❑ IsolatedStorageFilePermission controls the ability to access private virtual file systems.

❑ IsolatedStoragePermission controls the ability to access isolated storage; storage that is associ-
ated with an individual user and with some aspect of the code’s identity, such as its Web site,
signature, or publisher.

❑ MessageQueuePermission controls the ability to use message queues through the Microsoft
Message Queue.

❑ OleDbPermission controls the ability to access databases with OLE DB providers.

❑ PerformanceCounterPermission controls the ability to make use of performance counters.

❑ PrintingPermission controls the ability to print.

❑ ReflectionPermission controls the ability to discover information about a type at runtime using
System.Reflection.

❑ RegistryPermission controls the ability to read, write, create, or delete registry keys and values.

❑ SecurityPermission controls the ability to execute, assert permissions, call into unmanaged
code, skip verification, and other rights.

399

.NET Security

17 557599 Ch14.qxd 4/29/04 11:25 AM Page 399

❑ ServiceControllerPermission controls the ability to control Windows services.

❑ SocketPermission controls the ability to make or accept TCP/IP connections on a network
transport address.

❑ SQLClientPermission controls the ability to access SQL Server databases with the .NET data
provider for SQL Server.

❑ UIPermission controls the ability to access the user interface.

❑ WebPermission controls the ability to make or accept connections to or from the Web.

With each of these permission classes, often it is possible to specify an even deeper level of granularity.
For example, later in this chapter you’ll see an example of requesting not just file access but a specific
level of file access.

In terms of best practice, you are well advised to ensure any attempts to make use of the resources relat-
ing to the permissions in this list are enclosed within try...catch error handling blocks, so that your
application degrades gracefully should it be running under restricted permissions. The design of your
application should specify how your application should act under these circumstances. Do not assume
that it will be running under the same security policy under which you develop it. For example, if your
application cannot access the local drive, should it exit or operate in an alternative fashion?

An assembly is associated with several code groups; the effective permission of an assembly within the
security policy is the union of all permissions from all the code groups to which it belongs. That is, each
code group that an assembly matches extends what it is allowed to do. Note that code groups further
down the tree are often assigned more relaxed permissions than those higher up.

There is another set of permissions that are assigned by the CLR on the basis of the identity of the code,
which cannot be granted. These permissions relate to the evidence the CLR has collated about the assembly
and are called Identity Permissions. Here are the names of the classes for the identity permissions:

❑ PublisherIdentityPermission refers to the software publisher’s digital signature.

❑ SiteIdentityPermission refers to the name of the Web site from which the code originated.

❑ StrongNameIdentityPermission refers to the assembly’s strong name.

❑ URLIdentityPermission refers to the URL from which the code came (including the protocol,
for example, https://).

❑ ZoneIdentityPermission refers to the zone from which the assembly originates.

Usually, the permissions are applied in blocks, which is why .NET has the concept of permission sets.
These are lists of code access permissions grouped into a named set. The following list explains the
named permission sets we get out of the box:

❑ FullTrust means no permission restrictions.

❑ Execution grants the ability to run, but not to access any protected resources.

❑ Nothing grants no permissions and prevents the code from executing.

400

Chapter 14

17 557599 Ch14.qxd 4/29/04 11:25 AM Page 400

❑ LocalIntranet specifies the default policy for the local intranet, a subset of the full set of
permissions. For example, file IO is restricted to read access on the share where the assembly
originates.

❑ Internet specifies the default policy for code of unknown origin. This is the most restrictive pol-
icy listed. For example, code executing in this permission set has no file IO capability, cannot
read or write event logs, and cannot read or write environment variables.

❑ Everything grants all the permissions that are listed under this set, except the permission to
skip code verification. The administrator can alter any of the permissions in this permission set.
This is useful where the default policy needs to be tighter.

Note that of these you can only change the definitions of the Everything permission set— the other sets
are fixed and cannot be changed.

Identity permissions cannot be included in permission sets because the CLR is the only body able to
grant identity permissions to code. For example, if a piece of code is from a specific publisher, it would
make little sense for the administrator to give it the identity permissions associated with another pub-
lisher. The CLR grants identity permissions where necessary, and if you want you can use them.

Viewing an assembly’s permissions
Imagine you’re using a Microsoft application, and you attempt to use a feature that you have not used
before. The application does not have a copy of the code stored locally, so it requests it and the code is
then downloaded into the Download Assembly Cache. Figure 14-3 illustrates what an assembly’s code
group membership might look like with code from the Internet published by a named organization that
has signed the assembly with a certificate.

Figure 14-3

Code Group: All Code

Permission: Nothing

Membership Condition: All Code

Code Group: Intranet

Permission: LocalIntranet

Membership Condition: Zone

Code Group: MyComputer

Permission: FullTrust

Membership Condition: Zone

Code Group: Intranet

Permission: Intranet

Membership Condition: Zone

Code Group: https://intranet/

Permission: FullTrust

Membership Condition: Site

Code Group: Microsoft Corp.

Permission: FullTrust

Membership Condition: Publisher

401

.NET Security

17 557599 Ch14.qxd 4/29/04 11:25 AM Page 401

According to our policy in this example, although the All Code and Internet code groups bring only lim-
ited permissions, membership of the code group in the bottom right-hand corner grants the assembly
the FullTrust permission. The overall effective permission is the union of permissions across the match-
ing code groups. When the permissions are merged in this way, the effective permission is that of the
highest permissions granted. That is, each code group to which an assembly belongs brings additional
permissions.

Just as it can be checked at what code groups an assembly belongs to, it is also possible to look at the
permissions assigned to the code groups to which it belongs. Doing this you’ll see not only the code
access permissions (what the code is allowed to do) but also the code identity permissions that will give
us access to the evidence the code presented to the runtime. To see the permissions for an assembly’s
code groups, use a command like this:

caspol.exe –resolveperm assembly.dll

Let’s try this on an assembly and look at the code access and identity permissions it is granted when we
access it over a local intranet. If you type the following command you will see the code access permis-
sions and then the three identity permissions at the end:

caspol.exe –resolveperm http://intranet/assembly.dll

Microsoft (R) .NET Framework CasPol 1.1.4322.535
Copyright (C) Microsoft Corporation 1998-2002. All rights reserved.

Resolving permissions for level = Enterprise
Resolving permissions for level = Machine
Resolving permissions for level = User
Grant =
<PermissionSet class=”System.Security.PermissionSet”

version=”1”>
<IPermission class=”System.Security.Permissions.FileDialogPermission,

mscorlib, Version=1.0.5000.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089”

version=”1”
Access=”Open”/>

<IPermission class=”System.Security.Permissions.IsolatedStorageFilePermission,
mscorlib, Version=1.0.5000.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089”

version=”1”
Allowed=”DomainIsolationByUser”
UserQuota=”10240”/>

<IPermission class=”System.Security.Permissions.SecurityPermission,
mscorlib, Version=1.0.5000.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089”

version=”1”
Flags=”Execution”/>

<IPermission class=”System.Security.Permissions.UIPermission,
mscorlib, Version=1.0.5000.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089”

version=”1”
Window=”SafeTopLevelWindows”
Clipboard=”OwnClipboard”/>

<IPermission class=”System.Net.WebPermission,

402

Chapter 14

17 557599 Ch14.qxd 4/29/04 11:25 AM Page 402

System, Version=1.0.5000.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089”

version=”1”>
<ConnectAccess>

<URI uri=”(https|http)://some\.host\.com/.*”/>
</ConnectAccess>

</IPermission>
<IPermission class=”System.Drawing.Printing.PrintingPermission,

System.Drawing, Version=1.0.5000.0, Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a”

version=”1”
Level=”SafePrinting”/>

<IPermission class=”System.Security.Permissions.SiteIdentityPermission,
mscorlib, Version=1.0.5000.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089”

version=”1”
Site=”some.host.com”/>

<IPermission class=”System.Security.Permissions.UrlIdentityPermission,
mscorlib, Version=1.0.5000.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089”

version=”1”
Url=”http://some.host.com/dev/testdll.dll”/>

<IPermission class=”System.Security.Permissions.ZoneIdentityPermission,
mscorlib, Version=1.0.5000.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089”

version=”1”
Zone=”Internet”/>

</PermissionSet>

Success

The output shows each of the permissions in XML, including the class defining the permission, the
assembly containing the class, the permission version, and an encryption token. The output suggests
that it is possible for us to create our own permissions, and you’ll learn more about that later in this
chapter. We can also see that each of the identity permissions includes more detailed information on, for
example, the UrlIdentityPermission class, which provides access to the URL from which the code
originated.

Note how at the start of the output, caspol.exe resolved the permissions at the enterprise, machine, and
user levels and then listed the effective granted permissions. Let’s look at these now.

Policy Levels: Machine, User, and Enterprise
Up to now we have looked at security in the context of a single machine. It’s often necessary to specify
security policies for specific users or for an entire organization, and that is why .NET provides not one,
but three levels of code groups:

❑ Machine

❑ Enterprise

❑ User

The code group levels are independently managed and exist in parallel:

403

.NET Security

17 557599 Ch14.qxd 4/29/04 11:25 AM Page 403

Figure 14-4

If there are three security policies, how do we know which one applies? The effective permission is the
intersection of the permissions from the three levels. Each of the three levels has the ability to veto the
permissions allowed by another—this is really good news for administrators as their settings will over-
ride user settings.

To work with code groups and permissions on the user or enterprise levels using caspol.exe, add either
the -enterprise or -user argument to change the command’s mode. caspol.exe works at the Machine
level by default and that’s how we’ve been using it up to now. Let’s see the code groups listing at the
User level:

caspol.exe –user –listgroups

The output of the command on a default installation looks like this:

Security is ON
Execution checking is ON
Policy change prompt is ON

Level = User

Code Groups:

1. All code: FullTrust
Success

Code Group: All Code

Permission: Nothing

Membership Condition: All Code

Machine Level

Enterprise Level

User Level

Code Group: MyComputer

Permission: FullTrust

Membership Condition: Zone

Code Group: All Code

Permission: Nothing

Membership Condition: All Code

Code Group: All Code

Permission: Nothing

Membership Condition: All Code

Code Group: Intranet

Permission: LocalIntranet

Membership Condition: Zone

Code Group: MyComputer

Permission: FullTrust

Membership Condition: Zone

Code Group: Intranet

Permission: Intranet

Membership Condition: Zone

Code Group: https://intranet/

Permission: FullTrust

Membership Condition: Site

Code Group: Microsoft Corp.

Permission: FullTrust

Membership Condition: Publisher

404

Chapter 14

17 557599 Ch14.qxd 4/29/04 11:25 AM Page 404

Now let’s run the same command, but this time to see the code groups at the enterprise level:

caspol.exe –enterprise –listgroups

The output of the command looks like this:

Security is ON
Execution checking is ON
Policy change prompt is ON

Level = Enterprise

Code Groups:

1. All code: FullTrust
Success

As you can see, by default, both the user level and the enterprise level are configured to allow FullTrust
for the single code group All Code. The result of this is that the default setting for .NET security places
no restrictions at the Enterprise or User levels, and the enforced policy is dictated solely by the machine-
level policy. For example, if we were to assign a more restrictive permission or permission set to either
the enterprise or user levels than FullTrust, those restrictions would restrict the overall permissions, and
probably override permissions at the Machine level. The effective permissions are intersected, so, for
example, if you want to apply FullTrust to a code group, this permission must be assigned to the code
group on each of the three policy levels.

When we run caspol.exe as an administrator, it defaults to the Machine level, but if we log out and log
back in as a user who is not in the Administrator user group, caspol.exe will instead default to the User
level. In addition, caspol.exe will not allow us to alter the security policy in a way that renders the
caspol.exe utility itself inoperable.

We’ve had a high-level look at the security architecture in .NET; let’s now look at how we can access its
features programmatically.

Support for Security in the Framework
For .NET security to work, programmers must trust the CLR to enforce the security policy. When a call is
made to a method that demands specific permissions (for example, accessing a file on the local drive),
the CLR walks up the stack to ensure that every caller in the call chain has the permissions being
demanded.

At this point the term performance is probably ringing in your mind, and clearly that is a concern, but to
gain the benefits of a managed environment like .NET it is the price we pay. The alternative is that
assemblies which are not fully trusted could make calls to trusted assemblies and our system is open to
attack.

405

.NET Security

17 557599 Ch14.qxd 4/29/04 11:25 AM Page 405

For reference, the parts of the .NET Framework library namespace most applicable to this chapter are:

❑ System.Security.Permissions

❑ System.Security.Policy

❑ System.Security.Principal

Note that evidence-based code access security works in tandem with Windows logon security. If you
attempt to run a .NET desktop application, the relevant .NET code access security permissions must be
granted, but you as the logged-in user must also be using a Windows account that has the relevant per-
missions to execute the code. With desktop applications, this means the current user must have been
granted the relevant rights to access the relevant assembly files on the drive. For Internet applications,
the account under which Internet Information Server is running must have access to the assembly files.

Demanding Permissions
To see how demanding permissions work, create a Windows Forms application that just contains a but-
ton. When clicked, this performs an action that accesses the drive. If the application does not have the
relevant permission to access the local drive (FileIOPermission), the button will be marked as
unavailable (dimmed).

If you import the namespace System.Security.Permissions, you can change the constructor of the
class Form1 to check for permissions by creating a FileIOPermission object, calling its Demand()
method, and then acting on the result:

public Form1()
{

InitializeComponent();

try
{

FileIOPermission fileioperm = new
FileIOPermission(FileIOPermissionAccess.AllAccess,@”c:\”);

fileioperm.Demand();
}
catch
{

button1.Enabled = false;
}

}

FileIOPermission is contained within the System.Security.Permissions namespace, which is the
home to the full set of permissions, and also provides classes for declarative permission attributes and
enumerations for the parameters that are used to create permissions objects (for example, when creating
a FileIOPermission specifying whether we need full access, or read-only).

If you run the application from the local drive where the default security policy allows access to local
storage, you will see a dialog box that resembles the one in Figure 14-5.

406

Chapter 14

17 557599 Ch14.qxd 4/29/04 11:25 AM Page 406

Figure 14-5

However, if you copy the executable to a network share and run it again, you are operating within the
LocalIntranet permission sets, which blocks access to local storage, and the button will be dimmed as
is shown in Figure 14-6.

Figure 14-6

If the functionality to make the button access the disk when clicking it is implemented, you will not have
to write any security code, because the relevant class in the .NET Framework demands the file permis-
sions, and the CLR ensures that each caller up the stack has those permissions before proceeding. If you
run the application from the intranet, and it attempts to open a file on the local disk, you will see an
exception unless the security policy has been altered to grant access to the local drive.

If you want to catch exceptions thrown by the CLR when code attempts to act contrary to its granted
permissions, you can catch the exception of the type SecurityException, which provides access to a
number of useful pieces of information, including a human-readable stack trace (SecurityException
.StackTrace) and a reference to the method that threw the exception (SecurityException.TargetSite).
SecurityException even provides you with the SecurityException.PermissionType property,
which returns the type of Permission object that caused the security exception to occur. If you’re hav-
ing problems to diagnose security exceptions, this should be one of your first ports of call. Simply
remove the try and catch blocks from the previous code to see the security exception.

Requesting Permissions
As we discussed in the previous section, demanding permissions is where you state clearly what you
need at runtime; however, you can configure an assembly so it makes a softer request for permissions
right at the start of execution where it states what it requires before it begins executing.

You can request permissions in three ways:

❑ Minimum permissions specifies to the permissions your code must run.

❑ Optional permissions specifies the permissions your code can use but is able to run effectively
without.

❑ Refused permissions specifies the permissions that you want to ensure are not granted to your
code.

407

.NET Security

17 557599 Ch14.qxd 4/29/04 11:25 AM Page 407

Why would you want to request permissions when your assembly starts? There are several reasons:

❑ If your assembly needs certain permissions to run, it makes sense to state this at the start of exe-
cution rather than during execution to ensure the user does not experience a road block after
beginning to work in your program.

❑ You will only be granted the permissions you request and no more. Without explicitly request-
ing permissions your assembly might be granted more permissions than it needs to execute.
This increases the risk of your assembly being used for malicious purposes by other code.

❑ If you only request a minimum set of permissions, you are increasing the probability that your
assembly will run, since you cannot predict the security policies that are in effect at an end
user’s location.

Requesting permissions is likely to be most useful if you’re doing more complex deployment, and there
is a higher risk that your application will be installed on a machine that does not grant the requisite per-
missions. It’s usually preferable for the application to know right at the start of execution, if it will not be
granted permissions, rather than halfway through execution.

To successfully request the permissions your assembly needs, you must keep track of exactly what per-
missions your assembly is using. In particular, you must be aware of the permission requirements of the
calls your assembly is making into other class libraries, including the .NET Framework.

Let’s look at three examples from an AssemblyInfo.cs file that demonstrate using attributes to request
permissions. If you are following this with the code download, these examples can be found in the
SecurityApp2 project. The first attribute requests that the assembly have UIPermission granted, which
will allow the application access to the user interface. The request is for the minimum permissions, so if
this permission is not granted, the assembly will fail to start:

using System.Security.Permissions;
[assembly:UIPermissionAttribute(SecurityAction.RequestMinimum, Unrestricted=true)]

Next, there is a request that the assembly is refused access to the C:\ drive. This attribute’s setting means
the entire assembly will be blocked from accessing this drive:

[assembly:FileIOPermissionAttribute(SecurityAction.RequestRefuse, Read=”C:\\”)]

Finally, here’s an attribute that requests our assembly be optionally granted the permission to access
unmanaged code:

[assembly:SecurityPermissionAttribute(SecurityAction.RequestOptional,
Flags = SecurityPermissionFlag.UnmanagedCode)]

In this scenario you will want to add this attribute to an application that accesses unmanaged code in at
least one place. In this case, it is specified that this permission is optional, which means that the applica-
tion can run without the permission to access unmanaged code. If the assembly is not granted permis-
sion to access unmanaged code, and attempts to do so, a SecurityException will be raised, which the
application should expect and handle accordingly. The following table shows the full list of available
SecurityAction enumeration values; some of these values are covered in more detail later in this
chapter.

408

Chapter 14

17 557599 Ch14.qxd 4/29/04 11:25 AM Page 408

Security Action Description

Assert Allows code to access resources not available to the caller.

Demand Requires all callers in the call stack to have the specified permission.

Deny Denies a permission by forcing any subsequent demand for the permis-
sion to fail.

InheritanceDemand Requires derived classes to have the specified permission granted.

LinkDemand Requires the immediate caller to have the specified permission.

PermitOnly Similar to deny, subsequent demands for resources not explicitly listed
by PermitOnly are refused.

RequestMinimum Applied at assembly scope; this contains a permission required for an
assembly to operate correctly.

RequestOptional Applied at assembly scope; this asks for permissions the assembly can
use, if available, to provide additional features and functionality.

RequestRefuse Applied at assembly scope when there is a permission you do not want
your assembly to have.

When you consider the permission requirements of our application, you have to decide between one of
two options:

❑ Request all the permissions you need at the start of execution, and degrade gracefully or exit if
those permissions are not granted.

❑ Avoid requesting permissions at the start of execution, but be prepared to handle security
exceptions throughout our application.

After an assembly has been configured using permission attributes in this way, you can use the per-
mview.exe utility to view the permissions by aiming it at the assembly file that contains the assembly
manifest:

>permview.exe <path>\SecurityApp2\bin\Debug\SecurityApp2.exe

The output for an application using the three previously discussed attributes looks like this:

Microsoft (R) .NET Framework Permission Request Viewer. Version 1.1.4322.573
Copyright (C) Microsoft Corporation 1998-2002. All rights reserved.

minimal permission set:
<PermissionSet class=”System.Security.PermissionSet”

version=”1”>
<IPermission class=”System.Security.Permissions.UIPermission, mscorlib,

Version=1.0.5000.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089”
version=”1”
Unrestricted=”true”/>

</PermissionSet>

409

.NET Security

17 557599 Ch14.qxd 4/29/04 11:25 AM Page 409

optional permission set:
<PermissionSet class=”System.Security.PermissionSet” version=”1”>

<IPermission class=”System.Security.Permissions.SecurityPermission, mscorlib,
Version=1.0.5000.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089”
version=”1”
Flags=”UnmanagedCode”/>

</PermissionSet>

refused permission set:
<PermissionSet class=”System.Security.PermissionSet”

version=”1”>
<IPermission class=”System.Security.Permissions.FileIOPermission, mscorlib,

Version=1.0.5500.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089”
version=”1”
Read=”c:\”/>

</PermissionSet>

In addition to requesting permissions, you can also request permissions sets; the advantage is that you
can request a whole set of permissions all at once. Since the Everything permission set can be altered
through the security policy while an assembly is running, it cannot be requested. For example, if an
assembly requests at runtime that it must be granted all permissions in the Everything permission set to
execute, and the administrator then tightens the Everything permission set while the application is run-
ning, he might be unaware that the permission set is still operating with a wider set of permissions than
the policy dictates.

Here’s an example, of how to request a built-in permission set:

[assembly:PermissionSetAttribute(SecurityAction.RequestMinimum,
Name = “FullTrust”)]

In this example the assembly requests that as a minimum it needs the FullTrust built-in permission set
granted. If this set of permissions is not granted, the assembly will throw a security exception at run-
time.

Implicit Permission
When permissions are granted, there is often an implicit statement that we are also granted other per-
missions. For example, if you assign the FileIOPermission for C:\ there is an implicit assumption that
there is also access to its subdirectories (Windows account security allowing).

If you want to check whether a granted permission implicitly brings another permission as a subset, you
can do this:

// Example from SecurityApp3

class SecurityApp3
{

static void Main(string[] args)
{

410

Chapter 14

17 557599 Ch14.qxd 4/29/04 11:25 AM Page 410

CodeAccessPermission permissionA =
new FileIOPermission(FileIOPermissionAccess.AllAccess, @”C:\”);

CodeAccessPermission permissionB =
new FileIOPermission(FileIOPermissionAccess.Read, @”C:\temp”);

if (permissionB.IsSubsetOf(permissionA))
{

Console.WriteLine(“PermissionB is a subset of PermissionA”);
}
else
{

Console.WriteLine(“PermissionB is NOT a subset of PermissionA”);
}

}
}

The output looks like this:

PermissionB is a subset of PermissionA

Denying Permissions
Under certain circumstances you might want to perform an action and be absolutely sure that the
method that is called is acting within a protected environment where it cannot do anything untoward.
For example, let’s say you want to make a call to a third-party class in a way that it will not access the
local disk.

To do that, create an instance of the permission you want to ensure the method is not granted, and then
call its Deny() method before making the call to the class:

using System;
using System.IO;
using System.Security;
using System.Security.Permissions;
namespace Wrox.ProCSharp.Security
{

class SecurityApp4
{

static void Main(string[] args)
{

CodeAccessPermission permission =
new FileIOPermission(FileIOPermissionAccess.AllAccess,@”C:\”);

permission.Deny();
UntrustworthyClass.Method();
CodeAccessPermission.RevertDeny();

}
}
class UntrustworthyClass
{

public static void Method()
{

try
{

411

.NET Security

17 557599 Ch14.qxd 4/29/04 11:25 AM Page 411

StreamReader din = File.OpenText(@”C:\textfile.txt”);
}
catch
{

Console.WriteLine(“Failed to open file”);
}

}
}

}

If you build this code the output will state Failed to open file, as the untrustworthy class does not have
access to the local disk.

Note that the Deny() call is made on an instance of the permission object, whereas the RevertDeny()
call is made statically. The reason for this is that the RevertDeny() call reverts all deny requests within
the current stack frame; this means if you have made several calls to Deny() you only need to make one
follow-up call to RevertDeny().

Asserting Permissions
Imagine that there is an assembly that has been installed with full trust on a user’s system. Within that
assembly there is a method that saves auditing information to a text file on the local disk. If later an
application is installed that wants to make use of the auditing feature, it will be necessary for the appli-
cation to have the relevant FileIOPermission permissions to save the data to disk.

This seems excessive, however, because all we really want to do is perform a highly restricted action on
the local disk. In these situations, it would be useful if assemblies with limiting permissions could make
calls to more trusted assemblies that can temporarily increase the scope of the permissions on the stack,
and perform operations on behalf of the caller that it does not have the permissions to do itself.

To achieve this, assemblies with high enough levels of trust can assert permissions that they require. If
the assembly has the permissions it needs to assert additional permissions, it removes the need for
callers up the stack to have such wide-ranging permissions.

The code that follows contains a class called AuditClass that implements a method called Save(),
which takes a string and saves audit data to C:\audit.txt. The AuditClass method asserts the permis-
sions it needs to add the audit lines to the file. To test it out, the Main() method for the application
explicitly denies the file permission that the Audit method needs:

using System;
using System.IO;
using System.Security;
using System.Security.Permissions;
namespace Wrox.ProCSharp.Security
{

class SecurityApp5
{

static void Main(string[] args)
{

CodeAccessPermission permission =

412

Chapter 14

17 557599 Ch14.qxd 4/29/04 11:25 AM Page 412

new FileIOPermission(FileIOPermissionAccess.Append,
@”C:\audit.txt”);

permission.Deny();
AuditClass.Save(“some data to audit”);
CodeAccessPermission.RevertDeny();

}
}
class AuditClass
{

public static void Save(string value)
{

try
{

FileIOPermission permission =
new FileIOPermission(FileIOPermissionAccess.Append,

@”C:\audit.txt”);
permission.Assert();
FileStream stream = new FileStream(@”C:\audit.txt”,

FileMode.Append, FileAccess.Write);

// code to write to audit file here...
CodeAccessPermission.RevertAssert();
Console.WriteLine(“Data written to audit file”);

}
catch
{

Console.WriteLine(“Failed to write data to audit file”);
}

}
}

}

When this code is executed, you’ll find that the call to the AuditClass method does not cause a security
exception, even though when it was called it did not have the required permissions to carry out the disk
access.

Like RevertDeny(), RevertAssert() is a static method, and it reverts all assertions within the current
frame.

It’s important to be very careful when using assertions. We are explicitly assigning permissions to a
method that has been called by code that might not have those permissions, and this could open a secu-
rity hole. For example, in the auditing example, even if the security policy dictated that an installed
application cannot write to the local disk, our assembly would be able to write to the disk when the
auditing assembly asserts FileIOPermissions for writing. To perform the assertion the auditing
assembly must have been installed with permission for FileIOAccess and SecurityPermission. The
SecurityPermission allows an assembly to perform an assert, and the assembly will need both the
SecurityPermission and the permission being asserted to complete successfully.

413

.NET Security

17 557599 Ch14.qxd 4/29/04 11:25 AM Page 413

Creating Code Access Permissions
The .NET Framework implements code access security permissions that provide protection for the
resources that it exposes. However, there might be occasions when you want to create your own permis-
sions. You can do so by subclassing CodeAccessPermission. Deriving a custom permission class from
the class CodeAccessPermission gives you the benefits of the .NET code access security system,
including stack walking and policy management.

Here are two examples of cases where you might want to roll your own code access permissions:

❑ Protecting a resource not already protected by the Framework. For example, you have devel-
oped a .NET application for home automation that is implemented by using an onboard hard-
ware device. Creating your own code access permissions, you have a highly granular level of
control over the access given to the home automation hardware.

❑ Providing a finer degree of management than existing permissions. For example, although the
.NET Framework provides permissions that allow granular control over access to the local file
system, you might have an application where you want to control access to a specific file or
folder much more tightly. In this scenario, you might find it useful to create a code access per-
mission that relates specifically to that file or folder; without that permission no managed code
can access that area of the disk.

Declarative Security
You can deny, demand, and assert permissions by calling classes in the .NET Framework. However, you
can also use attributes and specify permission requirements declaratively.

The main benefit of using declarative security is that the settings are accessible through reflection. This
can be of enormous benefit to system administrators, who often will want to view the security require-
ments of applications.

For example, we can specify that a method must have permission to read from C:\ to execute:

using System;
using System.Security.Permissions;
namespace Wrox.ProCSharp.Security
{

class SecurityApp6
{

static void Main(string[] args)
{

MyClass.Method();
}

}

[FileIOPermission(SecurityAction.Assert, Read=”C:\\”)]
class MyClass
{

public static void Method()
{

414

Chapter 14

17 557599 Ch14.qxd 4/29/04 11:25 AM Page 414

// implementation goes here

}
}

}

Be aware that if you use attributes to assert or demand permissions, you cannot catch any exceptions
that are raised if the action fails, because there is no imperative code around in which you can place a
try-catch-finally clause.

Role-Based Security
As you have seen, code access security gives the CLR the ability to make intelligent decisions behind the
scenes as to whether code should run and with what permissions based on the evidence it presents. In
addition, .NET provides role-based security that specifies whether code can perform actions on the basis
of evidence about the user and their role, rather than just the code. You’ll probably be glad to hear that it
does this without walking the stack!

Role-based security is especially useful in situations where access to resources is an issue; a primary
example is the finance industry, where employees’ roles define what information they can access and
what actions they can perform.

Role-based security is also ideal for use in conjunction with Windows accounts, Microsoft Passport, or a
custom user directory to manage access to Web-based resources. For example, a Web site could restrict
access to its content until a user registers with the site, and then additionally provide access to special
content only, if the user is a paying subscriber. In many ways, ASP.NET makes role-based security easier
because much of the code is based on the server.

For example, if you want to implement a Web service that requires authentication, you could use the
account subsystem of Windows and write the Web method in such a way that it ensures the user is a
member of a specific Windows user group before allowing access to the method’s functionality.

The Principal
.NET gives the current thread easy access to the application user, which it refers to as a principal. The
principal is at the core of the role-based security that .NET provides, and through it, we can access the
user’s identity, which will usually map to a user account of one of these types:

❑ Windows account

❑ Passport account

❑ ASP.NET cookie-authenticated user

As an added bonus, the role-based security in .NET has been designed so that you can create your own
principals by implementing the IPrincipal interface. If you are not relying on Windows authentica-
tion, Passport, or simple cookie authentication, you should look at creating your own using a custom
principal class.

415

.NET Security

17 557599 Ch14.qxd 4/29/04 11:25 AM Page 415

With access to the principal you can make security decisions based on the principal’s identity and roles.
A role is a collection of users who have the same security permissions, and is the unit of administration
for users. For example, if you’re using Windows authentication to authenticate our users, you will use
the WindowsIdentity type as our choice of identity. You can use that type to find out whether the user
is a member of a specific Windows user account group. You can then use that information to decide
whether to grant or deny access to code and resources.

You’ll generally find that it’s much easier to manage security if you allow access to resources and func-
tionality on the basis of roles rather than individual users. Imagine a scenario where you have three
methods and each provides access to a feature over which you need tight control to ensure only autho-
rized personnel can access it. If the application had, say, four users, we could quite easily specify within
each method which users can and which users cannot access the method. However, imagine a time in
the future where the number of features has extended to nine; to allow access to an additional user
potentially requires changing every one of the nine methods even though this is an administrative task!
Even worse, as users move between roles in the company you would have to change the code each time
that happens. If you had instead implemented the system using roles, you could then simply add users
to and remove users from roles, rather than adding and removing individual users to and from the
application. This simplifies the application, as for each method you simply request that the user be a
member of a specific role. It also simplifies the management of roles, as the administrator can do it rather
than the application developer. The developer should be concerned with ensuring that, for example,
managers but not secretaries can access a method.

.NET’s role-based security builds on an idea that has been provided in MTS and COM+, and offers a
flexible framework that can be used to build fences around sections of the application that have to be
protected. If COM+ is installed on a machine, its role-based security will interoperate with .NET; how-
ever, COM is not required for .NET’s role-based security to function.

Windows Principal
In the following example we create a console application that gives access to the principal in an applica-
tion that, in turn, enables us to access the underlying Windows account. You need to import the
System.Security.Principal and System.Threading namespaces. First of all, you must specify that
.NET automatically hooks up the principal with the underlying Windows account, as .NET does not
automatically populate the thread’s CurrentPrincipal property for security reasons. You can do that
like this:

using System;
using System.Security.Principal;
using System.Security.Permissions;
using System.Threading;

namespace Wrox.ProCSharp.Security
{

class SecurityApp7
{

static void Main(string[] args)
{

AppDomain.CurrentDomain.SetPrincipalPolicy(
PrincipalPolicy.WindowsPrincipal);

416

Chapter 14

17 557599 Ch14.qxd 4/29/04 11:25 AM Page 416

It’s possible to use WindowsIdentity.GetCurrent() to access the Windows account details; however,
that method is best used when you’re only going to look at the principal once. If you want to access the
principal a number of times it is more efficient to set the policy so that the current thread provides access
to the principal for you. Using the SetPrincipalPolicy method it is specified that the principal in the
current thread should hold a WindowsIdentity object. All identity classes, like WindowsIdentity,
implement the IIdentity interface. The interface contains three properties (AuthenticationType,
IsAuthenticated, and Name) for all derived identity classes to implement.

Let’s add some code to access the principal’s properties from the Thread object:

WindowsPrincipal principal =
(WindowsPrincipal)Thread.CurrentPrincipal;

WindowsIdentity identity = (WindowsIdentity)principal.Identity;
Console.WriteLine(“IdentityType:” + identity.ToString());
Console.WriteLine(“Name:” + identity.Name);
Console.WriteLine(“‘Users’?:” + principal.IsInRole(“BUILTIN\\Users”));
Console.WriteLine(“‘Administrators’?:” +

principal.IsInRole(WindowsBuiltInRole.Administrator));
Console.WriteLine(“Authenticated:” + identity.IsAuthenticated);
Console.WriteLine(“AuthType:” + identity.AuthenticationType);
Console.WriteLine(“Anonymous?:” + identity.IsAnonymous);
Console.WriteLine(“Token:” + identity.Token);

}
}

}

The output from this console application looks similar to the following lines, depending on your
machine configuration and the roles associated with the account under which you’re signed in:

IdentityType:System.Security.Principal.WindowsIdentity
Name:MACHINE\alaric
‘Users’?:True
‘Administrators’?:True
Authenticated:True
AuthType:NTLM
Anonymous?:False
Token:256

It is enormously beneficial to be able to access details about the current user and their roles so easily.
With this information we can make decisions about what actions to permit and to deny. The ability to
make use of roles and Windows user groups provides the added benefit that administration can be done
by using standard user administration tools, and you can usually avoid altering the code when user
roles change. Let’s look at roles in more detail.

Roles
Imagine a scenario with an intranet application that relies on Windows accounts. The system has a
group called Manager and one called Assistant; users are assigned to these groups dependent on their
role within the organization. Let’s say the application contains a feature that displays information about
employees that should only be accessed by users in the Managers group. You can easily use code that
checks whether the current user is a member of the Managers group and permit or deny access based
on this.

417

.NET Security

17 557599 Ch14.qxd 4/29/04 11:25 AM Page 417

However, if you decide later to rearrange the account groups and to introduce a group called
Personnel that also has access to employee details, you will have a problem. This way you have to go
through all the code and update it in order to include rules for this new group.

A better solution would be to create a permission called something like ReadEmployeeDetails and to
assign it to groups where necessary. If the code applies a check for the ReadEmployeeDetails permis-
sion, in order to update the application to allow those in the Personnel group access to employee
details is simply a matter of creating the group, placing the users in it, and assigning the
ReadEmployeeDetails permission.

Declarative Role-Based Security
Just as with code access security, you can implement role-based security requests (“the user must be in
the Administrators group”) using imperative requests (as you saw in the preceding section), or using
attributes. You can state permission requirements declaratively at the class level like this:

using System;
using System.Security;
using System.Security.Principal;
using System.Security.Permissions;

namespace Wrox.ProCSharp.Security
{

class SecurityApp8
{

static void Main(string[] args)
{

AppDomain.CurrentDomain.SetPrincipalPolicy(
PrincipalPolicy.WindowsPrincipal);

try
{

ShowMessage();
}
catch (SecurityException exception)
{

Console.WriteLine(“Security exception caught (“ +
exception.Message + “)”);

Console.WriteLine(“The current principal must be in the local”
+ “Users group”);

}
}

[PrincipalPermissionAttribute(SecurityAction.Demand,
Role = “BUILTIN\\Users”)]

static void ShowMessage()
{

Console.WriteLine(“The current principal is logged in locally “);
Console.WriteLine(“(they are a member of the local Users group)”);

}
}

}

418

Chapter 14

17 557599 Ch14.qxd 4/29/04 11:25 AM Page 418

The ShowMessage() method will throw an exception unless you execute the application in the context
of a user in the Windows local Users group. For a Web application, the account under which the
ASP.NET code is running must be in the group, although in a real-world example you would certainly
avoid adding this account to the administrators group!

If you run the previous code using an account in the local Users group, the output will look like this:

The current principal is logged in locally
(they are a member of the local Users group)

For more information on role-based security in .NET, your first stop should be the MSDN documenta-
tion for the System.Security.Principal namespace.

Managing Security Policy
Although .NET’s security features are wide ranging and far in advance of anything seen before on
Windows, there are some limitations that we should be aware of:

❑ .NET security policy does not enforce security on unmanaged code (although it provides some
protection against calls to unmanaged code).

❑ If a user copies an assembly to a local machine, the assembly has FullTrust and security policy is
effectively bypassed. To work around this, you can limit the permissions granted to local code.

❑ .NET security policy provides very little help in dealing with script-based viruses and malicious
Win32 .exe files, which Microsoft is dealing with in different ways. For example, recent versions
of Outlook block executable files from e-mails.

However, .NET helps enormously in assisting the operating system in making intelligent decisions
about how much trust to give to code, whether it originates from an intranet application, a control on a
Web page, or a Windows Forms application downloaded from a software supplier on the Internet.

The Security Configuration File
As you’ve already seen, the glue that connects code groups, permissions, and permission sets consists of
our three levels of security policy (enterprise, machine, and user). Security configuration information in
.NET is stored in XML configuration files that are protected by Windows security. For example, the
machine-level security policy is only writable to users in the Administrator, Power User, and SYSTEM
Windows groups.

The files that store the security policy are located in the following paths:

❑ Enterprise policy configuration: <windir>\Microsoft.NET\Framework\v1.0.xxxx\Config\
enterprise.config

❑ Machine policy configuration: <windir>\Microsoft.NET\Framework\v1.0.xxxx\Config\
security.config

❑ User policy configuration: %USERPROFILE%\application data\Microsoft\
CLR security config\vxx.xx\security.config

419

.NET Security

17 557599 Ch14.qxd 4/29/04 11:25 AM Page 419

The version number marked with multiple xs varies depending on the version of the .NET Framework
you have on your machine. If necessary, it’s possible to edit these configuration files manually, for exam-
ple, if an administrator needs to configure policy for a user without logging into his account. However,
in general it’s recommended to use caspol.exe or the Runtime Security Policy node in the .NET
Framework Configuration MMC snap-in to manage security policy.

A simple example
Given everything you’ve read so far, create a simple application that accesses the local drive, the kind of
behavior we’re likely to want to manage carefully. The application is a C# Windows Forms application
with a list box and a button (see Figure 14-7). If you click the button, the list box is populated from a file
called animals.txt in the root of the C:\ drive.

Figure 14-7

The application was created by using Visual Studio .NET and the only changes were to add the list box
and Load Data button to the form and to add an event to the button that looks like this:

// Example from SecurityApp9

private void button1_Click(object sender, System.EventArgs e)
{

StreamReader stream = File.OpenText(@”C:\animals.txt”);
String str;
while ((str=stream.ReadLine()) != null)
{

listBox1.Items.Add(str);
}

}

It opens a simple text file from the root of the C:\ drive, which contains a list of animals on separate
lines, and loads each line into a string, which it then uses to create each item in the list box.

If you run the application from our local machine and click the button, you’ll see the data loaded from
the root of the C:\ drive and displayed in the list box (see Figure 14-8). Behind the scenes the runtime
has granted the assembly the permission it needs to execute, access the user interface, and read data
from the local disk.

420

Chapter 14

17 557599 Ch14.qxd 4/29/04 11:25 AM Page 420

Figure 14-8

As mentioned earlier, the permissions on the intranet zone code group are more restrictive than on the
local machine; in particular, they do not allow access to the local disk. If you run the application again,
but this time from a network share, it will run just as before because it is granted the permissions to exe-
cute and access the user interface; however, if you now click the Load Data button on the form, a security
exception is thrown (see Figure 14-9). You’ll see in the exception message text that it mentions the
System.Security.Permissions.FileIOPermission object; this is the permission that the applica-
tion was not granted and that was demanded by the class in the Framework which was used to load the
data from the file on the local disk.

Figure 14-9

By default, the Intranet code group is granted the LocalIntranet permission set; let’s change the permis-
sion set to FullTrust so any code from the intranet zone can run completely unrestricted.

First, you need to get the numeric label of the LocalIntranet code group. You can do this with the follow-
ing command.

>caspol.exe –listgroups

421

.NET Security

17 557599 Ch14.qxd 4/29/04 11:25 AM Page 421

This will output something like this:

Code Groups:

1. All code: Nothing
1.1. Zone - MyComputer: FullTrust

1.1.1. StrongName -
002400000480000094000000060200000024000052534131000400000100010007D1FA57C4AED9F0A32
E84AA0FAEFD0DE9E8FD6AEC8F87FB03766C834C99921EB23BE79AD9D5DCC1DD9AD236132102900B723C
F980957FC4E177108FC607774F29E8320E92EA05ECE4E821C0A5EFE8F1645C4C0C93C1AB99285D622CA
A652C1DFAD63D745D6F2DE5F17E5EAF0FC4963D261C8A12436518206DC093344D5AD293: FullTrust

1.1.2. StrongName - 00000000000000000400000000000000: FullTrust
1.2. Zone - Intranet: LocalIntranet

1.2.1. All code: Same site Web.
1.2.2. All code: Same directory FileIO - Read, PathDiscovery

1.3. Zone - Internet: Internet
1.3.1. All code: Same site Web.

1.4. Zone - Untrusted: Nothing
1.5. Zone - Trusted: Internet

1.5.1. All code: Same site Web.

Notice the LocalIntranet group is listed as 1.2. You can use the following command to apply full trust:

>caspol.exe –chggroup 1.2 FullTrust

If you run the application from the network share again and click the button, you’ll see that the list box
is populated with the content of the file in the root of the C:\ drive and no exception occurs.

In scenarios like these where you’re making use of resources that are governed by permissions, it is
advisable to extend the code so that security exceptions are caught, and the application can degrade
gracefully. For example, in the sample application you can add a try-catch block around the file access
code and if a SecurityException is thrown we display a line in the list box saying, Permission denied
accessing file:

// Code from SecurityApp9

private void button1_Click(object sender, System.EventArgs e)
{

try
{

StreamReader din = File.OpenText(@”C:\animals.txt”);
String str;
while ((str=din.ReadLine()) != null)
{

listBox1.Items.Add(str);
}

}
catch (SecurityException exception)
{

listBox1.Items.Add(“Permission denied accessing file”);
}

}

422

Chapter 14

17 557599 Ch14.qxd 4/29/04 11:25 AM Page 422

In reality, if you wanted to run a specific application from a network share, you’d most likely opt for a
solution that didn’t open up the client machine to all code on the intranet. Instead, code groups and
membership conditions can be used to tightly control the requirements of the application—perhaps
using its location on the intranet, a strong name, or a certificate proving the identity of the publisher.

Managing Code Groups and Permissions
Managing security on .NET, if you find that an assembly is failing with a security exception, you usually
have three choices:

❑ Ease the policy permissions

❑ Move the assembly

❑ Apply a strong name to the assembly

When making these kinds of decisions you must ensure that you have to take into account your level of
trust of the assembly.

Turning Security On and Off
By default .NET security is enabled. If, for any reason, you need to turn it off, you can do it like this:

>caspol.exe –security off

To turn security back on, use this:

>caspol.exe –security on

Generally, the security risks are too high when you turn off security. We recommend you only do this for
testing and debugging purposes.

Something you should be aware of is that the previous command does not need administrative privileges; this means
any user (or a virus) could turn off .NET security. You are well advised to alter the Windows file security on the caspol
utility to guard against malicious or misinformed usage.

Resetting Security Policy
If you need to return the security configuration to its original state, you can type this command:

>caspol.exe -reset

This command resets the security policy to the installation default.

Creating a Code Group
You can create your own code groups and then apply specific permissions to them. For example, you
could specify that we want to trust all code from the Web site www.wrox.com and to give it full access to
the system (without trusting code from any other Web site).

423

.NET Security

17 557599 Ch14.qxd 4/29/04 11:25 AM Page 423

Earlier it was already shown running caspol to display a list with the available group and number
assignments. The zone Internet is labeled 1.3, so now type this command:

>caspol.exe –addgroup 1.3 –site www.wrox.com FullTrust

Note that this command will ask for confirmation, because this is an attempt to alter the security policy
on the machine. If the command caspol.exe –listgroups is now run again, you’ll see the new code group
has been added and assigned FullTrust:

...
1.2. Zone - Intranet: LocalIntranet

1.2.1. All code: Same site Web.
1.2.2. All code: Same directory FileIO - Read, PathDiscovery

1.3. Zone - Internet: Internet
1.3.1. All code: Same site Web.
1.3.2. Site - www.wrox.com: FullTrust

1.4. Zone - Untrusted: Nothing
1.5. Zone - Trusted: Internet

1.5.1. All code: Same site Web.

Let’s look at another example. Let’s say we want to create a code group under the Intranet code group
(1.2) that grants FullTrust to all applications running from a specific network share:

>caspol.exe –addgroup 1.2 –url file:///\\intranetserver/sharename/* FullTrust

Deleting a Code Group
To remove a code group that has been created, you can type a command like this:

>caspol.exe –remgroup 1.3.2

It will ask for confirmation that you want to alter the security policy, and if you give positive confirma-
tion it will state that the group has been removed.

Changing a Code Group’s Permissions
To ease or restrict the permissions assigned to a code group, caspol.exe will be used again. Let’s say we
want to apply FullTrust to the Intranet zone, first we need to get the label that represents the Intranet
code group:

>caspol.exe –listgroups

Be aware that although you cannot delete the code group All Code, you can delete
code groups at the level below, including the Internet, MyComputer, and
LocalIntranet groups.

424

Chapter 14

17 557599 Ch14.qxd 4/29/04 11:25 AM Page 424

The output shows the Intranet code group:

Code Groups:

1. All code: Nothing
1.1. Zone - MyComputer: FullTrust

1.1.1. StrongName -
002400000480000094000000060200000024000052534131000400000100010007D1FA57C4AED9F0A32
E84AA0FAEFD0DE9E8FD6AEC8F87FB03766C834C99921EB23BE79AD9D5DCC1DD9AD236132102900B72
3CF980957FC4E177108FC607774F29E8320E92EA05ECE4E821C0A5EFE8F1645C4C0C93C1AB99285D622
CAA652C1DFAD63D745D6F2DE5F17E5EAF0FC4963D261C8A12436518206DC093344D5AD293:
FullTrust

1.1.2. StrongName - 00000000000000000400000000000000: FullTrust
1.2. Zone - Intranet: LocalIntranet

1.2.1. All code: Same site Web.
1.2.2. All code: Same directory FileIO - Read, PathDiscovery

1.3. Zone - Internet: Internet
1.3.1. All code: Same site Web.

1.4. Zone - Untrusted: Nothing
1.5. Zone - Trusted: Internet

1.5.1. All code: Same site Web.

Once you have the Intranet code group’s label, 1.2, you can enter a second command to alter the code
group’s permissions:

>caspol.exe –chggroup 1.2 FullTrust

The command asks to confirm the change to the security policy, and if you run the caspol.exe –listgroups
command again, you can see the permission on the end of the Intranet line has changed to FullTrust:

Code Groups:

1. All code: Nothing
1.1. Zone - MyComputer: FullTrust

1.1.1. StrongName -
002400000480000094000000060200000024000052534131000400000100010007D1FA57C4AED9F0A32
E84AA0FAEFD0DE9E8FD6AEC8F87FB03766C834C99921EB23BE79AD9D5DCC1DD9AD236132102900B723C
F980957FC4E177108FC607774F29E8320E92EA05ECE4E821C0A5EFE8F1645C4C0C93C1AB99285D622CA
A652C1DFAD63D745D6F2DE5F17E5EAF0FC4963D261C8A12436518206DC093344D5AD293: FullTrust

1.1.2. StrongName - 00000000000000000400000000000000: FullTrust
1.2. Zone - Intranet: FullTrust

1.2.1. All code: Same site Web.
1.2.2. All code: Same directory FileIO - Read, PathDiscovery

1.3. Zone - Internet: Internet
1.3.1. All code: Same site Web.

1.4. Zone - Untrusted: Nothing
1.5. Zone - Trusted: Internet

1.5.1. All code: Same site Web.

Creating and Applying Permissions Sets
You can create new permission sets using a command like this:

>caspol.exe –addpset MyCustomPermissionSet permissionset.xml

425

.NET Security

17 557599 Ch14.qxd 4/29/04 11:25 AM Page 425

This command specifies that we are creating a new permissions set called MyCustomPermissionSet, and
basing it on the contents of the specified XML file. The XML file must contain a standard format that
specifies a PermissionSet. For reference, here’s the permission set file for the Everything permission
set, which you can trim down to the permission set you want to create:

<PermissionSet class=”System.Security.NamedPermissionSet”
version=”1”
Name=”Everything”
Description=”Allows unrestricted access to all

resources covered by built-in permissions”>
<IPermission class=”System.Security.Permissions.EnvironmentPermission,

mscorlib, Version=1.0.5000.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089”

version=”1” Unrestricted=”true”/>
<IPermission class=”System.Security.Permissions.FileDialogPermission,

mscorlib, Version=1.0.5000.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089”

version=”1” Unrestricted=”true”/>
<IPermission class=”System.Security.Permissions.FileIOPermission,

mscorlib, Version=1.0.5000.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089”

version=”1” Unrestricted=”true”/>
<IPermission class=”System.Security.Permissions.IsolatedStorageFilePermission,

mscorlib, Version=1.0.5000.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089”

version=”1” Unrestricted=”true”/>
<IPermission class=”System.Security.Permissions.ReflectionPermission,

mscorlib, Version=1.0.5000.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089”

version=”1” Unrestricted=”true”/>
<IPermission class=”System.Security.Permissions.RegistryPermission,

mscorlib, Version=1.0.5000.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089”

version=”1” Unrestricted=”true”/>
<IPermission class=”System.Security.Permissions.SecurityPermission,

mscorlib, Version=1.0.5000.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089”

version=”1”
Flags=”Assertion, UnmanagedCode, Execution, ControlThread, ControlEvidence,

ControlPolicy, SerializationFormatter, ControlDomainPolicy,
ControlPrincipal, ControlAppDomain, RemotingConfiguration,
Infrastructure”/>

<IPermission class=”System.Security.Permissions.UIPermission,
mscorlib, Version=1.0.5000.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089”

version=”1” Unrestricted=”true”/>
<IPermission class=”System.Net.DnsPermission, System, Version=1.0.3300.0,

Culture=neutral, PublicKeyToken=b77a5c561934e089”
version=”1” Unrestricted=”true”/>

<IPermission class=”System.Drawing.Printing.PrintingPermission,
System.Drawing, Version=1.0.5000.0, Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a”

version=”1” Unrestricted=”true”/>
<IPermission class=”System.Diagnostics.EventLogPermission, System,

426

Chapter 14

17 557599 Ch14.qxd 4/29/04 11:25 AM Page 426

Version=1.0.5000.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089”

version=”1” Unrestricted=”true”/>
<IPermission class=”System.Net.SocketPermission, System, Version=1.0.5000.0,

Culture=neutral, PublicKeyToken=b77a5c561934e089”
version=”1” Unrestricted=”true”/>

<IPermission class=”System.Net.WebPermission, System, Version=1.0.5000.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089”

version=”1” Unrestricted=”true”/>
<IPermission class=”System.Diagnostics.PerformanceCounterPermission, System,

Version=1.0.5000.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089”

version=”1” Unrestricted=”true”/>
<IPermission class=”System.DirectoryServices.DirectoryServicesPermission,

System.DirectoryServices, Version=1.0.5000.0,
Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”

version=”1” Unrestricted=”true”/>
<IPermission class=”System.Messaging.MessageQueuePermission, System.Messaging,

Version=1.0.5000.0, Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a”

version=”1” Unrestricted=”true”/>
<IPermission class=”System.ServiceProcess.ServiceControllerPermission,

System.ServiceProcess, Version=1.0.5000.0, Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a”

version=”1” Unrestricted=”true”/>
<IPermission class=”System.Data.OleDb.OleDbPermission, System.Data,

Version=1.0.5000.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089”

version=”1” AllowBlankPassword=”False” Unrestricted=”true”/>
<IPermission class=”System.Data.SqlClient.SqlClientPermission, System.Data,

Version=1.0.5000.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089”

version=”1” AllowBlankPassword=”False” Unrestricted=”true”/>
</PermissionSet>

To view all permission sets in XML format, you can use this command:

>caspol.exe -listpset

If you want to give a new definition to an existing permission set by applying an XML PermissionSet
configuration file, you can use this command:

>caspol.exe –chgpset permissionset.xml MyCustomPermissionSet

Distributing Code Using a Strong Name
.NET provides the ability to match an assembly to a code group when the assembly’s identity and
integrity have been confirmed using a strong name. This scenario is very common when assemblies are
being deployed across networks, for example, distributing software over the Internet.

If you are a software company, and you want to provide code to your customers via the Internet, you
build an assembly and give it a strong name. The strong name ensures that the assembly can be uniquely

427

.NET Security

17 557599 Ch14.qxd 4/29/04 11:25 AM Page 427

identified, and also provides protection against tampering. Your customers can incorporate this strong
name into their code access security policy; an assembly that matches this unique strong name can then
be assigned permissions explicitly. As we discussed in Chapter 13, the strong name includes checksums
for hashes of all the files within an assembly, so we have strong evidence that the assembly has not been
altered since the publisher created the strong name.

Note that, if your application uses an installer, the installer will install assemblies that have already been
given a strong name. The strong name is generated once for each distribution before being sent to cus-
tomers; the installer does not run these commands. The reason for this is that the strong name provides
an assurance that the assembly has not been modified since it left your company; a common way to
achieve this is to give your customer not only the application code, but also, separately, a copy of the
strong name for the assembly. You might find it beneficial to pass the strong name to your customer
using a secure form (perhaps fax or encrypted e-mail) to guard against the assembly being tampered
with in the process.

Let’s look at an example where an assembly with a strong name is created to distribute it in such a way
that the recipient of the assembly can use the strong name to grant the FullTrust permission to the
assembly.

First, a key pair is needed, because strong names make use of public key encryption. The public and pri-
vate keys are stored in the file we specify and are used to sign the strong name. To create a key pair, use
the Strong Name utility (sn.exe), which in addition to helping us create key pairs can also be used to
manage keys and strong names. Create a key file by typing the following command:

>sn.exe –k key.snk

Then place the key file key.snk in the project folder and add the key to the code using an assembly
attribute. After you have added this attribute to the file AssemblyInfo.cs, you have to rebuild the assem-
bly. The recompilation ensures the hash is recalculated and the assembly is protected against malicious
modifications.

[assembly: AssemblyKeyFileAttribute(“../../key.snk”)]

The assembly has now been compiled and signed; it has a unique identifying strong name. Now you can
create a new code group on the machine where we want the assembly to execute, which has a member-
ship condition that requires a match for the strong name of the assembly.

The following command states that a new code group is created using the strong name from the speci-
fied assembly manifest file, that the code group is independent of the version number of the assembly,
and that the code group has granted the FullTrust permissions:

>caspol.exe -addgroup 1 -strong -file \bin\debug\SecurityApp10.exe -noname -
noversion FullTrust

In this example the application will now run from any zone, even the Internet zone, because the strong
name provides powerful evidence that the assembly can be trusted. If we look at our code groups using
caspol.exe -listgroups, you’ll see the new code group (1.6 and its associated public key in hexadecimal):

Code Groups:

1. All code: Nothing

428

Chapter 14

17 557599 Ch14.qxd 4/29/04 11:25 AM Page 428

1.1. Zone - MyComputer: FullTrust
1.1.1. StrongName -

002400000480000094000000060200000024000052534131000400000100010007D1FA57C4AED9F0A32
E84AA0FAEFD0DE9E8FD6AEC8F87FB03766C834C99921EB23BE79AD9D5DCC1DD9AD236132102900B723C
F980957FC4E177108FC607774F29E8320E92EA05ECE4E821C0A5EFE8F1645C4C0C93C1AB99285D622CA
A652C1DFAD63D745D6F2DE5F17E5EAF0FC4963D261C8A12436518206DC093344D5AD293: FullTrust

1.1.2. StrongName - 00000000000000000400000000000000: FullTrust
1.2. Zone - Intranet: LocalIntranet

1.2.1. All code: Same site Web.
1.2.2. All code: Same directory FileIO - Read, PathDiscovery

1.3. Zone - Internet: Internet
1.3.1. All code: Same site Web.

1.4. Zone - Untrusted: Nothing
1.5. Zone - Trusted: Internet

1.5.1. All code: Same site Web.
1.6. StrongName -

0024000004800000940000000602000000240000525341310004000001000100D51335D1B5B64BE976A
D8B08030F8E36A0DBBC3EEB5F8A18D0E30E8951DA059B440281997D760FFF61A6252A284061C1D714EF
EE5B329F410983A01DB324FA85BCE6C4E6384A2F3BC1FFA01E2586816B23888CFADD38D5AA5DF041ACE
2F81D9E8B591556852E83C473017A1785203B12F56B6D9DC23A8C9F691A0BC525D7B7EA: FullTrust
Success

If you want to access the strong name in an assembly you can use the secutil.exe tool against the assem-
bly manifest file. Let’s use secutil.exe to view the strong name information for our assembly. Using the -
hex option, the public key is shown in hexadecimal (like caspol.exe); the argument -strongname specifies
that the strong name should be shown. Type this command, and you’ll see a listing containing the strong
name public key, the assembly name, and the assembly version:

>secutil.exe –hex –strongname securityapp10.exe
Microsoft (R) .NET Framework SecUtil 1.1.4322.573
Copyright (C) Microsoft Corporation 1998-2002. All rights reserved.

Public Key =
0x0024000004800000940000000602000000240000525341310004000001000100D51335D1B5B64BE97
6AD8B08030F8E36A0DBBC3EEB5F8A18D0E30E8951DA059B440281997D760FFF61A6252A284061C1D714
EFEE5B329F410983A01DB324FA85BCE6C4E6384A2F3BC1FFA01E2586816B23888CFADD38D5AA5DF041A
CE2F81D9E8B591556852E83C473017A1785203B12F56B6D9DC23A8C9F691A0BC525D7B7EA
Name =
SecurityApp10
Version =
1.0.1372.39648
Success

The curious among you might be wondering what the two strong name code groups installed by default
refer to. One is a strong name key for Microsoft code; the other strong name key is for the parts of .NET
that have been submitted to the ECMA for standardization, which Microsoft will have much less control
over.

Distributing Code Using Certificates
In the last section it was discussed how a strong name can be applied to an assembly so system adminis-
trators can explicitly grant permissions to assemblies that match that strong name using a code access

429

.NET Security

17 557599 Ch14.qxd 4/29/04 11:25 AM Page 429

group. Although this method of security policy management can be very effective, it’s sometimes neces-
sary to work at a higher level, where the administrator of the security policy grants permissions on the
basis of the publisher of the software, rather than each individual software component. You’ll probably
have seen a similar method used before when you have downloaded executables from the Internet that
have been Authenticode signed.

To provide information about the software publisher, you can make use of digital certificates and sign
assemblies so that consumers of the software can verify the identity of the software publisher. In a com-
mercial environment you would obtain a certificate from a company such as Verisign or Thawte.

The benefit of purchasing a certificate from a supplier such as this, rather than creating your own, is that
it provides high levels of trust in its authenticity; the supplier acts as a trusted third-party. For test pur-
poses however .NET includes a command line utility we can use to create a test certificate. The process
of creating certificates and using them to publish software is complex, but to give you a picture of what’s
involved we’ll walk through an example without going into too much detail; if we did this chapter
would be twice as long!

The sample will be made for the fictive company called ABC Corporation. With this company the soft-
ware product “ABC Suite” should be trusted. First off, create a test certificate by typing the following
command:

>makecert -sk ABC -n “CN=ABC Corporation” abccorptest.cer

The command creates a test certificate under the name “ABC Corporation” and saves it to a file called
abccorptest.cer. The -sk ABC argument creates a key container location, which is used by the public key
cryptography.

To sign the assembly with the certificate, use the signcode.exe utility on the assembly file containing the
assembly manifest. Often the easiest way to sign an assembly is to use the signcode.exe in its wizard
mode; to start the wizard, just type signcode.exe with no parameters.

When you click Next, The program asks you to specify where the file is that should be signed. For an
assembly, select the file containing the manifest, for example SecurityApp11.exe, and click the Next but-
ton. With the Signing Options page you have to select the Custom option to define the previously cre-
ated certificate file.

In the next dialog box you are asked to specify the certificate that should be used to sign the assembly.
Click Select from File and browse to the file abccorptest.cer. You will now see the confirmation screen
shown in Figure 14-10.

The following screen that appears asks you for our private key. This key file was created by the makecert
utility, so you can select the options as shown in Figure 14-11. The cryptographic service provider is an
application that implements the cryptographic standards (see Chapter 13).

430

Chapter 14

17 557599 Ch14.qxd 4/29/04 11:25 AM Page 430

Figure 14-10

Figure 14-11

Next you’re asked a series of questions about the encryption algorithm that should be used for signing
the assembly (md5 or sha1), the name and URL of the application, and a final confirmation dialog.

As the executable is now signed with the certificate, a recipient of the assembly has access to strong evi-
dence as to who published the software; the runtime can examine the certificate and match the publisher
of the assembly to a code group with high levels of confidence as to the identity of the code, because the
trusted third-party certifies the publisher’s identity.

431

.NET Security

17 557599 Ch14.qxd 4/29/04 11:25 AM Page 431

Let’s look at the signed assembly in a bit more detail. Although a test certificate is used, you can tem-
porarily configure .NET to treat test certificates more like trusted certificates issued by a trusted third-
party using the utility setreg.exe, which lets you configure public key and certificate settings in the
Registry. If you enter the following command, the machine will be configured to trust the test root cer-
tificate, which gives a more meaningful test environment:

>setreg.exe 1 true

The utility setreg.exe allows configuring to accept test certificates, enable or disable expiration dates on
certificates, and other certificate relevant options. When you are ready to reset the value, pass false as the
last parameter. You can check out the assembly and verify its trust level using the Certification
Verification Tool chktrust.exe utility:

>chktrust.exe securityapp11.exe

This command brings up the window shown in Figure 14-12. Note that chktrust.exe has successfully
confirmed the publisher of the software using the certificate, but also reminded us that, although the cer-
tificate has been verified, it is still a test certificate.

Figure 14-12

Let’s now turn our attention to a machine that we want to configure to trust software from the ABC
Corporation. To do this you can create a new code access group that matches this software from ABC
Corporation. You just have to grab a hexadecimal representation of the certificate from the assembly
using the secutil.exe tool:

>secutil.exe –hex –x securityapp11.exe

This command results in the following output:

Microsoft (R) .NET Framework SecUtil 1.1.4322.573
Copyright (c) Microsoft Corp 1999-2002. All rights reserved.

X.509 Certificate =

432

Chapter 14

17 557599 Ch14.qxd 4/29/04 11:25 AM Page 432

0x308201BF30820169A00302010202104A1AF74BCB3F54BC4D1E30685397B68C300D06092A864886F70
D01010405003016311430120603550403130B526F6F74204167656E6379301E170D3033313030353039
313730305A170D3339313233313233353935395A301A311830160603550403130F41424320436F72706
F726174696F6E30819F300D06092A864886F70D010101050003818D0030818902818100E537F563C230
4ECDA2DBEC892DED389C3C17E36500F381BD96E1C76185420F4EEA46051AD6972139AC7F0BCE3A473F7
B9E1DA0DB5F19CCB0A1774C7065DF9E56E4EC6E1F301FEEA899BD7D37A66F8150A987CD105059B402DE
641FB635A7E122F70A1F766D4A2B5030B32BA5189E1C918B0EF9E87151DACA49EB0160B051815902030
10001A34B304930470603551D010440303E801012E4092D061D1D4F008D6121DC166463A11830163114
30120603550403130B526F6F74204167656E6379821006376C00AA00648A11CFB8D4AA5C35F4300D060
92A864886F70D010104050003410076FB204253DCA01C5B992DDCCC3CD26F0910E8EDA1C19552491492
8C1916FCD67E6093238152C50EDEBA9476983A9E660DD4849EFE3CFF3A5D2C09B7D4B9585E
Success

Let’s now create the new code group and apply the FullTrust permission to assemblies published by the
ABC Corporation using this (rather long) command:

>caspol -addgroup 1 -pub –hex 0x308201BF30820169A00302010202104A1AF74BCB3F54BC4D1E
30685397B68C300D06092A864886F70D01010405003016311430120603550403130B526F6F742041676
56E6379301E170D3033313030353039313730305A170D3339313233313233353935395A301A31183016
0603550403130F41424320436F72706F726174696F6E30819F300D06092A864886F70D0101010500038
18D0030818902818100E537F563C2304ECDA2DBEC892DED389C3C17E36500F381BD96E1C76185420F4E
EA46051AD6972139AC7F0BCE3A473F7B9E1DA0DB5F19CCB0A1774C7065DF9E56E4EC6E1F301FEEA899B
D7D37A66F8150A987CD105059B402DE641FB635A7E122F70A1F766D4A2B5030B32BA5189E1C918B0EF9
E87151DACA49EB0160B05181590203010001A34B304930470603551D010440303E801012E4092D061D1
D4F008D6121DC166463A1183016311430120603550403130B526F6F74204167656E6379821006376C00
AA00648A11CFB8D4AA5C35F4300D06092A864886F70D010104050003410076FB204253DCA01C5B992DD
CCC3CD26F0910E8EDA1C195524914928C1916FCD67E6093238152C50EDEBA9476983A9E660DD4849EFE
3CFF3A5D2C09B7D4B9585E FullTrust

The parameters specify that the code group should be added at the top level (1.), and that the code
group membership condition is of the type Publisher, and the last parameter specifies the permission set
to grant (FullTrust). The command will ask for confirmation:

Microsoft (R) .NET Framework CasPol 1.1.4322.535
Copyright (C) Microsoft Corporation 1998-2002. All rights reserved.

The operation you are performing will alter security policy.
Are you sure you want to perform this operation? (yes/no)
y
Added union code group with “-pub” membership condition to the Machine level.
Success

The machine is now configured to trust fully all assemblies that have been signed with the certificate
from ABC Corporation. To confirm that, you can run a caspol.exe –lg command, which lists the new
code access group (1.7):

Security is ON
Execution checking is ON
Policy change prompt is ON

Level = Machine

Code Groups:

433

.NET Security

17 557599 Ch14.qxd 4/29/04 11:25 AM Page 433

1. All code: Nothing
1.1. Zone - MyComputer: FullTrust

1.1.1. StrongName -
002400000480000094000000060200000024000052534131000400000100010007D1FA57C4AED9F0A32
E84AA0FAEFD0DE9E8FD6AEC8F87FB03766C834C99921EB23BE79AD9D5DCC1DD9AD236132102900B723C
F980957FC4E177108FC607774F29E8320E92EA05ECE4E821C0A5EFE8F1645C4C0C93C1AB99285D622CA
A652C1DFAD63D745D6F2DE5F17E5EAF0FC4963D261C8A12436518206DC093344D5AD293: FullTrust

1.1.2. StrongName - 00000000000000000400000000000000: FullTrust
1.2. Zone - Intranet: LocalIntranet

1.2.1. All code: Same site Web.
1.2.2. All code: Same directory FileIO - Read, PathDiscovery

1.3. Zone - Internet: Internet
1.3.1. All code: Same site Web.

1.4. Zone - Untrusted: Nothing
1.5. Zone - Trusted: Internet

1.5.1. All code: Same site Web.
1.6. StrongName -

0024000004800000940000000602000000240000525341310004000001000100D51335D1B5B64BE976A
D8B08030F8E36A0DBBC3EEB5F8A18D0E30E8951DA059B440281997D760FFF61A6252A284061C1D714EF
EE5B329F410983A01DB324FA85BCE6C4E6384A2F3BC1FFA01E2586816B23888CFADD38D5AA5DF041ACE
2F81D9E8B591556852E83C473017A1785203B12F56B6D9DC23A8C9F691A0BC525D7B7EA: FullTrust

1.7. Publisher -
30818902818100E537F563C2304ECDA2DBEC892DED389C3C17E36500F381BD96E1C76185420F4EEA460
51AD6972139AC7F0BCE3A473F7B9E1DA0DB5F19CCB0A1774C7065DF9E56E4EC6E1F301FEEA899BD7D37
A66F8150A987CD105059B402DE641FB635A7E122F70A1F766D4A2B5030B32BA5189E1C918B0EF9E8715
1DACA49EB0160B05181590203010001: FullTrust: FullTrust
Success

As another check, let’s ask caspol.exe to tell us what code groups our assembly matches:

>caspol.exe –resolvegroup securityapp11.exe
Level = Enterprise

Code Groups:

1. All code: FullTrust

Level = Machine

Code Groups:
1. All code: Nothing

1.1. Zone - MyComputer: FullTrust
1.2. Publisher –

30818902818100E537F563C2304ECDA2DBEC892DED389C3C17E36500F381BD96E1C76185420F4EEA460
51AD6972139AC7F0BCE3A473F7B9E1DA0DB5F19CCB0A1774C7065DF9E56E4EC6E1F301FEEA899BD7D37
A66F8150A987CD105059B402DE641FB635A7E122F70A1F766D4A2B5030B32BA5189E1C918B0EF9E8715
1DACA49EB0160B05181590203010001: FullTrust

Level = User

Code Groups:

1. All code: FullTrust

Success

434

Chapter 14

17 557599 Ch14.qxd 4/29/04 11:25 AM Page 434

In the center of the results we can see that the assembly has been successfully matched to our new code
group and granted the FullTrust permission set.

Managing Zones
Earlier we talked about the zones that Windows provides and that we manage using Internet Explorer’s
security tools. The four zones that can be managed in this way are:

❑ Internet specifies all Web sites that you haven’t placed in other zones.

❑ Intranet specifies all Web sites that are on your organization’s intranet.

❑ Trusted Sites specifies Web sites that you trust not to damage your data.

❑ Restricted Sites specifies Web sites that could potentially damage your computer.

These settings are managed from within Internet Explorer because they apply to sites visited using the
browsers that access .NET code (whether downloaded, or in page controls). If you are using a non-
Microsoft browser, it will most likely not support .NET code, and so there will be no options to manage
the associated zones.

Any user on a machine can alter the zone settings; however, the security settings for the zones that they
specify only apply to their account. That is, it is not possible for one user to alter another user’s zone set-
tings. That said, there is a risk, because users might alter the zone settings without understanding what
they are doing and inadvertently open their machines up to attack.

To alter the settings associated with each zone, open Internet Explorer and open the Internet Options
dialogue box from the Tools menu. In the Options box, move to the Security tab (see Figure 14-13).

Figure 14-13

435

.NET Security

17 557599 Ch14.qxd 4/29/04 11:25 AM Page 435

At the top you can see the four zones. When you select one of the zones, you can use the Sites button to
specify sites that you want included in that zone. For example, if you want to configure the Local
intranet zone, use the dialog box that is shown in Figure 14-14. The options here give you enough scope
to accurately define what constitutes the intranet in your organization. In addition, the Advanced button
gives you access to a dialog box where you can specify URIs for particular sites you want to include in
the Local intranet zone (see Figure 14-15).

Figure 14-14

Figure 14-15

Note the option at the bottom of this dialogue box, which is provided for each of the zones except the
Internet zone. It allows you to specify that you only trust sites in this zone when they are accessed over
secure HTTP using Secure Sockets Layer (SSL) encryption. If you trust a site that is accessed over an
unencrypted connection, you are potentially risking an attack because your traffic might be intercepted.
If you want to verify that a site is held within a specific zone, visit the site and look at the bottom right-
hand corner of the Internet Explorer window, which displays the name of the zone for the Web address
you are currently viewing.

In addition to specifying the scope of the zone by detailing sites you trust or do not trust, you can also
specify what actions are permitted within each zone using the security-level settings. These settings
enable you to specify whether a prompt should be given for ActiveX controls, and whether cookies are
accepted.

436

Chapter 14

17 557599 Ch14.qxd 4/29/04 11:25 AM Page 436

Summary
In this chapter, we’ve covered how assemblies are matched to code groups, and how those code groups
are assigned permissions by the security policy at the user, enterprise, and machine levels, and we’ve
seen how we can use tools to manage this policy. We’ve also seen how, for an assembly to execute, it
must have the relevant permissions at the three policy levels, as well as the correct role-based permis-
sions and the relevant Windows account permissions. We’ve also looked at the options available to us in
distributing code using strong names and digital certificates.

Clearly, there are more security checks in place with .NET than we have seen before on Windows, and
much of the security comes “for free” as we do not need to do much to make use of it at the basic level.
However, when we do want to extend it, we are provided with the classes and frameworks to do that.

Security is an ongoing challenge, and although Microsoft has not solved all the problems, the managed
security environment provided by .NET is a significant step in the right direction because it provides a
framework within which code is challenged before it executes. It’s no coincidence that these develop-
ments are occurring at a time when Microsoft is moving toward distributing its products over the Web.

437

.NET Security

17 557599 Ch14.qxd 4/29/04 11:25 AM Page 437

17 557599 Ch14.qxd 4/29/04 11:25 AM Page 438

Threading

In this chapter, we look at the support that C# and the .NET base classes offer for developing
applications that employ the use of multiple threads. We briefly examine the Thread class,
through which much of the threading support takes place, and develop a couple of examples that
illustrate threading principles. Then we examine some of the issues that arise when we consider
thread synchronization. Due to the complexity of the subject, the emphasis is solely on under-
standing some of the basic principles involved through some simple sample applications. This
chapter focuses on:

❑ How to start a thread

❑ Providing thread priorities

❑ Controlling access to objects through synchronization

By the end of the chapter, you will feel quite comfortable in working with threads in your code.
Let’s start by running through the basics of threading.

Threading
A thread is a sequence of execution in a program. All our C# programs up to this point have one
entry point—the Main() method. Execution starts with the first statement in the Main() method
and continues until that method returns.

This program structure is all very well for programs in which there is one identifiable sequence of
tasks, but often a program actually needs to be doing more than one thing at the same time; for
example, when you start up Internet Explorer and get increasingly frustrated with the time it takes
a page to load. Eventually, you get so fed up (if you’re like me, after about 2 seconds!) that you

18 557599 Ch15.qxd 4/29/04 11:33 AM Page 439

click the Back button or type in some other URL. For this to work, Internet Explorer must be doing at
least three things:

❑ Grabbing the data for the page as it is returned from the Internet, along with any accompanying
files

❑ Rendering the page

❑ Watching for any user input that might indicate the user wants Internet Explorer to do some-
thing else instead (for example, watching for button clicks)

The same situation applies to any case where a program is performing some task while at the same time
displaying a dialog box that gives you the chance to cancel the task at any time.

Let’s look at the example with Internet Explorer in more detail. We will simplify the problem by ignor-
ing the task of storing the data as it arrives from the Internet, and assume that Internet Explorer is sim-
ply faced with two tasks:

❑ Displaying the page

❑ Watching for user input

We will assume that this is a Web page that takes a long time to display; it might have some processor-
intensive JavaScript in it, or it might contain a marquee element in it that needs to be updated continu-
ally. One way that you can approach this situation is to write a method that does a little bit of work in
rendering the page. After a short time, let us say a twentieth of a second, the method checks to see if
there has been any user input. If so, the input is processed (which may mean canceling the rendering
task). Otherwise, the method carries on rendering the page for another twentieth of the second.

This approach works, but it is going to be a very complicated method to implement. Also, it totally
ignores the event-based architecture of Windows. Recall from our coverage of events from earlier in the
book that if any user input arrives, the system will want to notify the application by raising an event.
Let’s modify our method to allow Windows to use events:

❑ We will write an event handler that responds to user input. The response may include setting
some flag to indicate that rendering should stop.

❑ We will write a method that handles the rendering. This method is designed to be executed
whenever we are not doing anything else.

This solution is better, because it works with the Windows event architecture. However, look at what it
has to do. For starters, it will have to time itself carefully. While this method is running, the computer
cannot respond to any user input. That means this method will have to make a note of the time that it
gets called, continue monitoring the time as it works, and return as soon as a fairly suitable period of
time has elapsed (the absolute maximum to retain user responsiveness would be a bit less than a tenth of
a second). Furthermore, before this method returns, it will need to store the exact state it was at when it
was interrupted, so that the next time it is called it can carry on. It is certainly possible to write a method
that would do that, and in the days of Windows 3.1, that’s exactly what you would have had to do to
handle this sort of situation. Luckily, NT 3.1 and then Windows 95 brought multithreaded processes,
which provide a far more convenient solution to this type of problem.

440

Chapter 15

18 557599 Ch15.qxd 4/29/04 11:33 AM Page 440

Applications with Multiple Threads
The previous example illustrates the situation in which an application needs to do more than one thing,
so the obvious solution is to give the application more than one thread of execution. As we mentioned, a
thread represents the sequence of instructions that the computer executes. There is no reason why an
application should only have one such sequence. In fact, it can have as many as you want. All that is
required is that each time you create a new thread of execution, you indicate a method at which execu-
tion should start. The first thread in an application always starts at the Main() method because the first
thread is started by the .NET runtime, and Main() is the method that the .NET runtime selects.
Subsequent threads will be started internally by your application, which means that your application
chooses where those threads starts.

How Does This Work?
So far, we have spoken rather loosely about threads happening at the same time. In fact, one processor
can do only one thing at a time. If you have a multiprocessor system, then it is theoretically possible for
more than one instruction to be executed simultaneously—one on each processor. However, for the
majority of us who work on single-processor computers, things just don’t happen simultaneously. What
actually happens is that the Windows operating system gives the appearance of many processes taking
place at the same time by a procedure known as pre-emptive multitasking.

Pre-emptive multitasking means that Windows picks a thread in some process and allows that thread to
run for a short period of time. Microsoft has not documented the duration of this period, because it is
one of those internal operating system parameters that it wants to be free to tweak as Windows evolves
in order to maintain optimum performance. In any case, it is not the kind of information you need to
know to run the Windows applications. In human terms, this time is very short—certainly no more than
milliseconds. It is known as the thread’s time slice. When the time slice is finished, Windows takes con-
trol back and selects another thread, which will then be allocated a time slice. These time slices are so
short that we get the illusion of lots of things happening simultaneously.

Even when your application only has one thread, this process of pre-emptive multitasking is going on
because there are many other processes running on the system, and each process needs to be given time
slices for each of its threads. That’s how, when you have lots of windows on your screen, each one repre-
senting a different process, you can still click on any of them and have it appear to respond straight
away. The response isn’t instantaneous—it happens the next time that the thread in the relevant process
that is responsible for handling user input from that window gets a time slice. However, unless the sys-
tem is very busy, the wait before that happens is so short that you don’t notice it.

Manipulating Threads
Threads are manipulated using the class Thread, which can be found in the System.Threading names-
pace. An instance of Thread represents one thread, or one sequence of execution. You can create another
thread by simply instantiating another instance of the thread object.

Starting a Thread
To make the following code snippets more concrete, let’s suppose you are writing a graphics image edi-
tor, and the user requests to change the color depth of the image. For a large image this can take a while.
It’s the type of situation where you’d probably create a separate thread to do the processing so that you

441

Threading

18 557599 Ch15.qxd 4/29/04 11:33 AM Page 441

don’t tie up the user interface while the color depth change is happening. To start up a thread, you first
need to instantiate a thread object:

// entryPoint has been declared previously as a delegate
// of type ThreadStart
Thread depthChangeThread = new Thread(entryPoint);

Here we have given the variable the name depthChangeThread.

Additional threads that are created within an application in order to perform some task are often known
as worker threads.

The previous code shows that the Thread constructor requires one parameter, which is used to indicate
the entry point of the thread—that is, the method at which the thread starts executing. Since we are pass-
ing in the details of a method, this is a situation that calls for the use of delegates. In fact, a delegate has
already been defined in the System.Threading class. It is called ThreadStart, and its signature looks
like this:

public delegate void ThreadStart();

The parameter we pass to the constructor must be a delegate of this type.

After doing this, however, the new thread isn’t actually doing anything so far. It is simply sitting there
waiting to be started. We start a thread by calling the Thread.Start() method.

Suppose we have a method, ChangeColorDepth(), which does this processing:

void ChangeColorDepth()
{

// processing to change color depth of image
}

You would arrange for this processing to be performed with this code:

ThreadStart entryPoint = new ThreadStart(ChangeColorDepth);
Thread depthChangeThread = new Thread(entryPoint);
depthChangeThread.Name = “Depth Change Thread”;
depthChangeThread.Start();

After this point, both threads will run simultaneously.

In this code, we have also assigned a user-friendly name to the thread using the Thread.Name property
(see Figure 15-1). It’s not necessary to do this, but it can be useful.

Note that because the thread entry point (ChangeColorDepth() in this example) cannot take any
parameters, you will have to find some other means of passing in any information that the method
needs. The most obvious way would be to use member fields of the class this method is a member of.
Also, the method can not return anything. (Where would any return value be returned to? As soon as
this method returns a value, the thread that is running it will terminate, so there is nothing around to
receive any return value and we can hardly return it to the thread that invoked this thread, since that
thread will presumably be busy doing something else.)

442

Chapter 15

18 557599 Ch15.qxd 4/29/04 11:33 AM Page 442

Figure 15-1

Once you have started a thread, you can also suspend, resume, or abort it. Suspending a thread means
pausing the thread or putting it to sleep—the thread will simply not run for a period, which also means
it will not take up any processor time while it waits. It can later be resumed, which means it will simply
carry on from the point at which it was suspended. If a thread is aborted, then it will stop running alto-
gether. Windows will permanently destroy all data that it maintains relating to that thread, so the thread
subsequently can not be restarted after it is aborted.

Continuing with the image editor example, we will assume that for some reason the user interface
thread displays a dialog giving the user a chance to suspend temporarily the conversion process (it is not
usual for a user to want to do this, but it is only an example; a more realistic example might be the user
pausing the playing of a sound or video file). We code the response like this in the main thread:

depthChangeThread.Suspend();

If the user subsequently asks for the processing to resume, use this method:

depthChangeThread.Resume();

Finally, if the user (more realistically) decides against the conversion after all and chooses to cancel it,
use this method:

depthChangeThread.Abort();

Note that the Suspend() and Abort() methods do not necessarily work instantly. In the case of
Suspend(), .NET might allow the thread being suspended to execute a few more instructions in order to
reach a point at which .NET regards the thread as safely suspendable. This is for technical reasons—to
ensure the correct operation of the garbage collector (for details see the SDK documentation). In the case
of aborting a thread, the Abort() method actually works by throwing a ThreadAbortException in the
affected thread. ThreadAbortException is a special exception class that is never handled. This ensures
that any associated finally blocks are executed before the thread that is currently executing code inside
try blocks is killed. Furthermore, this ensures that any appropriate cleaning up of resources can be done
and also gives the thread a chance to make sure that any data it was manipulating (for example, fields of
a class instance that will remain around after the thread has been killed) is left in a valid state.

Prior to .NET, aborting a thread in this way was not recommended except in extreme cases because the
affected thread simply was killed immediately, which meant that any data it was manipulating could be
left in an invalid state, and any resources the thread was using would be left open. The exception mech-
anism used by .NET in this situation means that aborting threads is safer.

Main Thread

Thread.Start()
DepthChange Thread

443

Threading

18 557599 Ch15.qxd 4/29/04 11:33 AM Page 443

Although this exception mechanism makes aborting a thread safe, it does mean that aborting a thread
might actually take some time, since theoretically there is no limit on how long code in a finally block
could take to execute. Due to this, after aborting a thread, you might want to wait until the thread has
actually been killed before continuing any processing. You would really only wait if any of your subse-
quent processing relies on the other thread having been killed. You can wait for a thread to terminate by
calling the Join() method:

depthChangeThread.Abort();
depthChangeThread.Join();

Join() also has other overloads that allow you to specify a time limit on how long you are prepared to
wait. If the time limit is reached, then execution will continue anyway. If no time limit is specified, then
the thread that is waiting will wait for as long as it has to.

The previous code snippets will result in one thread performing actions on another thread (or at least in
the case of Join(), waiting for another thread). However, what happens if the main thread wants to
perform some actions on itself? In order to do this it needs a reference to a thread object that represents
its own thread. It can get such a reference using a static property, CurrentThread, of the Thread class:

Thread myOwnThread = Thread.CurrentThread;

Thread is actually a slightly unusual class to manipulate because there is always one thread present
even before you instantiate any others—the thread that you are currently executing. This means that
there are two ways that you can manipulate the class:

❑ You can instantiate a thread object, which will then represent a running thread, and whose
instance members apply to that running thread.

❑ You can call any of a number of static methods. These generally apply to the thread you are
actually calling the method from.

One static method you might want to call is Sleep(). This method puts the running thread to sleep for a
set period of time, after which it will continue.

The ThreadPlayaround Sample
To illustrate how to use threads, we will build a small sample program called ThreadPlayaround. The
aim of this example is to give us a feel for how manipulating threads works, so it is not intended to illus-
trate any realistic programming situations.

The core of the ThreadPlayaround sample is a short method, DisplayNumbers(), that counts up to a
large number, displaying every so often it’s current count. DisplayNumbers()starts by displaying the
name and culture of the thread that it is being run on:

static void DisplayNumbers()
{

Thread thisThread = Thread.CurrentThread;
string name = thisThread.Name;
Console.WriteLine(“Starting thread: “ + name);
Console.WriteLine(name + “: Current Culture = “ +

444

Chapter 15

18 557599 Ch15.qxd 4/29/04 11:33 AM Page 444

thisThread.CurrentCulture);
for (int i=1 ; i<= 8*interval ; i++)
{

if (i%interval == 0)
Console.WriteLine(name + “: count has reached “ + i);

}
}

The limit of the count depends on interval, which is a field whose value is typed in by the user. If the
user types in 100, then we will count up to 800, displaying the values 100, 200, 300, 400, 500, 600, 700,
and 800. If the user types in 1000 then we will count up to 8000, displaying the values 1000, 2000,
3000, 4000, 5000, 6000, 7000, and 8000 along the way, and so on. This might all seem like a pointless
exercise, but the purpose of it is to tie up the processor for a period while allowing us to see how far the
processor is progressing with its task.

ThreadPlayaround starts a second worker thread, which will run DisplayNumbers(), but immedi-
ately after starting the worker thread, the main thread begins executing the same method. This means
that we should see both counts happening at the same time.

The Main() method for ThreadPlayaround and its containing class looks like this:

class EntryPoint
{

static int interval;

static void Main()
{

Console.Write(“Interval to display results at?> “);
interval = int.Parse(Console.ReadLine());

Thread thisThread = Thread.CurrentThread;
thisThread.Name = “Main Thread”;

ThreadStart workerStart = new ThreadStart(StartMethod);
Thread workerThread = new Thread(workerStart);
workerThread.Name = “Worker”;
workerThread.Start();

DisplayNumbers();
Console.WriteLine(“Main Thread Finished”);

Console.ReadLine();
}

}

We have shown the start of the class declaration here so that we can see that interval is a static field of
this class. In the Main() method, we first ask the user for the interval. Then, we retrieve a reference to
the thread object that represents the main thread—this is done so that we can give this thread a name so
that we can see what’s going on in the output.

445

Threading

18 557599 Ch15.qxd 4/29/04 11:33 AM Page 445

Next, we create the worker thread, set its name, and start it off by passing it a delegate that indicates that
the method it must start in is a method called workerStart. Finally, we call the DisplayNumbers()
method to start counting. The entry point for the worker thread is this:

static void StartMethod()
{

DisplayNumbers();
Console.WriteLine(“Worker Thread Finished”);

}

Note that all these methods are static methods in the same class, EntryPoint. Note also that the two
counts take place entirely separately, since the variable i in the DisplayNumbers() method that is used
to do the counting is a local variable. Local variables are not only scoped to the method they are defined
in, but are also visible only to the thread that is executing that method. If another thread starts executing
the same method, than that thread will get its own copy of the local variables. We will start by running
the code, and selecting a relatively small value of 100 for the interval:

ThreadPlayaround
Interval to display results at?> 100
Starting thread: Main Thread
Main Thread: Current Culture = en-US
Main Thread: count has reached 100
Main Thread: count has reached 200
Main Thread: count has reached 300
Main Thread: count has reached 400
Main Thread: count has reached 500
Main Thread: count has reached 600
Main Thread: count has reached 700
Main Thread: count has reached 800
Main Thread Finished
Starting thread: Worker
Worker: Current Culture = en-US
Worker: count has reached 100
Worker: count has reached 200
Worker: count has reached 300
Worker: count has reached 400
Worker: count has reached 500
Worker: count has reached 600
Worker: count has reached 700
Worker: count has reached 800
Worker Thread Finished

As far as threads working in parallel are concerned, this doesn’t immediately look like it’s working too
well! We see that the main thread starts, counts up to 800, and then claims to finish. The worker thread
then starts and runs through separately.

The problem here is actually that starting a thread is a major process. After instantiating the new thread,
the main thread comes across this line of code:

workerThread.Start();

446

Chapter 15

18 557599 Ch15.qxd 4/29/04 11:33 AM Page 446

This call to Thread.Start()informs Windows that the new thread is to be started, then immediately
returns. While we are counting up to 800, Windows is busily making the arrangements for the thread to
be started. This internally means, among other things, allocating various resources for the thread, and
performing various security checks. By the time the new thread is actually starting up, the main thread
has already finished its work!

We can solve this problem by choosing a larger interval, so that both threads spend longer in the
DisplayNumbers() method. We’ll try 1000000 this time:

ThreadPlayaround
Interval to display results at?> 1000000
Starting thread: Main Thread
Main Thread: Current Culture = en-US
Main Thread: count has reached 1000000
Starting thread: Worker
Worker: Current Culture = en-US
Main Thread: count has reached 2000000
Worker: count has reached 1000000
Main Thread: count has reached 3000000
Worker: count has reached 2000000
Main Thread: count has reached 4000000
Worker: count has reached 3000000
Main Thread: count has reached 5000000
Main Thread: count has reached 6000000
Worker: count has reached 4000000
Main Thread: count has reached 7000000
Worker: count has reached 5000000
Main Thread: count has reached 8000000
Main Thread Finished
Worker: count has reached 6000000
Worker: count has reached 7000000
Worker: count has reached 8000000
Worker Thread Finished

Now we can see the threads really working in parallel. The main thread starts and counts up to one mil-
lion. At some point, while the main thread is counting the next million numbers, the worker thread
starts off, and from then on, the two threads progress at the same rate until they both finish.

It is important to understand that unless you are running a multi-processor computer, using two threads
in a CPU-intensive task will not have saved any time. On a single-processor machine, having both
threads count up to 8 million will have taken just as long as having one thread count up to 16 million.
Arguably, it will take slightly longer, since with the extra thread around, the operating system has to do
a little bit more thread switching, but this difference will be negligible. The advantage of using more
than one thread is two-fold. First, you gain responsiveness, in that one of the threads could be dealing
with user input while the other thread does some work behind the scenes. Second, you will save time if
at least one thread is doing something that doesn’t involve CPU time, such as waiting for data to be
retrieved from the Internet, because the other threads can carry out their processing while the inactive
thread(s) are waiting.

447

Threading

18 557599 Ch15.qxd 4/29/04 11:33 AM Page 447

Thread Priorities
What happens if you are going to have multiple threads running in your application, but some threads
are more important than others? For this, it is possible to assign different priorities to different threads
within a process. In general, a thread will not be allocated any time slices if there are any higher priority
threads working. The advantage of this is that you can guarantee user responsiveness by assigning a
slightly higher priority to a thread that handles receiving user input. For most of the time, such a thread
will have nothing to do, and the other threads can carry on their work. However, if the user does any-
thing, this thread will immediately take priority over other threads in your application for the short time
that it spends handling the event.

High priority threads can completely block threads of lower priority, so you should be careful when
changing thread priorities. The thread priorities are defined as values of the ThreadPriority enumera-
tion. The possible values are Highest, AboveNormal, Normal, BelowNormal, Lowest.

You should note that each process has a base priority, and that these values are relative to the priority of
your process. Giving a thread a higher priority might ensure that it gets priority over other threads in
that process, but there might still be other processes running on the system whose threads get an even
higher priority. Windows tends to give a higher priority to its own operating system threads.

We can see the effect of changing a thread priority by making the following change to the Main()
method in the ThreadPlayaround sample:

ThreadStart workerStart = new ThreadStart(StartMethod);
Thread workerThread = new Thread(workerStart);
workerThread.Name = “Worker”;

workerThread.Priority = ThreadPriority.AboveNormal;

workerThread.Start();

What we have done is indicate that the worker thread should have a slightly higher priority than the
main thread. The result is dramatic:

ThreadPlayaroundWithPriorities
Interval to display results at?> 1000000
Starting thread: Main Thread
Main Thread: Current Culture = en-US
Starting thread: Worker
Worker: Current Culture = en-US
Main Thread: count has reached 1000000
Worker: count has reached 1000000
Worker: count has reached 2000000
Worker: count has reached 3000000
Worker: count has reached 4000000
Worker: count has reached 5000000
Worker: count has reached 6000000
Worker: count has reached 7000000
Worker: count has reached 8000000
Worker Thread Finished
Main Thread: count has reached 2000000
Main Thread: count has reached 3000000

448

Chapter 15

18 557599 Ch15.qxd 4/29/04 11:33 AM Page 448

Main Thread: count has reached 4000000
Main Thread: count has reached 5000000
Main Thread: count has reached 6000000
Main Thread: count has reached 7000000
Main Thread: count has reached 8000000
Main Thread Finished

This shows that when the worker thread has an AboveNormal priority, the main thread scarcely gets a
look-in once the worker thread has started.

Synchronization
One crucial aspect of working with threads is the synchronization of access to any variables which more
than one thread has access to. Synchronization means that only one thread should be able to access the
variable at any one time. If we do not ensure that access to variables is synchronized, then subtle bugs
can result. In this section, we will briefly review some of the main issues involved.

What is synchronization?
The issue of synchronization arises because what looks like a single statement in your C# source code in
most cases will translate into many statements in the final compiled assembly language machine code.
Take, for example, the following statement:

message += “, there”; // message is a string that contains “Hello”

This statement looks syntactically in C# like one statement, but it actually involves a large number of
operations when the code is being executed. Memory will need to be allocated to store the new longer
string; the variable message will need to be set to refer to the new memory; the actual text will need to
be copied, and so on.

Obviously, we’ve exaggerated the case here by selecting a string—one of the more complex data types—
as our example, but even when performing arithmetic operations on primitive numeric types, there is
quite often more going on behind the scenes than you would imagine from looking at the C# code. In
particular, many operations cannot be carried out directly on variables stored in memory locations, and
their values have to be separately copied into special locations in the processor known as registers.

In a situation where a single C# statement translates into more than one native machine code command,
it is quite possible that the thread’s time slice might end in the middle of executing that statement pro-
cess. If this happens, then another thread in the same process might be given a time slice, and, if access
to variables involved with that statement (here: message) is not synchronized, this other thread might
attempt to read or write to the same variables. In our example, was the other thread intended to see the
new value of message or the old value?

The problems can get even worse than this. The statement we use in our example is relatively simple,
but in a more complicated statement, some variable might have an undefined value for a brief period,
while the statement is being executed. If another thread attempts to read that value in that instant, then
it might simply read garbage. More seriously, if two threads simultaneously try to write data to the same
variable, then it is almost certain that that variable will contain an incorrect value afterward.

449

Threading

18 557599 Ch15.qxd 4/29/04 11:33 AM Page 449

Synchronization is not an issue that affects the ThreadPlayAround sample, because both threads use
mostly local variables. The only variable that both threads have access to is the Interval field, but this
field is initialized by the main thread before any other thread starts, and subsequently only reads from
either thread, so there is still not a problem. Synchronization issues only arise if at least one thread is
writing to a variable while other threads are either reading or writing to it.

Fortunately, C# provides an extremely easy way of synchronizing access to variables, and the C# lan-
guage keyword that does it is lock. You use lock like this:

lock (x)
{

DoSomething();
}

What the lock statement does is wrap an object known as a mutual exclusion lock, or mutex, around the
variable in the round brackets. The mutex will remain in place while the compound statement attached
to the lock keyword is executed. While the mutex is wrapped around a variable, no other thread is per-
mitted access to that variable. We can see this with the above code; the compound statement will exe-
cute, and eventually this thread will lose its time slice. If the next thread to gain the time slice attempts to
access the variable x, access to the variable will be denied. Instead, Windows will simply put the thread
to sleep until the mutex has been released.

The mutex is the simplest of a number of mechanisms that can be used to control access to variables. We
don’t have the space to go into the others here, but we will mention that they are all controlled through
the .NET base class System.Threading.Monitor. In fact, the C# lock statement is simply a C# syntax
wrapper around a couple of method calls to this class.

In general, you should synchronize variables wherever there is a risk that any thread might try writing
to a variable at the same time as other threads are trying to read from or write to the same variable. We
don’t have space here to cover the details of thread synchronization, but we will point out that it is a
fairly big topic in its own right. Here, we will simply confine ourselves to pointing out a couple of the
potential pitfalls.

Synchronization issues
Synchronizing threads is vital in multithreaded applications. However, it’s an area in which it is impor-
tant to proceed carefully because a number of subtle and hard-to-detect bugs can easily arise, in particu-
lar deadlocks and race conditions.

Don’t Overuse Synchronization
While thread synchronization is important, it is important to use it only where it is necessary, because it
can impact performance for two reasons: First, there is some overhead associated with actually putting a
lock on an object and taking it off, though this is admittedly minimal. Second, and more importantly, the
more thread synchronization you have, the more threads can get held up waiting for objects to be
released. Remember that if one thread holds a lock on any object, any other thread that needs to access
that object will simply halt execution until the lock is released. It is important, therefore, that you place
as little code inside lock blocks as you can without causing thread synchronization bugs. In this sense,
you can think of lock statements as temporarily disabling the multithreading ability of an application,
and therefore temporarily removing all the benefits of multithreading.

450

Chapter 15

18 557599 Ch15.qxd 4/29/04 11:33 AM Page 450

However, the dangers of using synchronization too often (performance and responsiveness go down)
are not as great as the dangers associated with not using synchronization when you need it (subtle run-
time bugs that are very hard to track down).

Deadlocks
A deadlock (or a deadly embrace) is a bug that can occur when two threads have to access resources that
are locked by the other. Suppose one thread is running the following code, where a and b are two object
references that both threads have access to:

lock (a)
{

// do something

lock (b)
{

// do something
}

}

At the same time another thread is running this code:

lock (b)
{

// do something

lock (a)
{

// do something
}

}

Depending on the times that the threads come across the various statements, the following scenario is
quite possible: the first thread acquires a lock on a, while at about the same time the second thread
acquires a lock on b. A short time later, thread A comes across the lock(b) statement, and immediately
goes to sleep, waiting for the lock on b to be released. Soon afterward, the second thread comes across its
lock(a) statement and also puts itself to sleep, ready for Windows to wake it up the instant the lock on
a gets released. Unfortunately, the lock on a is never going to be released because the first thread, which
owns this lock, is sleeping and won’t wake up until the lock on b gets released, which won’t happen
until the second thread wakes up. The result is deadlock. Both threads just permanently sit there doing
nothing, each waiting for the other thread to release its lock. This kind of problem can cause an entire
application to just hang, so that you have no choice but to using the Task Manager to terminate the
entire process.

In this situation, it is not possible for another thread to release the locks; a mutual exclusion lock can
only be released by the thread that claims the lock in the first place.

Deadlocks can usually be avoided by having both threads claim locks on objects in the same order. In the
previous example, if the second thread claimed the locks in the same order as the first thread, a first,
then b, then whichever thread has the lock on a first would completely finish its task, then the other
thread would start. This way, no deadlock can occur.

451

Threading

18 557599 Ch15.qxd 4/29/04 11:33 AM Page 451

You might think that it is easy to avoid coding deadlocks—after all, in the previous example, it looks
fairly obvious that a deadlock could occur so you probably wouldn’t write that code in the first place.
However, remember that different locks can occur in different method calls. With this example, the first
thread might actually be executing this code:

lock (a)
{

// do bits of processing

CallSomeMethod()
}

Here, CallSomeMethod() might call other methods, and so on, and buried in there somewhere is a
lock(b) statement. In this situation, it might not be nearly so obvious when you write your code that
you are allowing a possible deadlock.

Race Conditions
A race condition is somewhat subtler than a deadlock. It rarely halts execution of a process, but it can lead
to data corruption. It is hard to give a precise definition of a race, but it generally occurs when several
threads attempt to access the same data, and do not adequately take account of what the other threads
are doing. Race conditions are best understood using an example.

Suppose we have an array of objects, where each element in the array needs to be processed somehow,
and we have a number of threads that are between them doing this processing. We might have an object,
let’s call it ArrayController, which contains the array of objects as well as an int that indicates how
many of them have been processed, and therefore, which one should be processed next.
ArrayController might implement this method:

public int GetObject(int index)
{

// returns the object at the given index.

}

It also implements this read/write property:

public int ObjectsProcessed
{

// indicates how many of the objects have been processed.

}

Now, each thread that is helping to process the objects might execute some code that looks like this:

lock(ArrayController)
{

int nextIndex = ArrayController.ObjectsProcessed;
Console.WriteLine(“Object to be processed next is “ + nextIndex);
++ArrayController.ObjectsProcessed;

452

Chapter 15

18 557599 Ch15.qxd 4/29/04 11:33 AM Page 452

object next = ArrayController.GetObject(nextIndex);
}
ProcessObject(next);

This by itself should work, but suppose that in an attempt to avoid tying up resources for longer than
necessary, we decide not to hold the lock on ArrayController while we’re displaying the user mes-
sage. Therefore, we rewrite the previous code like this:

lock(ArrayController)
{

int nextIndex = ArrayController.ObjectsProcessed;
}
Console.WriteLine(“Object to be processed next is “ + nextIndex);
lock(ArrayController)
{

++ArrayController.ObjectsProcessed;
object next = ArrayController.GetObject(nextIndex);

}
ProcessObject(next);

Here, we have a possible problem. What could happen is that one thread gets an object (say the 11th
object in the array), and displays the message saying that it is about to process this object. Meanwhile,
a second thread also starts executing the same code, calls ObjectsProcessed, and determines that
the next object to be processed is the 11th object, because the first thread hasn’t yet updated Array
Controller.ObjectsProcessed. While the second thread is happily writing to the console that it will
now process the 11th object, the first thread acquires another lock on the ArrayController and inside
this lock increments ObjectsProcessed. Unfortunately, it is too late. Both threads are now committed
to processing the same object— a text book example of a race condition.

For both deadlocks and race conditions, it is not often obvious when the condition can occur; and when
it does, it is hard to identify the bug. In general, this is an area where you largely learn from experience.
However, it is important to consider very carefully all the parts of the code where you need synchroniza-
tion when you are writing multithreaded applications to check whether there is any possibility of dead-
locks or race conditions arising. Keep in mind that you can not predict the exact times that different
threads will encounter different instructions.

Summary
In this chapter, we took a quick look at how to code applications that utilize multiple threads using the
System.Threading namespace. Using multithreading in your applications takes careful planning. Too
many threads can cause resource issues and not enough threads can cause your applications to seem
sluggish and to perform rather poorly.

The System.Threading namespace in the .NET Framework does allow you to manipulate threads;
however, this does not mean that the .NET Framework handles all the difficult tasks of multithreading
for you. You have to consider thread priority and synchronization issues. This chapter discussed these
issues and how to code for them in your C# applications. We also took a look at the problems associated
with deadlocks and race conditions.

Just remember, if you are going to use multithreading in your C# applications, that careful planning
should be a big part of your efforts.

453

Threading

18 557599 Ch15.qxd 4/29/04 11:33 AM Page 453

18 557599 Ch15.qxd 4/29/04 11:33 AM Page 454

Distributed Applications
with .NET Remoting

In this chapter we explore .NET Remoting. .NET Remoting can be used for accessing objects in
another application domain, for example on another server. .NET Remoting also offers calling
objects using the SOAP protocol. Last, but hardly least, .NET Remoting provides a faster format
for communication between .NET applications on the client and on the server side.

In this chapter we develop .NET Remoting objects, clients, and servers using the HTTP and TCP
channel with the SOAP and binary formatter. First, we define the channel and formatter program-
matically before we change the application to use configuration files instead, where only a few
.NET Remoting methods are required. We also write small programs to use .NET Remoting asyn-
chronously, and calling event handlers in the client application.

The .NET Remoting classes can be found in the namespace System.Runtime.Remoting and its
sub-namespaces. Many of these classes can be found in the core assembly mscorlib, and some
that are needed only for cross-network communication are available in the assembly
System.Runtime.Remoting.

The .NET Remoting topics we look at in this chapter include:

❑ An overview of .NET Remoting

❑ Contexts, which are used to group objects with similar execution requirements

❑ Implementing a simple remote object, client, and server

❑ The .NET Remoting architecture

❑ .NET Remoting configuration files

❑ Hosting .NET Remoting objects in ASP.NET

❑ Using Soapsuds to access the metadata of remote objects

19 557599 Ch16.qxd 4/29/04 11:36 AM Page 455

❑ Calling .NET Remoting methods asynchronously

❑ Calling methods in the client with the help of events

❑ Using the CallContext to automatically pass data to the server

Let’s begin with finding out what .NET Remoting is.

What Is .NET Remoting?
Many applications are not standalone applications that are running on a single system, but they use
some network communication technologies to invoke methods on a remote server. This is what .NET
Remoting is good for.

For communication with a client and a server application, different technologies can be used. You can
program your application by using sockets, or you can use some helper classes from the System.Net
namespace that make it easier to deal with protocols, IP addresses, and port numbers (see Chapter 31 for
details). Using this technology you always have to send data across the network. The data you send can
be your own custom protocol where the packet is interpreted by the server, so that the server knows
what methods should be invoked. You do not only have to deal with the data that is sent, it is also neces-
sary to create threads yourself.

Instead of sending data, you can invoke methods across the network in a server application. This is what
XML Web services and .NET Remoting offer. While XML Web services make use of the SOAP protocol to
ensure interoperability between different platforms, .NET Remoting has different goals.

The goals of .NET Remoting can be described with the application types and protocols that are sup-
ported, and by looking at the term CLR Object Remoting.

Application Types and Protocols
Some of the main features that can be assigned to .NET Remoting are that .NET Remoting can be used in
any application type over any transport, using any payload encoding. .NET Remoting is an extremely flexible
architecture.

Using SOAP and HTTP together is just one way to call remote objects. The transport channel is plug-
gable and can be replaced. With .NET 1.1 you get HTTP and TCP channels represented by the classes
HttpChannel and TcpChannel. You can build transport channels to use UDP, IPX, SMTP, a shared
memory mechanism, or message queuing—the choice is entirely yours.

Be aware that you have to turn the local Windows XP firewall off if you are using
Windows XP to start both client and server applications from this chapter. You can
do that in the Control Panel using the Network Connections item. Open the item,
select the Advanced option in the Properties of the Local Area Network or Dial Up
Connection panels or any other network type for which your system is configured
and on which you intend to run these applications.

456

Chapter 16

19 557599 Ch16.qxd 4/29/04 11:36 AM Page 456

The term pluggable is often used with .NET Remoting. Pluggable means that a specific part is designed
so that it can be replaced by a custom implementation.

The payload is used to transport the parameters of a method call. This payload encoding can also be
replaced. Microsoft delivers SOAP and binary encoding mechanisms. You can use either the SOAP for-
matter with the HTTP channel or HTTP with the binary formatter. Of course, both of these formatters
can also be used with the TCP channel.

Although SOAP is used with .NET Remoting—be aware that .NET Remoting only supports the SOAP
RPC style, while ASP.NET Web services supports both the DOC style (default) and the RPC style.

.NET Remoting not only enables you to use server functionality in every .NET application. You can use

.NET Remoting anywhere—regardless of whether you are building a console or a Windows application,
a Windows Service, or a COM+ component. .NET Remoting is also a good technology for peer-to-peer
communication.

CLR Object Remoting
CLR Object Remoting is an importing aspect of .NET Remoting. All of the language constructs, such as
constructors, delegates, interfaces, methods, properties, and fields can be used with remote objects. .NET
Remoting extends the CLR object functionality across the network. CLR Object Remoting deals with
activation, distributed identities, lifetimes, and call contexts.

This is a major difference to XML Web services. With XML Web services, the objects are abstracted, and
the client doesn’t need to know the object types of the server. Unlike .NET Remoting, XML Web services
are platform independent.

.NET Remoting Overview
.NET Remoting can be used for accessing objects in another application domain. .NET Remoting can
always be used whether the two objects live inside a single process, in separate processes, or on separate
systems.

Remote assemblies can be configured to work locally in the application domain or as part of a remote
application. If the assembly is part of the remote application, then the client receives a proxy to talk to
instead of the real object. The proxy is a representative of the remote object in the client process, used by
the client application to call methods. When the client calls a method in the proxy, the proxy sends a
message into the channel that is passed on to the remote object.

.NET applications work within an application domain. An application domain can be seen as a subpro-
cess within a process. Traditionally, processes were used as an isolation boundary. An application run-
ning in one process cannot access and destroy memory in another process. For applications to
communicate with each other, cross-process communication is needed. With .NET, the application
domain is the new safety boundary inside a process, because the MSIL code is type-safe and verifiable.
As we discussed in Chapter 13, different applications can run inside the same process but within differ-
ent application domains. Objects inside the same application domain can interact directly; a proxy is
needed in order to access objects in a different application domain.

457

Distributed Applications with .NET Remoting

19 557599 Ch16.qxd 4/29/04 11:36 AM Page 457

The following list provides an overview of the key elements of the architecture:

❑ A remote object is an object that’s running on the server. The client doesn’t call methods on this
object directly, but uses a proxy instead. With .NET it’s easy to distinguish remote objects from
local objects: every class that’s derived from MarshalByRefObject never leaves its application
domain. The client can call methods of the remote object via a proxy.

❑ A channel is used for communication between the client and the server. There are client and
server parts of the channel. .NET Framework 1.1 offers two channel types that communicate
via TCP or HTTP. You can also create a custom channel that communicates by using a different
protocol.

❑ Messages are sent into the channel. Messages are created for communication between the client
and the server. These messages hold the information about the remote object, the method name
called, and all of the arguments.

❑ The formatter defines how messages are transferred into the channel. With .NET Framework 1.1,
we have SOAP and binary formatters. The SOAP formatter can be used to communicate with
Web services that are not based on.NET Framework. Binary formatters are much faster and can
be used efficiently in an intranet environment. Of course, you also have the possibility to create
a custom formatter.

❑ A formatter provider is used to associate a formatter with a channel. By creating a channel, you
can specify what formatter provider to use, and this in turn defines the formatter that is used to
transfer the data into the channel.

❑ The client calls methods on a proxy instead of the remote object. There are two types of proxies:
the transparent proxy and the real proxy. To the client, the transparent proxy looks like the remote
object. On the transparent proxy, the client can call the methods implemented by the remote
objects. In turn, the transparent proxy calls the Invoke() method on the real proxy. The
Invoke() method uses the message sink to pass the message to the channel.

❑ A message sink, or sink for short, is an interceptor object. Interceptors are used on both the client
and the server. A sink is associated with the channel. The real proxy uses the message sink to
pass the message into the channel, so the sink can do some interception before the message goes
into the channel. Depending on where the sink is used, it is known as an envoy sink, a server
context sink, an object context sink, and so on.

❑ The client can use an activator to create a remote object on the server or to get a proxy of a
server-activated object.

❑ RemotingConfiguration is a utility class to configure remote servers and clients. This class
can be used either to read configuration files, or to configure remote objects dynamically.

❑ ChannelServices is a utility class to register channels and then to dispatch messages to them.

Figure 16-1 shows a conceptual picture of how these pieces fit together.

When the client calls methods on a remote object, it actually calls methods on a transparent proxy
instead. The transparent proxy looks like the real object—it implements the public methods of the real
object. The transparent proxy knows about the public methods of the real object by using the reflection
mechanism to read the metadata from the assembly.

458

Chapter 16

19 557599 Ch16.qxd 4/29/04 11:36 AM Page 458

Figure 16-1

In turn, the transparent proxy calls the real proxy. The real proxy is responsible for sending the message
to the channel. The real proxy is pluggable; you can replace it with a custom implementation. A custom
implementation can be used to write a log, or to use another way to find a channel, and so on. The
default implementation of the real proxy locates the collection (or chain) of envoy sinks and passes the
message to the first envoy sink. An envoy sink can intercept and change the message. Examples of such
sinks are debugging sinks, security sinks, and synchronization sinks.

The last envoy sink sends the message into the channel. How the messages are sent over the wire
depends on the formatter. As previously stated, SOAP and binary formatters are available with .NET

Application Domain

Client

real proxy

envoy sink

transparent proxy

Channel

formatter

Hello()

Invokes()

Process
Message()

Serialize()

459

Distributed Applications with .NET Remoting

19 557599 Ch16.qxd 4/29/04 11:36 AM Page 459

Framework 1.1. The formatter, however, is also pluggable. The channel is responsible for either connect-
ing to a listening socket on the server or sending the formatted data. With a custom channel you can do
something different; you just have to implement the code and to do what’s necessary to transfer the data
to the other side.

Let’s continue with the server side as shown in Figure 16-2.

❑ The channel receives the formatted messages from the client and uses the formatter to unmar-
shal the SOAP or binary data into messages. Then the channel calls server-context sinks.

❑ The server-context sinks are a chain of sinks, where the last sink in the chain continues the call
to the chain of object-context sinks.

❑ The last object-context sink then calls the method in the remote object.

Figure 16-2

Note that the object context sinks are confined to the object context, and the server context sinks are con-
fined to the server context. A single server context sink can be used to access a number of object sinks.

.NET Remoting is extremely customizable: you can replace the real proxy, add sink objects, or replace
the formatter and channel. Of course, you can also use what’s already provided.

If you’re wondering about the overhead when going through these layers, there’s not much overhead if
nothing is happening in there. If you add your own functionality, the overhead will depend on that.

Contexts
Before we look at using .NET Remoting to build servers and clients that communicate across a network,
let’s look at the cases where a channel is needed inside an application domain: calling objects across
contexts.

If you’ve previously written COM+ components, you already know about COM+ contexts. Contexts in
.NET are very similar. A context is a boundary containing a collection of objects. Likewise, with a COM+
context, the objects in such a collection require the same usage rules that are defined by the context
attributes.

channel server context sink object context sink

remote object
Deserialize()

Process
Message()

Hello()

formatter

Process
Message()

460

Chapter 16

19 557599 Ch16.qxd 4/29/04 11:36 AM Page 460

As you already know, a single process can have multiple application domains. An application domain is
something like a subprocess with security boundaries. We discuss application domains in Chapter 13.

An application domain can have different contexts. A context is used to group objects with similar exe-
cution requirements. Contexts are composed from a set of properties and are used for interception: when
a context-bound object is accessed by a different context, an interceptor can do some work before the call
reaches the object. Examples where this can be used are for thread synchronization, transactions, and
security management.

A class that is derived from MarshalByRefObject is bound to the application domain. Outside the
application domain a proxy is needed to access the object. A class derived from ContextBoundObject
that is derived from MarshalByRefObject is bound to a context. Outside the context, a proxy is needed
to access the object.

Context-bound objects can have context attributes. A context-bound object without context attributes is
created in the context of the creator. A context-bound object with context attributes is created in a new
context or in the creator’s context if the attributes are compatible.

To further understand contexts you must familiarize yourself with these terms:

❑ Creating an application domain creates the default context in this application domain. If a new
object is instantiated that needs different context properties a new context is created.

❑ Context attributes can be assigned to classes derived from ContextBoundObject. You can
create a custom attribute class by implementing the interface IContextAttribute. The .NET
Framework has one context attribute class in the namespace System.Runtime.Remoting
.Contexts: SynchronizationAttribute.

❑ Context attributes define context properties that are needed for an object. A context property class
implements the interface IContextProperty. Active properties contribute message sinks to the
call chain. The class ContextAttribute implements both IContextProperty and
IContextAttribute, and can be used as a base class for custom attributes.

❑ A message sink is an interceptor for a method call. With a message sink method calls can be inter-
cepted. Properties can contribute to message sinks.

Activation
A new context is created if an instance of a class that’s created needs a context different from the calling
context. The attribute classes that are associated with the target class are asked if all the properties of the
current context are acceptable. If any of these properties are unacceptable, the runtime asks for all prop-
erty classes associated with the attribute class and creates a new context. The runtime then asks the
property classes for the sinks they want to install. A property class can implement one of the
IContributeXXXSink interfaces to contribute sink objects. There are several of these interfaces to go
with the variety of sinks.

Attributes and Properties
With context attributes the properties of a context are defined. A context attribute class primarily is an
attribute. You will find more about attributes in Chapter 10. Context attribute classes must implement

461

Distributed Applications with .NET Remoting

19 557599 Ch16.qxd 4/29/04 11:36 AM Page 461

the interface IContextAttribute. A custom context attribute class can derive from the class
ContextAttribute, because this class already has a default implementation of this interface.

With.NET Framework 1.1 there is one context attribute class:
System.Runtime.Remoting.Contexts.SynchronizationAttribute. The Synchronization
attribute defines synchronization requirements; it specifies the synchronization property that is needed
by the object. With this attribute you can specify that multiple threads cannot access the object concur-
rently, but the thread accessing the object can change.

With the constructor of this attribute you can set one of four values:

❑ NOT_SUPPORTED defines that the class should not be instantiated in a context where the syn-
chronization is set.

❑ REQUIRED specifies that a synchronization context is required.

❑ With REQUIRES_NEW always a new context is created.

❑ SUPPORTED means that it doesn’t matter what context we get, the object can live in it.

Communication between Contexts
How does the communication between contexts happen? The client uses a proxy instead of the real object.
The proxy creates a message that is transferred to a channel, and sinks can do interception. Does this
sound familiar? It ought to. The same mechanism is used for communication across different application
domains or different systems. A TCP or HTTP channel is not required for the communication across con-
texts, but a channel is used here too. CrossContextChannel can use the same virtual memory in both the
client and server sides of the channel, and formatters are not required for crossing contexts.

Remote Objects, Clients, and Servers
Before we step into the details of the .NET Remoting architecture, let’s look briefly at a remote object and
a very small, simple client-server application that uses this remote object. After that the required steps
and options are discussed in more detail.

Figure 16-3 shows the major classes of the classes in the client and server application. The remote object
that will be implemented is called Hello. HelloServer is the main class of the application on the
server, and HelloClient is for the client.

Remote Objects
Remote objects are needed for distributed computing. An object that should be called remotely from a
different system must be derived from System.MarshalByRefObject. MarshalByRefObject objects
are confined to the application domain in which they were created. This means that they are never passed
across application domains; instead a proxy object is used to access the remote object from another
application domain. The other application domain can live inside the same process, in another process,
or on another system.

462

Chapter 16

19 557599 Ch16.qxd 4/29/04 11:36 AM Page 462

Figure 16-3

A remote object has distributed identity. Because of this, a reference to the object can be passed to other
clients, and they will still access the same object. The proxy knows about the identity of the remote object.

The MarshalByRefObject class has, in addition to the inherited methods from the Object class, meth-
ods to initialize and to get the lifetime services. The lifetime services define how long the remote object
lives. Lifetime services and leasing features will be dealt with later in this chapter.

To see .NET Remoting in action, create a Class Library for the remote object. The class Hello derives
from System.MarshalByRefObject. In the constructor and destructor, a message is written to the con-
sole that provides information about the object’s lifetime. In addition, add the method Greeting() that
will be called from the client.

In order to distinguish easily between the assembly and the class in the following sections, give them
different names in the arguments of the method calls used. The name of the assembly is RemoteHello,
and the class is named Hello.

using System;

namespace Wrox.ProCSharp.Remoting
{

public class Hello : System.MarshalByRefObject
{

public Hello()
{

Console.WriteLine(“Constructor called”);
}
~Hello()
{

Console.WriteLine(“Destructor called”);

HelloClient

+Main()

HelloServer

+Main()

Hello

MarshallByRefObject

+Greeting()

463

Distributed Applications with .NET Remoting

19 557599 Ch16.qxd 4/29/04 11:36 AM Page 463

}

public string Greeting(string name)
{

Console.WriteLine(“Greeting called”);
return “Hello, “ + name;

}
}

}

A Simple Server
For the server create a new C# console application HelloServer. To use the TcpServerChannel class,
you have to reference the System.Runtime.Remoting assembly. It’s also required that you reference the
RemoteHello assembly that was created earlier.

In the Main() method a object of type System.Runtime.Remoting.Channels.Tcp
.TcpServerChannel is created with the port number 8086. This channel is registered with the
System.Runtime.Remoting.Channels.ChannelServices class to make it available for remote
objects. The remote object type is registered using System.Runtime.Remoting.RemotingConfiguration
.RegisterWellKnownServiceType. In the sample the type of the remote object class, the URI that is
used by the client, and a mode is specified. The mode WellKnownObject.SingleCall means that a
new instance is created for every method call; in the sample application no state is held in the remote
object.

.NET Remoting allows creating stateless and stateful remote objects. In the first example well-known
single-call objects that don’t hold state are used. The other object type is called client-activated. Client-
activated objects hold state. Later in this chapter, when looking at the object activation sequence, we dis-
cuss more details about these differences and show how these object types can be used.

After registration of the remote object, it is necessary to keep the server running until a key is pressed:

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Tcp;

namespace Wrox.ProCSharp.Remoting
{

public class HelloServer
{

public static void Main(string[] args)
{

TcpServerChannel channel = new TcpServerChannel(8086);
ChannelServices.RegisterChannel(channel);
RemotingConfiguration.RegisterWellKnownServiceType(

typeof(Hello), “Hi”, WellKnownObjectMode.SingleCall);
System.Console.WriteLine(“press return to exit”);
System.Console.ReadLine();

}
}

}

464

Chapter 16

19 557599 Ch16.qxd 4/29/04 11:36 AM Page 464

A Simple Client
The client is again a C# console application: HelloClient. With this project you also have to reference the
System.Runtime. Remoting assembly so that the TcpClientChannel class can be used. In addition, you
also have to reference the RemoteHello assembly. Although the object will be created on the remote
server, the assembly is needed on the client for the proxy to read the type information during runtime.

In the client program create a TcpClientChannel object that’s registered in ChannelServices. For the
TcpChannel you can use the default constructor, so a free port is selected. Next the Activator class is
used to return a proxy to the remote object. The proxy is of type System.Runtime.Remoting.Proxies
.__TransparentProxy. This object looks like the real object as it offers the same methods. The trans-
parent proxy uses the real proxy to send messages to the channel:

using System;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Tcp;

namespace Wrox.ProCSharp.Remoting
{

public class HelloClient
{

public static void Main(string[] args)
{

ChannelServices.RegisterChannel(new TcpClientChannel());
Hello obj = (Hello)Activator.GetObject(

typeof(Hello), “tcp://localhost:8086/Hi”);
if (obj == null)
{

Console.WriteLine(“could not locate server”);
return;

}
for (int i=0; i< 5; i++)
{

Console.WriteLine(obj.Greeting(“Christian”));
}

}
}

}

When you start the server and the client program Hello, Christian appears five times in the client
console. With your server console window you can see the output shown in Figure 16-4. As you can see,
for every method call a new instance gets created because the WellKnownObjectMode.SingleCall
activation mode was selected. Depending on timing and resources needed, you might also see some calls
to the destructor. If you start the client a few times you are sure to see some destructor calls.

465

Distributed Applications with .NET Remoting

19 557599 Ch16.qxd 4/29/04 11:36 AM Page 465

Figure 16-4

.NET Remoting Architecture
After a simple client and server in action is shown, we are going to discuss an overview of the .NET
architecture before we step into the details. Based on the previously created program we will look at the
details of the architecture and you will see mechanisms for extensibility.

In this section, we explore all the topics in this list:

❑ The functionality of a channel and how a channel can be configured

❑ Formatters and how they are used

❑ The utility classes ChannelServices and RemotingConfiguration

❑ Different ways to activate remote objects, and how stateless and stateful objects can be used
with .NET Remoting

❑ Functionality of message sinks

❑ How to pass objects by value and by reference

❑ Lifetime management of stateful objects with .NET Remoting leasing mechanisms

Channels
A channel is used to communicate between a .NET client and a server. .NET Framework 1.1 ships
with channel classes that communicate using TCP or HTTP. You can create custom channels for other
protocols.

The HTTP channel is used by most Web services. It uses the HTTP protocol for communication. Because
firewalls usually have port 80 opened so that the clients can access Web servers, .NET Remoting Web
services can listen to port 80 so that they can easily be used by these clients.

It’s also possible to use the TCP channel on the Internet, but here the firewalls must be configured so that
clients can access a specified port that’s used by the TCP channel. The TCP channel can be used to com-
municate more efficiently in an intranet environment compared to the HTTP channel.

466

Chapter 16

19 557599 Ch16.qxd 4/29/04 11:36 AM Page 466

When performing a method call on the remote object, the client channel object sends a message to the
remote channel object.

Both the server and the client application must create a channel. This code shows how a TcpServerChannel
can be created on the server side:

using System.Runtime.Remoting.Channels.Tcp;
...

TcpServerChannel channel = new TcpServerChannel(8086);

The port on which the TCP socket is listening is specified in the constructor argument. The server chan-
nel must specify a well-known port, and the client must use this port when accessing the server. For cre-
ating a TcpClientChannel on the client, however, it isn’t necessary to specify a well-known port. The
default constructor of TcpClientChannel chooses an available port, which is passed to the server at
connection-time so that the server can return data back to the client.

Creating a new channel instance immediately switches the socket to the listening state, which can be ver-
ified by typing netstat –a at the command line.

The HTTP channels can be used similarly to the TCP channels. We can specify the port where the server
can create the listening socket.

A server can listen to multiple channels. Here we are creating both an HTTP and a TCP channel in the
file HelloServer.cs:

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Tcp;
using System.Runtime.Remoting.Channels.Http;

namespace Wrox.ProCSharp.Remoting
{

public class HelloServer
{

public static void Main(string[] args)
{

TcpServerChannel tcpChannel = new TcpServerChannel(8086);
HttpServerChannel httpChannel = new HttpServerChannel(8085);

// register the channels
ChannelServices.RegisterChannel(tcpChannel);
ChannelServices.RegisterChannel(httpChannel);
//...

}

A channel class must implement the IChannel interface. The IChannel interface has these two properties:

❑ ChannelName is a read-only property that returns the name of the channel. The name of the
channel depends on the type; for example, the HTTP channel is named HTTP.

467

Distributed Applications with .NET Remoting

19 557599 Ch16.qxd 4/29/04 11:36 AM Page 467

❑ ChannelPriority is a read-only property. More than one channel can be used for communica-
tion between a client and a server. The priority defines the order of the channel. On the client,
the channel with the higher priority is chosen first to connect to the server. The bigger the prior-
ity value, the higher the priority. The default value is 1, but negative values are allowed to create
lower priorities.

Additional interfaces are implemented depending on whether the channel is a client channel or a server
channel. The server versions of the channels implement the IChannelReceiver interface, the client ver-
sions implement the IChannelSender interface.

The HttpChannel and TcpChannel classes can be used for both the client and the server. They imple-
ment IChannelSender and IChannelReceiver. These interfaces derive from IChannel.

The client-side IChannelSender has, in addition to IChannel, a single method called
CreateMessageSink(), which returns an object that implements IMessageSink. The IMessageSink
interface can be used for putting synchronous as well as asynchronous messages into the channel. With
the server-side interface IChannelReceiver, the channel can be put into listening mode using
StartListening(), and stopped again with StopListening(). The property ChannelData can be
used to access the received data.

You can get information about the configuration of the channels using properties of the channel classes.
For both channels, the properties ChannelName, a ChannelPriority, and a ChannelData are offered.
The ChannelData property can be used to get information about the URIs that are stored in the
ChannelDataStore class. With the HttpChannel there’s also a Scheme property. The following code
shows a helper method, ShowChannelProperties(), in our file HelloServer.cs that displays this
information:

protected static void ShowChannelProperties(IChannelReceiver channel)
{

Console.WriteLine(“Name: “ + channel.ChannelName);
Console.WriteLine(“Priority: “ + channel.ChannelPriority);
if (channel is HttpChannel)
{

HttpChannel httpChannel = channel as HttpChannel;
Console.WriteLine(“Scheme: “ + httpChannel.ChannelScheme);

}
ChannelDataStore data = (ChannelDataStore)channel.ChannelData;
foreach (string uri in data.ChannelUris)
{

Console.WriteLine(“URI: “ + uri);
}
Console.WriteLine();

}

The method ShowChannelProperties() is called after creating the channels in our Main() method.
Starting the server you will get the console output that is shown in Figure 16-5. As you can see here, the
default name for the TcpServerChannel is tcp, and the HTTP channel is called http. Both channels have
a default priority of 1. The ports that have been set with the constructors are seen in the URI. The URI of
the channels shows the protocol, IP address, and port number.

468

Chapter 16

19 557599 Ch16.qxd 4/29/04 11:36 AM Page 468

TcpServerChannel tcpChannel = new TcpServerChannel(8086);
ShowChannelProperties(tcpChannel);
HttpServerChannel httpChannel = new HttpServerChannel(8085);
ShowChannelProperties(httpChannel);

Figure 16-5

Setting channel properties
You can set all the properties of a channel in a list using the constructor
TcpServerChannel(IDictionary, IServerChannelSinkProvider). The Hashtable class imple-
ments IDictionary, so you can set the Name, Priority, and Port property with help of this class. In
order to use the Hashtable class you have to declare the use of the System.Collections namespace.

With the constructor of the class TcpServerChannel, you can pass a object that implements the inter-
face IServerChannelSinkProvider in addition to the IDictionary parameter. In the sample a
SoapServerFormatterSinkProvider is set instead of the BinaryServerFormatterSinkProvider,
which is the default of the TcpServerChannel. The default implementation of the
SoapServerFormatterSinkProvider class associates a SoapServerFormatterSink class with the
channel that uses a SoapFormatter object to convert the data for the transfer:

IDictionary properties = new Hashtable();
properties[“name”] = “TCP Channel with a SOAP Formatter”;
properties[“priority”] = “20”;
properties[“port”] = “8086”;
SoapServerFormatterSinkProvider sinkProvider =

new SoapServerFormatterSinkProvider();
TcpServerChannel tcpChannel =

new TcpServerChannel(properties, sinkProvider);
ShowChannelProperties(tcpChannel);

The new output from the server console shows the new properties of the TCP channel (see Figure 16-6).

Depending on the channel types, different properties can be specified. Both the TCP and the HTTP chan-
nel support the name and priority channel property that we used in our example. These channels also
support other properties such as bindTo, which specifies an IP address for binding that can be used if
the computer has multiple IP addresses configured. rejectRemoteRequests is supported by the TCP
server channel to allow client connections only from the local computer.

469

Distributed Applications with .NET Remoting

19 557599 Ch16.qxd 4/29/04 11:36 AM Page 469

Figure 16-6

Pluggability of a channel
A custom channel can be created to send the messages using a transport protocol other than HTTP or
TCP, or you can extend the existing channels:

❑ The sending part must implement the IchannelSender interface. The most important part is
the CreateMessageSink() method, which the client sends a URL, and with this a connection
to the server can be instantiated. Here a message sink must be created, which is then used by
the proxy to send messages to the channel.

❑ The receiving part must implement the IchannelReceiver interface. You have to start the lis-
tening in the ChannelData get property. Then you can wait in a separate thread to receive data
from the client. After unmarshaling the message, you can use
ChannelServices.SyncDispatchMessage() to dispatch the message to the object.

Formatters
The .NET Framework delivers two formatter classes:

❑ System.Runtime.Serialization.Formatters.Binary.BinaryFormatter

❑ System.Runtime.Serialization.Formatters.Soap.SoapFormatter

Formatters are associated with channels through formatter sink objects and formatter sink providers.

Both of these formatter classes implement the interface System.Runtime.Remoting.Messaging.
IRemotingFormatter, which defines the methods Serialize() and Deserialize() to transfer the
data to and from the channel.

The formatter is also pluggable. When you’re writing a custom formatter class, an instance must be asso-
ciated with the channel you want to use. This is done by using a formatter sink and a formatter sink
provider. The formatter sink provider, for example, SoapServerFormatterSinkProvider, can be
passed as an argument when creating a channel as we saw earlier. A formatter sink provider implements
the interface IServerChannelSinkProvider for the server, and IClientChannelSinkProvider for
the client. Both of these interfaces define a CreateSink() method where a formatter sink must be
returned. The SoapServerFormatterSinkProvider returns an instance of the class SoapServer
FormatterSink.

470

Chapter 16

19 557599 Ch16.qxd 4/29/04 11:36 AM Page 470

On the client side the SoapClientFormatterSink class uses the SyncProcessMessage() and
AsyncProcessMessage() methods of the SoapFormatter class to serialize the message. The
SoapServerFormatterSink class deserializes the message, again using the SoapFormatter class.

All these sink and provider classes can be extended and replaced with custom implementations.

ChannelServices and RemotingConfiguration
The ChannelServices utility class is used to register channels into the .NET Remoting runtime. With
this class you can also access all registered channels. This is extremely useful if configuration files are
used to configure the channel, because here the channel is created implicitly, as we will see later.

A channel is registered using the static method ChannelServices.RegisterChannel().

You can see here the server code to register our HTTP and TCP channels:

TcpChannel tcpChannel = new TcpChannel(8086);
HttpChannel httpChannel = new HttpChannel(8085);
ChannelServices.RegisterChannel(tcpChannel);
ChannelServices.RegisterChannel(httpChannel);

The ChannelServices utility class can now be used to dispatch synchronous and asynchronous mes-
sages, and to unregister specific channels. The RegisteredChannels property returns an IChannel
array of all the channels we registered. You can also use the GetChannel() method to get to a specific
channel by its name. With the help of ChannelServices you can write a custom administration utility
that manages our channels. Here is a small example that shows how the server channel can be stopped
from listening to incoming requests:

HttpServerChannel channel =(HttpServerChannel)ChannelServices.GetChannel(“http”);
channel.StopListening(null);

The RemotingConfiguration class is another .NET Remoting utility class. On the server side it’s used
to register remote object types for server-activated objects, and to marshal remote objects to a marshaled
object reference class ObjRef. ObjRef is a serializable representation of an object that’s sent over the
wire. On the client side, RemotingServices is used to unmarshal a remote object in order to create a
proxy from the object reference.

Here is the server-side code to register a well-known remote object type to the RemotingServices:

RemotingConfiguration.RegisterWellKnownServiceType(
typeof(Hello), // Type
“Hi”, // URI
WellKnownObjectMode.SingleCall); // Mode

The first argument of RegisterWellKnownServiceType(), typeof(Hello), specifies the type of the
remote object. The second argument, “Hi”, is the uniform resource identifier of the remote object that
the client uses to access the remote object. The last argument is the mode of the remote object. The mode
can be a value of the WellKnownObjectMode enumeration: SingleCall or Singleton.

471

Distributed Applications with .NET Remoting

19 557599 Ch16.qxd 4/29/04 11:36 AM Page 471

❑ SingleCall means that the object holds no state. With every call to the remote object a new
instance is created. A single-call object is created from the server with the
RemotingConfiguration.RegisterWellKnownServiceType() method, and a
WellKnownObjectMode.SingleCall argument. This is very efficient on the server because it
means that we don’t need to hold any resources for maybe thousands of clients.

❑ With a Singleton the object is shared for all clients of the server; typically, such object types can
be used if you want to share some data between all clients. This shouldn’t be a problem for
read-only data, but with read-write data you have to be aware of locking issues and scalability.
A singleton object is created by the server with the RemotingConfiguration.Register
WellKnownServiceType() method and a WellKnownObjectMode.Singleton argument. You
have to pay attention to locking of resources held by the singleton object; you have to make sure
that data can’t be corrupted when clients are accessing the singleton object concurrently, but you
also have to check that the locking is done efficiently enough so that the required scalability is
reached.

Server for client-activated objects
If a remote object should hold state for a specific client, you can use client-activated objects. In the next
section we will look at how to call server-activated or client-activated objects on the client side. On the
server side client-activated objects must be registered in a different way from server-activated objects.

Instead of calling RemotingConfiguration.RegisterWellKnownType(), you have to call
RemotingConfiguration.RegisterActivatedServiceType(). With this method, only the type is
specified, and not the URI. The reason for this is that for client-activated objects, the clients can instanti-
ate different object types with the same URI. The URI for all client-activated objects must be defined
using RemotingConfiguration.ApplicationName:

RemotingConfiguration.ApplicationName = “HelloServer”;
RemotingConfiguration.RegisterActivatedServiceType(typeof(Hello));

Object Activation
Clients can use and create remote Activator class. You can get a proxy to a server-activated or well-
known remote object using the GetObject() method. The CreateInstance() method returns a proxy
to a client-activated remote object.

Instead of using the Activator class, the new operator can also be used to activate remote objects. To
make this possible, the remote object must also be configured within the client using the
RemotingConfiguration class.

Application URL
In all activation scenarios, you have to specify a URL to the remote object. This URL is the same one
you’d use when browsing with a Web browser. The first part specifies the protocol followed by the
server name or IP address, the port number, and a URI that was specified when registering the remote
object on the server in this form:

protocol://server:port/URI

472

Chapter 16

19 557599 Ch16.qxd 4/29/04 11:36 AM Page 472

In the code samples two URL examples are used continuously in the code. With the URL, the protocol is
specified with http and tcp, the server name is localhost, the port numbers are 8085 and 8086, and
the URI is Hi, as follows:

http://localhost:8085/Hi
tcp://localhost:8086/Hi

Activating well-known objects
In the previous, simple client example well-known objects have been activated. Now we are going to
take a more detailed look at the activation sequence.

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Tcp;

// ...
TcpClientChannel channel = new TcpClientChannel();
ChannelServices.RegisterChannel(channel);

Hello obj = (Hello)Activator.GetObject(typeof(Hello),
“tcp://localhost:8086/Hi”);

GetObject() is a static method of the class System.Activator that calls RemotingServices
.Connect() to return a proxy object to the remote object. The first argument of this method specifies
the type of the remote object. The proxy implements all public and protected methods and properties,
so that the client can call these methods as it would on the real object. The second argument is the
URL to the remote object. Here the string tcp://localhost:8086/Hi is used. tcp is the protocol,
localhost:8086 is the hostname and the port number, and finally Hi is the URI of the object that is
specified using RemotingConfiguration.RegisterWellKnownServiceType().

Instead of using Activator.GetObject(), you can also use RemotingServices.Connect() directly:

Hello obj = (Hello)RemotingServices.Connect(typeof(Hello),
“tcp://localhost:8086/Hi”);

If you prefer to use the new operator to activate well-known remote objects, the remote object can be reg-
istered on the client using RemotingConfiguration.RegisterWellKnownClientType(). The argu-
ments needed here are similar: the type of the remote object and the URI. new doesn’t really create a new
remote object, it returns a proxy similar to Activator.GetObject() instead. If the remote object is reg-
istered with a flag WellKnownObjectMode.SingleCall, the rule always stays the same—the remote
object is created with every method call:

RemotingConfiguration.RegisterWellKnownClientType(typeof(Hello),
“tcp://localhost:8086/Hi”);

Hello obj = new Hello();

Activating client-activated objects
Remote objects can hold state for a client. Activator.CreateInstance() creates a client-activated
remote object. Using the Activator.GetObject() method, the remote object is created on a method

473

Distributed Applications with .NET Remoting

19 557599 Ch16.qxd 4/29/04 11:36 AM Page 473

call, and is destroyed when the method is finished. The object doesn’t hold state on the server. The situa-
tion is different with Activator.CreateInstance(). With the static CreateInstance() method an
activation sequence is started to create the remote object. This object lives until the lease time is expired
and a garbage collection occurs. We discuss the leasing mechanism later in this chapter.

Some of the overloaded Activator.CreateInstance() methods can only be used to create local
objects. To create remote objects a method is needed where it’s possible to pass activation attributes. One
of these overloaded methods is used in the example. This method accepts two string parameters, the first
is the name of the assembly and the second is the type, and a third parameter, an array of objects. The
channel and the object name are specified in the object array with the help of a UrlAttribute. To use
the UrlAttribute class the namespace System.Runtime.Remoting.Activation must be specified.

object[] attrs = {new UrlAttribute(“tcp://localhost:8086/HelloServer”) };
ObjectHandle handle = Activator.CreateInstance(

“RemoteHello”, “Wrox.ProCSharp.Remoting.Hello”, attrs);
if (handle == null)
{

Console.WriteLine(“could not locate server”);
return;

}
Hello obj = (Hello)handle.Unwrap();
Console.WriteLine(obj.Greeting(“Christian”));

Of course, for client-activated objects it’s again possible to use the new operator instead of the
Activator class. By doing this you have to register the client-activated object using
RemotingConfiguration.RegisterActivatedClientType(). In the architecture of client-activated
objects the new operator not only returns a proxy but also creates the remote object:

RemotingConfiguration.RegisterActivatedClientType(typeof(Hello),
“tcp://localhost:8086/HelloServer”);

Hello obj = new Hello();

Proxy objects
The Activator.GetObject() and Activator.CreateInstance() methods return a proxy to the
client. Actually, two proxies are used: the transparent proxy and the real proxy. The transparent proxy
looks like the remote object—it implements all public methods of the remote object. These methods just
call the Invoke() method of the RealProxy, where a message containing the method to call is passed.
The real proxy sends the message to the channel with the help of message sinks.

With RemotingServices.IsTransparentProxy(), you can check if our object is really a transparent
proxy. You can also get to the real proxy using RemotingServices.GetRealProxy(). Using the Visual
Studio .NET debugger, it’s now easy to see all the properties of the real proxy:

ChannelServices.RegisterChannel(new TCPChannel());
Hello obj = (Hello)Activator.GetObject(typeof(Hello),

“tcp://localhost:8086/Hi”);
if (obj == null)
{

Console.WriteLine(“could not locate server”);
return;

474

Chapter 16

19 557599 Ch16.qxd 4/29/04 11:36 AM Page 474

}
if (RemotingServices.IsTransparentProxy(obj))
{

Console.WriteLine(“Using a transparent proxy”);
RealProxy proxy = RemotingServices.GetRealProxy(obj);

// proxy.Invoke(message);
}

Pluggability of a proxy
The real proxy can be replaced with a custom proxy. A custom proxy can extend the base class
System.Runtime.Remoting.Proxies.RealProxy. The type of the remote object is received in the
constructor of the custom proxy. Calling the constructor of the RealProxy creates a transparent proxy in
addition to the real proxy. In the constructor, the registered channels can be accessed with the help of the
ChannelServices class to create a message sink IChannelSender.CreateMessageSink(). Besides
implementing the constructor, a custom channel has to override the Invoke() method. In Invoke() a
message is received that can be analyzed and sent to the message sink.

Messages
The proxy sends a message into the channel. On the server side, a method call can be made after analyz-
ing the message, so let’s look at messages.

.NET Framework has some message classes for method calls, responses, return messages, and so on.
What all the message classes have in common is that they implement the IMessage interface. This inter-
face has a single property: Properties. This property represents a dictionary with the IDictionary
interface which packages the URI to the object, MethodName, MethodSignature, TypeName, Args, and
CallContext.

Figure 16-7 shows the hierarchy of the message classes and interfaces. The message that is sent to the
real proxy is an object of type MethodCall. With the interfaces IMethodCallMessage and
IMethodMessage you can have easier access to the properties of the message than through the
IMessage interface. Instead of having to use the IDictionary interface, you have direct access to the
method name, the URI, the arguments, and so on. The real proxy returns a ReturnMessage to the trans-
parent proxy.

Figure 16-7

•interface•
iMessage

•interface•
iMethodMessage

•interface•
iMethodCallMessage

•interface•
iMethodReturnMessage

MethodCall MethodCallMessageWrapper MethodResponse ReturnMessageMethodReturnMessageWrapper

475

Distributed Applications with .NET Remoting

19 557599 Ch16.qxd 4/29/04 11:36 AM Page 475

Message Sinks
The Activator.GetObject() method calls RemotingServices.Connect() to connect to a well-
known object. In the Connect() method, an Unmarshal() happens where not only the proxy, but also
envoy sinks, are created. The proxy uses a chain of envoy sinks to pass the message to the channel. All
the sinks are interceptors that can change the messages and perform some additional actions such as cre-
ating a lock, writing an event, performing security checking, and so on.

All message sinks implement the interface IMessageSink. This interface defines one property and two
methods:

❑ The property NextSink is used by a sink to get to the next sink and pass the message along.

❑ For synchronous messages, SyncProcessMessage() is invoked by a previous sink or by
the remoting infrastructure. It has an IMessage parameter to send a message and to return a
message.

❑ For asynchronous messages, AsyncProcessMessage() is invoked by a previous sink in the
chain, or by the remoting infrastructure. AsyncProcessMessage() has two parameters: a mes-
sage and a message sink that receives the reply.

Let’s take a look at the three different message sinks available for use.

Envoy sink
You can get to the chain of envoy sinks using the IEnvoyInfo interface. The marshaled object reference
ObjRef has the EnvoyInfo property which returns the IEnvoyInfo interface. The envoy list is created
from the server context, so the server can inject functionality into the client. Envoys can collect identity
information about the client and pass that information to the server.

Server context sink
When the message is received on the server side of the channel, it is passed to the server context sinks.
The last of the server context sinks routes the message to the object sink chain.

Object sink
The object sink is associated with a particular object. If the object class defines particular context
attributes, context sinks are created for the object.

Passing Objects in Remote Methods
The parameter types of remote method calls aren’t just limited to basic data types, but can also be classes
that we define ourselves. For remoting three types of classes must be differentiated:

❑ Marshal-by-value classes—These classes are serialized through the channel. Classes that
should be marshaled must be marked with the [Serializable] attribute. Objects of these
classes don’t have a remote identity, because the complete object is marshaled through the chan-
nel, and the object that is serialized to the client is independent of the server object (or the other
way around). Marshal-by-value classes are also called unbound classes because they don’t have
data that depends on the application domain.

476

Chapter 16

19 557599 Ch16.qxd 4/29/04 11:36 AM Page 476

❑ Marshal-by-reference classes—These classes do have a remote identity. The objects are not
passed across the wire, but a proxy is returned instead. A class that is marshaled by reference
must derive from MarshalByRefObject. MarshalByRefObjects are known as application
domain–bound objects. A specialized version of MarshalByRefObject is ContextBoundObject:
the abstract class ContextBoundObject is derived from MarshalByRefObject. If a class is
derived from ContextBoundObject, a proxy is needed even in the same application domain
when context boundaries are crossed. Such objects are called context-bound objects, and they are
only valid in the creation context.

❑ Not-remotable classes—These are classes that are not serializable and don’t derive from
MarshalByRefObject. Classes of these types cannot be used as parameters in a remote object’s
public methods. These classes are bound to the application domain where they are created.
Non-remotable classes should be used if the class has a data member that is only valid in the
application domain, such as a Win32 file handle.

To see marshaling in action, change the remote object in order to send two objects to the client: the class
MySerialized will be sent marshal-by-value, the class MyRemote marshal-by-reference. In the methods
a message is written to the console so that you can verify if the call was made on the client or on the
server. In addition, the Hello class is extended to return a MySerialized and a MyRemote instance:

using System;

namespace Wrox.ProCSharp.Remoting
{

[Serializable]
public class MySerialized
{

public MySerialized(int val)
{

a = val;
}
public void Foo()
{

Console.WriteLine(“MySerialized.Foo called”);
}
public int A
{

get
{

Console.WriteLine(“MySerialized.A called”);
return a;

}
set
{

a = value;
}

}
protected int a;

}
public class MyRemote : System.MarshalByRefObject
{

public MyRemote(int val)

477

Distributed Applications with .NET Remoting

19 557599 Ch16.qxd 4/29/04 11:36 AM Page 477

{
a = val;

}
public void Foo()
{

Console.WriteLine(“MyRemote.Foo called”);
}
public int A
{

get
{

Console.WriteLine(“MyRemote.A called”);
return a;

}
set
{

a = value;
}

}
protected int a;

}

public class Hello : System.MarshalByRefObject
{

public Hello()
{

Console.WriteLine(“Constructor called”);
}
~Hello()
{

Console.WriteLine(“Destructor called”);
}
public string Greeting(string name)
{

Console.WriteLine(“Greeting called”);
return “Hello, “ + name;

}
public MySerialized GetMySerialized()
{

return new MySerialized(4711);
}
public MyRemote GetMyRemote()
{

return new MyRemote(4712);
}

}
}

The client application also needs to be changed to see the effects when using marshaled-by-value and
marshaled-by-reference objects. Invoke the methods GetMySerialized() and GetMyRemote() to
retrieve the new objects. Also make use of the method RemotingServices.IsTransparentProxy() to
check if the returned object is a proxy or not.

478

Chapter 16

19 557599 Ch16.qxd 4/29/04 11:36 AM Page 478

ChannelServices.RegisterChannel(new TcpChannel());
Hello obj = (Hello)Activator.GetObject(typeof(Hello),

“tcp://localhost:8086/Hi”);
if (obj == null)
{

Console.WriteLine(“could not locate server”);
return;

}
MySerialized ser = obj.GetMySerialized();
if (!RemotingServices.IsTransparentProxy(ser))
{

Console.WriteLine(“ser is not a transparent proxy”);
}
ser.Foo();
MyRemote rem = obj.GetMyRemote();
if (RemotingServices.IsTransparentProxy(rem))
{

Console.WriteLine(“rem is a transparent proxy”);
}
rem.Foo();

In the client console window (see Figure 16-8), you can see that the ser object is called on the client. This
object is not a transparent proxy because it’s serialized to the client. In contrast, the rem object on the
client is a transparent proxy. Methods called on this object are transferred to the server.

Figure 16-8

The server output (see Figure 16-9) reveals that the Foo() method is called with the remote object
MyRemote.

Figure 16-9

479

Distributed Applications with .NET Remoting

19 557599 Ch16.qxd 4/29/04 11:36 AM Page 479

Security and serialized objects
One important difference with .NET Remoting and ASP.NET Web services is how objects are marshaled.
With ASP.NET Web services, only the public fields and properties are transferred across the wire. .NET
Remoting uses a different serialization mechanism to serialize all data, including all private data.
Malicious clients could use the serialization and deserialization phases to harm the application.

To take this problem into account, .NET 1.1 changed the behavior passing objects across .NET Remoting
boundaries to define two automatic deserialization levels: low and full.

By default, low-level deserialization is used. With low-level deserialization it is not possible to pass
ObjRef objects, and objects that implement the ISponsor interface. To make this possible, you can
change the deserialization level to full. You can do this programmatically by creating a formatter sink
provider, and assign the property TypeFilterLevel. For the binary formatter, the provider class is
BinaryServerFormatterSinkProvider, whereas for the SOAP formatter the provider class is
SoapServerFormatterSinkProvider.

The following code shows how you can create a TCP channel with full serialization support.

BinaryServerFormatterSinkProvider serverProvider =
new BinaryServerFormatterSinkProvider();

serverProvider.TypeFilterLevel = TypeFilterLevel.Full;

BinaryClientFormatterSinkProvider clientProvider =
new BinaryClientFormatterSinkProvider();

IDictionary props = new Hashtable();
props[“port”] = 6789;

TcpChannel channel = new TcpChannel(props, clientProvider, serverProvider);

At first, a BinaryServerFormatterSinkProvider is created where the property TypeFilterLevel is
set to TypeFilterLevel.Full. The enumeration TypeFilterLevel is defined in the namespace
System.Runtime.Serialization.Formatters, so you have to declare this namespace. For the client
side of the channel, a BinaryClientFormatterSinkProvider is created. Both the client-side and the
server-side formatter sink provider instances are passed to the constructor of the TcpChannel, as well as
the IDictionary properties that define the attributes of the channel.

Directional attributes
Remote objects are never transferred over the wire, whereas value types and serializable classes are
transferred. Sometimes the data should be sent only in one direction. This can be especially important
when the data is transferred over the network. For example, if you want to send data in a collection to
the server for the server to perform some calculation on this data and return a simple value to the client,
it would not be very efficient to send the collection back to the client. With COM it was possible to
declare directional attributes [in], [out], and [in, out] to the arguments if the data should be sent to
the server, to the client, or in both directions.

C# has similar attributes as part of the language: ref and out method parameters. The ref and out
method parameters can be used for value types and for reference types that are serializable. Using the

480

Chapter 16

19 557599 Ch16.qxd 4/29/04 11:36 AM Page 480

ref parameter, the argument is marshaled in both directions, out goes from the server to the client, and
using no parameter sends the data to the server.

You can read more about the out and ref keywords in Chapter 3.

Lifetime Management
How do a client and a server detect if the other side is not available anymore, and what are the problems
we might get into?

For a client, the answer can be simple. As soon as the client does a call to a method on the remote object
you get an exception of type System.Runtime.Remoting.RemotingException. You just have to han-
dle this exception and do what’s necessary, for example, perform a retry, write to a log, inform the user,
and so on.

What about the server? When does the server detect if the client is not around anymore, meaning that
the server can go ahead and clean up any resources it’s holding for the client? You could wait until the
next method call from the client—but maybe it will never arrive. In the COM realm, the DCOM protocol
used a ping mechanism. The client sent a ping to the server with the information about the object refer-
enced. A client can have hundreds of objects referenced on the server, and so the information in the ping
can be very large. To make this mechanism more efficient, DCOM didn’t send all the information about
all objects, but just the difference from the previous ping.

This ping mechanism was efficient on a LAN, but it is not suitable for scalable solutions—imagine thou-
sands of clients sending ping information to the server! .NET Remoting has a much more scalable solu-
tion for lifetime management: the Leasing Distributed Garbage Collector (LDGC).

This lifetime management is only active for client-activated objects and well-known singleton objects.
Single-call objects can be destroyed after every method call because they don’t hold state. Client-acti-
vated objects do have state and we should be aware of the resources used. For client-activated objects
that are referenced outside the application domain a lease is created. A lease has a lease time. When the
lease time reaches zero the lease expires and the remote object is disconnected and, finally, it is garbage-
collected.

Lease renewals
If the client calls a method on the object when the lease has expired, an exception is thrown. If you have
a client where the remote object could be needed for more than 300 seconds (the default value for lease
times), you have three ways to renew a lease:

❑ Implicit renewal—This renewal of the lease is automatically done when the client calls a
method on the remote object. If the current lease time is less than the RenewOnCallTime value,
the lease is set to RenewOnCallTime.

❑ Explicit renewal—With this renewal the client can specify the new lease time. This is done with
the Renew() method of the ILease interface. You can get to the ILease interface by calling the
GetLifetimeService() method of the transparent proxy.

481

Distributed Applications with .NET Remoting

19 557599 Ch16.qxd 4/29/04 11:36 AM Page 481

❑ Sponsoring renewal—In the case of this renewal the client can create a sponsor that imple-
ments the ISponsor interface and registers the sponsor in the leasing services using the
Register() method of the ILease interface. The sponsor defines the lease extension time.
When a lease expires the sponsor is asked for an extension of the lease. The sponsoring mecha-
nism can be used if you want long-lived remote objects on the server.

Leasing configuration values
Let’s look at the values that can be configured:

❑ LeaseTime defines the time until a lease expires.

❑ RenewOnCallTime is the time the lease is set on a method call if the current lease time has a
lower value.

❑ If a sponsor is not available within the SponsorshipTimeout, the remoting infrastructure looks
for the next sponsor. If there are no more sponsors, the lease expires.

❑ The LeaseManagerPollTime defines the time interval at which the lease manager checks for
expired objects.

The default values are listed in the following table.

Lease Configuration Default Value (seconds)

LeaseTime 300

RenewOnCallTime 120

SponsorshipTimeout 120

LeaseManagerPollTime 10

Classes used for lifetime management
The ClientSponsor class implements the ISponsor interface. It can be used on the client side for lease
extension. With the ILease interface you can get all information about the lease, all the lease properties,
and the current lease time and state. The state is specified with the LeaseState enumeration. With the
LifetimeServices utility class you can get and set the properties for the lease of all remote objects in
the application domain.

Getting lease information example
In this small code example the lease information is accessed by calling the GetLifetimeService()
method of the transparent proxy. For the ILease interface you have to declare the namespace System.
Runtime.Remoting.Lifetime.

The leasing mechanism can only be used with stateful (client-activated and singleton) objects. Single-call
objects are instantiated with every method call anyway, so the leasing mechanism doesn’t apply. To offer
client-activated objects with the server you can change the remoting configuration to a call to
RegisterActivatedServiceType() in the file HelloServer.cs:

482

Chapter 16

19 557599 Ch16.qxd 4/29/04 11:36 AM Page 482

RemotingConfiguration.ApplicationName = “Hello”;
RemotingConfiguration.RegisterActivatedServiceType(typeof(Hello));

In the client application the instantiation of the remote object must be changed, too. Instead of using the
method Activator.GetObject(), Activator.CreateInstance() is used to invoke client-activated
objects:

ChannelServices.RegisterChannel(new TcpChannel());

object[] attrs = {new UrlAttribute(“tcp://localhost:8086/Hello”) };
Hello obj = (Hello)Activator.CreateInstance(typeof(Hello), null, attrs);

To show the leasing time you can use the ILease interface that is returned by calling
GetLifetimeService() from the proxy object:

ILease lease = (ILease)obj.GetLifetimeService();
if (lease != null)
{

Console.WriteLine(“Lease Configuration:”);
Console.WriteLine(“InitialLeaseTime: “ +

lease.InitialLeaseTime);
Console.WriteLine(“RenewOnCallTime: “ +

lease.RenewOnCallTime);
Console.WriteLine(“SponsorshipTimeout: “ +

lease.SponsorshipTimeout);
Console.WriteLine(lease.CurrentLeaseTime);

}

Figure 16-10 shows the output you will see in the client console window.

Figure 16-10

Changing default lease configurations
The server itself can change the default lease configuration for all remote objects of the server using the
System.Runtime.Remoting.Lifetime.LifetimeServices utility class:

LifetimeServices.LeaseTime = TimeSpan.FromMinutes(10);
LifetimeServices.RenewOnCallTime = TimeSpan.FromMinutes(2);

483

Distributed Applications with .NET Remoting

19 557599 Ch16.qxd 4/29/04 11:36 AM Page 483

If you want different default lifetimes depending on the type of the remote object, you can change the
lease configuration of the remote object by overriding the InitializeLifetimeService() method of
the base class MarshalByRefObject:

public class Hello : System.MarshalByRefObject
{

public Hello()
{

Console.WriteLine(“Constructor called”);
}
~Hello()
{

Console.WriteLine(“Destructor called”);
}
public override Object InitializeLifetimeService()
{

ILease lease = (ILease)base.InitializeLifetimeService();
lease.InitialLeaseTime = TimeSpan.FromMinutes(10);
lease.RenewOnCallTime = TimeSpan.FromSeconds(40);
return lease;

}

The lifetime services configuration can also be done by using a configuration file as will be discussed next.

Miscellaneous .NET Remoting Features
In the final section of this chapter we explore the following .NET Remoting features:

❑ How application configuration files can be used to define remoting channels

❑ Hosting .NET Remoting Servers in a IIS Server by using the ASP.NET runtime

❑ Different ways to get the type information of the server for building the client with the utility
SOAPSuds

❑ Calling .NET Remoting methods asynchronously

❑ Implementing events to callback methods in the client

❑ Using call contexts to pass some data automatically to the server behind the scenes

Configuration Files
Instead of writing the channel and object configuration in the source code, you can use configuration
files. This way the channel can be reconfigured, additional channels can be added, and so on, without
changing the source code. Like all the other configuration files on the .NET platform, XML is used. The
same application and configuration files that you read about in Chapter 13 and in Chapter 14 are used
here, too. For .NET Remoting, there are some more XML elements and attributes to configure the chan-
nel and the remote objects. What’s different with the remoting configuration file is that this configura-
tion doesn’t need to be in the application configuration file itself; the file can have any name. For ease of
use in this chapter, we will write the Remoting configuration inside the application configuration files
that are named with a .config file extension after the filename of the executable.

484

Chapter 16

19 557599 Ch16.qxd 4/29/04 11:36 AM Page 484

The code download (from www.wrox.xom) contains the following example configuration files in the root
directory of the client and the server examples: clientactivated.config and wellknown.config. With the
client example you will also find the file wellknownhttp.config that specifies an HTTP channel to a well-
known remote object. To use these configurations, the files must be renamed as above and placed in the
directory containing the executable file.

Here is just one example of what such a configuration file might look like:

<configuration>
<system.runtime.remoting>

<application name=”Hello”>
<service>

<wellknown mode=”SingleCall”
type=”Wrox.ProCSharp.Remoting.Hello, RemoteHello”

objectUri=”Hi” />
</service>
<channels>

<channel ref=”tcp” port=”6791” />
<channel ref=”http” port=”6792” />

</channels>
</application>

</system.runtime.remoting>
</configuration>

<configuration> is the XML root element for all .NET configuration files. All the remoting configura-
tions can be found in the subelement <system.runtime.remoting>. <application> is a subelement
of <system.runtime.remoting>.

Let’s look at the main elements and attributes of the parts within <system.runtime.remoting>:

❑ With the <application> element you can specify the name of the application using the
attribute name. On the server side, this is the name of the server, and on the client side it’s the
name of the client application. As an example for a server configuration, <application
name=”Hello”> defines the remote application name Hello, which is used as part of the URL
by the client to access the remote object.

❑ On the server, the element <service> is used to specify a collection of remote objects. It can
have <wellknown> and <activated> subelements to specify the type of the remote object as
well-known or client-activated.

❑ The client part of the <service> element is <client>. Like the <service> element, it can have
<wellknown> and <activated> subelements to specify the type of the remote object. Unlike
the <service> counterpart, <client> has a url attribute to specify the URL to the remote
object.

❑ <wellknown> is a element that’s used on the server and the client to specify well-known remote
objects. The server part could look like this:

<wellknown mode=”SingleCall”
type=”Wrox.ProCSharp.Remoting.Hello, RemoteHello”

objectURI=”Hi” />

485

Distributed Applications with .NET Remoting

19 557599 Ch16.qxd 4/29/04 11:36 AM Page 485

While the mode attribute SingleCall or Singleton can be specified, the type is the type of the remote
class, including the namespace Wrox.ProCSharp.Remoting.Hello, followed by the assembly name
RemoteHello. objectURI is the name of the remote object that’s registered in the channel.

On the client, the type attribute is the same as it is for the server version. mode and objectURI are not
needed, but instead the url attribute is used to define the path to the remote object: protocol, hostname,
port number, application name, and the object URI:

<wellknown type=”Wrox.ProCSharp.Remoting.Hello, RemoteHello”
url=”tcp://localhost:6791/Hello/Hi” />

❑ The <activated> element is used for client-activated objects. With the type attribute the type
and the assembly must be defined for both the client and the server application:

<activated type=”Wrox.ProCSharp.Remoting.Hello, RemoteHello” />

❑ To specify the channel, the <channel> element is used. It’s a subelement of <channels> so that
a collection of channels can be configured for a single application. Its use is similar for clients
and servers. With the XML attribute ref we reference a channel name that is configured in the
configuration file machine.config. We will look into this file next. For the server channel you
have to set the port number with the XML attribute port. The XML attribute displayName is
used to specify a name for the channel that is used from the .NET Framework Configuration
tool, as we will discuss later in this chapter.

<channels>
<channel ref=”tcp” port=”6791” displayName=”TCP Channel” />
<channel ref=”http” port=”6792” displayName=”HTTP Channel” />

</channels>

Predefined channels in machine.config
Predefined channels can be found in the machine.config configuration file that you can find in the direc-
tory <windir>\Microsoft.NET\Framework\<version>\CONFIG. You can use these predefined chan-
nels in your application, or you can specify your own channel class.

In the XML file below you can see an extract of the machine.config file showing the predefined channels.
The <channel> element is used as a subelement of <channels> to define channels. Here the attribute
id specifies a name of a channel that can be referenced with the ref attribute. With the type attribute
the class of the channel is specified followed by the assembly; for example, the channel class
System.Runtime.Remoting.Channels.Http.HttpChannel can be found in the assembly
System.Runtime.Remoting. Because the System.Runtime.Remoting assembly is shared, the strong
name of the assembly must be specified with Version, Culture, and PublicKeyToken.

<system.runtime.remoting>
<!-- ... -->

<channels>
<channel id=”http” type=”System.Runtime.Remoting.Channels.Http.HttpChannel,

System.Runtime.Remoting, Version=1.0.5000.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089”/>

<channel id=”http client”
type=”System.Runtime.Remoting.Channels.Http.HttpClientChannel,
System.Runtime.Remoting, Version=1.0.5000.0, Culture=neutral,

486

Chapter 16

19 557599 Ch16.qxd 4/29/04 11:36 AM Page 486

PublicKeyToken=b77a5c561934e089”/>
<channel id=”http server”

type=”System.Runtime.Remoting.Channels.Http.HttpServerChannel,
System.Runtime.Remoting, Version=1.0.5000.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089”/>

<channel id=”tcp” type=”System.Runtime.Remoting.Channels.Tcp.TcpChannel,
System.Runtime.Remoting, Version=1.0.5000.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089”/>

<channel id=”tcp client”
type=”System.Runtime.Remoting.Channels.Tcp.TcpClientChannel,
System.Runtime.Remoting, Version=1.0.5000.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089”/>

<channel id=”tcp server”
type=”System.Runtime.Remoting.Channels.Tcp.TcpServerChannel,
System.Runtime.Remoting, Version=1.0.5000.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089”/>

</channels>
<!-- ... -->

<system.runtime.remoting>

Server configuration for well-known objects
This example file, Wellknown_Server.config, has the value Hello for the name property. In the configu-
ration file below the TCP channel is set to listen on port 6791, and the HTTP channel to listen on port
6792. The remote object class is Wrox.ProCSharp.Remoting.Hello in the assembly RemoteHello, the
object is called Hi in the channel, and the object mode SingleCall:

<configuration>
<system.runtime.remoting>

<application name=”Hello”>
<service>

<wellknown mode=”SingleCall”
type=”Wrox.ProCSharp.Remoting.Hello, RemoteHello”
objectUri=”Hi” />

</service>
<channels>

<channel ref=”tcp” port=”6791”
displayName=”TCP Channel (HelloServer)” />

<channel ref=”http” port=”6792”
displayName=”HTTP Channel (HelloServer)” />

</channels>
</application>

</system.runtime.remoting>
</configuration>

Client configuration for well-known objects
For well-known objects, you have to specify the assembly and the channel in the client configuration file
Wellknown_Client.config. The types for the remote object can be found in the RemoteHello assembly, Hi
is the name of the object in the channel, and the URI for the remote type Wrox.ProCSharp.Remoting.
Hello is tcp://localhost:6791/Hi. In the client a TCP channel is used as well, but no port is specified,
so a free port is selected:

487

Distributed Applications with .NET Remoting

19 557599 Ch16.qxd 4/29/04 11:36 AM Page 487

<configuration>
<system.runtime.remoting>

<application name=”Client”>
<client displayName=”Hello client for well-known objects”>

<wellknown type = “Wrox.ProCSharp.Remoting.Hello, RemoteHello”
url=”tcp://localhost:6791/Hello/Hi” />

</client>
<channels>

<channel ref=”tcp” displayName=”TCP Channel (HelloClient)” />
</channels>

</application>
</system.runtime.remoting>

</configuration>

A small change in the configuration file, and you’re using the HTTP channel (as can be seen in
WellknownHttp_Client.config):

<client>
<wellknown type=”Wrox.ProCSharp.Remoting.Hello, RemoteHello”

url=”http://localhost:6792/Hello/Hi” />
</client>
<channels>

<channel ref=”http” displayName=”HTTP Channel (HelloClient)” />
</channels>

Server configuration for client-activated objects
By changing only the configuration file (which is located in ClientActivated_Server.config), you can
change the server configuration from server-activated to client-activated objects. Here the <activated>
subelement of the <service> element is specified. With the <activated> element for the server config-
uration, just the type attribute must be specified. The name attribute of the application element
defines the URI:

<configuration>
<system.runtime.remoting>

<application name=”HelloServer”>
<service>

<activated type=”Wrox.ProCSharp.Remoting.Hello, RemoteHello” />
</service>
<channels>

<channel ref=”http” port=”6788”
displayName=”HTTP Channel (HelloServer)” />

<channel ref=”tcp” port=”6789”
displayName=”TCP Channel (HelloServer)” />

</channels>
</application>

</system.runtime.remoting>
</configuration>

Client configuration for client-activated objects
The ClientActivated_Client.config file defines the client-activated remote object using the url attribute
of the <client> element and the type attribute of the <activated> element:

488

Chapter 16

19 557599 Ch16.qxd 4/29/04 11:36 AM Page 488

<configuration>
<system.runtime.remoting>

<application>
<client url=”http://localhost:6788/HelloServer”

displayName=”Hello client for client-activated objects”>
<activated type=”Wrox.ProCSharp.Remoting.Hello, RemoteHello” />

</client>
<channels>

<channel ref=”http” displayName=”HTTP Channel (HelloClient)” />
<channel ref=”tcp” displayName=”TCP Channel (HelloClient)” />

</channels>
</application>

</system.runtime.remoting>
</configuration>

Server code using configuration files
In the server code you have to configure remoting using the static method Configure() from the
RemotingConfiguration class. Here all the channels that are defined are built up and instantiated.
Maybe we also want to know about the channel configurations from the server application—that’s why
I’ve created the static methods ShowActivatedServiceTypes() and
ShowWellKnownServiceTypes(); they are called after loading and starting the remoting configuration:

public static void Main(string[] args)
{

RemotingConfiguration.Configure(“HelloServer.exe.config”);
Console.WriteLine(“Application: “ + RemotingConfiguration.ApplicationName);
ShowActivatedServiceTypes();
ShowWellKnownServiceTypes();
System.Console.WriteLine(“press return to exit”);
System.Console.ReadLine();
return;

}

These two functions show configuration information of well-known and client-activated types:

public static void ShowWellKnownServiceTypes()
{

WellKnownServiceTypeEntry[] entries =
RemotingConfiguration.GetRegisteredWellKnownServiceTypes();
foreach (WellKnownServiceTypeEntry entry in entries)
{

Console.WriteLine(“Assembly: “ + entry.AssemblyName);
Console.WriteLine(“Mode: “ + entry.Mode);
Console.WriteLine(“URI: “ + entry.ObjectUri);
Console.WriteLine(“Type: “ + entry.TypeName);

}
}
public static void ShowActivatedServiceTypes()
{

ActivatedServiceTypeEntry[] entries =
RemotingConfiguration.GetRegisteredActivatedServiceTypes();
foreach (ActivatedServiceTypeEntry entry in entries)

489

Distributed Applications with .NET Remoting

19 557599 Ch16.qxd 4/29/04 11:36 AM Page 489

{
Console.WriteLine(“Assembly: “ + entry.AssemblyName);
Console.WriteLine(“Type: “ + entry.TypeName);

}
}

Client code using configuration files
In the client code, it is only necessary to configure the remoting services using the configuration file
client.exe.config. After that, you can use the new operator to create new instances of the remote class
Hello, no matter whether you work with server-activated or client-activated remote objects. However,
there’s a small difference—with client-activated objects it’s now possible to use non-default constructors
with the new operator. This isn’t possible for server-activated objects: single-call objects can have no state
because they are destroyed with every call; singleton objects are created just once. Calling non-default
constructors is only useful for client-activated objects because it is only for this kind of objects that the
new operator really calls the constructor in the remote object.

In the Main() method of the file HelloClient.cs you can now change the remoting code to use the config-
uration file with RemotingConfiguration.Configure(), and you create the remote object with the
new operator:

RemotingConfiguration.Configure(“HelloClient.exe.config”);
Hello obj = new Hello();
if (obj == null)
{

Console.WriteLine(“could not locate server”);
return;

}
for (int i=0; i < 5; i++)
{

Console.WriteLine(obj.Greeting(“Christian”));
}

Delayed loading of client channels
With the configuration file machine.config, two channels are configured that can be used automatically if
the client doesn’t configure a channel.

<system.runtime.remoting>
<application>

<channels>
<channel ref=”http client” displayName=”http client (delay loaded)”

delayLoadAsClientChannel=”true”/>
<channel ref=”tcp client” displayName=”tcp client (delay loaded)”

delayLoadAsClientChannel=”true”/>
</channels>

</application>
</system.runtime.remoting>

The XML attribute delayLoadAsClientChannel with a value true defines that the channel should be
used from a client that doesn’t configure a channel. The runtime tries to connect to the server using the
delay-loaded channels. So it is not necessary to configure a channel in the client configuration file, and a
client configuration file for the well-known object we have used earlier can look as simple as this:

490

Chapter 16

19 557599 Ch16.qxd 4/29/04 11:36 AM Page 490

<configuration>
<system.runtime.remoting>

<application name=”Client”>
<client url=”tcp:/localhost:6791/Hello”>

<wellknown type = “Wrox.ProCSharp.Remoting.Hello, RemoteHello”
url=”tcp://localhost:6791/Hello/Hi” />

</client>
</application>

</system.runtime.remoting>
</configuration>

Lifetime services in configuration files
Leasing configuration for remote servers can also be done with the application configuration files. The
<lifetime> element has the attributes leaseTime, sponsorshipTimeOut, renewOnCallTime, and
pollTime as shown in this example:

<configuration>
<system.runtime.remoting>

<application>
<lifetime leaseTime = “15M” sponsorshipTimeOut = “4M”

renewOnCallTime = “3M” pollTime = “30s”/>
</application>

</system.runtime.remoting>
</configuration>

Using configuration files, it is possible to change the remoting configuration by editing files instead of
working with source code. We can easily change the channel to use HTTP instead of TCP, change a port,
the name of the channel, and so on. With the addition of a single line the server can listen to two chan-
nels instead of one.

Formatter providers
Earlier in this chapter a major change with .NET 1.1 has already been discussed where properties of the
formatter provider needs to be changed to support marshaling all objects across the network. Instead of
doing this programmatically as it was done earlier, you can also configure the properties of a formatter
provider in a configuration file.

The following server configuration file is changed within the <channel> element, in that
<serverProviders> and <clientProviders> are defined as child elements. With the
<serverProviders>, the built-in providers wsdl, soap, and binary are referenced, and with the soap
and binary providers the property typeFilterLevel is set to Full.

<configuration>
<system.runtime.remoting>

<application name=”HelloServer”>
<service>

<activated type=”Wrox.ProCSharp.Remoting.Hello, RemoteHello” />
</service>
<channels>

491

Distributed Applications with .NET Remoting

19 557599 Ch16.qxd 4/29/04 11:36 AM Page 491

<channel ref=”tcp” port=”6789”
displayName=”TCP Channel (HelloServer)”>

<serverProviders>
<provider ref=”wsdl” />
<provider ref=”soap” typeFilterLevel=”Full” />
<provider ref=”binary” typeFilterLevel=”Full” />

</serverProviders>
<clientProviders>

<provider ref=”binary” />
</clientProviders>

</channel>
</channels>

</application>
</system.runtime.remoting>

</configuration>

.NET Framework configuration tool
The System Administrator can use the .NET Framework Configuration tool (see Figure 16-11) to recon-
figure existing configuration files. This tool is part of the Administrative Tools, which you can access
using the Control Panel.

Figure 16-11

Adding the application HelloClient.exe where we used the client configuration file to the configured
applications in this tool, we can configure the URL of the remote object by selecting the hyperlink View
Remoting Services Properties.

As shown in Figure 16-12, for the client application you can see the value of the displayName attribute
in the combo box. This combo box allows selecting the remote application so you can change the URL of
the remote object.

492

Chapter 16

19 557599 Ch16.qxd 4/29/04 11:36 AM Page 492

Figure 16-12

Adding the server application to this tool you can change the configuration of the remote object and the
channels as shown in Figures 16-13 and 16-14.

Figure 16-13

493

Distributed Applications with .NET Remoting

19 557599 Ch16.qxd 4/29/04 11:36 AM Page 493

Figure 16-14

Hosting Applications
Up to this point all our sample servers were running in self-hosted .NET servers. A self-hosted server
must be launched manually. A .NET remoting server can also be started in a lot of other application
types. In a Windows Service the server can be automatically started at boot-time, and in addition the
process can run with the credentials of the system account. For more details on Windows Services see
Chapter 32.

Hosting remote servers in ASP.NET
There’s special support for .NET Remoting servers for ASP.NET. ASP.NET can be used for the automatic
startup of remote servers. Contrary to EXE-hosted applications, ASP.NET-hosted Remoting uses a differ-
ent file for configuration, but it has the same syntax.

To use the infrastructure from the Internet Information Server and ASP.NET, you have to create a class
that derives from System.MarshalByRefObject and has a default constructor. The code used earlier for
our server to create and register the channel is no longer necessary; that’s done by the ASP.NET runtime.
You just have to create a virtual directory on the Web server that maps a directory into which we put the
configuration file web.config. The assembly of the remote class must reside in the bin subdirectory.

To configure a virtual directory on the Web server we can use the Internet Information Services MMC.
Selecting the Default Web site and opening the Action menu creates a new Virtual Directory.

The configuration file web.config on the Web server must be put in the home directory of the virtual
Web site. With the default IIS configuration, the channel that will be used listens to port 80:

494

Chapter 16

19 557599 Ch16.qxd 4/29/04 11:36 AM Page 494

<configuration>
<system.runtime.remoting>

<application>
<service>

<wellknown mode=”SingleCall”
type=”Wrox.ProCSharp.Remoting.Hello, RemoteHello”
objectUri=”HelloService.soap” />

</service>
</application>

</system.runtime.remoting>
</configuration>

The client can now connect to the remote object using the following configuration file. The URL that
must be specified for the remote object here is the Web server localhost, followed by the Web applica-
tion name RemoteHello (specified when creating the virtual Web site), and the URI of the remote object
HelloService.soap that is defined in the file web.config. It’s not necessary to specify the port number
80, because that’s the default port for the HTTP protocol. Not specifying a <channels> section means
that the delay loaded HTTP channel from the configuration file machine.config is used:

<configuration>
<system.runtime.remoting>

<application>
<client url=”http:/localhost/RemoteHello”>

<wellknown type=”Wrox.ProCSharp.Remoting.Hello, RemoteHello”
url=”http://localhost/RemoteHello/HelloService.soap” />

</client>
</application>

</system.runtime.remoting>
</configuration>

Classes, Interfaces, and SoapSuds
In the .NET Remoting samples that have been done up until now, you have always copied the assembly
of the remote object not only to the server, but also to the client application. This way the MSIL code of
the remote object is on both the client and the server system, although in the client application only the
metadata is needed. However, copying the remoting object assembly means that it’s not possible for the
client and the server to be programmed independently. A much better way to use just the metadata is to
use interfaces or the SoapSuds.exe utility instead.

Hosting remote objects in ASP.NET only supports well-known objects.

If the remoting object is hosted within IIS, the name of the remote object must end
either with .soap, or .bin, depending on the type of formatter that is used (SOAP or
the binary).

495

Distributed Applications with .NET Remoting

19 557599 Ch16.qxd 4/29/04 11:36 AM Page 495

Interfaces
You get a cleaner separation of the client and server code by using interfaces. An interface simply defines
the methods without implementation. This way the contract (the interface) is separated from the imple-
mentation, and just the contract is needed on the client system. Here are the necessary steps for using an
interface:

1. Define an interface that will be placed in a separate assembly.

2. Implement the interface in the remote object class. To do this, the assembly of the interface must
be referenced.

3. On the server side no more changes are required. The server can be programmed and config-
ured in the usual ways.

4. On the client side, reference the assembly of the interface instead of the assembly of the remote
class.

5. The client can now use the interface of the remote object rather than the remote object class. The
object can be created using the Activator class as it was done earlier. You can’t use the new
operator in this way, because the interface itself cannot be instantiated.

The interface defines the contract between the client and server. The two applications can now be devel-
oped independently of each other. If you also stick to the old COM rules about interfaces (that interfaces
should never be changed), you will not have any versioning problems.

Soapsuds
You can also use the Soapsuds utility to get the metadata from an assembly if an HTTP channel and the
SOAP formatter are used. Soapsuds can convert assemblies to XML Schemas, XML Schemas to wrapper
classes, and also works in the other directions.

The following command converts the type Hello from the assembly RemoteHello to the assembly
HelloWrapper where a transparent proxy is generated that calls the remote object:

soapsuds –types:Wrox.ProCSharp.Remoting.Hello,RemoteHello –oa:HelloWrapper.dll

With Soapsuds you can also get the type information directly from a running server, if the HTTP channel
and the SOAP formatter are used:

soapsuds –url:http://localhost:6792/hello/hi?wsdl –oa:HelloWrapper.dll

In the client you can now reference the generated assembly instead of the original one. Some of the soap-
suds options are listed in the following table.

Option Description

-url Retrieve schema from the specified URL

-proxyurl If a proxy server is required to access the server, specify the proxy with this option

-types Specify a type and assembly to read the schema information from it

496

Chapter 16

19 557599 Ch16.qxd 4/29/04 11:36 AM Page 496

Option Description

-is Input schema file

-ia Input assembly file

-os Output schema file

-oa Output assembly file

Generating a WSDL Document with .NET Remoting
We discuss WSDL in more detail in Chapter 26, in the context of ASP.NET Web services WSDL is used to
describe Web services. WSDL is also supported by .NET Remoting when an HTTP channel and the
SOAP formatter are used. You can test this easily by using a browser to access a remote object. Adding
?wsdl to the URI of the remote object returns a WSDL document (see Figure 16-15) that shows the output
from accessing our remote server we have created earlier.

Figure 16-15

.NET Remoting uses the RPC style of WSDL documents, unlike ASP.NET Web services, which uses the
Document style by default.

You can access the WSDL document across the network only if you use a well-known remote object type.
For client-activated objects the URI is created dynamically. With client activated objects you can use the
assembly with the –ia option of soapsuds to get the metadata.

497

Distributed Applications with .NET Remoting

19 557599 Ch16.qxd 4/29/04 11:36 AM Page 497

Asynchronous Remoting
If server methods take a while to complete and the client needs to do some different work at the same
time, it isn’t necessary to start a separate thread to do the remote call. By doing an asynchronous call, the
method starts but returns immediately to the client. Asynchronous calls can be made on a remote object
as they are made on a local object with the help of a delegate. With methods that don’t return a value
you can also use the OneWay attribute.

Using delegates with .NET remoting
To make an asynchronous method, you create a delegate, GreetingDelegate, with the same argument
and return value as the Greeting() method of the remote object. With the delegate keyword a new
class GreetingDelegate that derives from MulticastDelegate is created. You can verify this by
using ildasm and checking the assembly. The argument of the constructor of this delegate class is a refer-
ence to the Greeting() method. You start the Greeting() call using the BeginInvoke() method of
the delegate class. The second argument of BeginInvoke() is an AsyncCallback instance that defines
the method HelloClient.Callback(), which is called when the remote method is finished. In the
Callback() method the remote call is finished using EndInvoke():

using System;
using System.Runtime.Remoting;
namespace Wrox.ProCSharp.Remoting
{

public class HelloClient
{

private delegate String GreetingDelegate(String name);
private static string greeting;

public static void Main(string[] args)
{

RemotingConfiguration.Configure(“HelloClient.exe.config”);
Hello obj = new Hello();
if (obj == null)
{

Console.WriteLine(“could not locate server”);
return;

}
// synchronous version
// string greeting = obj.Greeting(“Christian”);
// asynchronous version

GreetingDelegate d = new GreetingDelegate(obj.Greeting);
IAsyncResult ar = d.BeginInvoke(“Christian”, null, null);

// do some work and then wait
ar.AsyncWaitHandle.WaitOne();
if (ar.IsCompleted)
{

greeting = d.EndInvoke(ar);
}

Console.WriteLine(greeting);

498

Chapter 16

19 557599 Ch16.qxd 4/29/04 11:36 AM Page 498

}
}

}

You can read more about delegates and events in Chapter 6.

OneWay attribute
A method that has a void return and only input parameters can be marked with the OneWay attribute.
The OneWay attribute (defined within the namespace System.Runtime.Remoting.Messaging) makes
a method automatically asynchronous, regardless of how the client calls it. Adding the method
TakeAWhile() to our remote object class RemoteHello creates a fire-and-forget method. If the client
calls it by the proxy, the proxy immediately returns to the client. On the server, the method finishes some
time later:

[OneWay]
public void TakeAWhile(int ms)
{

Console.WriteLine(“TakeAWhile started”);
System.Threading.Thread.Sleep(ms);
Console.WriteLine(“TakeAWhile finished”);

}

Remoting and Events
Not only can the client invoke methods on the remote object across the network, but the server can do
the same: invoking methods in the client. For this, a mechanism that we already know from the basic
language features is used: delegates and events.

In principle, the architecture is simple. The server has a remotable object that the client can call, and the
client has a remotable object that the server can call:

❑ The remote object in the server must declare an external function (a delegate) with the signature
of the method that the client will implement in a handler.

❑ The arguments that are passed with the handler function to the client must be marshalable, so
all the data sent to the client must be serializable.

❑ The remote object must also declare an instance of the delegate function modified with the
event keyword; the client will use this to register a handler.

❑ The client must create a sink object with a handler method that has the same signature as the
delegate defined, and it has to register the sink object with the event in the remote object.

To help explain this, let’s take a look at an example. To see all the parts of event handling with .NET
Remoting, create five classes: Server, Client, RemoteObject, EventSink, and StatusEventArgs.
The dependencies of these classes are shown in Figure 16-16.

The Server class is a remoting server such as the one you already are familiar with. The Server class
will create a channel based on information from a configuration file and register the remote object that’s
implemented in the RemoteObject class in the remoting runtime. The remote object declares the argu-
ments of a delegate and fires events in the registered handler functions. The argument that’s passed to

499

Distributed Applications with .NET Remoting

19 557599 Ch16.qxd 4/29/04 11:36 AM Page 499

the handler function is of type StatusEventArgs. The class StatusEventArgs must be serializable so
it can be marshaled to the client.

The Client class represents the client application. This class creates an instance of the EventSink class
and registers the StatusHandler() method of this class as a handler for the delegate in the remote
object. EventSink must be remotable like the RemoteObject class, because this class will also be called
across the network:

Figure 16-16

Remote object
The remote object class is implemented in the file RemoteObject.cs. The remote object class must be
derived from MarshalByRefObject, as you already know from our previous examples. To make it pos-
sible that the client can register an event handler that can be called from within the remote object, you
have to declare an external function with the delegate keyword. Declare the delegate StatusEvent()

«serializable»
StatusEventArgs

+Message

«remotable»
EventSink

+StatusHandler()

«remotable»
RemoteObject

+LongWorking()

Server

+Main()

Client

+Main()

call handler
on event

500

Chapter 16

19 557599 Ch16.qxd 4/29/04 11:36 AM Page 500

with two arguments: the sender (so the client knows about the object that fired the event) and a variable
of type StatusEventArgs. Into the argument class you can put all the additional information that you
want to send to the client.

The method that will be implemented in the client has some strict requirements. It can only have input
parameters—return types, ref, and out parameters are not allowed—and the argument types must be
either [Serializable] or remotable (derived from MarshalByRefObject). These requirements are
fulfilled by the parameters that are defined with this StatusEvent delegate:

public delegate void StatusEvent(object sender, StatusEventArgs e);

public class RemoteObject : MarshalByRefObject
{

Within the RemoteObject class, declare an event name Status of type StatusEvent, which is the dele-
gate. The client must add an event handler to the Status event to receive status information from the
remote object:

public class RemoteObject : MarshalByRefObject
{

public RemoteObject()
{

Console.WriteLine(“RemoteObject constructor called”);
}
public event StatusEvent Status;

In the LongWorking() method it is checked if an event handler is registered before the event is fired by
calling Status(this, e). To verify that the event is fired asynchronously, fire an event at the start of the
method before doing the Thread.Sleep(), and after the sleep:

public void LongWorking(int ms)
{

Console.WriteLine(“RemoteObject: LongWorking() Started”);
StatusEventArgs e = new StatusEventArgs(

“Message for Client: LongWorking() Started”);
// fire event
if (Status != null)
{

Console.WriteLine(“RemoteObject: Firing Starting Event”);
Status(this, e);

}
System.Threading.Thread.Sleep(ms);
e.Message = “Message for Client: LongWorking() Ending”;
// fire ending event
if (Status != null)
{

Console.WriteLine(“RemoteObject: Firing Ending Event”);
Status(this, e);

}
Console.WriteLine(“RemoteObject: LongWorking() Ending”);

}

501

Distributed Applications with .NET Remoting

19 557599 Ch16.qxd 4/29/04 11:36 AM Page 501

Event arguments
As you’ve seen in the RemoteObject class, the class StatusEventArgs is used as an argument for the
delegate. With the [Serializable] attribute an instance of this class can be transferred from the server
to the client. Here is a simple property of type string to send a message to the client:

[Serializable]
public class StatusEventArgs
{

public StatusEventArgs(string m)
{

message = m;
}
public string Message
{

get
{

return message;
}
set
{

message = value;
}

}
private string message;

}

Server
The server is implemented within a console application. You only have to wait for a user to end the
server after reading the configuration file, setting up the channel, and the remote object:

using System;
using System.Runtime.Remoting;
namespace Wrox.ProCSharp.Remoting
{

class Server
{

static void Main(string[] args)
{

RemotingConfiguration.Configure(“Server.exe.config”);
Console.WriteLine(“press return to exit”);
Console.ReadLine();

}
}

}

Server configuration file
The server configuration file, Server.exe.config, is also created as already discussed. There is just one
important point: because the client at first registers the event handler and calls the remote method after-
ward, the remote object must keep state for the client. You can not use single-call objects with events, so
the RemoteObject class is configured as a client-activated type. Also, to support delegates, you have to
enable full serialization by specifying the typeFilterLevel attribute with the <provider> element.

502

Chapter 16

19 557599 Ch16.qxd 4/29/04 11:36 AM Page 502

<configuration>
<system.runtime.remoting>

<application name=”CallbackSample”>
<service>

<activated type=”Wrox.ProCSharp.Remoting.RemoteObject,
RemoteObject” />

</service>
<channels>

<channel ref=”http” port=”6791”>
<serverProviders>

<provider ref=”binary” typeFilterLevel=”Full” />
</serverProviders>

</channel>
</channels>

</application>
</system.runtime.remoting>

</configuration>

Event sink
An event sink library is required for use by the client, and to be invoked by the server. The event sink
implements the handler StatusHandler() that’s defined with the delegate. As previously noted, the
method can only have input parameters, and only a void return. EventSink class must also inherit from
the class MarshalByRefObject to make it remotable because it will be called remotely from the server:

using System;
using System.Runtime.Remoting.Messaging;
namespace Wrox.ProCSharp.Remoting
{

public class EventSink : MarshalByRefObject
{

public EventSink()
{
}
public void StatusHandler(object sender, StatusEventArgs e)
{

Console.WriteLine(“EventSink: Event occurred: “ + e.Message);
}

}
}

Client
The client reads the client configuration file with the RemotingConfiguration class, which is not dif-
ferent from the clients that have been discussed so far. The client creates an instance of the remotable
sink class EventSink locally. The method that should be called from the remote object on the server is
passed to the remote object:

using System;
using System.Runtime.Remoting;
namespace Wrox.ProCSharp.Remoting
{

class Client

503

Distributed Applications with .NET Remoting

19 557599 Ch16.qxd 4/29/04 11:36 AM Page 503

{
static void Main(string[] args)
{

RemotingConfiguration.Configure(“Client.exe.config”);

The differences start here. We have to create an instance of the remotable sink class EventSink locally.
Since this class will not be configured with the <client> element, it’s instantiated locally. Next, the
remote object class RemoteObject is instantiated. This class is configured in the <client> element, so
it’s instantiated on the remote server:

EventSink sink = new EventSink();
RemoteObject obj = new RemoteObject();

Now you can register the handler method of the EventSink object in the remote object. StatusEvent is
the name of the delegate that was defined in the server. The StatusHandler() method has the same
arguments as defined in the StatusEvent.

By calling the LongWorking() method, the server will call back into the method StatusHandler() at
the beginning and at the end of the method:

// register client sink in server - subscribe to event

obj.Status += new StatusEvent(sink.StatusHandler);
obj.LongWorking(5000);

Now we are no longer interested in receiving events from the server and unsubscribe from the event.
The next time we call LongWorking() no events will be received:

// unsubscribe from event

obj.Status -= new StatusEvent(sink.StatusHandler);
obj.LongWorking(5000);
Console.WriteLine(“press return to exit”);
Console.ReadLine();

}
}

}

Client configuration file
The configuration file for the client, client.exe.config, is nearly the same configuration file for client-acti-
vated objects that we’ve already seen. The difference can be found in defining a port number for the
channel. Since the server must reach the client with a known port, we have to define the port number for
the channel as an attribute of the <channel> element. It isn’t necessary to define a <service> section
for our EventSink class, because this class will be instantiated from the client with the new operator
locally. The server does not access this object by its name; it will receive a marshaled reference to the
instance instead:

<configuration>
<system.runtime.remoting>

<application name=”Client”>

504

Chapter 16

19 557599 Ch16.qxd 4/29/04 11:36 AM Page 504

<client url=”http://localhost:6791/CallbackSample”>
<activated type=”Wrox.ProCSharp.Remoting.RemoteObject,

RemoteObject” />
</client>
<channels>

<channel ref=”http” port=”0”>
<serverProviders>

<provider ref=”binary” typeFilterLevel=”Full” />
</serverProviders>

</channel>
</channels>

</application>
</system.runtime.remoting>

</configuration>

Running programs
Figure 16-17 shows the resulting output of the server. The constructor of the remote object is called once
because we have a client-activated object. Next, you can see the call to LongWorking() has started and
an event is fired to the client. The next start of the LongWorking() method doesn’t fire events, because
the client has already unregistered its interest in the event.

Figure 16-17

Figure 16-18 shows the client output of the events that made it across the network.

Figure 16-18

Call Contexts
Client-activated objects can hold state for a specific client. With client-activated objects, the server allo-
cates resources for every client. With server-activated SingleCall objects, a new instance is created for
every instance call, and no resources are held on the server; these objects can’t hold state for a client. For

505

Distributed Applications with .NET Remoting

19 557599 Ch16.qxd 4/29/04 11:36 AM Page 505

state management you can keep state on the client side; the state information is sent with every method
call to the server. To implement such a state management it is not necessary to change all method signa-
tures to include an additional parameter that passes the state to the server, this is automatically done by
the call context.

A call context flows with a logical thread and is passed with every method call. A logical thread is started
from the calling thread and flows through all method calls that are started from the calling thread, pass-
ing through different contexts, different application domains, and different processes.

You can assign data to the call context using CallContext.SetData(). The class of the object that’s
used as data for the SetData() method must implement the interface ILogicalThreadAffinative.
You can get this data again in the same logical thread (but possibly a different physical thread) using
CallContext.GetData().

For the data of the call context create a new C# Class Library with the class CallContextData. This
class will be used to pass some data from the client to the server with every method call. The class
that’s passed with the call context must implement the System.Runtime.Remoting.Messaging
.ILogicalThreadAffinative interface. This interface doesn’t have a method; it’s just a markup for
the runtime to define that instances of this class should flow with a logical thread. The CallContextData
class must also be marked with the Serializable attribute so it can be transferred through the channel:

using System;
using System.Runtime.Remoting.Messaging;
namespace Wrox.ProCSharp.Remoting
{

[Serializable]
public class CallContextData : ILogicalThreadAffinative
{

public CallContextData()
{
}
public string Data
{

get
{

return data;
}
set
{

data = value;
}

}
protected string data;

}
}

In the remote object class Hello, change the Greeting() method to access the call context. For the use
of the CallContextData class you have to reference the previously created assembly
CallContextData in the file CallContextData.dll. To work with the CallContext class, the namespace
System.Runtime.Remoting.Messaging must be opened. The variable cookie holds the data that is

506

Chapter 16

19 557599 Ch16.qxd 4/29/04 11:36 AM Page 506

sent from the client to the server. The name cookie is chosen because the context works similar to a
browser-based cookie, where the client automatically sends data to the Web server.

public string Greeting(string name)
{

Console.WriteLine(“Greeting started”);
CallContextData cookie =

(CallContextData)CallContext.GetData(“mycookie”);
if (cookie != null)
{

Console.WriteLine(“Cookie: “ + cookie.Data);
}
Console.WriteLine(“Greeting finished”);
return “Hello, “ + name;

}

In the client code the call context information is set by calling CallContext.SetData(). With this
method an instance of the class CallContextData is assigned to be passed to the server. Now every
time the method Greeting() is called in the for loop, the context data is automatically passed to the
server.

CallContextData cookie = new CallContextData();
cookie.Data = “information for the server”;
CallContext.SetData(“mycookie”, cookie);
for (int i=0; i < 5; i++)
{

Console.WriteLine(obj.Greeting(“Christian”));
}

You can use such a call context to send information about the user, the name of the client system, or sim-
ply a unique identifier that’s used on the server side to get some state information from a database.

Summary
In this chapter we’ve seen that .NET Remoting facilitates the task of invoking methods across the net-
work: A remote object has to inherit form MarshalByRefObject. In the server application only a single
method is needed to load the configuration file so that the channels and remote objects are both set up
and running. Within the client, we load the configuration file and can use the new operator to instantiate
the remote object.

We also used .NET Remoting without the help of configuration files. On the server, we simply created a
channel and registered a remote object. On the client, we created a channel and used the remote object.

Furthermore, we’ve also discussed that the .NET Remoting architecture is flexible and can be extended.
All parts of this technology such as channels, proxies, formatters, message sinks, and so on are plug-
gable and can be replaced with custom implementations.

We used HTTP and TCP channels for the communication across the network, and SOAP and binary for-
matters to format the parameters before sending them.

507

Distributed Applications with .NET Remoting

19 557599 Ch16.qxd 4/29/04 11:36 AM Page 507

We discussed the use of stateless and stateful object types that are used by well-known and client-acti-
vated objects. With client-activated objects we have seen how the leasing mechanism is used to specify
the lifetime of remote objects.

We have also seen that .NET Remoting is very well integrated in other parts of .NET Framework, such as
calling asynchronous methods, performing callbacks using the delegate and event keywords, among
others.

508

Chapter 16

19 557599 Ch16.qxd 4/29/04 11:36 AM Page 508

Localization

NASA’s Mars Climate Orbiter was lost on September 23, 1999 at a cost of $125 million because one
engineering team used metric units, while another one used inches for a key spacecraft operation.
When writing applications for international distribution, different cultures and regions must be
kept in mind.

Different cultures have diverging calendars and use different number and date formats, and also
the sort order with the letters A-Z may lead to various results. To make applications fit for global
markets you have to globalize and localize them.

Globalization is about internationalizing applications: preparing applications for international
markets. With globalization, the application supports number and date formats depending on
the culture, different calendars, and so on. Localization is about translating applications for specific
cultures. For translations of strings, you can use resources.

.NET supports globalization and localization of Windows and Web applications. To globalize an
application you can use classes from the namespace System.Globalization; to localize an appli-
cation you can use resources that are supported by the namespace System.Resources.

This chapter covers the globalization and localization of .NET applications; more specifically, we
discuss:

❑ Using classes that represent cultures and regions

❑ Internationalization of applications

❑ Localization of applications

20 557599 Ch17.qxd 4/29/04 11:38 AM Page 509

Namespace System.Globalization
The System.Globalization namespace holds all culture and region classes to support different date
formats, different number formats, and even different calendars that are represented in classes such as
GregorianCalendar, HebrewCalendar, JapaneseCalendar, and so on. Using these classes you can
display different representations depending on the user’s locale.

Using the namespace System.Globalization we will look at these issues and considerations:

❑ Unicode issues

❑ Cultures and regions

❑ An example showing all cultures and their characteristics

❑ Sorting

Unicode Issues
A Unicode character has 16 bits, so there is room for 65,536 characters. Is this enough for all languages
that are currently used in information technology? In the case of the Chinese language, for example,
more than 80,000 characters are needed. However, Unicode has been designed to deal with this issue.
With Unicode you have to differentiate between base characters and combining characters. You can add
multiple combining characters to a base character to build up a single display character or a text element.

Take, for example, the Icelandic character Ogonek. Ogonek can be combined by using the base character
0x006F (latin small letter o) and the combining characters 0x0328 (combining Ogonek) and 0x0304 (com-
bining Macron) as shown in Figure 17-1. Combining characters are defined within ranges from 0x0300 to
0x0345. For American and European markets, predefined characters exist to facilitate dealing with the
characters. The character Ogoneck is also defined with the predefined character 0x01ED.

Figure 17-1

For Asian markets where more than 80,000 characters are necessary for Chinese alone, such predefined
characters do not exist. In the case of Asian languages, you always have to deal with combining charac-
ters. The problem with this issue is getting the right number of display characters or text elements, get-
ting to the base characters instead of the combined characters. The namespace System.Globalization
offers the class StringInfo that you can use to deal with this issue.

The following table lists the static methods of the class StringInfo that help dealing with combined
characters.

0x1ED 0x006F 0x0328 0x0304

+ +=

510

Chapter 17

20 557599 Ch17.qxd 4/29/04 11:38 AM Page 510

Method Description

GetNextTextElement Returns the first text element (base character and all combining
characters) of a specified string.

GetTextElementEnumerator Returns a TextElementEnumerator object that allows iterating
all text elements of a string.

ParseCombiningCharacters Returns an integer array referencing all base characters of a
string.

Cultures and Regions
The world is divided into multiple cultures and regions, and applications have to be aware of these cul-
tural and regional differences. A culture is a set of preferences based on a user’s language and cultural
habits. RFC 1766 defines culture names that are used worldwide depending on a language and a country
or region. Some examples are en-AU, en-CA, en-GB, and en-US for the English language in Australia,
Canada, United Kingdom, and the United States.

Possibly the most important class in the System.Globalization namespace is the class CultureInfo.
CultureInfo represents a culture and defines calendars, formatting of numbers and dates, and sorting
strings that are used with the culture.

The class RegionInfo represents regional settings (such as the currency) and shows if the region is
using the metric system. In the same region, you can use multiple languages. One example is the region
of Spain with its Basque (eu-ES), Catalan (ca-ES), Spanish (es-ES), Galician (gl-ES) cultures. While one
region has multiple languages, one language can be spoken in different regions; for example, Spanish is
spoken in Mexico, Spain, Guatemala, Argentina, and Peru, to name but a few.

Later in this chapter we will present a sample application that demonstrates these characteristics of cul-
tures and regions.

Specific, neutral, and invariant cultures
With the use of cultures in.NET Framework, you have to differentiate between three types: specific, neutral,
and invariant cultures.

A specific culture is associated with a real, existing culture that is defined with RFC 1766 as we have
seen in the last section. A specific culture can be mapped to a neutral culture. For example, de is the
neutral culture of the specific cultures de-AT, de-DE, de-CH, and others. de is the shorthand for the
language German; AT, DE, CH are shorthands for the countries Austria, Germany and Switzerland.

A single display character can contain multiple Unicode characters. For adhering
with this issue, if you write applications that support international markets don’t
use the data type char, but use string instead. A string can hold a text element that
contains both base characters and combining characters, while a char cannot.

511

Localization

20 557599 Ch17.qxd 4/29/04 11:38 AM Page 511

When translating applications, it is typically not necessary to do translations for every region; there is
not much difference between the German language in the countries Austria and Germany. Instead of
using specific cultures, you can use a neutral culture for localizing applications.

The invariant culture is independent of a real culture. Storing formatted numbers or dates into files, or
sending them across a network to a server, using a culture that is independent of any user settings is the
best option.

Figure 17-2 shows how the culture types relate to each other.

Figure 17-2

CurrentCulture and CurrentUICulture
Setting cultures, you have to differentiate between a culture for the user interface and a culture for the
number and date formats. Cultures are associated with a thread, and with these two culture types, two
culture settings can be applied to a thread. Setting the culture with the thread, the Thread class has the
properties CurrentCulture and CurrentUICulture. The property CurrentCulture is for setting the
culture that is used with formatting and sort options, whereas the property CurrentUICulture is used
for the language of the user interface.

Users can change the default setting of the CurrentCulture using the Regional and Language options
in the Windows Control Panel (see Figure 17-3). With this configuration, it is also possible to change the
default number, the time, and the date format for the culture.

The CurrentUICulture does not depend on this configuration. The CurrentUICulture setting
depends on the language of the operating system. There is one exception: if a multi-language user inter-
face (MUI) is installed with Windows XP or Windows 2000, it is possible to change the language of the
user interface with the regional configuration, and this influences the property CurrentUICulture.

Invariant

de

en

de-AT

de-DE

de-CH

512

Chapter 17

20 557599 Ch17.qxd 4/29/04 11:38 AM Page 512

Figure 17-3

These settings make a very good default, and in many cases, there is no need for changing the default
behavior. If the culture should be changed, that can easily be done by changing both cultures of the
thread to the Spanish culture as shown in this code snippet:

System.Globalization.CultureInfo ci = new
System.Globalization.CultureInfo(“es-ES”);

System.Threading.Thread.CurrentThread.CurrentCulture = ci;
System.Threading.Thread.CurrentThread.CurrentUICulture = ci;

Having learned about setting the culture, we are going to discuss number and date formatting as is
influenced by the CurrentCulture setting.

Number formatting
The number structures Int16, Int32, Int64, and so on, in the System namespace have an overloaded
ToString() method. This method can be used to create a different representation of the number
depending on the locale. For the Int32 structure, ToString() is overloaded with these four versions:

public string ToString();
public string ToString(IFormatProvider);
public string ToString(string);
public string ToString(string, IFormatProvider);

ToString() without arguments returns a string without format options. We can also pass a string and a
class that implements IFormatProvider.

513

Localization

20 557599 Ch17.qxd 4/29/04 11:38 AM Page 513

The string specifies the format of the representation. The format can be a standard numeric formatting
string or a picture numeric formatting string. For standard numeric formatting, strings are predefined
where C specifies the currency notation, D creates a decimal output, E scientific output, F fixed-point out-
put, G general output, N number output, and X hexadecimal output. With a picture numeric format string,
it is possible to specify the number of digits, section and group separators, percent notation, and so on.
The picture numeric format string ###,### means two 3-digit blocks separated by a group separator.

The IFormatProvider interface is implemented by the NumberFormatInfo, DateTimeFormatInfo,
and CultureInfo classes. This interface defines a single method GetFormat() that returns a format
object.

NumberFormatInfo can be used to define custom formats for numbers. With the default constructor
of NumberFormatInfo, a culture-independent or invariant object is created. Using the properties of
NumberFormatInfo it is possible to change all the formatting options like a positive sign, a percent
symbol, a number group separator, a currency symbol, and a lot more. A read-only culture-independent
NumberFormatInfo object is returned from the static property InvariantInfo. A NumberFormatInfo
object where the format values are based on the CultureInfo of the current thread is returned from the
static property CurrentInfo.

To create the next example you can start with a simple Console Project. In this code, the first example
shows a number displayed in the format of the culture of the thread (here: English-US, the setting of the
operating system). The second example uses the ToString() method with the IFormatProvider argu-
ment. CultureInfo implements IFormatProvider, so create a CultureInfo object using the French
culture. The third example changes the culture of the thread. Using the property CurrentCulture of the
Thread instance, the culture is changed to German:

using System;
using System.Globalization;
using System.Threading;

namespace Wrox.ProCSharp.Localization
{

class Class1
{

static void Main(string[] args)
{

int val = 1234567890;

// culture of the current thread
Console.WriteLine(val.ToString(“N”));

// use IFormatProvider
Console.WriteLine(val.ToString(“N”,

new CultureInfo(“fr-FR”)));

// change the culture of the thread
Thread.CurrentThread.CurrentCulture =

514

Chapter 17

20 557599 Ch17.qxd 4/29/04 11:38 AM Page 514

new CultureInfo(“de-DE”);
Console.WriteLine(val.ToString(“N”));

}
}

}

The output is shown in Figure 17-4. You can compare the outputs with the previously listed differences
for U.S. English, French, and German.

Figure 17-4

Date formatting
The same support for numbers is here for dates. The DateTime structure has some methods for date-
to-string conversions. The public instance methods ToLongDateString(), ToLongTimeString(),
ToShortDateString(), ToShortTimeString() create string representations using the current culture.
Using the ToString() method you can assign a different culture:

public string ToString();
public string ToString(IFormatProvider);
public string ToString(string);
public string ToString(string, IFormatProvider);

With the string argument of the ToString() method, you can specify a predefined format character or a
custom format string for converting the date to a string. The class DateTimeFormatInfo specifies the
possible values. With the IFormatProvider argument, you can specify the culture. Using an overloaded
method without the IFormatProvider argument implies that the culture of the current thread is used:

DateTime d = new DateTime(2003, 08, 09);

// current culture
Console.WriteLine(d.ToLongDateString());

// use IFormatProvider
Console.WriteLine(d.ToString(“D”, new CultureInfo(“fr-FR”)));

// use culture of thread
CultureInfo ci = Thread.CurrentThread.CurrentCulture;
Console.WriteLine(ci.ToString() + “: “ + d.ToString(“D”));

ci = new CultureInfo(“es-ES”);
Thread.CurrentThread.CurrentCulture = ci;
Console.WriteLine(ci.ToString() + “: “ + d.ToString(“D”));

515

Localization

20 557599 Ch17.qxd 4/29/04 11:38 AM Page 515

The output of our example program shows ToLongDateString() with the current culture of the thread,
a French version where a CultureInfo instance is passed to the ToString() method, and a Spanish
version where the CurrentCulture property of the thread is changed to es-ES (see Figure 17-5).

Figure 17-5

Cultures in Action
To see all cultures in action, we use a sample Windows Forms application that lists all cultures and
demonstrates different characteristics of culture properties. Figure 17-6 shows the user interface of the
application in the Visual Studio .NET Forms Designer.

Figure 17- 6

Let us look into the code. During initialization of the application, all available cultures are added to
the tree view control that is placed on the left side of the application. This initialization happens in the
method AddCulturesToTree() that is called in the constructor of the form class CultureDemoForm:

516

Chapter 17

20 557599 Ch17.qxd 4/29/04 11:38 AM Page 516

public CultureDemoForm()
{

//
// Required for Windows Form Designer support
//
InitializeComponent();

AddCulturesToTree();
}

In the method AddCulturesToTree() you get all cultures from the static method CultureInfo.
GetCultures(). Passing CultureTypes.AllCultures to this method returns an array of all available
cultures. In the foreach loop every single culture is added to the tree view. For every single culture a
TreeNode object is created, because the TreeView class uses TreeNode objects for display. The Tag prop-
erty of the TreeNode object is set to the CultureInfo object, so that you can access the CultureInfo
object at a later time from within the tree.

Where the TreeNode is added inside the tree depends on the culture type. If the culture is a neutral cul-
ture or an invariant culture, it is added to the root nodes of the tree. TreeNodes that represent specific
cultures are added to their parent neutral culture node.

// add all cultures to the tree view
public void AddCulturesToTree()
{

// get all cultures
CultureInfo[] cultures =

CultureInfo.GetCultures(CultureTypes.AllCultures);
TreeNode[] nodes = new TreeNode[cultures.Length];

int i = 0;
TreeNode parent = null;
foreach (CultureInfo ci in cultures)
{

nodes[i] = new TreeNode();
nodes[i].Text = ci.DisplayName;
nodes[i].Tag = ci;

if (ci.IsNeutralCulture)
{

// rembember neutral cultures as parent of the
// following cultures
parent = nodes[i];
treeCultures.Nodes.Add(nodes[i]);

}
else if (ci.ThreeLetterISOLanguageName ==

CultureInfo.InvariantCulture.ThreeLetterISOLanguageName)
{

// invariant cultures don’t have a parent
treeCultures.Nodes.Add(nodes[i]);

}
else
{

517

Localization

20 557599 Ch17.qxd 4/29/04 11:38 AM Page 517

// specific cultures are added to the neutral parent
parent.Nodes.Add(nodes[i]);

}
i++;

}
}

When the user selects a node inside the tree, the handler of the AfterSelect event of the TreeView will
be called. Here the handler is implemented in the method OnSelectCulture(). Within this method all
fields are cleared by calling the method ClearTextFields(), before we get the CultureInfo object
from the tree by selecting the Tag property of the TreeNode. Then some text fields are set using the
properties Name, NativeName, and EnglishName of the CultureInfo object. If the CultureInfo is a
neutral culture that can be queried with the IsNeutralCulture property, the corresponding check box
will be set.

private void OnSelectCulture(object sender,
System.Windows.Forms.TreeViewEventArgs e)

{
ClearTextFields();

// get CultureInfo object from tree
CultureInfo ci = (CultureInfo)e.Node.Tag;

textName.Text = ci.Name;
textNativeName.Text = ci.NativeName;
textEnglishName.Text = ci.EnglishName;

checkIsNeutral.Checked = ci.IsNeutralCulture;

Then we get the calendar information about the culture. The Calendar property of the CultureInfo
class returns the default Calendar object for the specific culture. Because the Calender class doesn’t
have a property to tell its name, use the ToString() method of the base class to get the name of the
class, and remove the namespace of this string to display it in the text field textCalendar.

Because a single culture might support multiple calendars, the OptionalCalendars property returns
an array of additional supported Calendar objects. These optional calendars are displayed in the list
box listCalendars. The GregorianCalendar class that derives from Calendar has an additional
property CalendarType that lists the type of the Gregorian calendar. This type can be a value of the
enumeration GregorianCalendarTypes: Arabic, MiddleEastFrench, TransliteratedFrench,
USEnglish, or Localized depending on the culture. With Gregorian calendars, the type is also dis-
played in the list box.

// default calendar
textCalendar.Text = ci.Calendar.ToString().Remove(0, 21);

// fill optional calendars
listCalendars.Items.Clear();
foreach (Calendar optCal in ci.OptionalCalendars)
{

string calName = optCal.ToString().Remove(0, 21);

// for GregorianCalendar add type information

518

Chapter 17

20 557599 Ch17.qxd 4/29/04 11:38 AM Page 518

if (optCal is System.Globalization.GregorianCalendar)
{

GregorianCalendar gregCal = optCal as GregorianCalendar;
calName += “ “ + gregCal.CalendarType.ToString();

}
listCalendars.Items.Add(calName);

}

Next check if the culture is a specific culture (not a neutral culture) by using !ci.IsNeutralCulture
in an if statement. Use the method ShowSamples() to display number and date samples. This method
will be implemented next. Use the method ShowRegionInformation() to display some information
about the region. With the invariant culture, you can only display number and date samples, but no
region information. The invariant culture is not related to any real language, and so it is not associated
with a region.

// display number and date samples
if (!ci.IsNeutralCulture)
{

groupSamples.Enabled = true;
ShowSamples(ci);

// invariant culture doesn’t have a region
if (ci.ThreeLetterISOLanguageName == “IVL”)
{

groupRegionInformation.Enabled = false;
}
else
{

groupRegionInformation.Enabled = true;
ShowRegionInformation(ci.LCID);

}
}
else // neutral culture: no region, no number/date formatting
{

groupSamples.Enabled = false;
groupRegionInformation.Enabled = false;

}
}

To show some localized sample numbers and dates, the selected object of type CultureInfo is passed
with the IFomatProvider argument of the ToString() method.

private void ShowSamples(CultureInfo ci)
{

double number = 9876543.21;
textSampleNumber.Text = number.ToString(“N”, ci);

DateTime today = DateTime.Today;
textSampleDate.Text = today.ToString(“D”, ci);

DateTime now = DateTime.Now;
textSampleTime.Text = now.ToString(“T”, ci);

}

519

Localization

20 557599 Ch17.qxd 4/29/04 11:38 AM Page 519

To display the information that is associated with a RegionInfo object, in the method ShowRegion
Information() a RegionInfo object is constructed passing the selected culture identifier. Then access
the properties DisplayName, CurrencySymbol, ISOCurrencySymbol, and IsMetric properties to
display this information.

private void ShowRegionInformation(int culture)
{

RegionInfo ri = new RegionInfo(culture);
textRegionName.Text = ri.DisplayName;
textCurrency.Text = ri.CurrencySymbol;
textCurrencyName.Text = ri.ISOCurrencySymbol;
checkIsMetric.Checked = ri.IsMetric;

}

Starting the application you can see all available cultures in the tree view, and selecting a culture lists the
cultural characteristics as shown in Figure 17-7.

Figure 17-7

Sorting
Sorting strings is dependent on the culture. Some cultures have different sorting orders. One example is
Finnish where the characters V and W are treated the same. The algorithms that compare strings for sort-
ing by default use a culture-sensitive sort where the sort is dependent on the culture.

520

Chapter 17

20 557599 Ch17.qxd 4/29/04 11:38 AM Page 520

To demonstrate this behavior of a Finnish sort I have created a small sample Console application where
some U.S. states are stored unsorted inside an array. We are going to use classes from the namespaces
System.Collections, System.Threading, and System.Globalization, so these namespaces must
be declared. The method DisplayNames() shown below is used to display all elements of an array or of
a collection on the console:

static void DisplayNames(IEnumerable e)
{

foreach (string s in e)
Console.Write(s + “ - “);

Console.WriteLine();
}

In the Main() method, after creating the array with some of the U.S. states, the thread property
CurrentCulture is set to the Finnish culture, so that the following Array.Sort() uses the Finnish
sort order. Calling the method DisplayNames() displays all the states on the console.

static void Main(string[] args)
{

string[] names = {“Alabama”, “Texas”, “Washington”,
“Virginia”, “Wisconsin”, “Wyoming”,
“Kentucky”, “Missouri”, “Utah”, “Hawaii”,
“Kansas”, “Lousiana”, “Alaska”, “Arizona”};

Thread.CurrentThread.CurrentCulture =
new CultureInfo(“fi-FI”);

Array.Sort(names);
Console.WriteLine(“\nsorted...”);
DisplayNames(names);

After the first display of some U.S. states in the Finnish sort order, the array is sorted once again. If we
want to have a sort that is independent of the users’ culture, which would be useful when the sorted
array is sent to a server or stored somewhere, we can use the invariant culture.

We can do this by passing a second argument to Array.Sort(). The Sort() method expects an object
implementing IComparer with the second argument. The Comparer class from the System.Collections
namespace implements IComparer. Comparer.DefaultInvariant returns a Comparer object that uses
the invariant culture for comparing the array values for a culture-independent sort.

// sort using the invariant culture
Array.Sort(names, Comparer.DefaultInvariant);
Console.WriteLine(“\nsorted with invariant culture...”);
DisplayNames(names);

}

Figure 17-8 shows the output of this program: a sort with the Finnish culture and a culture-independent
sort are shown in. As you can see in this sort, Washington is listed before Virginia.

521

Localization

20 557599 Ch17.qxd 4/29/04 11:38 AM Page 521

Figure 17-8

In addition to a locale-dependent formatting and measurement system, depending on the culture strings
also have different values or locale-dependent pictures. This is where resources come into play.

Resources
Resources such as pictures or string tables can be put into resource files or satellite assemblies. Such
resources can be very helpful when localizing applications, and .NET has built-in support to search for
localized resources.

Before we show you how to use resources to localize applications, we discuss how resources can be cre-
ated and read without looking at language aspects.

Creating Resource Files
Resource files can contain such things as pictures and string tables. A resource file is created by using
either a normal text file or a .resX file that utilizes XML. We will start with a simple text file.

A resource that embeds a string table can be created by using a normal text file. The text file just assigns
strings to keys. The key is the name that can be used from a program to get the value. Spaces are allowed
in both keys and values.

This example shows a simple string table in the file strings.txt:

Title = Professional C#
Chapter = Localization
Author = Christian Nagel
Publisher = Wrox Press

If sorting a collection should be independent of a culture the collection must be
sorted with the invariant culture. This can particularly be useful when sending the
sort result to a server or storing it inside a file.

522

Chapter 17

20 557599 Ch17.qxd 4/29/04 11:38 AM Page 522

ResGen
The resgen.exe utility can be used to create a resource file out of strings.txt. Typing

resgen strings.txt

will create the file strings.resources. The resulting resource file can be added to an assembly either as an
external file or embedded into the DLL or EXE. Resgen also supports the creation of XML-based .resX
resource files. One easy way to build an XML file is by using ResGen itself:

resgen strings.txt strings.resX

This command creates the XML resource file strings.resX. We will look at how to work with XML
resource files when we look at localization later in this chapter.

The resgen utility does not support adding pictures. With the .NET Framework SDK samples, you will get
a ResXGen sample with the tutorials. With ResXGen it is possible to add pictures to a .resX file. Adding
pictures can also be done programmatically by using the ResourceWriter class, as you will see next.

ResourceWriter
Instead of using the resgen utility to build resource files, a simple program can be written.
ResourceWriter is a class in the System.Resources namespace that also supports pictures and any
other object that is serializable.

In the following code example, we will create a ResourceWriter object, rw, using a constructor with the
filename Demo.resources. After creating an instance, you can add a number of resources of up to 2GB in
total size using the AddResource() method of the ResourceWriter class. The first argument of
AddResource() specifies the name of the resource and the second argument specifies the value. A picture
resource can be added using an instance of the Image class. To use the Image class, you have to reference
the assembly System.Drawing. Also add the using directive to open the namespace System.Drawing.

Create an Image object by opening the file logo.gif. You will have to copy the picture to the directory of
the executable, or specify the full path to the picture in the method argument of Image.ToFile(). The
using statement specifies that the image resource should automatically be disposed at the end of the
using block. Additional simple string resources are added to the ResourceWriter object. The Close()
method of the ResourceWriter class automatically calls ResourceWriter.Generate() to finally
write the resources to the file Demo.resources.

using System;
using System.Resources;
using System.Drawing;

class Class1
{

static void Main()
{

ResourceWriter rw = new ResourceWriter(“Demo.resources”);

523

Localization

20 557599 Ch17.qxd 4/29/04 11:38 AM Page 523

using (Image image = Image.FromFile(“logo.gif”))
{

rw.AddResource(“WroxLogo”, image);
rw.AddResource(“Title”, “Professional C#”);
rw.AddResource(“Chapter”, “Localization”);
rw.AddResource(“Author”, “Christian Nagel”);
rw.AddResource(“Publisher”, “Wrox Press”);
rw.Close();

}
}

}

Starting this small program creates the resource file Demo.resources. The resources will now be used in a
Windows application.

Using Resource Files
You can add resource files to assemblies with the assembly generation tool al.exe, using the /embed
option, or the C# compiler csc.exe using the /resource option, or directly with Visual Studio .NET. To see
how resource files can be used with Visual Studio .NET, create a C# Windows application and name it
ResourceDemo.

Use the context menu of the Solution Explorer (Add➪Add Existing Item) to add the previously created
resource file Demo.resources to this project. By default, BuildAction of this resource is set to Embedded
Resource so that this resource is embedded into the output assembly (see Figure 17-9).

Figure 17-9

After building the project, you can check the generated assembly with ildasm to see the attribute .mre-
source in the manifest (see Figure 17-10). .mresource declares the name for the resource in the assem-
bly. If .mresource is declared public (as in our example), the resource is exported from the assembly
and can be used from classes in other assemblies. .mresource private means that the resource is not
exported and only available within the assembly.

524

Chapter 17

20 557599 Ch17.qxd 4/29/04 11:38 AM Page 524

Figure 17-10

When adding resources to the assembly using Visual Studio .NET, the resource is always public as shown in
Figure 17-10. If the assembly generation tool is used to create assemblies, we can use command line options
to differentiate between adding public and private resources. The option /embed:demo.resources,Y adds the
resource as public, while /embed:demo.resources,N adds the resource as private.

In our Windows application, we add some text boxes and a picture by dropping Windows Forms ele-
ments from the Toolbox to the designer. The values from the resources will be displayed in these
Windows Forms elements. Change the Text and Name properties of the text boxes and the labels to the
values that you can see in the following code. The name property of the PictureBox control is changed
to logo. Figure 17-11 shows the final form in the Forms Designer. The PictureBox control is shown as a
rectangle without grid in the upper left-hand corner.

To access the embedded resource, use the ResourceManager class from the System.Resources names-
pace. You can pass the assembly that has the resources as an argument to the constructor of the Resource
Manager class. In this example the resources are embedded in the executing assembly, so pass the result of
Assembly.GetExecutingAssembly() as the second argument. The first argument is the root name of
the resources. The root name consists of the namespace, with the name of the resource file but without the
resources extension. As you have seen earlier, ildasm shows the name. All you have to do is remove the
file extension resources from the name shown. You can also get the name programmatically using
the GetManifestResourceNames() method of the System.Reflection.Assembly class.

If the assembly was generated using Visual Studio .NET, you can change the visibil-
ity of the resources later. Use ilasm and select FileÍDump to open the assembly and
generate an MSIL source file. You can change the MSIL code with a text editor.
Using the text editor, you can change .mresource public to .mresource private. Using
the tool ilasm, you can then regenerate the assembly with the MSIL source code:
ilasm /exe ResourceDemo.il.

525

Localization

20 557599 Ch17.qxd 4/29/04 11:38 AM Page 525

Figure 17-11

using System.Reflection;
using System.Resources;

//...

public class Form1 : System.Windows.Forms.Form
{

//...
private System.Resources.ResourceManager rm;

public Form1()
{

//
// Required for Windows Form Designer support
//
InitializeComponent();

Assembly assembly = Assembly.GetExecutingAssembly();

rm = new ResourceManager(“ResourceDemo.Demo”, assembly);

Using the ResourceManager instance rm you can get all the resources by specifying the key to the meth-
ods GetObject() and GetString():

logo.Image = (Image)rm.GetObject(“WroxLogo”);
textTitle.Text = rm.GetString(“Title”);
textChapter.Text = rm.GetString(“Chapter”);
textAuthor.Text = rm.GetString(“Author”);
textPublisher.Text = rm.GetString(“Publisher”);

}

When you run the code, you can see the string and picture resources (see Figure 17-12).

526

Chapter 17

20 557599 Ch17.qxd 4/29/04 11:38 AM Page 526

Figure 17-12

Now we will move on to look at localization and the use of resource files with localization.

The System.Resources Namespace
Before we move on to the next example, we conclude this section with a review of the classes contained
in the System.Resources namespace that deal with resources:

❑ The ResourceManager class can be used to get resources for the current culture from assemblies
or resource files. Using the ResourceManager, you can also get a ResourceSet for a particular
culture.

❑ A ResourceSet represents the resources for a particular culture. When a ResourceSet instance
is created it enumerates over a class, implementing the interface IResourceReader, and stores
all resources in a Hashtable.

❑ The interface IResourceReader is used from the ResourceSet to enumerate resources. The class
ResourceReader implements this interface.

❑ The class ResourceWriter is used to create a resource file. ResourceWriter implements the
interface IResourceWriter.

❑ ResXResourceSet, ResXResourceReader, and ResXResourceWriter are similar to
ResourceSet, ResourceReader, and ResourceWriter; however, they are used to create a
XML-based resource file .resX instead of a binary file. You can use ResXFileRef to make a
link to a resource instead of embedding it inside an XML file.

Localization Example Using
Visual Studio .NET

For this section, we create a simple Windows application to show you how to use Visual Studio .NET for
localization. This application will not use complex Windows Forms and does not have any real inner

527

Localization

20 557599 Ch17.qxd 4/29/04 11:38 AM Page 527

functionality, because the key feature we want to demonstrate here is localization. In the automatically
generated source code change the namespace to Wrox.ProCSharp.Localization, and the class name
to BookOfTheDayForm. The namespace is not only changed in the source file BookOfTheDayForm.cs,
but also in the project settings, so that all generated resource files will get this namespace, too. You can
change the namespace for all new items that are created by selecting Common Properties of
Project➪Properties.

Windows Forms applications will be covered more detailed in the Chapters 19 through 21.

To show some issues with localization, this program has a picture, some text, a date, and a number. The
picture shows a flag that is also localized. Figure 17-13 shows this form of the application as seen in the
Windows Forms Designer.

Figure 17-13

The following table lists the values for the Name and Text properties of the Windows Forms elements.

Name Text

labelBookOfTheDay Book of the day

labelItemsSold Books sold

textDate Date

textTitle Professional C#

textItemsSold 30000

pictureFlag

In addition to this form, you might want a message box that displays a welcome message; this message
might change depending on the current time of day. This example will demonstrate that the localization
for dynamically created dialogs must be done differently. In the method WelcomeMessage(), display a
message box using MessageBox.Show(). Call the method WelcomeMessage() in the constructor of the
form class BookOfTheDayForm, before the call to InitializeComponent().

528

Chapter 17

20 557599 Ch17.qxd 4/29/04 11:38 AM Page 528

Here is the code for the method WelcomeMessage():

public void WelcomeMessage()
{

DateTime now = DateTime.Now;
string message;
if (now.Hour <= 12)
{

message = “Good Morning”;
}
else if (now.Hour <= 19)
{

message = “Good Afternoon”;
}
else
{

message = “Good Evening”;
}
MessageBox.Show(message + “\nThis is a localization sample”);

}

The number and date in the form should be set by using formatting options. Add a new method
SetDateAndNumber() to set the values with the format option. In a real application, these values could
be received from a Web Service or a database, but in this example we are just concentrating on localiza-
tion. The date is formatted using the D option (to display the long date name). The number is displayed
using the picture number format string ###,###,### where # represents a digit and “,” is the group
separator:

public void SetDateAndNumber()
{

DateTime today = DateTime.Today;
textDate.Text = today.ToString(“D”);
int itemsSold = 327444;
textItemsSold.Text = itemsSold.ToString(“###,###,###”);

}

In the constructor of the BookOfTheDayForm class both the WelcomeMessage() and SetDateAnd
Number() methods are called.

public BookOfTheDayForm()
{

WelcomeMessage();

//
// Required for Windows Form Designer support
//
InitializeComponent();

SetDateAndNumber();
}

529

Localization

20 557599 Ch17.qxd 4/29/04 11:38 AM Page 529

A magic feature of the Windows Forms designer is started when we set the Localizable property of
the form from false to true: this results in the creation of an XML-based resource file for the dialog box
that stores all resource strings, properties (including the location and size of Windows Forms elements),
embedded pictures, and so on. In addition, the implementation of the InitializeComponent()
method is changed; an instance of the class System.Resources.ResourceManager is created, and to
get to the values and positions of the text fields and pictures, the GetObject() method is used instead
of writing the values directly into the code. GetObject() uses the CurrentUICulture property of the
current thread for finding the correct localization of the resources.

Here is part of InitializeComponent() before the Localizable property is set to true, where all
properties of textboxTitle are set:

private void InitializeComponent()
{

//...
this.textTitle = new System.Windows.Forms.TextBox();
//...
//
// textTitle
//
this.textTitle.Location = new System.Drawing.Point(24, 152);
this.textTitle.Name = “textTitle”;
this.textTitle.Size = new System.Drawing.Size(256, 20);
this.textTitle.TabIndex = 2;
this.textTitle.Text = “Professional C#”;

This is automatically changed code for IntializeComponent() with the Localizable property set
to true:

private void InitializeComponent()
{

System.Resources.ResourceManager resources = new
System.Resources.ResourceManager(typeof(BookOfTheDayForm));

//...
this.textTitle = new System.Windows.Forms.TextBox();
//...
//
// textTitle
//
this.textTitle.AccessibleDescription =

resources.GetString(“textTitle.AccessibleDescription”);
this.textTitle.AccessibleName =

resources.GetString(“textTitle.AccessibleName”);
this.textTitle.Anchor = ((System.Windows.Forms.AnchorStyles)

(resources.GetObject(“textTitle.Anchor”)));
this.textTitle.AutoSize =

((bool)(resources.GetObject(“textTitle.AutoSize”)));
this.textTitle.BackgroundImage = ((System.Drawing.Image)

(resources.GetObject(“textTitle.BackgroundImage”)));
this.textTitle.Dock = ((System.Windows.Forms.DockStyle)

530

Chapter 17

20 557599 Ch17.qxd 4/29/04 11:38 AM Page 530

(resources.GetObject(“textTitle.Dock”)));
this.textTitle.Enabled = ((bool)

(resources.GetObject(“textTitle.Enabled”)));
this.textTitle.Font = ((System.Drawing.Font)

(resources.GetObject(“textTitle.Font”)));
this.textTitle.ImeMode = ((System.Windows.Forms.ImeMode)

(resources.GetObject(“textTitle.ImeMode”)));
this.textTitle.Location = ((System.Drawing.Point)

(resources.GetObject(“textTitle.Location”)));
this.textTitle.MaxLength = ((int)

(resources.GetObject(“textTitle.MaxLength”)));
this.textTitle.Multiline = ((bool)

(resources.GetObject(“textTitle.Multiline”)));
this.textTitle.Name = “textTitle”;
this.textTitle.PasswordChar = ((char)

(resources.GetObject(“textTitle.PasswordChar”)));
this.textTitle.RightToLeft =

((System.Windows.Forms.RightToLeft)
(resources.GetObject(“textTitle.RightToLeft”)));

this.textTitle.ScrollBars =
((System.Windows.Forms.ScrollBars)
(resources.GetObject(“textTitle.ScrollBars”)));

this.textTitle.Size = ((System.Drawing.Size)
(resources.GetObject(“textTitle.Size”)));

this.textTitle.TabIndex = ((int)
(resources.GetObject(“textTitle.TabIndex”)));

this.textTitle.Text = resources.GetString(“textTitle.Text”);
this.textTitle.TextAlign =

((System.Windows.Forms.HorizontalAlignment)
(resources.GetObject(“textTitle.TextAlign”)));

this.textTitle.Visible = ((bool)
(resources.GetObject(“textTitle.Visible”)));

this.textTitle.WordWrap = ((bool)
(resources.GetObject(“textTitle.WordWrap”)));

Where does the resource manager get the data from? When the Localizable property is set to true,
the resource file BookOfTheDay.resX is generated. In this file, you can find the scheme of the XML
resource, followed by all elements in the form: Type, Text, Location, TabIndex, and so on.

The following XML segment shows a few of the properties of textBoxTitle: the Location property has a
value of 24, 152, the TabIndex property has a value of 2, the Text property is set to Professional C#,
and so on. For every value, the type of the value is stored as well. For example, the Location property is of
type System.Drawing.Point, and this class can be found in the assembly System.Drawing.

Why are the locations and sizes stored in this XML file? With translations, many strings will have com-
pletely different sizes and do not any longer fit in to the original positions. When the locations and sizes
are all stored inside the resource file, everything that is needed for localizations is stored in these files,
separate from the C# code:

531

Localization

20 557599 Ch17.qxd 4/29/04 11:38 AM Page 531

<data name=”textTitle.Location” type=”System.Drawing.Point, System.Drawing,
Version=1.0.5000.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”>

<value>24, 152</value>
</data>
<data name=”textTitle.RightToLeft” type=”System.Windows.Forms.RightToLeft,

System.Windows.Forms, Version=1.0.5000.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089”>

<value>Inherit</value>
</data>
<data name=”textTitle.Size” type=”System.Drawing.Size, System.Drawing,

Version=1.0.5000.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”>
<value>256, 20</value>

</data>
<data name=”textTitle.TabIndex” type=”System.Int32, mscorlib,

Version=1.0.5000.0, Culture=neutral, PublicKeyToken=b77a5c561934e089”>
<value>2</value>

</data>
<data name=”textTitle.Text”>

<value>Professional C#</value>
</data>
<data name=”textTitle.TextAlign” type=”System.Windows.Forms.HorizontalAlignment,

System.Windows.Forms, Version=1.0.5000.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089”>

<value>Left</value>
</data>
<data name=”textTitle.Visible” type=”System.Boolean, mscorlib,

Version=1.0.5000.0, Culture=neutral, PublicKeyToken=b77a5c561934e089”>
<value>True</value>

</data>

When changing some of these resource values, it is not necessary to work directly with the XML code. You
can change these resources directly in the Visual Studio designer. Whenever you change the Language
property of the form and the properties of some form elements, a new resource file is generated for the
specified language. Create a German version of the form by setting the Language property to German,
and a French version by setting the Language property to French. For every language, you get a resource
file with the changed properties: BookOfTheDayForm.de.resX and BookOfTheDayForm.fr.resX.

The following table shows the changes needed for the German version.

German Name Value

$this.Text (title of the form) Buch des Tages

labelItemsSold.Text Bücher verkauft:

labelBookOfTheDay.Text Buch des Tages

The following table lists the changes for the French version. For both languages, we also change the flag
representing the country.

532

Chapter 17

20 557599 Ch17.qxd 4/29/04 11:38 AM Page 532

French Name Value

$this.Text (title of the form) Le livre du jour

labelItemsSold.Text Des livres vendus

labelBookOfTheDay.Text Le livre du jour

Compiling the project now creates a satellite assembly for each language. Inside the debug directory (or
the release, depending on your active configuration), language subdirectories like de and fr are created.
In such a subdirectory, you will find the file LocalizationDemo.resources.dll. Such a file is a satellite
assembly that only includes localized resources. Opening this assembly with ildasm (see Figure 17-14),
we see a manifest with the embedded resources and a defined locale. The assembly has the locale de in
the assembly attributes, and so it can be found in the de subdirectory. You can also see the name of the
resource with .mresource; it is prefixed with the namespace name Wrox.ProCSharp.Localization,
followed by the class name BookOfTheDayForm and the language code de.

Figure 17-14

Outsourcing Translations
It is an easy task to outsource translations using resource files. When translating resource files it is not
necessary to install Visual Studio .NET; a simple XML editor will suffice. The disadvantage of using an
XML editor is that there is no real chance to rearrange Windows Forms elements and change the sizes if
the translated text does not fit into the original borders of a label or button. Using a Windows Forms
designer to do translations is a natural choice.

Microsoft provides a tool as part of the .NET Framework SDK that fulfills all these requirements: the
Windows Resource Localization Editor winres.exe (see Figure 17-15). Users working with this tool do
not need access to the C# source files; only binary or XML-based resource files are needed for transla-
tions. After these translations are completed, we can import the resource files to the Visual Studio .NET
project to build satellite assemblies.

533

Localization

20 557599 Ch17.qxd 4/29/04 11:38 AM Page 533

Figure 17-15

Changing the Culture Programmatically
After translating the resources and building the satellite assemblies, you will get the correct translations
depending on the configured culture for the user. The welcome message is not translated at this time.
This needs to be done in a different way, as you will see shortly.

In addition to the system configuration, it should be possible to send the language code as a command-
line argument to our application for testing purposes. The Main() method and the BookOfTheDayForm
constructor are changed to support command-line arguments. In the Main() method we pass the culture
string to the BookOfTheDayForm constructor. In the constructor, we have to concern ourselves with some-
thing else: a CultureInfo instance is created to pass it to the CurrentCulture and CurrentUICulture
properties of the current thread. Remember that the CurrentCulture is used for formatting, while the
CurrentUICulture is used for loading of resources.

[STAThread]
static void Main(string[] args)
{

string culture = “”;
if (args.Length == 1)
{

culture = args[0];
}
Application.Run(new BookOfTheDayForm(culture));

}

public BookOfTheDayForm(string culture)
{

534

Chapter 17

20 557599 Ch17.qxd 4/29/04 11:38 AM Page 534

if (culture != “”)
{

CultureInfo ci = new CultureInfo(culture);
// set culture for formatting
Thread.CurrentThread.CurrentCulture = ci;
// set culture for resources
Thread.CurrentThread.CurrentUICulture = ci;

}

WelcomeMessage();
//
// Required for Windows Form Designer support
//
InitializeComponent();
SetDateAndNumber();

}

Now we can start the application by using command-line options. With the running application you can
see that the formatting options and the resources that were generated from the Windows Forms designer
show up. Figures 17-16 and 17-17 show two localizations where the application is started with the com-
mand-line options fr-fr and the de-de.

Figure 17-16

Figure 17-17 535

Localization

20 557599 Ch17.qxd 4/29/04 11:38 AM Page 535

There is still a problem with our welcome message box: the strings are hard-coded inside the program.
Since these strings are not properties of elements inside the form, the Forms Designer does not extract
XML resources as it does from the properties inside the InitializeComponent() method when we
change the Localizable property of the form. You have to create resources ourselves. In the next two
sections doing localization will be shown with binary and XML-based resource files.

Using Binary Resource Files
For the welcome message, you have to translate the hard-coded strings. The following table shows the
translations for German and French.

English German French

Good Morning Guten Morgen Bonjour

Good Afternoon Guten Tag Bonjour

Good Evening Guten Abend Bonsoir

This is a localization sample. Das ist ein Beispiel C’est un exemple avec la localisation.
mit Lokalisierung.

To support this we are creating a simple text file (Welcome.txt), representing the default as well as
German and French versions.

Default version, welcome.txt:

Good Morning = Good Morning
Good Afternoon = Good Afternoon
Good Evening = Good Evening
Description =This is a localization sample.

German version, welcome.de.txt:

Good Morning = Guten Morgen
Good Afternoon = Guten Tag
Good Evening = Guten Abend
Description = Das ist ein Beispiel mit Lokalisierung.

French version, welcome.fr.txt

Good Morning = Bonjour
Good Afternoon = Bonjour
Good Evening = Bonsoir
Description = C’est un exemple avec la localization.

We can use resgen to create the binary resource files Welcome.resources, Welcome.de.resources, and
Welcome.fr.resources; for example, resgen Welcome.de.txt creates Welcome.de.resources. You can add
these files to the solution by selecting Add➪Add Existing Item in Solution Explorer. With all these

536

Chapter 17

20 557599 Ch17.qxd 4/29/04 11:38 AM Page 536

resource files the BuildAction is set automatically to Embedded Resource, otherwise the satellite assem-
bly will not be created. The name of the resources can be found using ildasm, as usual. The resources
from the file Welcome.de.resources are named Wrox.ProCSharp.Localization.Welcome.de (the name of
the namespace followed by the file name). Instead of using binary resource files, you can also add XML-
based resource files to Visual Studio .NET projects, as you will learn next.

Using XML Resource Files
With the resgen command, we create XML resources out of the text-based resource files:

resgen welcome.txt welcome.resx
resgen welcome.de.txt welcome.de.resx
resgen welcome.fr.txt welcome.fr.resx

The generated XML-based resource files are then added to the project by selecting Add➪Add Existing
Item in the Solution Explorer. Similar to binary resource files, the BuildAction for .resx files is set to
Embedded Resource. When building the project, the resources are added to the satellite assemblies.

Now there are two .mresource entries in the satellite assembly as can be seen in Figure 17-18—the
resource Wrox.ProCSharp.Localization.BookOfTheDayForm.de was originally created with the
Windows Forms designer, and Wrox.ProCSharp.Localization.Welcome.de is the resource from
the new Welcome.de.resx resource file.

Figure 17-18

Of course, the source code of the method WelcomeMessage() must also be changed to use the resources.
A ResourceManager instance is created to get the resource named Wrox.ProCSharp.Assemblies
.Localization.Welcome from the current assembly. With this resource manager, you get the resources
we created previously in the resource files using GetString() methods.

For the ResourceManager class, you have to declare the use of the System.Resources namespace; the
Assembly class is in the System.Reflection namespace.

537

Localization

20 557599 Ch17.qxd 4/29/04 11:38 AM Page 537

public void WelcomeMessage()
{

ResourceManager resource =
new ResourceManager(“Wrox.ProCSharp.Localization.Welcome”,

Assembly.GetExecutingAssembly());
DateTime now = DateTime.Now;
string message;
if (now.Hour <= 12)
{

message = resource.GetString(“Good Morning”);
}
else if (now.Hour <= 19)
{

message = resource.GetString(“Good Afternoon”);
}
else
{

message = resource.GetString(“Good Evening”);
}
MessageBox.Show(message + “\nThis is a localization sample”);

}

When the program is started using English, German, or French you will get the message boxes shown in
Figures 17-19, 17-20 and 17-21.

Figure 17-19

Figure 17-20

Figure 17-21

538

Chapter 17

20 557599 Ch17.qxd 4/29/04 11:38 AM Page 538

Automatic Fallback for Resources
For the French and German versions, in the sample all the resources are inside the satellite assemblies. If
not all the values of labels or text boxes are changed, this is not a problem at all. You only must have the
values that will change in the satellite assembly; the other values will be taken from the parent assembly.
For example, for de-at (Austria) you could change the value for the Good Afternoon resource to Grüß Gott
while leaving the other values intact. During runtime, when looking for the value of the resource Good
Morning that is not located in the de-at satellite assembly, the parent assembly would be searched. The
parent for de-at is de. In cases where the de assembly does not have this resource either, the value would
be searched for in the parent assembly of de, the neutral assembly. The neutral assembly does not have a
culture code.

Keep in mind, the culture code of the main assembly should be blank!

Globalization and Localization with ASP.NET
With ASP.NET applications, localization happens in a similar way to Windows applications. In Chapter
25, we discuss the functionality of ASP.NET applications as this is done in; in this section, we discuss the
localization issues of ASP.NET applications. Visual Studio .NET 2003 does not provide the same support
for ASP.NET as it does for Windows Forms applications. However, adapting globalization and localiza-
tion is not rocket science.

With .ASPX files you can assign cultural settings to complete Web sites or to specific pages. Configuring
the cultural setting of the Web site in the configuration file web.config makes it independent of the
installed operating system. The culture can be configured with the <globalization> element as can be
seen in the XML section below. The XML attribute culture defines the current culture of the thread that
is used for formatting, while uiCulture defines the culture used by the resource manager:

<configuration>
<system.web>

<globalization culture=”en-US” uiCulture=”en-US” />
</system.web>

</configuration>

If different pages should be accessed from users within different cultures, you can configure the cultural
formatting and language output with the page directive that is in the first line of an ASPX file.

<%Page Language=”C#” Culture=”en-US” UICulture=”en-US” %>

If you want the cultural setting for a Web page to be dependent on the user’s browser settings, you can
specify the cultural setting of the thread programmatically with the CurrentCulture and CurrentUI
Culture properties of the Thread class. The best place to do this is in the file global.asax where the
method Application_BeginRequest() is invoked with every request of a page. When this method is
invoked, the thread that handles the user request is known, and this thread will flow through all pages
to fulfill the user request. Request.UserLanguages returns an array of language strings the user has
configured with the browser. Here we use the first language of the list, and pass it to the static method
CultureInfo.CreateSpecificCulture(). Internet Explorer sends the string de if the configured
culture is German (Germany). Because the string de represents a neutral culture instead of a specific cul-
ture, we have to create a specific culture with this method, because it is not allowed to set neutral

539

Localization

20 557599 Ch17.qxd 4/29/04 11:38 AM Page 539

cultures with the culture of the thread. CreateSpecificCulture() returns the default specific culture
if a neutral culture is passed. The default specific culture for de is de-DE. Using the browser, you can
also configure a custom language string. If we get a string that is not supported as a culture, we deal
with in the exception-handling block by creating a default culture en-US.

protected void Application_BeginRequest(Object sender,
EventArgs e)

{
CultureInfo ci = null;
try
{

ci = CultureInfo.CreateSpecificCulture(
Request.UserLanguages[0]);

}
catch
{

// default for bad user setting
ci = new CultureInfo(“en-US”);

}
Thread.CurrentThread.CurrentCulture = ci;
Thread.CurrentThread.CurrentUICulture = ci;

}

Other than these issues, ASP.NET applications are no different from Windows applications when it
comes to localization. You can use formatting and satellite assemblies as resources in the same way as
you have done it earlier in this chapter.

A Custom Resource Reader
With the resource readers that are part of .NET Framework 1.1, you can read resources from resource
files and satellite assemblies. If you want to put the resources into a different store (such as a database),
you can create a custom resource reader.

For using a custom resource reader, it is also necessary to create a custom resource set and a custom
resource manager. However, doing this is not a hard task, because you can derive the custom classes
from existing classes.

For the sample application, you have to create a simple database with just one table for storing messages
that has one column for every supported language. The following table lists the columns and their corre-
sponding values.

Key Default de es fr it

Welcome Welcome Willkommen Recepción Bienvenue Benvenuto

Good Morning Good Morning Guten Morgen Buonas díaz Bonjour Buona
Mattina

Good Evening Good Evening Guten Abend Buonas noches Bonsoir Buona sera

540

Chapter 17

20 557599 Ch17.qxd 4/29/04 11:38 AM Page 540

Key Default de es fr it

Thank you Thank you Danke Gracias Merci Grazie

Goodbye Goodbye Auf Wiedersehen Adiós Au revoir Arrivederci

For the custom resource reader create a component library with three classes. The classes are
DatabaseResourceReader, DatabaseResourceSet, and DatabaseResourceManager.

Creating a DatabaseResourceReader
With the class DatabaseResourceReader define two fields, the data source name dsn that is needed to
access the database, and the language that should be returned by the reader. These fields are filled inside
the constructor of this class. The field language is set to the name of the culture that is passed with the
CultureInfo object to the constructor.

public class DatabaseResourceReader : IResourceReader
{

private string dsn;
private string language;

public DatabaseResourceReader(string dsn, CultureInfo culture)
{

this.dsn = dsn;
this.language = culture.Name;

}

A resource reader has to implement the interface IResourceReader. This interface defines the methods
Close() and GetEnumerator() to return an IDictionaryEnumerator that returns keys and values
for the resources. In the implementation of GetEnumerator() create a Hashtable where all keys and
values for a specific language are stored. Next, you can use the SqlConnection class in the namespace
System.Data.SqlClient to access the database in SQL Server. Connection.CreateCommand() cre-
ates a SqlCommand() object that we use to specify the SQL SELECT statement to access the data in the
database. If the language is set to de, the SELECT statement is SELECT [key], [de] FROM Messages.
Then you use a SqlDataReader object to read all values from the database, and put it into a Hashtable.
Finally, the enumerator of the Hashtable is returned.

For more information about accessing data with ADO.NET see Chapter 21.

public System.Collections.IDictionaryEnumerator GetEnumerator()
{

Hashtable dict = new Hashtable();

SqlConnection connection = new SqlConnection(dsn);
SqlCommand command = connection.CreateCommand();
if (language == “”)

language = “Default”;

command.CommandText = “SELECT [key], [“ + language + “] “ +
“FROM Messages”;

541

Localization

20 557599 Ch17.qxd 4/29/04 11:38 AM Page 541

try
{

connection.Open();

SqlDataReader reader = command.ExecuteReader();
while (reader.Read())
{

if (reader.GetValue(1) != System.DBNull.Value)
dict.Add(reader.GetString(0), reader.GetString(1));

}

reader.Close();
}
catch // ignore missing columns in the database
{
}
finally
{

connection.Close();
}
return dict.GetEnumerator();

}

public void Close()
{
}

Because the interface IResourceReader derives from IEnumerable and IDisposable, the methods
GetEnumerator() returning an IEnumerator interface and Dispose() must be implemented, too.

IEnumerator IEnumerable.GetEnumerator()
{

return this.GetEnumerator();
}

void IDisposable.Dispose()
{
}

}

Creating a DatabaseResourceSet
The class DatabaseResourceSet can use nearly all implementation of the base class ResourceSet.
You just need a different constructor that initializes the base class with our own resource reader
DatabaseResourceReader. The constructor of ResourceSet allows passing an object implementing
IResourceReader; this requirement is fulfilled by DatabaseResourceReader.

public class DatabaseResourceSet : ResourceSet
{

internal DatabaseResourceSet(string dsn, CultureInfo culture)
: base(new DatabaseResourceReader(dsn, culture))

{

542

Chapter 17

20 557599 Ch17.qxd 4/29/04 11:38 AM Page 542

}

public override Type GetDefaultReader()
{

return typeof(DatabaseResourceReader);
}

}

Creating a DatabaseResourceManager
The third class you have to create is the custom resource manager. DatabaseResourceManager derives
from the class ResourceManager, and you only have to implement a new constructor and override the
method InternalGetResourceSet().

In the constructor, create a new Hashtable to store all queried resource sets and set it into the field
ResourceSets that is defined by the base class.

public class DatabaseResourceManager : ResourceManager
{

private string dsn;

public DatabaseResourceManager(string dsn)
{

this.dsn = dsn;
ResourceSets = new Hashtable();

}

The methods of the ResourceManager class that you can use to access resources (such as GetString()
and GetObject()), invoke the method InternalGetResourceSet() to access a resource set where the
appropriate values can be returned.

In the implementation of InternalGetResourceSet(), check first if the resource set for the culture
queried for a resource is already in the hash table; if it already exists, return it to the caller. If the resource
set is not available, create a new object DatabaseResourceSet with the queried culture, add it to the
hash table, and return it to the caller.

protected override ResourceSet InternalGetResourceSet(
CultureInfo culture, bool createIfNotExists, bool tryParents)

{
DatabaseResourceSet rs = null;

if (ResourceSets.Contains(culture.Name))
{

rs = ResourceSets[culture.Name] as DatabaseResourceSet;
}
else
{

rs = new DatabaseResourceSet(dsn, culture);
ResourceSets.Add(culture.Name, rs);

}
return rs;

}
}

543

Localization

20 557599 Ch17.qxd 4/29/04 11:38 AM Page 543

Client Application for DatabaseResourceReader
How the class ResourceManager is used from the client application here does not differ a lot to the use of
the ResourceManager class earlier. The only difference is that the custom class DatabaseResourceManager
is used instead of the class ResourceManager. The code snippet demonstrates how you can use your own
resource manager.

A new DatabaseResourceManager object is created by passing the database connection string to the
constructor. Then you can invoke the GetString() method that is implemented in the base class as we
have done earlier, passing the key and an optional object of type CultureInfo to specify a culture. In
turn, you get a resource value from the database, because this resource manager is using the classes
DatabaeResourceSet and DatabaseResourceReader.

DatabaseResourceManager rm = new DatabaseResourceManager(
“server=localhost;database=LocalizationDemo;trusted_connection=true”);

string spanishWelcome = rm.GetString(“Welcome”,
new CultureInfo(“es-ES”));

string italianThankyou = rm.GetString(“Thank you”,
new CultureInfo(“it”));

string threadDefaultGoodMorning = rm.GetString(“Good Morning”);

Summary
In this chapter, we have discussed the globalization and localization of .NET applications.

In the context of globalization of applications, we discussed the namespace System.Globalization to
format culture-dependent numbers and dates. Furthermore, we discussed that sorting strings by default
depends on the culture. We used the invariant culture for a culture-independent sort.

Localization of applications is accomplished by using resources. Resources can be packed into files,
satellite assemblies, or in a custom store such as a database. The classes used with localization are in
the namespace System.Resources.

544

Chapter 17

20 557599 Ch17.qxd 4/29/04 11:38 AM Page 544

Deployment

The development process does not end when the source code is compiled and testing is complete. At
that stage, the job of getting the application into the user’s hands begins. Whether it’s an ASP.NET
application, a smart client application, or an application built using the Compact Framework, the
software must be deployed to a target environment. .NET Framework has made deployment much
easier then it was in the past. The pains of registering COM components and writing new hives to
the registry are all gone.

This chapter looks at the options that are available for application deployment, both from an
ASP.NET perspective and from the smart client perspective.

Designing for Deployment
Deployment often is an afterthought in the development process that can lead to nasty, if not
costly, surprises. To avoid grief in deployment scenarios, the deployment process should be
planned out during the initial design stage. Any special deployment considerations—such as
server capacity, desktop security, or where assemblies will be loaded from—should be built into
the design from the start, resulting in a much smoother deployment process.

Another issue that must be addressed early in the development process is the environment in
which to test the deployment. While unit testing of application code and of deployment options
can be done on the developer’s system, the deployment must be tested in an environment that
resembles the target system. This is important to eliminate the dependencies that don’t exist on a
targeted computer. An example of this might be a third-party library that has been installed on the
developer’s computer early in the project. The target computer might not have this library on it.
It can be easy to forget to include it in the deployment package. Testing on the developer’s system
would not uncover the error since the library already exists. Documenting dependencies can help
in eliminating this potential problem.

Deployment processes can be very complex for a large application. Planning ahead for the deploy-
ment can save time and effort when the deployment process is implemented.

21 557599 Ch18.qxd 4/29/04 11:40 AM Page 545

Deployment Options
This section provides an overview of the deployment options that are available to .NET developers.
Most of these options are discussed in greater detail later in this chapter.

Xcopy
The xcopy utility enables you to copy an assembly or group of assemblies to an application folder, cut-
ting down on your development time. Since assemblies are self-discovering, that is the metadata that
describes the assembly is included in the assembly, there is no need to register anything in the registry.
Each assembly keeps track of what other assemblies it requires to execute. By default the assembly looks
in the current application folder for the dependencies. The process of moving (or probing) assemblies to
other folders is discussed later in this chapter.

Copy Project
If you are developing a Web project, using the Copy Project option on the Project menu will deploy the
components needed to run the application to the server. It creates a new Web application on the server,
but does not change any of the IIS directory options.

Deployment Projects
Visual Studio .NET has the capability to create setup programs for an application. There are three options
based on Microsoft Windows Installer technology: creating merge modules, creating a setup for client
applications, and creating a setup for Web applications. The ability to create cab files is also available.
Deployment projects offer a great deal of flexibility and customization for the setup process. One of these
deployment options will be useful for larger applications.

Deployment Requirements
It is instructive to look at the runtime requirements of a .NET-based application. The CLR does have
certain requirements on the target platform before any managed application can execute.

The first requirement that must be met is the operating system. Currently the following operating systems
can run .NET-based applications:

❑ Windows 98

❑ Windows 98 Second Edition (SE)

❑ Windows Millennium Edition (ME)

❑ Windows NT 4.0 (Service Pack 6a)

❑ Windows 2000

❑ Windows XP Home

❑ Windows XP Professional

❑ Windows XP Professional TabletPC Edition

546

Chapter 18

21 557599 Ch18.qxd 4/29/04 11:40 AM Page 546

The following server platforms are supported:

❑ Windows 2000 Server and Advanced Server

❑ Windows 2003 Server Family

Other requirements are Windows Internet Explorer version 5.01 or later, MDAC version 2.6 or later (if the
application is designed to access data), and Internet Information Services (IIS) for ASP.NET applications.

You also must consider hardware requirements when deploying .NET applications. The minimum
requirements for hardware are:

❑ Client: Pentium 90 MHz and 32MB RAM

❑ Server: Pentium 133 MHz and 128MB RAM

For best performance, increase the amount of RAM—the more RAM the better your .NET application
runs. This is especially true for server applications.

Simple Deployment
If deployment is part of an application’s original design considerations, then deployment can be as sim-
ple as copying a set of files to the target computer. For a Web application, it can be a simple menu choice
in Visual Studio .NET. This section discusses these simple deployment scenarios.

In order to see how the various deployment options are set up, you must have an application to deploy.
The sample download at www.wrox.com contains three projects: SampleClientApp, SampleWebApp,
and AppSupport. SampleClientApp is a smart client application. SampleWebApp is a simple Web app.
AppSupport is a class library that contains one simple class that returns a string with the current date
and time. SampleClientApp and SampleWebApp use AppSupport to fill a label with the output of
AppSupport. In order to use the examples, first load and build AppSupport. Then in each of the other
applications set a reference to the newly built AppSupport dll.

Here is the code for the AppSupport assembly:

using System;

namespace AppSupport
{
/// <summary>
/// Simple assembly to return date and time string.
/// </summary>
public class Support
{

private Support()
{
}

public static string GetDateTimeInfo()
{

DateTime dt = DateTime.Now;

547

Deployment

21 557599 Ch18.qxd 4/29/04 11:40 AM Page 547

return string.Concat(dt.ToLongDateString(), “ “, dt.ToLongTimeString());
}

}
}

This simple assembly suffices to demonstrate the deployment options available to you.

Xcopy
Xcopy deployment is a term used for the process of copying a set of files to a folder on the target
machine and then executing the application on the client. The term comes from the DOS command
xcopy.exe Regardless of the number of assemblies, if the files are copied into the same folder, the appli-
cation will execute—rendering the task of editing the configuration settings or registry obsolete.

To see how an xcopy deployment works, open the SampleClientApp solution (SampleClientApp.sln)
that is part of the sample download file. Change the target to Release and do a full compile. Next, use
either My Computer or File Explorer to navigate to the project folder\SampleClientApp\ bin\Release
and double-click SampleClientApp.exe to run the application. Now click the button to open another
dialog. This verifies that the application functions properly. Of course this folder is where Visual Studio
placed the output, so you would expect the application to work.

Create a new folder and call it ClientAppTest. Copy the two files from the release folder to this new
folder and then delete the release folder. Again, double-click the SampleClientApp.exe file to verify it’s
working.

That’s all there is to it; xcopy deployment provides the ability to deploy a fully functional application
simply by copying the assemblies to the target machine. Just because the example that is used here is
simple does not mean that this process can not work for more complex applications. There really is no
limit to the size or number of assemblies that can be deployed using this method. The reason that you
might not want to use xcopy deployment is the ability to place assemblies in the Global Assembly Cache
(GAC), or the ability to add icons to the Start Menu. Also if your application still relies on a COM library
of some type, then you will not be able to register the COM components easily.

Xcopy and Web Applications
Xcopy deployment can also work with Web applications with exception of the folder structure. You must
establish the virtual directory of your Web application and configure the proper user rights. This process
is generally accomplished with the IIS administration tool. After the virtual directory is set up, the Web
application files can be copied to the virtual directory. Copying a Web application’s files can be a bit
tricky. There are a couple of configuration files that need to be as accounted for as well as the images that
the pages might be using. There is a way to determine what files you must include. When you open the
C# or Visual Basic .NET project file (*.csproj or *.vbproj), you can look at the <Files> element. This ele-
ment lists the files that make up the project. The BuildAction attribute has one of four values: None,
Content, Compile, and Embedded Resource. Any file element that has the BuildAction of Compile
or Embedded Resource will be compiled into the aspx or dlls of the application. The Content elements
should be copied. The RelPath attribute indicates the relative path to which the file should be copied.
Here is the <Files> element from the SampleWebApp.

548

Chapter 18

21 557599 Ch18.qxd 4/29/04 11:40 AM Page 548

<Files>
<Include>

<File
RelPath = “AssemblyInfo.cs”
SubType = “Code”
BuildAction = “Compile”

/>
<File

RelPath = “Global.asax”
SubType = “Component”
BuildAction = “Content”

/>
<File

RelPath = “Global.asax.cs”
DependentUpon = “Global.asax”
SubType = “Code”
BuildAction = “Compile”

/>
<File

RelPath = “Global.asax.resx”
DependentUpon = “Global.asax.cs”
BuildAction = “EmbeddedResource”

/>
<File

RelPath = “SampleWebForm.aspx”
SubType = “Form”
BuildAction = “Content”

/>
<File

RelPath = “SampleWebForm.aspx.cs”
DependentUpon = “SampleWebForm.aspx”
SubType = “ASPXCodeBehind”
BuildAction = “Compile”

/>
<File

RelPath = “SampleWebForm.aspx.resx”
DependentUpon = “SampleWebForm.aspx.cs”
BuildAction = “EmbeddedResource”

/>
<File

RelPath = “Web.config”
BuildAction = “Content”

/>
</Include>

</Files>

If you look closely you can see that the files AssemblyInfo.cs, Global.asax.cs, Global.asax.resx,
SampleWebForm.aspx, and SampleWebForm.aspx.resx have the build action set to Compile. You don’t
have to worry about copying these files, because they will be compiled into the output of the project.
Web.config and SampleWebForm.aspx have the BuildAction attribute value of Content, so these files
must be copied. Keep in mind that you will have to do this with each project that makes up the solution
of the application.

549

Deployment

21 557599 Ch18.qxd 4/29/04 11:40 AM Page 549

Copy Project
Instead of going through all of those steps in the previous section, the easier way would be to select the
Copy Project command from the Project menu to open the Copy Project dialog box (see Figure 18-1).

Figure 18-1

In this dialog box, you must specify the destination folder or virtual directory in which the application
will run; the Web Access method (you can choose between FrontPage or File Share); and Copy, which
enables you to specify the files that are copied to the server.

If the virtual directory does not exist, Copy Project will create it. However, to alter the folder permissions
you must use the admin tool. Copy Project provides an xcopy style of deployment. Unlike xcopy, how-
ever, it enables you to specify the files that need to be copied and where these files should be deployed.
If you select the first option under Copy in the Copy Project dialog box, only the set of files that are
required to run the application are copied. This includes all files with BuildAction set to Content
and the build outputs (dlls and so on). The second option sends both the source files and the project
files. For a production deployment, choose the first option.

Using xcopy deployment or Copy Project has a couple of advantages. First the deployment process itself
is very easy. It can be done with simple scripts to automate the process. Updates are copied to the target
machine as well. By implementing simple probing you can even incorporate simple versioning scenar-
ios. Shared assemblies can also be copied as long as they don’t exist in the GAC. (Refer to Chapter 13 for
more on probing and shared assemblies.) The drawback of xcopy and Copy Project deployment is that
you don’t get the benefits of Windows Installer. These benefits include rollback, uninstall, and repair
functionality. It is more difficult to install assemblies into the GAC or handle any type of conditional
deployment issues. Also if you are using COM or deploying a COM component with the application,
making sure the component is registered properly can be a hassle.

550

Chapter 18

21 557599 Ch18.qxd 4/29/04 11:40 AM Page 550

Installer Projects
Xcopy deployment can be easy to use, but there are times when the lack of functionality becomes an
issue. To overcome this shortcoming, Visual Studio .NET has five installer project types. Four of these
options are based on the Windows Installer technology. The following table lists the project types.

Project Type Description

Setup Project Used for the installation of client applications, middle-tier applica-
tions, and applications that run as Windows Service.

Web Setup Project Used for the installation of Web-based applications.

Merge Module Project Creates merge modules that can be used with other Windows
Installer–based setup applications.

Cab Project Creates cab files for distribution through older deployment technologies.

Setup Wizard Aids in the creation of a deployment project.

Setup and Web Setup Projects are very similar. The key difference is that with Web Setup the project is
deployed to a virtual directory on a Web server, whereas with Setup Project it is deployed to a folder
structure. Both project types are based on Windows Installer and have all of the features of a Windows
Installer–based setup program. Merge Module Project is generally used when you have created a compo-
nent or library of functionality that is included in a number of deployment projects. By creating a merge
module you can set any configuration items specific to the component and without having to worry about
them in the creation of the main deployment project. The Cab Project type simply creates cab files for the
application. Cab files are used by older installation technologies as well as some Web-based installation
processes. The Setup Wizard project type steps through the process of creating a deployment project, ask-
ing specific questions along the way. The following sections discuss how to create each of these deploy-
ment projects, what settings and properties can be changed, and what customization you can add.

What Is Windows Installer?
Windows Installer is a service that manages the installation, update, repair, and removal of applications
on most Windows operating systems. It is part of Windows ME, Windows 2000, and Windows XP and is
available for Windows 95, Windows 98, and Windows NT 4.0. The current version of Windows Installer
is 2.0.

Windows Installer tracks the installation of applications in a database. When an application has to be
uninstalled, one can easily track and remove the registry settings that were added, the files that were
copied to the hard drive, and the desktop and Start Menu icons that were added. If a particular file is
still referenced by another application, the installer will leave it on the hard drive so that the other appli-
cation doesn’t break. The database also makes it possible to perform repairs. If a registry setting or a dll
associated with an application becomes corrupt or is accidentally deleted, you can repair the installation.
During a repair, the installer reads the database from the last install and replicates that installation.

551

Deployment

21 557599 Ch18.qxd 4/29/04 11:40 AM Page 551

The deployment projects in Visual Studio .NET give you the ability to create a Windows Installation
package. The deployment projects give you access to most of what you will need to do in order to install
a given application. However, if you need even more control, check out the Windows Installer SDK,
which is part of the Platform SDK—it contains documentation on creating custom installation packages
for your application. The following sections deal with creating these installation packages using the
Visual Studio .NET deployment projects.

Creating Installers
Creating installation packages for client applications or for Web applications is not that difficult. One of
the first tasks is to identify all of the external resources your application requires, including configuration
files, COM components, third-party libraries, and controls and images. Earlier we mentioned about
including a list of dependencies in the project documentation. This is where having that documentation
can prove to be very useful. Visual Studio .NET can do a reasonable job of interrogating an assembly and
retrieving the dependencies for it, but you still have to audit the findings to make sure nothing is missing.

Another concern might be when in the overall process is the install package is created. If you have an
automated build process set up, then you can include the building of the installation package upon a
successful build of the project. Automating the process greatly reduces the chance for errors in what can
be a time-consuming and complicated process for large projects. What you can do is to include the
deployment project with the project solution. The Solution Property Pages dialog box has a setting for
Configuration Properties. You can use this setting to select the projects that will be included for your var-
ious build configurations. If you select the Build check box under Release builds only, the installation
package will only be created when you are creating a release build. This is the process we use in the fol-
lowing examples. Figure 18-2 shows the Solution Property pages dialog box of the SampleClientApp
solution.

Figure 18-2

552

Chapter 18

21 557599 Ch18.qxd 4/29/04 11:40 AM Page 552

Simple Client Application
In the following example, we create an installer for the SimpleClientApp solution (which is included in
the sample download, together with the completed installer projects).

For the SimpleClientApp we create two deployment projects. One is done as a separate solution, the
other is done in the same solution. This enables you to see the pros and cons of choosing either option.

For the first example we show you how to create the deployment project in a separate solution. Before
you get started on creating the deployment project make sure that you have a release build of the appli-
cation that will be deployed. Next, create a new project in Visual Studio .NET. In the New Project dialog
box select Setup and Deployment Projects on the left. On the right select Setup Project and assign it a
name of your choice (for example, SampleClientStandaloneSetup). At this point, what you see on your
screen resembles Figure 18-3.

Figure 18-3

In the Solution Explorer window click the project and then the Properties window. You will see a list of
properties (see Figure 18-4). These properties will be displayed during the setup of your application.
Some of these properties are also displayed in the Add Remove Programs control panel applet. Since
most of these properties are visible to the user during the installation process (or when they are looking
at your installation in Add Remove Programs), setting them correctly will add a professional touch to
your application.

553

Deployment

21 557599 Ch18.qxd 4/29/04 11:40 AM Page 553

Figure 18-4

The list of properties is important, especially if your application will be deployed commercially. The fol-
lowing table describes the properties and the values that you should enter.

Project Property Description

AddRemoveProgramsIcon The icon that appears in the Add/Remove dialog box.

Author The author of the application. Generally this property setting is the
same as the manufacturer. It is displayed on the Summary page of the
Properties dialog of the msi package, as well as the Contact field of
the SupportInfo page on the Add/Remove dialog box.

Description A freeform text field that describes the application or component that
is being installed. This information is displayed on the Summary
page of the Properties dialog of the msi package, as well as the Con-
tact field of the SupportInfo page on the Add/Remove dialog box.

DetectNewerInstalled- A Boolean value that, when set to true, will check to see if a newer
Version version of the application is already installed. If so, the installation

process will stop.

Keywords Keywords that can be used to search for the msi file on the target
computer. This information is displayed on the Summary page of the
Properties dialog of the msi package.

554

Chapter 18

21 557599 Ch18.qxd 4/29/04 11:40 AM Page 554

Project Property Description

Localization The locale used for string resources and registery settings. This
affects the user interface of the installer.

Manufacturer Name of the company that manufactured the application of component.
Typically this is the same information as specified in the Author prop-
erty. This information is displayed on the Summary page of the Proper-
ties dialog box of the msi package as well as the Publisher field of the
SupportInfo page in the Add/Remove dialog box. It is used as part of
the default installation path of the application.

ManufacturerURL The URL for a Web site that relates to the application or component
being installed.

ProductCode A string GUID that is unique to this application or component. Win-
dows Installer uses this property to identify the application for sub-
sequent upgrades or installs.

ProductName A name that describes the application. Used as the description of an
application in the Add/Remove dialog box as well as part of the default
install path: C:\Program Files\Manufacturer\ProductName.

RemovePreviousVersions Boolean value that, if set to true, will check for a previous version of the
application. If yes, the uninstall function of the previous version is
called before installation continues. This property uses ProductCode
and UpgradeCode to determine if uninstall should occur. Upgrade-
Code should be the same; ProductCode should be different.

SearchPath A string that represents the search path for dependant assemblies,
files, or merge modules. Used when the installer package is built on
the development machine.

Subject Additional information regarding the application. This information is
displayed on the Summary page of the Properties dialog box of the
msi package.

SupportPhone A phone number for support of the application or component. This
information is displayed in the Support Information field of the Sup-
portInfo page on the Add/Remove dialog box.

SupportURL A URL for support of the application or component. This information
is displayed in the Support Information field of the SupportInfo page
in the Add/Remove dialog box.

Title The title of the installer. This is displayed on the Summary page of
the Properties dialog box of the msi package.

UpgradeCode A string GUID that represents a shared identifier of different versions
of the same application. The UpgradeCode should not change for dif-
ferent versions or different language version of the application. Used
by the DetectNewerInstalledVersion and RemovePreviousVersion.

Version The version number of the installer, cab file or merge module. Note
that this is not the version of the application being installed.

555

Deployment

21 557599 Ch18.qxd 4/29/04 11:40 AM Page 555

After you have set the properties, you can start to add assemblies. In this example the only assembly you
have to add is the main executable (SampleClientApp.exe). To do this you can either right-click on the
project in the Solution Explorer and select Add from the Project menu. You have four options:

❑ Project Output. We explore this option in the next example.

❑ File. This is used for adding a readme text file or any other file that is not part of the build process.

❑ Merge Module. A merge module that was created separately.

❑ Assembly. Use this option to select an assembly that is part of the installation.

Choose Assembly for this example. You will be presented with the Component Selector dialog box, which
resembles the dialog box you use for adding references to a project. Browse to the \bin\release folder of
your application. Select SampleClientApp.exe and then click OK in the Component Selector dialog box.
You can now see SampleClientApp.exe listed in the Solution Explorer of the deployment project. In the
Detected Dependancies section you can see that Visual Studio interrogated SampleClientApp.exe to find
the assemblies on which it depends; in this case AppSupport.dll is included automatically. You would
continue this process until all of the assemblies in your application are accounted for in the Solution
Explorer of the deployment project.

Next you have to determine where the assemblies will be deployed. By default the File System editor is
displayed in Visual Studio .NET. The File System editor is split into two panes: The left pane shows the
hierarchical structure of the file system on the target machine; the right pane provides a detail view of
the selected folder. The folder names might not be what you expect to see, but keep in mind that these
are for the target machine; for example, the folder labeled User’s Programs Menu maps to the C:\
Documents and Settings\User Name\Start Menu\Programs folder on the target client.

You can add other folders at this point, either special folders or a custom folder. To add a special folder
make sure that File System on Target Machine is highlighted in the left pane, then select Action menu on
the main menu. The Add Special Folder menu choice provides a list of folders that can be added. For
example, if you want to add a folder under the Application folder, you can select the Application Folder
folder in the left pane of the editor and then select the Action menu. This time there will be an Add
menu that enables you to create the new folder. Rename the new folder and it will be created for you
on the target machine.

One of the special folders that you might want to add is a folder for the GAC. AppSupport.dll can be
installed to the GAC if it is used by several different applications. In order to add an assembly to the
GAC it does have to have a strong name. The process for adding the assembly to the GAC is to add the
GAC from the Special Folder menu as described previously and then drag the assembly that you want
in the GAC from the current folder to the Global Assembly Cache Folder. If you try and do this with an
assembly that is not strongly named, the deployment project will not compile.

If you select Application Folder you will see on the right pane that the assemblies that you added are
automatically added to the Application Folder. You can move the assemblies to other folders, but keep in
mind that the assemblies have to be able to find each other. (For more details on probing, see Chapter 13.)

If you want to add a shortcut to the application on the user’s desktop or to the Start Menu, then drag the
items to the appropriate folders. To create a desktop shortcut go to the Application Folder. On the right
side of the editor select the application. Go to the Action menu and select the Create Shortcut item to cre-
ate a shortcut to the application. After the shortcut is created, drag it to the User’s Desktop folder. Now
when the application is installed, the shortcut will appear on the desktop. Typically, it is up to the user to

556

Chapter 18

21 557599 Ch18.qxd 4/29/04 11:40 AM Page 556

decide if he or she wants a desktop shortcut to your application. The process of asking the user for input
and taking conditional steps is explored later in this chapter. The same process can be followed to create
an item in the Start Menu. Also if you look at the properties for the shortcut that you just created, you
will see that you can configure the basic shortcut properties such as Arguments and what icon to use.
The application icon is the default icon.

Before you build the deployment project you might have to check some project properties. If you select
Project menu then SampleClientStandaloneSetup Properties you will see the project Property Pages dia-
log box. These are properties that are specific to a current configuration. After selecting the configuration
in the Configuration drop down, you can change the properties listed in the following table.

Property Description

Output file name The name of the msi or msm file that is generated when the project is compiled.

Package files This property enables you to specify how the files are packaged. Your options are:

As loose uncompressed files. All of the deployment files are stored in the same
directory as the .msi file.

In setup file. Files are packaged in the .msi file (default setting).

In cabinet file(s). Files are in one or more cab files in the same directory. When
this is selected the CAB file size option becomes available.

Bootstrapper This enables you to specify whether a bootstrapper is included in the setup.
The bootstrapper provides Windows Installer version 2.0. The options are:

None. No bootstrapper is included.

Windows Installer Bootstrapper. Bootstrapper to install application son the
client pc will be included (default setting).

Web Bootstrapper. Bootstrapper for downloading from the Web. When this is
selected a dialog box appears asking for the installation and optionally the
upgrade URL.

Compression This specifies the compression style for the files included. Your options are:

Optimized for speed. Larger files but faster installation time (default setting).

Optimized for size. Smaller files but slower installation time.

None. No compression applied.

CAB size This is enabled when the Package file setting is set to In cabinet files. Unlimited
creates one single cabinet file; custom allows you to set the maximum size for
each cab file.

Authenticode When this is checked the deployment project output is signed using Authenti-
signature code; the default setting is unchecked.

Certificate file The certificate used for signing.

Private key file The private key that contains the digital encryption key for the signed files.

Timestamp URL for timestamp server.
server URL

557

Deployment

21 557599 Ch18.qxd 4/29/04 11:40 AM Page 557

After you have set the project properties you should be able to build the deployment project and create
the setup for the SampleClientApp application. After you build the project you can test the installation
by right-clicking on the project name in the Solution Explorer. This enables you to access an Install and
Uninstall choice in the context menu. If you have done everything correctly, you should be able to install
and uninstall SampleClientApp successfully.

Same Solution Project
The previous example works well for creating a deployment package but it does have a couple of down-
sides. For example, what happens when a new assembly is added to the original application. The deploy-
ment project will not automatically recognize any changes; you will have to add the new assemblies and
verify that any new dependencies are covered. In smaller applications (like our example) this isn’t that big
of a deal. However, when you’re dealing with an application that contains dozens or maybe hundreds of
assemblies this can become quite tedious to maintain. Visual Studio .NET has a simple way of resolving
this potential headache. Include the deployment project in your applications solution. You can then cap-
ture the output of the main project as your deployment assemblies. We can look at the SimpleClientApp
as an example.

Open SimpleClientApp solution in Visual Studio .NET. Add a new project using Solution Explorer. Select
Deployment and Setup Projects and then select Setup Project, following the steps outlined in the previous
section. You can name this project SimpleAppSolutionSetup. In the previous example, you added the
assemblies by selecting Add➪Assemblies from the Project menu. This time, select Add➪Project Output
from Project menu. This opens the Add Project Output Group dialog box (see Figure 18-5).

Figure 18-5

The top part of the dialog box has a drop-down list box that shows all projects in the current solution.
Select the main startup project. Then select the items you want to include in your project from the list
below. Your options are Documentation, Primary Output, Localized Resources, Debug Symbols, Content
Files, and Source Files. First select Primary Output. This includes the output and all dependencies when
the application is built. There is another drop-down list box that lists the valid configurations: Debug

558

Chapter 18

21 557599 Ch18.qxd 4/29/04 11:40 AM Page 558

and Release plus any custom configurations you might have added. This also determines what outputs
are picked up. For deployment you will most likely want to use the Release configuration.

After you make these selections, a new item is added to your deployment project in Solution Explorer.
The name of the item is Primary output form SampleClientApp (Release .NET). You will also see the file
AppSupport.dll listed under the dependencies. As before, no need to search for the dependant assemblies.

At this point all of the various project properties that we discuss in the previous section still apply. You
can change the Name, Manufacturer, cab file size and other properties. After setting the properties, do a
Release build of the solution and test the installation. Everything should work as expected.

To see the advantage of adding the deployment package to the applications solution, add a new project to
the solution. In the example it is called AppSupportII. In it is a simple test method that returns the string
Hello World. Set a reference in SampleTestApp to the newly added project, and do another Release build of
the solution. You should see that the deployment project picked up the new assembly without you having
to do anything. If you go back and open up the standalone deployment project from the previous example,
unless you specifically add the assembly it will not be picked up.

Simple Web application
Creating an installation package for a Web application is not that different then creating a client install
package. The download examples include a SimpleWebApp that also utilizes the AppSupport.dll assem-
bly. You can create the deployment project the same way that the client deployment projects are created,
either standalone or in the same solution. In this example, the deployment project is built in the same
solution.

Start the SimpleWebApp solution and add a new Deployment and Setup Project. This time be sure to
choose Web Setup Project in the Templates window. If you look at the properties view for the project you
will see that all of the same properties exist for Web applications as did for client applications. The only
addition is RestartWWWService. This is a Boolean value that will restart IIS during the install. If you’re
using ASP.NET components and not replacing any ATL or ISAPI dlls you shouldn’t have to do this.

If you look at the File System editor you will notice that there is only one folder. The Web Application folder
is what will be your virtual directory. By default the name of the directory is the name of the deployment
project, and it is located below the Web root directory. The following table explains the properties that can be
set from the installer. The properties that we discuss in the previous section are not included.

Property Description

AllowDirectoryBrowsing Boolean value that, if true, allows an HTML listing of the files and sub-
folders of the virtual directory. Maps to the Directory browsing prop-
erty of IIS.

AllowReadAccess Boolean value that, if true, allows users to read or download files. Maps
to the Read property of IIS.

AllowScriptSourceAccess Boolean value that, if true, allows users to access source code, including
scripts. Maps to Script source access in IIS.

AllowWriteAccess Boolean value that, if true, allows users to change content in write-
enabled files. Maps to Write property of IIS.

559

Deployment

Table continued on following page

21 557599 Ch18.qxd 4/29/04 11:40 AM Page 559

Property Description

ApplicationProtection Determines the protection level of applications that are run on the
server. The valid values are:

Low. Applications run in the same process as Web Services.

Medium. Applications run in same process, but not the same as Web
services.

High. Application runs in its own process.

Maps to the Application Protection property in IIS. Has no effect if the
IsApplication property is false.

AppMappings A list of application names and document or data files that are associ-
ated with the applications. Maps to the Application Mappings property
of IIS.

DefaultDocument The default or startup document when the user first browses to the site.

ExecutePermissions The level of permissions that a user has to execute applications. The
valid values are:

None. Only static content can be accessed.

ScriptsOnly. Only scripts can be accessed. Includes ASP.

ScriptsAndExecutables. Any files can be accessed.

Maps to Execute Permissions.in IIS.

Index Boolean value that, if true, would allow indexing of the content for
Microsoft Indexing Service.

Maps to the Index this resource property of IIS.

IsApplication Boolean value that, if true, instructs IIS to create the application root for
the folder.

LogVisits Boolean value that, if true, logs visits to the Web site in a log file. Maps
to the Log visits property of IIS.

Port The port that the Web server uses. Default is 80.

VirtualDirectory The virtual directory for the application. This is relative to the Web
server.

You might notice that most of these properties are properties of IIS and can be set in the IIS administra-
tor tool. So the logical assumption is that in order to set these properties in the installer, the installer will
need to run with administrator privileges. The settings that are made here can potentially compromise
security, so the changes should be well documented.

Other then these properties the process of creating the deployment package is very similar to the previ-
ous client example. The main difference between the two projects is the ability to modify IIS from the
installation process. As you can see, you have a great deal of control over the IIS environment.

560

Chapter 18

21 557599 Ch18.qxd 4/29/04 11:40 AM Page 560

Client from Web server
Another installation scenario is either running the install program from a Web site or actually running
the application from a Web site. Both of these are attractive options if you must deploy an application to
a large number of users. By deploying from a Web site you eliminate the need for a distribution medium
such as CD-ROM, DVD, or even floppy disks. By running the application from a Web site or even a net-
work share you eliminate the need to distribute a setup program at all.

Running an installer from a Web site is fairly simple. You use the Web Bootstrapper project compile
option discussed earlier in this chapter. You will be asked to provide the URL of the setup folder. This is
the folder in which the setup program is going to look for the msi and other files necessary for the setup
to work. After you set this option and compile the deployment package you can copy it to the Web site
that you specify in the Setup folder URL property. At this point when the user navigates to the folder,
she will be able to either run the setup or download it and then run it. In both instances, the user must
be able to connect to the same site to finish the installation.

No Touch Deployment
You can also run the application from a Web site or network share. This process becomes a little more
involved and is a prime reason that you should design the application with deployment in mind. This is
sometimes referred to as No Touch Deployment (NTD).

In order to make this process work the application code must be written in a way to support it. There are a
couple of ways to architect the application to take advantage of NTD. One way is to write the majority of
the application code into dll assemblies. The dlls will live on a Web server or file share on the network.
Then you create a smaller application exe that will be deployed to the client pcs. This stub program will
start the application by calling into one of the dll assemblies using the LoadFrom method. The only thing
that the stub program will see is the main entry point in the dll. Once the dll assembly has been loaded,
the application will continue loading other assemblies from the same URL or network share. Remember
that an assembly first looks for dependant assemblies in the application directory; that is the URL that
was used to start the application. Here is the code that is used in the stub application on the user’s client.
This example calls the AppSupportII dll assembly and puts the output of the TestMethod call in label1.

Assembly testAssembly =
Assembly.LoadFrom(“http://localhost/AppSupport/AppSupportII.dll”);

Type type = testAssembly.GetType(“AppSupportII.TestClass”);
object testObject = Activator.CreateInstance(type);
label1.Text = (string)type.GetMethod(“TestMethod”).Invoke(testObject,null);

This process uses Reflection to first load the assembly from the Web server. In this example the Web site
is a folder on the local machine (localhost). Next, the type of the class is retrieved (here: TestClass).
Now that we have type information the object can be created using the Activator.CreateInstance
method. The last step is to get a MethodInfo object (the output of GetMethod) and call the Invoke
method. In a more complex application this is the main entry point of the application. From this point
on, the stub is not needed anymore.

Alternatively, you can also deploy the entire application to a Web site. For this method, create a simple
Web page that contains a link to the application’s setup executable or perhaps a shortcut on the users
desktop that has the Web site link. When the link is clicked, the application will be downloaded to the
users’ assembly download cache, which is located in the Global Assembly Cache. The application will

561

Deployment

21 557599 Ch18.qxd 4/29/04 11:40 AM Page 561

run from the download cache. Each time a new assembly is requested, it will go to the download cache
first to see if it exists; if not it will go to the URL that the main application came from.

The advantage to deploying the application in this way is that when an update is made available for the
application, it has to be deployed in only one place. You place the new assemblies in the Web folder and
when the user starts the application, the runtime will actually look at the assemblies in the URL and the
assemblies in the download cache to compare versions. If a new version is found at the URL, it is then
downloaded to replace the current one in the download cache. This way, the user always has access to
the most current version of the application.

The biggest issue with deploying applications this way is to get the security right. Since the code is being
downloaded from what is considered by default an untrusted area, the code will not have permissions to
do certain things. For more details on how code access security and permissions work see the Chapter 14
on .NET security.

For internal corporate applications, this can be a great way to deploy applications. The security issues
are much easier to deal with when you can administer the client computers. The proper policies can be
set, allowing the proper level of trust to the URL.

Advanced Options
The installation processes that we have discussed so far are very powerful and can do quite a bit. But
there is much more that you can control in the installation process. For example, you can use the various
editors in Visual Studio .NET to build conditional installations, or add registry keys and custom dialog
boxes. The SampleClientSetupSolution example has all of these advanced options enabled.

File System Editor
The File System editor enables you to specify where in the target the various files and assemblies that
make up the application will be deployed. By default a standard set of deployment folders is displayed.
You can add any number of custom and special folders with the editor. This is also where you would
add desktop and Start Menu shortcuts to the application. Any file that must be part of the deployment
must be referenced in the File System editor.

Registry Editor
The Registry Editor allows you to add keys and data to the registry. When the editor is first displayed,
a standard set of main keys is displayed (see Figure 18-6):

❑ HKEY_CLASSES_ROOT

❑ HKEY_CURRENT_USER

❑ HKEY_LOCAL_MACHINE

❑ HKEY_USERS

HKEY_CURRENT_USER and HKEY_LOCAL_MACHINE contains additional entries in the Software/
[Manufacturer] key where Manufacturer is the information you entered in the Manufacturer property
of the deployment project.

562

Chapter 18

21 557599 Ch18.qxd 4/29/04 11:40 AM Page 562

Figure 18-6

To add additional keys and values highlight one of the main keys on the left side of the editor. Select
Action from the main menu and then select New. Select the key or the value type that you want to add.
Repeat this step until you have all of the registry settings that you want. If you select the Registry on tar-
get Machine item on the left pane and then select the Action menu you will see an Import option, which
enables you to import an already defined *.reg file.

To create a default value for a key you must first enter value for the key. Then select the value name in
the right or value pane. Select Rename from the File menu and delete the name. Press Enter, and the
value name is replaced with (Default).

You can also set some properties for the subkeys and values in the editor. The only one that hasn’t been
discussed already is the DeleteAtUninstall property. A well-designed application should remove all keys
that have been added by the application at uninstall time. The default setting is not to delete the keys.

One thing to keep in mind is that the preferred method for maintaining application settings is to use
XML-based configuration files. These files offer a great deal more flexibility and are much easier to
restore and backup than registry entries.

563

Deployment

21 557599 Ch18.qxd 4/29/04 11:40 AM Page 563

File Types Editor
The File Types Editor is used to establish associations between files and applications. For example,
when you double-click a file with the .doc extension, the file is opened in Word. You can create these
same associations for your application. Figure 18-7 shows the File Types Editor.

Figure 18-7

In order to add an association, select File Types on Target Machine from the Action menu. Then select
Add File Type. In the properties window you can now set the name of the association. In the Extension
property add the file extension that should be associated with the application. Do not enter the periods;
you can separate multiple extensions with a semicolon like this ex1;ex2. In the Command property select
the ellipse button. Now select the file (typically an executable) that you want to associate with the speci-
fied file types. Keep in mind that any one extension should be associated with only one application.

By default the editor shows &Open as the Document Action. You can add others. The order in which the
actions appear in the editor is the order in which they will appear in the context menu when the user right-
clicks the file type. Keep in mind that the first item is always the default action. You can set the Arguments
property for the actions. This is the command line argument that is used to start the application.

User Interface Editor
Sometimes you might want to ask the user for more information during the installation process. The
User Interface Editor is used to specify properties for a set of predefined dialog boxes. The editor is sepa-
rated into two sections, Install and Admin. One is for the standard installation and the other is used for
an administrator’s installation. Each section is broken up into three subsections: Start, Progress, and
End. These subsections represent the three basic stages of the installation process (see Figure 18-8).

564

Chapter 18

21 557599 Ch18.qxd 4/29/04 11:40 AM Page 564

Figure 18-8

The following table lists the types of dialog boxes that you can add to the project.

Dialog Box Description

Checkboxes Contains up to four check boxes. Each check box has a Label, Value, and
Visible property.

Confirm Installation Gives the user the ability to confirm the various settings before installa-
tion takes place.

Customer Information Has edit fields for the collection name, organization name, and serial
number. Organization name and serial number are optional.

Finished Displayed at the end of the setup process.

Installation Address For Web applications, displays a dialog box so users can choose an alter-
nate installation URL.

Installation Folder For client applications, displays a dialog box so users can select an alter-
nate installation folder.

License Agreement Displays the license agreement that is located in a file specified by the
LicenseFile property.

565

Deployment

Table continued on following page

21 557599 Ch18.qxd 4/29/04 11:40 AM Page 565

Dialog Box Description

Progress Displays a progress indicator during the installation process that shows
the current installation status.

RadioButtons Contains up to four radio buttons. Each radio button has a Label and
Value property.

Read Me Shows the read me information contained in the file specified by the
ReadMe property.

Register User Executes an application that will guide the user through the registration
process. This application must be supplied in the setup project.

Splash Displays a bitmap image.

TextBoxes Contains up to four text box fields. Each text box has a Label, Value, and
Visible property.

Welcome Contains two properties. The WelcomeText property and the Copyright-
Warning. Both are string properties.

Each of these dialog boxes also contains a property for setting the banner bitmap, and most have a prop-
erty for banner text. You can also change the order in which the dialog boxes appear by dragging them
up or down in the editor window.

Now that you can capture some of this information, the question is, how do you make use of it. This is
where the Condition property that appears on most of the objects in the project comes in. The Condition
property must evaluate to true for the installation step to proceed. For example, say the installation
comes with three optional installation components. In this case, you would add a dialog box with three
check boxes. The dialog should be somewhere after the Welcome and before the Confirm Installation
dialog box. Change the Label property of each check box to describe the action. The first action could be
“Install Component A,” the second could be “Install Component B,” and so on. In the File System Editor
select the file that represents Component A. Assuming that the name of the check box on the dialog box
is CHECKBOXA1, then the Condition property of the file would be CHECKBOXA1=Checked—, that is,
if CHECKBOXA1 is checked, then install the file; otherwise don’t install it.

Custom Actions Editor
The Custom Actions Editor allows you to define custom steps that will take place during certain phases
of the installation. Custom actions are created beforehand and consist of a DLL, EXE, script or Installer
class. The action would contains special steps to perform that can’t be defined in the standard deploy-
ment project. The actions will be performed at 4 specific points in the deployment. When the editor is
first started, you will see the four points in the project (see Figure 18-9):

❑ Install. Actions will be executed at the end of the installation phase.

❑ Commit. Actions will be executed after the installation has finished and no errors have been
recorded.

❑ Rollback. Actions occur after the rollback phase has completed.

❑ Uninstall. Actions occur after uninstall has completed.

566

Chapter 18

21 557599 Ch18.qxd 4/29/04 11:40 AM Page 566

Figure 18-9

To add an action you first select the phase of the installation in which you want the action to occur. Select
the Add Custom Action menu selection from the Action menu to open the file system dialog box. This
means that the component that contains the action must be part of the deployment project. Since it will be
executing on the target machine it has to be deployed, therefore it should be listed in the File System editor.

After you have added the action, you can select one or more of the properties listed in the following
table.

Arguments Command Line Arguments

Condition A Windows Installer condition that must be evaluated and result in true for
the action to execute.

CustomDataAction Custom data that will be available to the action.

EntryPoint The entry point for the custom DLL that contains the action. If the Action is
contained in an executable, then this property does not apply.

InstallerClass A Boolean value that, if true, specifies that the action is a .NET
ProjectInstaller class.

Name Name of the action. Defaults to the file name of the action.

SourcePath The path to action on the development machine.

567

Deployment

21 557599 Ch18.qxd 4/29/04 11:40 AM Page 567

Since the action is code that you develop outside of the deployment project, you have the freedom to
add just about anything that adds a professional touch to your application. . The thing to remember is
that these actions happen after the phase it is associated with is complete. If you select the Install phase,
the action will not execute until after the install phase has completed. If you want to make determina-
tions before the process, then you will want to create a launch condition.

Launch Conditions Editor
The Launch Conditions Editor allows you to specify that certain conditions must be met before installa-
tion can continue. Launch conditions are organized into types of conditions. The basic launch conditions
are File Search, Registry Search, and Windows Installer Search. When the editor is first started you see
two groups (see Figure 18-10): Search Target Machine and Launch Conditions. Typically what happens is
that a search is conducted, and based on the success or failure of that search a condition is executed. This
happens by setting the Property property of the search. The Property property can be accessed by the
installation process. It can be checked in the Condition property of other actions, for example. You can
also add a Launch Condition in the editor. In this condition you set the Condition property to the value
of the Property property in the search. In the condition you can specify a URL that will download the
file, registry key, or installer component that was being search for. Notice in Figure 18-10 that a .NET
Framework condition is added by default.

Figure 18-10

568

Chapter 18

21 557599 Ch18.qxd 4/29/04 11:40 AM Page 568

File Search will search for a file or type of file. You can set many different file-related properties that deter-
mine how files are searched, including file name, folder location, various date values, version information,
and size. You can also set the number of subfolders that are searched.

The Registry Search allows you to search for keys and values. It also allows you to set the root key for
searching.

The Windows Installer Search looks for the specified Installer component. The search is conducted by GUID.

The Launch Conditions Editor provides two pre-packaged launch conditions: The .NET Framework
Launch Condition, which allows you to search for a specific version of the runtime, and a search for a
specific version of MDAC, which uses the registry search to find the relevant MDAC registry entries.

Summary
In this chapter we explored the deployment capabilities of Visual Studio .NET. After reading this chapter,
you should be able to create a deployment package that solves almost any deployment issue that you
might have. Deployment options exist for installing client- and Web-based applications. Client applica-
tions can be deployed locally or via the Internet or intranet. You can also use a feature of the .NET runtime
known as No Touch Deployment. Using deployment projects to install Web applications can make the
process of configuring IIS much easier as well.

569

Deployment

21 557599 Ch18.qxd 4/29/04 11:40 AM Page 569

21 557599 Ch18.qxd 4/29/04 11:40 AM Page 570

Part III: Windows Forms

Chapter 19: Windows Forms

Chapter 20: Graphics with GDI+

22 557559 PP03.qxd 4/29/04 11:36 AM Page 571

22 557559 PP03.qxd 4/29/04 11:36 AM Page 572

Windows Forms

Web-based applications have become very popular over the past several years. The ability to have
all of your application logic reside on a centralized server is very appealing from an administrator’s
viewpoint. Deploying client-based software can be very difficult, especially COM-based client soft-
ware. The downside of Web-based applications is that they cannot provide that rich user experience.
.NET Framework has given developers the ability to create rich, smart client applications and elimi-
nate the deployment problems and “DLL hell” that existed before. The new deployment services that
.NET provides, coupled with the System.Windows.Forms and System.Windows.Forms.Design
namespaces that make up Windows Forms, promise to make client applications popular again.

Windows Forms has already made an impact on Windows development. Now when an applica-
tion is in the initial design phase, the decision between building a Web-based application or a
client application has become a little more difficult. Windows client applications can be developed
quickly and efficiently, and they can provide users with the rich experience that they expect.

Windows Forms will seem somewhat familiar to Visual Basic developers. You create new forms (also
known as windows or dialogs) in the same fashion of dragging and dropping controls from a toolbox
onto the form designer. However, if your background is in the classic C style of windows programming
where you create the message pump and monitor messages, or if you’re an MFC programmer you will
find that you’re able to get to the lower-level internals if you need to. You can override the wndproc
and catch those messages but you might be surprised that you really won’t need to very often.

In this chapter we are going to look at the following aspects of Windows Forms:

❑ The form class

❑ The class hierarchy of Windows Forms

❑ The controls and components that are part of the System.Windows.Forms namespace

❑ Menus and toolbars

❑ Creating controls

❑ Creating user controls

23 557599 Ch19.qxd 4/29/04 11:37 AM Page 573

Creating a Windows Form Application
The first thing we need to do is create a Windows Form application. For the following example create a
blank form and show it on the screen. We will not use Visual Studio .NET for this example. This example
has been entered in a text editor and compiled using the command line compiler. Here is the code listing:

using System;
using System.Windows.Forms;
namespace NotepadForms
{

public class MyForm : System.Windows.Forms.Form
{

public MyForm()
{
}

[STAThread]
static void Main()
{

Application.Run(new MyForm());
}

}
}

When you compile and run this example you will get a small blank form without caption. Not real func-
tional, but it is a Windows Form.

Looking at the code there are two items that deserve attention. The first is the fact that we have used
inheritance to create the MyForm class. The following line declares that MyForm is derived from System
.Windows.Forms.

public class MyForm : System.Windows.Forms.Form

The Form class is one of the main classes in the System.Windows.Forms namespace. The other section
of code that we want to look at is

[STAThread]
static void Main()
{

Application.Run(new MyForm());
}

Main is the default entry point into any C# client application. Typically in larger applications, the Main()
method would not be in a form, but in a class that is responsible for any startup processing that needs to
be done. In this case, you would set the start-up class name in the project properties dialog box. Notice
the attribute [STAThread]. This sets the COM threading model to single-threaded apartment (STA).

The Application.Run() method is responsible for starting the standard application message loop.
ApplicationRun() has three overloads: The first takes no parameter; the second takes an Application-
Context object as a parameter; and the one you see in the example takes a form object as a parameter.

574

Chapter 19

23 557599 Ch19.qxd 4/29/04 11:37 AM Page 574

In the example, the MyForm object will become the main form of the application. This means that when
this form is closed, the application ends. By using the ApplicationContext class, you can gain a little
more control over when the main message loop ends and the application exits.

The Application class contains some very useful functionality. It provides a handful of static methods
and properties for controlling the applications starting and stopping process and to gain access to the
Windows messages that are being processed by the application. The following table lists some of the
more useful of these methods and properties.

Method / Property Description

CommonAppDataPath The path for the data that is common for all users of the applica-
tion. Typically this is BasePath\Company Name\Product Name\
Version where BasePath is C:\Documents and Settings\username\
ApplicationData. If it does not exist, the path will be created.

ExecutablePath This is the path and file name of the executable file that starts the
application.

LocalUserAppDataPath Similar to CommonAppDataPath with the exception that this prop-
erty supports roaming.

MessageLoop True or false if a message loop exists on the current thread.

StartupPath Similar to ExecutablePath, except the file name is not returned.

AddMessageFilter Used to pre-process messages. By implementing an IMessagerFil-
ter-based object the messages can be filtered from the message loop
or special processing can take place prior to the message being
passed to the loop.

DoEvents Similar to the Visual Basic DoEvents statement. Allows messages
in the queue to be processed.

EnableVisualStyles Enables XP visual styles for the various visual elements of the
application. The FlatStyle property should be set to Flat
Style.System.

Exit and ExitThread Exit ends all currently running message loops and exits the appli-
cation. ExitThread ends the message loop on the current thread.

Now what does this sample application look like when it is generated in Visual Studio .NET? Check out
the following code:

using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;

namespace VSNETForm
{

575

Windows Forms

23 557599 Ch19.qxd 4/29/04 11:37 AM Page 575

/// <summary>
/// Summary description for Form1.
/// </summary>
public class Form1 : System.Windows.Forms.Form
{

/// <summary>
/// Required designer variable.
/// </summary>
private System.ComponentModel.Container components = null;

public Form1()
{

//
// Required for Windows Form Designer support
//
InitializeComponent();

//
// TODO: Add any constructor code after InitializeComponent call
//

}

/// <summary>
/// Clean up any resources being used.
/// </summary>
protected override void Dispose(bool disposing)
{

if(disposing)
{

if (components != null)
{

components.Dispose();
}

}
base.Dispose(disposing);

}

#region Windows Form Designer generated code
/// <summary>
/// Required method for Designer support - do not modify
/// the contents of this method with the code editor.
/// </summary>
private void InitializeComponent()
{

this.components = new System.ComponentModel.Container();
this.Size = new System.Drawing.Size(300,300);
this.Text = “Form1”;

}
#endregion

/// <summary>
/// The main entry point for the application.
/// </summary>
[STAThread]

576

Chapter 19

23 557599 Ch19.qxd 4/29/04 11:37 AM Page 576

static void Main()
{

Application.Run(new Form1());
}

}
}

First off, the code for this sample application is much longer. There are several using statements at the
start of the class, most are not necessary for this example. There is not a penalty for keeping them there.
The class Form1 is derived from System.Windows.Forms just like the earlier notepad example, but
things start to get different at this point. First there is this line:

private System.ComponentModel.Container components = null;

In our example, this line of code doesn’t really do anything. It only comes into play when you add a
component to your form. When you add a component to a form you can also add it to the components
object, which is a container. The reason for adding to this container has to do with disposing of the form.
The form class supports the IDisposable interface since it is implemented in the Component class.
When a component is added to the components container, the container will make sure that the compo-
nents are tracked properly and disposed of when the form is disposed of. You can see this if you look at
the Dispose method in the code:

protected override void Dispose(bool disposing)
{

if(disposing)
{

if (components != null)
{

components.Dispose();
}

}
base.Dispose(disposing);

}

Here you can see that when the Dispose method is called, the Dispose method of the components object
is also called and since the component object contains the other components, they are also disposed.

The constructor of the Form1 class looks like:

public Form1()
{

//
// Required for Windows Form Designer support
//
InitializeComponent();

//
// TODO: Add any constructor code after InitializeComponent call
//

}

577

Windows Forms

23 557599 Ch19.qxd 4/29/04 11:37 AM Page 577

Notice the call to InitializeComponent() and the comment about it being required for the designer.
InitializeComponent() does pretty much what it describes and that is to initialize any controls that
might have been added to the form. It also initializes the form properties. This is what Initialize-
Component() looks like for this simple example:

private void InitializeComponent()
{

this.components = new System.ComponentModel.Container();
this.Size = new System.Drawing.Size(300,300);
this.Text = “Form1”;

}

As you can see it is basic initialization code. The thing about this method is that it is tied to the Forms
Designer. When you make changes to the form by using the designer, the changes are reflected in
InitializeComponent(). If you make any type of code change in InitializeComponent(), the next
time you make a change in the designer, your changes will most likely be lost. InitializeComponent()
gets regenerated after each change in the designer. If you need to add additional initialization code for the
form or controls and components on the form, be sure to add it after InitializeComponent() is called.
InitializeComponent() is also responsible for instantiating the controls so any call that references a
control prior to InitializeComponent() will fail with a null reference exception.

To add a control or component to the form press Ctrl-Alt-X or select Toolbox from the View menu in Visual
Studio .NET. Form1 should be in design mode. Right-click Form1.cs in Solution Explorer and select View
Designer from the context menu. Select the Button control and drag it to the form in the designer. You can
also double-click the control and it will be added to the form. Do the same with the TextBox control.

Now that you have added a TextBox control and a Button control to the form, InitializeComponent()
expands to include the following code:

private void InitializeComponent()
{

this.button1 = new System.Windows.Forms.Button();
this.textBox1 = new System.Windows.Forms.TextBox();
this.SuspendLayout();
//
// button1
//
this.button1.Location = new System.Drawing.Point(96, 56);
this.button1.Name = “button1”;
this.button1.TabIndex = 0;
this.button1.Text = “button1”;
//
// textBox1
//
this.textBox1.Location = new System.Drawing.Point(88, 104);
this.textBox1.Name = “textBox1”;
this.textBox1.TabIndex = 1;
this.textBox1.Text = “textBox1”;
//
// Form1
//
this.AutoScaleBaseSize = new System.Drawing.Size(5, 13);

578

Chapter 19

23 557599 Ch19.qxd 4/29/04 11:37 AM Page 578

this.ClientSize = new System.Drawing.Size(292, 271);
this.Controls.Add(this.textBox1);

this.Controls.Add(this.button1);
this.Name = “Form1”;
this.Text = “Form1”;
this.ResumeLayout(false);

}

If you look at the first three lines of code in the method you can see the Button and Textbox controls are
instantiated. Notice the names given to the controls, textBox1 and button1. By default the designer uses
the name of the control and adds an integer value to the name. When you add another button, the designer
adds the name button2, and so on. The next line is part of the SuspendLayout and ResumeLayout pair.
SuspendLayout() temporarily suspends the layout events that take place when a control is first initial-
ized. At the end of the method the ResumeLayout() method is called to set things back to normal. In a
complex form with many controls, the InitializeComponent() method can get quite large.

To change a property value of a control, either press F4 or select Properties Window from the View
menu. The Properties Window enables you to modify most of the properties for a control or component.
By making a change in the Property Window, the InitializeComponent() method will be rewritten to
reflect the new property value. For example, if the Text property is changed to My Button in the Property
Window, InitializeComponent() will contain this code:

//
// button1
//
this.button1.Location = new System.Drawing.Point(96, 56);
this.button1.Name = “button1”;
this.button1.TabIndex = 0;
this.button1.Text = “button1”;
this.button1.Text = “My Button”;

If you are using an editor other than Visual Studio .NET, you will want to include an
InitializeComponent() type function in your designs. Keeping all of this initialization code in one
spot will help keep the constructor cleaner, not to mention that if you have multiple constructors you
can make sure the initialization code is called from each constructor.

Control Class
The System.Windows.Forms namespace has one particular class that is the base class for virtually
every control and form that is created. This class is the System.Windows.Forms.Control class. The
Control class implements the core functionality to create the display that the user sees. The Control
class is derived from the System.ComponentModel.Component class. The Component class provides
the Control class with the necessary infrastructure required to be dropped on a design surface and to be
contained by another object. The Control class provides a large list of functionality to the classes that are
derived from it. The list is too long to itemize here, so we will look at the more important items that are
provided by the Control class. Later in the chapter when we look at the specific controls that are based
on the Control class we will see the properties and methods in some example code. The following sub-
sections group the methods and properties by functionality, so related items can be looked at together.

579

Windows Forms

23 557599 Ch19.qxd 4/29/04 11:37 AM Page 579

Size and Location
The size and location of a control are determined by the properties Height, Width, Top, Bottom, Left, and
Right along with the complimentary properties Size and Location. The difference is that Height, Width,
Top, Bottom, Left, and Right all take single integers as their value. Size takes a Size structure and Location
takes a Point structure as their values. The Size and Point structures are a contained version of XY coordi-
nates. Point generally relates to a location and Size is the height and width of an object. Size and Point are
in the System.Drawing namespace. Both are very similar in that they provide an XY coordinate pair, but
also have overridden operators for easy comparison and conversion. You can, for example, add two Size
structures together. In the case of the Point structure the Addition operator is overridden so that you can
add a Size structure to a Point and get a new Point in return.

The Bounds property returns a Rectangle object that represents the area of a control. This area includes
scroll bars and title bars. Rectangle is also part of the System.Drawing namespace. The ClientSize prop-
erty is a Size structure that represents the client area of the control, minus the scrollbars and title bar.

The PointToClient and PointToScreen methods are handy conversion methods that take a Point and
return a Point. The PointToClient takes a Point that represents screen coordinates and translates them to
coordinates based on the current client object. This is handy for drag-and-drop actions. The PointToScreen
does just the opposite—it takes coordinates of a client object and translates them to screen coordinates. There
are also the RectangleToScreen and ScreenToRectangle methods that perform the same functionality
with Rectangle structures instead of Points.

The Dock property determines which edge of the parent control the control will be docked to. A DockStyle
enumeration value is used as the properties values. This value can be Top, Bottom, Right, Left, Fill, and
None. Fill would set the control’s size to match the client area of the parent control.

The Anchor property anchors an edge of the control to the edge of the parent control. This is different
from docking in that it does not set the edge to the parent control, but sets the current distance from the
edge to be constant. For example, if you anchor the right edge of the control to the right edge of the par-
ent, and the parent is resized, the right edge of the control will maintain the same distance from the par-
ent’s right edge. The Anchor property takes a value of the AnchorStyles enumeration. The values are
Top, Bottom, Left, Right, and None. By setting the values you can make control resize dynamically with
the parent as the parent is resized. This way buttons and text boxes will not be cut off or hidden as the
form is resized by the user.

Appearance
Properties that relate to the appearance of the control are BackColor and ForeColor which take a
System.Drawing.Color object as a value. The BackGroundImage property takes an Image-based
object as a value. The System.Drawing.Image class is an abstract class that is used as the base for
the Bitmap and Metafile classes.

The Font and Text property deal with displaying the written word. In order to change the Font you will
need to create a Font object. When you create the Font object you specify the font name, size, and style.

User Interaction
User interaction is best described as the various events that a control creates and responds to. Some of
the more common events are Click, DoubleClick, KeyDown, KeyPress, Validating, and Paint.

580

Chapter 19

23 557599 Ch19.qxd 4/29/04 11:37 AM Page 580

The Mouse events—Click, DoubleClick, MouseDown, MouseUp, MouseEneter, MouseLeave, and
MouseHover—deal with the interaction of the mouse and the control. If you are handling both the Click
and the DoubleClick events, every time you catch a DoubleClick event the Click event is raised as well.
This can result in undesired results if not handled properly. Also the Click and DoubleClick receive an
EventArgs as an argument, while the MouseDown and MouseUp events receive a MouseEventArgs.
The MouseEventArgs contain several pieces of useful information such as the button that was clicked,
the number of times the button was clicked, the number of mouse wheel detents (notches in the mouse
wheel) and the current X and Y coordinates of the mouse. If you have access to any of this information,
then you will have to handle either the MouseDown or MouseUp events and not the Click or DoubleClick
events.

The keyboard events work in a similar fashion: the amount of information that is needed determines the
event that is handled. For simple situations the KeyPress event receives a KeyPressEventArgs. This con-
tains the KeyChar, which is a char value that represents the key pressed. The Handled property is used to
determine if the event was handled or not. By setting the Handled property to true, the event is not passed
on for default handling by the operating system. If you need more information about the key that was
pressed, then the KeyDown or KeyUp event is more appropriate to handle. They both receive a KeyEvent
Args. Properties in KeyEventArgs include whether the Ctrl, Alt, or Shift key was pressed. The KeyCode
property returns a Keys enumeration value that identifies the key that was pressed. Unlike the KeyPress
EventArgs.KeyChar property, the KeyCode property tells you about every key on the keyboard, not just
the alphanumeric keys. The KeyData property returns a Keys value and will also set the modifier. The
modifiers are ORd with the value. This tells you that the Shift key or the Ctrl key was pressed as well.
The KeyValue property is the int value of the Keys enumeration. The Modifiers property contains a Keys
value that represents the modifier keys that were pressed. If more then one has been selected, the values
are ORs together. The key events are raised in the following order:

1. KeyDown

2. KeyPress

3. KeyUp

The Validating, Validated, Enter, Leave, GotFocus, and LostFocus events all deal with a control gaining
focus (or becoming active) or losing focus. This happens when the user tabs into a control or selects the
control with the mouse. Enter, Leave, GotFocus and LostFocus seem to be very similar in what they do.
The GotFocus and LostFocus events are lower-level events that are tied to the WM_SETFOCUS and the
WM_KILLFOCUS Windows messages. Generally you should use the Enter and Leave events if possible.
The Validating and Validated events are raised when the control is validating. These events receive a
CancelEventArgs. With this you can cancel the following events by setting the Cancel property to true.
If you have custom validation code, and validation fails, you can set Cancel to true and the control will
not lose focus. Validating occurs during validation, Validated occurs after validation. The order in which
these events are raised is as follows:

1. Enter

2. GotFocus

3. Leave

4. Validating

5. Validated

6. LostFocus

581

Windows Forms

23 557599 Ch19.qxd 4/29/04 11:37 AM Page 581

Understanding the order of these events is important so that you don’t inadvertently create a recursive
situation. For example, trying to set the focus of a control from the control’s LostFocus event creates a
message deadlock and the application stops responding.

Windows Functionality
The System.Windows.Forms namespace is one of the few namespaces that relies on Windows function-
ality. The Control class is a good example of that. If you were to do a disassembly of the System.Windows.
Forms.dll, you would see a list of references to the UnsafeNativeMethods class. .NET Framework uses
this class to wrap all of the standard Win32 API calls. By using interop to the Win32 API, the look and feel
of a standard Windows application can still be achieved with the System.Windows.Forms namespace.

Functionality that supports the interaction with Windows includes the Handle and IsHandleCreated
properties. Handle returns an IntPtr that contains the HWND (Windows handle) for the control. The
window handle is an HWND that uniquely identifies the window. A control can be considered a win-
dow, so it has a corresponding HWND. You can use the Handle property to call any number of Win32
API calls.

In order to gain access to the windows messages you can override the WndProc method. The WindProc
takes a Message object as a parameter. The Message object is a simple wrapper for a windows message.
It contains the HWnd, LParam, WParam, Msg, and Result properties. If you want to have the message
processed by the system, then you must make sure that you pass the message to the base.WndProc(msg)
method. If you want to handle the message then you don’t want to pass the message on.

Miscellaneous Functionality
Some items that are a little more difficult to classify are the data-binding capabilities. The BindingContext
property returns a BindingManagerBase object. The DataBindings collection maintains a ControlBindings-
Collection, which is a collection of binding objects for the control. Data-binding is discussed in Chapter 21.

The CompanyName, ProductName, and Product version provide data on the origination of the control
and its current version.

The Invalidate method allows you to invalidate a region of the control for repainting. You can invalidate
the entire control or specify a region or rectangle to invalidate. This causes a paint message to be sent to
the controls WindProc. You also have the option to invalidate any child controls at the same time.

There are dozens of other properties, methods, and events that make up the Control class. This list repre-
sents some of the more commonly used ones and is meant to give you an idea of the functionality that is
available.

Class Hierarchy
In the beginning of this section it was stated that the Control class is the base class for most of the classes in
the System.Windows.Forms namespace. There are other classes that add functionality to the Control class
that is needed by some controls. One of these classes is the System.Windows.Forms.ScrollableControl
class. As the name implies, ScrollableControl adds auto-scrolling behavior. The class adds properties such as
AutoScroll, which if set to true will automatically add scroll bars if the control contains other controls that
are out of the visible bounds. HScroll and VScroll are both Boolean values that determine if a horizontal or
vertical scroll bar is present and visible.

582

Chapter 19

23 557599 Ch19.qxd 4/29/04 11:37 AM Page 582

The ContainerControl class is derived from ScrollableControl class. Controls based on this class
can be containers of other controls. The Form class is derived from the ContainerControl class. So is
the UserControl class. We will be looking at these two classes in detail later in the chapter.

Figure 19-1 shows the class hierarchy of the Control class and its super- and subclasses.

Figure 19-1

System.Object

System.MarshallByRefObject

System.ComponentModel.Component

System.Windows.Forms.Control

System.Windows.Form.ButtonBase

System.Windows.Forms.ScrollableControl

System.Windows.Forms.TextBoxBase

DataGrid, DateTimerPicker, GroupBox, Label,
ListControl, ListView, MonthCalendar, PictureBox,

PrintPreviewControl, ProgressBar, ScrollBar, Splitter,
StatusBar, TabControl, Toolbar, TrackBar, TreeView

System.Windows.Form.RadioButton

System.Windows.Form.CheckBox

System.Windows.Forms.ContainerControl

System.Windows.Forms.TextBox

System.Windows.Form.RichTextBox

System.Windows.Form.Button

System.Windows.Forms.Form

System.Windows.Form.UserControl

System.Windows.Form.PropertyGrid

System.Windows.Form.UpdDownBase

583

Windows Forms

23 557599 Ch19.qxd 4/29/04 11:37 AM Page 583

The importance of understanding the hierarchy becomes apparent during the design and construction of
custom controls. If your custom control is a derivative of a current control, for example a text box with
some added properties and methods, then you will want to inherit form the text box control and then
override and add the properties and methods to suit your needs. However, if you are creating a control
that doesn’t match up to any of the controls included with the .NET Framework, then you will have to
inherit form one of the three base control classes—Control or ScrollableControl if you need autoscrolling
capabilities, and ContainerControl if your control needs to be a container of other controls.

Standard Controls and Components
The previous section covers some of the common methods and properties for controls. In this section we
are going to look at the various controls that ship with .NET Framework, and explain what each of them
offers in added functionality. The sample download (www.wrox.com) includes a sample application
called ControlExample. This application includes a form that contains many controls with basic func-
tionality enabled. Some of the example code in the following section is included in the ControlExample
project. Figure 19-2 shows what this example looks like.

Figure 19-2

584

Chapter 19

23 557599 Ch19.qxd 4/29/04 11:37 AM Page 584

Button
The Button class represents the simple command button and is derived from ButtonBase class. The
most common thing to do is to write code to handle the Click event of the button. The following code
snippet implements an event handler for the Click event. When the button is clicked, a message box
pops up that displays the button’s name.

private void btnTest_Click(object sender, System.EventArgs e)
{

MessageBox.Show(((Button)sender).Name + “ was clicked.”);
}

With the PerformClick method you can simulate the Click event on a button without the user actually
clicking the button. The NotifyDefault method takes a Boolean value as a parameter and tells the button
to draw itself as the default button. Typically the default button on a form has a slightly thicker border. To
identify the button as default, you set the AcceptButton property on the form to the button. Then, when the
user presses the Enter key, the button click event for the default button is raised. Figure 19-3 shows that the
button with the caption Default is the default button (notice the dark border).

Figure 19-3

Buttons can have images as well as text. Images are supplied by way of an ImageList object.
ImageList objects are explained later in this chapter. Both Text and Image have an Align property to
align the text or image on the Button.

CheckBox
The CheckBox control is used to accept a two-state or three-state response from the user. If you set the
ThreeState property to true, then the CheckBox’s CheckState property can be one of the three CheckState
enum values,

Checked The CheckBox has a check mark

Unchecked The CheckBox does not have a check mark

Indeterminate In this state the checkbox becomes gray.

The Indeterminate value can be set only in code and not by a user. You can also check the Checked prop-
erty if you want a Boolean value.

The CheckedChanged and CheckStateChanged events might also be useful. These events occur when the
CheckState or Checked properties change. Catching these events can be useful for setting other values
based on the new state of the CheckBox.

585

Windows Forms

23 557599 Ch19.qxd 4/29/04 11:37 AM Page 585

ComboBox and ListBox
ComboBox and ListBox are both derived from the ListControl class. This class provides some of the
basic list management functionality. SelectedIndex returns an integer value that corresponds to the index
of the currently selected item. Getting a value from the list can be a little trickier. When you add items to a
list control, you are not limited to adding string values. You can add any type of object you want to the
list. If you add something other then a string, then you must set two other properties. The first is the
DisplayMember property. This setting tells the ListControl what property of your object should be dis-
played in the list. The other is ValueMember, which is the property of our object that we want to return
as the value. For example, if we were to use a Country object that contains two properties, CountryName
and CountryAbbreviation, we would set the DisplayMember to the CountryName property and the
ValueMember property to CountryAbbreviation. Now when the list is displayed, we would see a list of
country names, and when the SelectedValue property is used the control will return the abbreviation
for the selected country in the list.

If we access the Items property we can get the Country object. The Items property is implemented on the
controls themselves. On the ListBox control, the Items property returns ListBox.ObjectCollection.
This is a collection of objects that can be referenced through an indexer. So to get the object (not the
ValueMember, but the object itself) we could use the following code:

obj = listBox1.Items[listBox1.SelectedIndex];

The Items property of the ComboBox returns ComboBox.ObjectCollection. A ComboBox is a combina-
tion of an edit control and a list box. You set the style of the ComboBox by passing a DropDownStyle
enumeration value to the DropDownStyle property. The following table lists the various DropDownStyle
values.

Value Description

DropDown The text portion of the combo box is editable and users can enter a value.
They also must click the arrow button to show the list.

DropDownList The text portion is not editable. Users must make a selection from the list.

Simple This is similar to DropDown except that the list is always visible.

If the values in the list are wide you can change the width of the drop-down portion of the control with
the DropDownWidth property. The MaxDropDownItems property sets the number of items to show
when the drop-down portion of the list is displayed.

The FindString and FindStringExact methods are two other useful methods of the list controls. FindString
finds the first string in the list that starts with the passed-in string. FindStringExact finds the first string
that matches the passed-in string. Both return the index of the value that is found or -1 if the value is not
found. They can also take an integer that is the starting index to search from.

The most commonly used events from a list control are the SelectedIndexChanged and SelectedValue-
Changed events. These events occur if the user selects a new item in the list. When a new item is selected
in the list, you can alter other aspects of the form to match the new selected item. Using the Country list,
for example, if the user selects a new country from the list, you can then display an image of a map of
that country.

586

Chapter 19

23 557599 Ch19.qxd 4/29/04 11:37 AM Page 586

DateTimePicker
The DateTimePicker allows users to select a date or time value (or both) in a number of different for-
mats. You can display the DateTime-based value in any of the standard time and date formats. The
Format property takes a DateTimePickerFormat enumeration that sets the format to Long, Short, Time,
or Custom. If the Format property is set to DateTiemePickerFormat.Custom then you can set the
CustomFormat property to a string that represents the format.

There is both a Text property and a Value property. The Text property returns a text representation of the
DateTime value where the Value property returns the DateTime object. You can also set the maximum
and minimum allowable date values with the MinDate and MaxDate properties.

When users click the down arrow a calendar is displayed, allowing the users to select the date a date in
the calendar. There are properties that allow you to change the appearance of the calendar by setting the
title and month background colors as well as the foreground colors.

The ShowUpDown property determines whether an UpDown arrow is displayed on the control. The
currently highlighted value can be changed by clicking on the up or down arrow.

ErrorProvider
ErrorProvider is actually not a control but a component. When you drag a component to the designer, it
shows in the component tray under the designer. What the ErrorProvider does is flash an icon next to a
control when an error condition exists. Let’s say that you have a TextBox entry for an age. Your business
rules say that the age value cannot be greater then 100. If the user tries to enter an age greater then that
you must inform the user that the age is greater then the allowable value and that they need to change
the entered value. The check for a valid value takes place in the Validated event of the text box. If the
validation fails, you call the SetError method, passing in the control that caused the error and a string
that informs the user what the error is. An icon starts flashing indicating that an error has occurred and
when the user hovers over the icon the error text is displayed. Figure 19-4 shows the icon that is displayed
when an invalid entry is made in the text box.

Figure 19-4

You can create an ErrorProvider for each control that produces errors on a form, but if you have a large
number of controls this can become unwieldy. Another option is to use one error provider and in the val-
idate event call the IconLocation method with the control that is causing the validation and one of the
ErrorIconAlignment enumeration values. This value sets where the icon is aligned near the control. Then
you call the SetError method. If no error condition exists you can clear the ErrorProvider by calling
SetError with an empty string as the error string. The following example shows how this works:

587

Windows Forms

23 557599 Ch19.qxd 4/29/04 11:37 AM Page 587

private void txtAge_Validating(object sender,
System.ComponentModel.CancelEventArgs e)

{
if(txtAge.TextLength > 0 && Convert.ToInt32(txtAge.Text) > 65)
{

errMain.SetIconAlignment((Control)sender,
ErrorIconAlignment.MiddleRight);

errMain.SetError((Control)sender, “Value must be less then 65.”);
e.Cancel = true;

}
else
{

errMain.SetError((Control)sender, “”);
}

}

private void txtZipCode_Validating(object sender,
System.ComponentModel.CancelEventArgs e)

{
if(txtZipCode.TextLength > 0 && txtZipCode.Text.Length != 5)
{

errMain.SetIconAlignment((Control)sender,
ErrorIconAlignment.MiddleRight);

errMain.SetError((Control)sender, “Must be 5 charactors..”);
e.Cancel = true;

}
else
{

errMain.SetError((Control)sender, “”);
}

}

If the validation fails (the age is over 65 in txtAge, for example), then the SetIcon method of the
ErrorProvider errMain is called. It will set the icon next to the control that failed validation. The error
is set next so that when users hover over the icon, the message informs them of what is responsible for
the failed validation.

HelpProvider
HelpProvider, like ErrorProvider, is a component and not a control. HelpProvider allows you to hook up
controls to help topics. To associate a control with the help provider you call the SetShowHelp method
passing the control and a Boolean value that determines whether help will be shown. The HelpNamespace
property allows you to set a help file. When the HelpNamespace property is set, the help file is displayed
anytime you select F1 and a control that you have registered with the HelpProvider is in focus. You can set
a keyword to the help file with the SetHelpKeyword method. SetHelpNavigator takes a HelpNavigator
enumeration value to determine which element in the help file should be displayed. You can set it for a
specific topic, the index, the table of contents, or the search page. The SetHelpString associates a string
value of help-related text to a control. If the HelpNamespace property has not been set, pressing F1 will
show this text in a pop-up window. Let’s add a HelpProvider to our previous example.

588

Chapter 19

23 557599 Ch19.qxd 4/29/04 11:37 AM Page 588

helpProvider1.SetHelpString(txtAge,”Enter an age that is less then 65”);
helpProvider1.SetHelpString(txtZipCode,”Enter a 5 digit zip code”);

ImageList
An ImageList component is exactly what the name implies—a list of images. Typically this property is
used for holding a collection of images that are used as toolbar icons, or icons in a TreeView control.
Many controls have an ImageList property. The ImageList property typically comes with an ImageIndex
property. The ImageList property is set to an instance of the ImageList component, the ImageIndex prop-
erty is set to the index in the ImageList that represents the image that should be displayed on the control.
You add images to the ImageList component by using the Add method of the ImageList.Images property.
The Images property returns an ImageCollection.

The two most commonly used properties are ImageSize and ColorDepth. ImageSize uses a Size
structure as its value. The default value is 16×16 but it can be any value from 1 to 256. The ColorDepth
uses a ColorDepth enumeration as its value. The color depth values go from 4 bit to 32 bit. For .NET
Framework 1.1 the default is ColorDepth.Depth8Bit.

Label
Labels are generally used to provide descriptive text to the user. The text might be related to other con-
trols or the current system state. You usually see a label together with a text box. The label provides the
user with a description of the type of data to be entered in the text box. The Label control is always read-
only—the user cannot change the string value of the Text property. However, you can change the Text
property in your code. The UseMnemonic property allows you to enable access key functionality. When
you precede a character in the Text property with the ampersand (&), that letter will appear underlined
in the label control. Pressing the Alt key in combination with the underlined letter puts the focus on the
next control in the tab order. If the Text property contains an ampersand in the text, add a second one
and it will not underline the next letter. For example, if the label text is “Nuts & Bolts” set the property
to “Nuts && Bolts.” Since the Label control is read-only, it cannot gain focus; that’s why focus is sent to
the next control. Because of this it is important to remember: If you enable mnemonics, then you must be
certain to set the tab order properly on your form.

The AutoSize property is a Boolean value that specifies whether the Label will resize itself based on the
contents of the Label. This can be useful for multilanguage applications where the length of the Text
property can change based on the current language.

ListView
The ListView control allows you to display items in one of four different ways. You can display text with
an optional large icon, text with an optional small icon, or text and small icons in a vertical list or in
detail view, which allows you to display the item text plus any subitems in columns. If this sounds
familiar it should, because this is what the right side of File Explorer uses to display the contents of fold-
ers. ListView contains a collection of ListViewItems. ListViewItems allows you to set a Text property that
is used for the display. ListViewItem has a property called SubItems that contains the text that appears
in detail view.

The following example demonstrates how you might useListView. This example includes a short list of
countries. Each CountryList object contains a property for the country name, country abbreviation,
and currency. Here is the code for the CountryList class:

589

Windows Forms

23 557599 Ch19.qxd 4/29/04 11:37 AM Page 589

using System;

namespace SimpleListView
{

public class CountryItem : System.Windows.Forms.ListViewItem
{

string _cntryName = “”;
string _cntryAbbrev = “”;

public CountryItem(string countryName,
string countryAbbreviation, string currency)

{
_cntryName = countryName;
_cntryAbbrev = countryAbbreviation;
base.Text = _cntryName;
base.SubItems.Add(currency);

}

public string CountryName
{

get {return _cntryName;}
}

public string CountryAbbreviation
{

get {return _cntryAbbrev;}
}

}
}

Notice that we are deriving the CountryList class from ListViewItem. This is because we can add only
ListViewItem-based objects to the ListView control. In the constructor we pass the country name to the
base.Text property and add the currency value to the base.SubItems property. This displays the coun-
try name in the list and the currency in a separate column when in Details view.

Next, we need to add a couple of the CountryItem objects to the ListView control in the code of the form:

lvCountries.Items.Add(new CountryItem(“United States”,”US”,”Dollar”));
lvCountries.Items[0].ImageIndex = 0;
lvCountries.Items.Add(new CountryItem(“Great Britain”, “GB”, “Pound”));
lvCountries.Items[1].ImageIndex = 1;
lvCountries.Items.Add(new CountryItem(“Canada”, “CA”, “Dollar”));
lvCountries.Items[2].ImageIndex = 2;
lvCountries.Items.Add(new CountryItem(“Japan”, “JP”, “Yen”));
lvCountries.Items[3].ImageIndex = 3;
lvCountries.Items.Add(new CountryItem(“Germany”, “GM”, “Deutch Mark”));
lvCountries.Items[4].ImageIndex = 4;

Here we add a new CountryItem to the Items collection of the ListView control (lvCountries). Notice
that we set the ImageIndex property of the item after we add it to the control. There are two ImageIndex
objects, one for large icons and one for small icons (SmallImageList and LargeImageList properties). The
trick with having two ImageLists with differing image sizes is to make sure you add the items to the

590

Chapter 19

23 557599 Ch19.qxd 4/29/04 11:37 AM Page 590

ImageList in the same order. This way the index of each ImageList represents the same image, just differ-
ent sizes. In our example, the ImageLists contain icons of the flags for each country we added.

On the top of the form there is a ComboBox (cbView) that lists the four different View enumeration val-
ues. We added the items to the cbView like this:

cbView.Items.Add(View.LargeIcon);
cbView.Items.Add(View.SmallIcon);
cbView.Items.Add(View.List);
cbView.Items.Add(View.Details);
cbView.SelectedIndex = 0;

In the SelectedIndexChanged event of cbView we add the single line of code:

lvCountries.View = (View)cbView.SelectedItem;

This sets the View property of lvCountries to the new value selected in the ComboBox control. Notice that
we need to cast to the View type since object is returned from the SelectedItem property of the cbView.

Last, but hardly least, we have to add columns to the Columns collection. The columns are for Details view.
In this case we are adding two columns, Country Name and Currency. The order of the columns is: the Text
of the ListViewItem, then each item in the ListViewItem.SubItem collection, in the order it appears in the
collection. You can add columns either by creating a ColumnHeader object and setting the Text property
and optionally the Width and Alignment properties. After creating the ColumnHeader object you can add
it to the Columns property. The other way to add columns is to use an override of the Columns.Add
method. It allows you to pass in the Text, Width, and Alignment values. Here is an example:

lvCountries.Columns.Add(“Country”,100, HorizontalAlignment.Left);
lvCountries.Columns.Add(“Currency”,100, HorizontalAlignment.Left);

If you set the AllowColumnReorder property to true, then the user can drag the column headers around
and rearrange the column order.

The CheckBoxes property on the ListView shows check boxes next to the items in the ListView. This
allows the user to easily select multiple items in the ListView control. You can check which items are
selected by checking the CheckedItems collection.

The Alignment property sets the alignment of icons in Large and Small icon view. The value can be any
of the ListViewAlignment enumeration values. They are Default, Left, Top, SnapToGrid. The Default
value allows the user to arrange the icons in any position that they want. When choosing Left or Top the
items are aligned with the left or top of the ListView control. When choosing SnapToGrid, the items snap
to an invisible grid on the ListView control. The AutoArrange property can be set to a Boolean value and
will automatically align the icons based on the Alignment property.

Panel
A Panel is simply a control that contains other controls. By grouping controls together and placing them
in a panel, it is a little easier to manage the controls. For example, you can disable all of the controls in the
panel by disabling the panel. Since the Panel control is derived from ScrollableControl, you also can
get the advantage of the AutoScroll property. If you have too many controls to display in the available
area, place them in a Panel and set AutoScroll to true—now you can scroll through all of the controls.

591

Windows Forms

23 557599 Ch19.qxd 4/29/04 11:37 AM Page 591

Panels do not show a border by default, but by setting the BorderStyle property to something other
then none, you can use the Panel to visually group related controls. This makes the user interface more
user-friendly.

PictureBox
The PictureBox control is used to display an image. The image can be a BMP, JPEG, GIF, PNG, metafile
or icon. The SizeMode property uses the PictureBoxSizeMode enumeration to determine how the image
is sized and positioned in the control. The SizeMode property can be AutoSize, CenterImage, Normal,
and StretchImage

You can change the size of the display of the PictureBox by setting the ClientSize property. You load the
PictureBox by first creating an Image-based object. For example, to load a JPEG file into a PictureBox
you would do the following:

Bitmap myJpeg = new Bitmap(“mypic.jpg”);
pictureBox1.Image = (Image)myJpeg;

Notice that you will need to cast back to an Image type since that is what the Image property expects.

ProgressBar
The ProgressBar control is a visual clue to the status of a lengthy operation. It indicates to users that
there is something going on and that they should wait. The ProgressBar control works by setting the
Minimum and Maximum properties. These properties correspond to the progress indicator being all the
way to the left (Minimum) or all the way to the right (Maximum). You set the Step property to determine
the number that the value is incremented each time the PerformStep method is called. You can also use
the Increment method and increment the value by the value passed in the method call. The Value prop-
erty returns the current value of the ProgressBar.

You can use the Text property to inform the user of the percentage of the operation that has been com-
pleted or the number of items left to process. There is also a BackgroundImage property to customize the
look of the progress bar.

RadioButton
Radio buttons are generally used as a group. Sometimes referred to as option buttons, radio buttons allow
the user to choose one of several options. When you have multiple RadioButtons controls in the same con-
tainer, only one at a time may be selected. So if you have three options—for example, Red, Green, and
Blue—if the Red option is selected and the user clicks the Blue, the Red is automatically deselected.

The Appearance property takes an Appearance enumeration value. This can be either Button or Normal.
When choosing Normal, the radio button looks like a small circle with a label beside it. Selecting the but-
ton fills the circle, selecting another button deselects the currently selected button and make the circle
look empty. When choosing Button, the control looks like a standard button, but it works like a toggle—
selected is the in position, deselected is the normal or out position.

The CheckedAlign property determines where the circle is in relation to the label text. It could be on top
of the label, on either side, or below.

The CheckedChanged event is raised whenever the value of the Checked property changes. This way
you can perform other actions based on the new value of the control.

592

Chapter 19

23 557599 Ch19.qxd 4/29/04 11:37 AM Page 592

TextBox and RichTextBox
The TextBox control is one of the most used controls in the Toolbox. The TextBox and RichTextBox controls
are both derived from TextBoxBase. TextBoxBase provides properties such as MultiLine and Lines. Multi-
Line is a Boolean value that allows the TextBox control to display text in more then one line. Each line in a
text box is a part of an array of strings. This array is exposed through the Lines property. The Text prop-
erty returns the entire text box contents as a single string. TextLength is the total length of the string that
text would return. The MaxLength property will limit the length of the text to the specified amount.

SelectedText, SelectionLength, and SelectionStart all deal with the currently selected text in the text box.
The selected text is the text that is highlighted when the control has focus.

The TextBox control adds a couple of interesting properties. AcceptsReturn is a Boolean value that will
allow the TextBox to accept the Enter key as a new line or whether it activates the default button on the
form. When set to true, pressing the Enter key creates a new line in the TextBox. CharactorCasing deter-
mines the casing of the text in the text box. The CharactorCasing enumeration contains three values,
Lower, Normal, and Upper. Lower lowercases all text regardless of how it is entered; Upper renders all
text in uppercase letters, and Normal displays the text as it is entered. PasswordChar property takes a
char the represents what is displayed to the user when they type text in the textbox. This is typically
used for entering passwords and pin numbers. The text property will return the actual text that was
entered; only the display is affected by this property.

The RichTextBox is a text editing control that can handle special formatting features. As the name implies,
the RichTextBox control uses Rich Text Format (RTF) to handle the special formatting. You can make for-
matting changes by using the Selection properties: SelectionFont, SelectionColor, SelectionBullet and para-
graph formatting with SelectionIndent, SelectionRightIndent, and SelectonHangingIndent. All of the
Selection properties work in the same way. If there is a section of text highlighted, then a change to a
Selection property affects the selected text. If no text is selected then the change takes effect with any text
that is inserted to the right of the current insertion point.

The text of the control can be retrieved by using the Text property or the Rtf property. The Text property
returns just the text of the control while the Rtf property returns the formatted text.

The LoadFile method can load text from a file in a couple of different ways. It can use either a string
that represents the path and file name or it can use a stream object. You can also specify the RichText
BoxStreamType. The following table lists the values of RichTextBoxStreamType.

Value Description

PlainText No formatting information. In places that contained OLE objects, spaces
are used.

RichNoOleObjs Rich text formatting, but spaces where the OLE objects would have been.

RichText Formatted RTF with OLE objects in place.

TextTextOleObjs Plain text with text replacing the OLE objects.

UnicodePlainText Same as PlainText but Unicode encoded.

The SaveFile method works with the same parameters, saving the data from the control to a specified
file. If a file by that name already exists, it will be overwritten.

593

Windows Forms

23 557599 Ch19.qxd 4/29/04 11:37 AM Page 593

Splitter
The Splitter control is used to resize other controls that are docked to it. The classic example of the
Splitter control is the bar in between the List View on the right side and the Tree View on the left side of
Windows Explorer. When the mouse pointer moves over the splitter, the cursor changes and the user is
able to click and drag the splitter either right and left or up and down.

You can set the MinSize and MinExtra properties to limit how much the Splitter can move. The differ-
ence is that the MinSize property specifies the minimum distance in pixels that must remain between the
splitter and the edge of the container that the splitter is docked to. The MinExtra is the distance in pixels
that must remain between the opposite edge of the container and the splitter.

You can set the initial position with the Position property. If the Splitter is not docked to a container con-
trol, this value is -1.

The Splitter control raises two events that relate to moving, the SplitterMoving event and the SplitterMoved
event. One takes place during the move and the other after the move has happened. They both receive a
SplitterEventArgs. The SplitterEventArgs contains properties for the X and Y coordinates of the upper-left
corner of the Splitter (SplitX and SplitY) and the X and Y coordinates of the mouse point (X and Y).

StatusBar
The status bar usually sits at the bottom of the form and contains a series of panels that display informa-
tion about the current status of the application. StatusBarPanel objects are added to the Panels property.
A StatusBarPanel can contain text or an icon. You can also handle the DrawItem event and do your own
graphics drawing.

The StatusBar control also has properties for sizing grips. If the form that the StatusBar is on is resizable,
then this property presents a grip in the bottom-right corner for resizing.

Initially the StatusBar control displays the value of the Text property. Even if you add panels, you must
call the ShowPanels method to display them.

TabControl and TabPages
TabControl allows you to group related controls onto a series of tab pages. TabControl manages the col-
lection of TabPages. There are several properties that control the appearance of TabControl. The
Appearance property uses the TabAppearance enumeration to determine what the tabs look like. The
values are FlatButtons, Buttons, or Normal. The Multiline property is a Boolean that determines if more
then one row of tabs are shown. If the Multiline property is set to false and there are more tabs then can
fit in the display, a set of arrows appears that allow the user to scroll and see the rest of the tabs.

The TabPage Text property is what is displayed on the tab. The Text property is a parameter in a con-
structor override as well.

Once you create a TabPage control, it is basically a container control for you to place other controls. The
designer in Visual Studio .NET makes it easy to add TabPage controls to a TabControl control by using
the collection editor. You can set the various properties as you add each page. Then you can drag the
other child controls to each TabPage control.

594

Chapter 19

23 557599 Ch19.qxd 4/29/04 11:37 AM Page 594

You can determine the current tab by looking at the SelectedTab property. The SelectedIndex event is
raised each time a new tab is selected. By listening to the SelectedIndex property, and then confirming
which is the current tab with SelectedTab you can then do special processing based on each tab.

Menu
There are actually three components that are derived from the Menu class: MainMenu, ContextMenu,
and MenuItem. The Menu class is abstract, hence you will never use it directly. The Menu class defines a
property called MenuItems. MenuItems is a collection of MenuItems. This is how the nesting of menus is
created. When you refer to a MenuItem you could be referring to a complete menu structure if there are
items in the MenuItems MenuItem collection.

When you drag one of the Menu-based components to a form, it is shown in the component tray under
the form in the designer. The component can be selected and then the various properties can be set. The
menu also appears in the designer on top of the form. There you can define the menu structure and how
the menus are navigated. The menu designer makes it much easier to see what the menu structure will
look like after it has been defined. Figure 19-5 shows the ControlSample project open with the Menu
Editor enabled.

Figure 19-5

595

Windows Forms

23 557599 Ch19.qxd 4/29/04 11:37 AM Page 595

MainMenu is used to provide a menu bar on the top of your application forms. It is a container of
MenuItem objects that make up the structure of your menu system. The easiest way to create a menu
system is in the designer. Add a new MainMenu component to your form. When you activate the com-
ponent you will see the menu designer become active at the top of your form. Start entering menu text
and the appropriate MenuItem objects are created. You can nest menus but you should not go more then
3 levels deep, otherwise it becomes difficult for the user to find menu items. If you precede a character in
the menu text it will be underlined and the user can access the menu choice by pressing the Alt key and
the underlined letter. This only works if the menu is visible and active.

ContextMenu is another container for MenuItems. The difference between this container and MainMenu
is that ContextMenu is the shortcut menu that is displayed when the user clicks the right mouse button on
a control or form. Typically the menu contains choices that were relevant to the control or form that the
user right-clicked. Each control has a ContextMenu property that you set to the proper ContextMenu.
ContextMenu has a property called SourceControl that returns the control that activated the menu.

The MenuItem class defines the menu choices. It has several properties that define how the menu item
appears. The Checked property shows a check mark next to the menu text. This is a Boolean value so it
can be toggled on or off. If the RadioButton property is set to true, then a radio button (instead of a check
mark) is displayed. You can use this if the menu choices in a specific menu are mutually exclusive,
which means only one option can be checked at a time. In order to define a shortcut key combination
you set the Shortcut property to one of the Shortcut enumeration values. The Shortcut enumeration
defines various combinations of keys to assign to the menu.

In larger applications defining a menu structure can become quite large. To help break up the complexity
a little you are able to generate several smaller menu structures and merge them together. There is a
MergeOrder property that determines the order of each MenuItem structure after it has been merged.
The MergeType property uses the MergeType enumeration to determine how merging will be performed.
The options are Add, which adds the MenuItem object to the collection of existing MenuItems; MergeItems,
which merges the MenuItems of the current MenuItem with the target MenuItem object; Remove, which
will not allow the MenuItem object to be merged; and Replace, which will replace the existing MenuItem
object in the same position in the target MenuItem object. To perform the merge you call the MergeMenu
method passing in the name of another MenuItem to merge with. The current menu will then be the
combination of the two MenuItem objects.

In order to execute the code you will most likely use the Click event of the MenuItem object. When the
user clicks on the menu you will then be able perform the required process. A good design rule to follow
is to never define a process the click event, but to call another method that actually performs the process.
This way, if you need to perform the same process somewhere else you can. If the process is defined only
in the click event it makes it more difficult to reuse that same functionality. For example, take a button
on a toolbar. It is common to have a toolbar button and a menu choice perform the same functionality.
You can’t use the same event handlers since the event args are different, so having each call the same
method solves the problem without having to replicate code.

Toolbar
Toolbars are a very common feature on Windows applications. They give the user quick access to func-
tionality by clicking a button. Toolbars generally share the same functionality that menus do in that a
menu choice and a toolbar button often perform the same task when selected.

596

Chapter 19

23 557599 Ch19.qxd 4/29/04 11:37 AM Page 596

Toolbar class is a container for ToolbarButtons. The ToolBar control is generally located at the top of the
form under the menu structure. The Appearance property uses the ToolBarAppearance enumeration to
define whether the toolbar is displayed Flat or Normal. Normal means that each toolbar button looks
like a button. When you choose Flat, you can see the text and the icon on the button, but the outline of
the button does not become visible until the mouse is hovering over the button. Since ToolBarButton
controls can have an icon on them, there is an ImageList property that you would use to manage the
toolbar icons.

To create a toolbar, drag the ToolBar control from the Toolbox to the form in the designer. After the Toolbar
is on the form, select the ellipse in the property window on the Buttons property. This allows you to add
ToolBarButton controls to the ToolBar control. Figure 19-6 shows the ToolbarButton Collection Editor.

Figure 19-6

The ToolBarButtons are added to the ToolBarButtonCollection of the ToolBar control. To determine the
type of button, you set the Style property to one of the ToolBarButtonStyle enumeration values. Your Style
options are DropDownButton, PushButton, Separator, or ToggleButton. The PushButton is the standard
button. The DropDownButton displays a ContextMenu of options when selected. The ToggleButton is a
two-state button that is either in (Pushed property set to true) or out (Pushed property set to false).

To set the icon that should show on the button you set the ImageIndex to the index of the ImageList
that is used on the ToolBar control. The Text property defines the text that is displayed on the button.
The ToolTip text, when set, is displayed as a ToolTip when the mouse hovers over the button.

In order to perform a task when the ToolBarButton is clicked, you would think there would be a click
event in the buttons themselves. That is not the case. There is a ButtonCLick event on the ToolBar con-
trol. It receives a ToolBarButtonClickEventArgs object. This object has a Button property that returns the

597

Windows Forms

23 557599 Ch19.qxd 4/29/04 11:37 AM Page 597

ToolBarButton that was clicked. Typically in the ButtonClick event there will be a switch statement that
interrogates the Button property of the ToolBarButtonClickEventArgs object passed in. Based on which
button was pressed, the switch statement executes the proper code. For example, let’s assume we have
a ToolBar control named tbMain. It has three ToolBar buttons in the ToolBarButtonCollection. We are
going to use the Text property of the ToolBarButton to determine what code to execute in the tbMain_
ButtonCLick event.

private void tbMain_ButtonClick(object sender,
System.Windows.Forms.ToolBarButtonClickEventArgs e)
{

switch(e.Button.Text)
{

case “Button 1” :
{

MessageBox.Show(“The Button 1 toolbar button was selected.”);
break;

}

case “Button 2” :
{

if(e.Button.Pushed)
MessageBox.Show(“The Button 2 toolbar button is pushed.”);

else
MessageBox.Show(“The Button 1 toolbar button is not pushed.”);

break;
}

case “Button 3” :
{

MessageBox.Show(“The Button 3 toolbar button was selected.”);
break;

}
}

}

In this simple example we are just showing a MessageBox to the user stating which button was pushed.
For the button with Button 2 as the text value, we are also interrogating the Pushed property. This is rele-
vant only if the Style property is set to ToolBarButtonStyle.ToggleButton.

Forms
Earlier in this chapter we discussed how to create a simple Windows application. The example contained
one class derived from the System.Windows.Forms.Form class. According to the .NET Framework doc-
umentation, “a Form is a representation of any window in your application.” If you come from a Visual
Basic background, the term form will seem familiar. If your background is C++ using MFC, then you’re
probably used to calling a form a window, dialog box, or maybe a frame. Regardless, the form is the basic

598

Chapter 19

23 557599 Ch19.qxd 4/29/04 11:37 AM Page 598

means of interacting with the user. We covered some of the more common and useful properties, meth-
ods, and events of the Control class, and since the Form class is a descendent of the Control class, all of
the same properties, methods and events exist in the Form class. The Form class adds considerable func-
tionality to what the Control class provides, and that’s what we will look at in this section.

Form Class
A Windows client application can contain one form or hundreds of forms. They can be an SDI-based
(Single Document Interface) or MDI-based (Multiple Document Interface) application. Regardless, the
System.Windows.Forms.Form class is the heart of the Windows client. The Form class is derived from
ContainerControl, which is derived from ScrollableControl, which is derived from Control. Because of
this we can assume that a form is capable of being a container for other controls, capable of scrolling
when the contained controls do not fit the client area and has many of the same properties, methods,
and events that other controls have. Because of this it also makes the Form class rather complex. This
section will try and look at much of that functionality.

Form instantiation and destruction
The process of form creation is important to understand. What you want to do depends on where you
write the initialization code. For instantiation, the events occur in the following order:

❑ Constructor

❑ Load

❑ Activated

❑ Closing

❑ Closed

❑ Deactivate

The first three events are of concern during initialization. Depending on what type of initialization you
want to do could determine which event you would hook into. The constructor of a class occurs during
the object instantiation. The Load event occurs after object instantiation, but just before the form
becomes visible. The difference between this and the constructor is the viability of the form. When the
Load event is raised, the form exists, but isn’t visible. During constructor execution, the form is in the
process of existing. The Activated event occurs when the form becomes visible and current.

There is a situation where this order can be altered slightly. If during the constructor execution of the
form the Visible property is set to true or the Show method is called (which sets the Visible property to
true), the Load event fires immediately. Since this also makes the form visible and current, the Activate
event is also raised. If there is code after the Visible property has been set, it will execute. So the startup
event might look something like this:

❑ Constructor, up to Visible = true

❑ Load

❑ Activate

❑ Constructor, after Visible = true

599

Windows Forms

23 557599 Ch19.qxd 4/29/04 11:37 AM Page 599

This could potentially lead to some unexpected results. From a best practices standpoint, it would seem
that doing as much initialization as possible in the constructor might be a good idea.

Now what happens when the form is closed? The Closing event gives you the opportunity to cancel the
process. The Closing event receives the CancelEventArgs as a parameter. This has a Cancel property that
if set to true cancels the event and the form remains open. The Closing event happens as the form is
being closed, whereas the Closed event happens after the form has been closed. Both allow you to do
any clean-up that might have to be done. Notice that the Deactivate event occurs after the form has been
closed. This is another potential source of difficult-to-find bugs. Be sure that you don’t have anything in
Deactivate that could keep the form from being properly garbage collected.

If you should call the Application.Exit() method and you have one or more forms currently open,
the Closing and Closed events will not be raised. This is an important consideration if you have open
files or database connections that you were going to clean up. The Dispose method is called, so perhaps
another best practice would be to put most of your clean-up code in the Dispose method.

Some properties that relate to the start-up of a form are StartPosition, ShowInTaskbar, and TopMost.
StartPosition can be any of the FormStartPosition enumeration values. They are:

❑ CenterParent—Form is centered in the client area of the parent form.

❑ CenterScreen—The form is centered in the current display.

❑ Manual—The form’s location is based on the values in the Location property.

❑ WindowsDefaultBounds—The form is located at the default Windows position and uses the
default size.

❑ WindowsDefaultLocation—The Windows default location is used, but the size is based on the
Size property.

The ShowInTaskbar property determines if the form should be available in the taskbar. This is only rele-
vant if the form is a child form and you only want the parent form to show in the taskbar. The TopMost
property tells the form to start in the top-most position in the Z-order of the application. This is true
even of the form does not immediately have focus.

In order for users to interact with the application, they must be able to see the form. The Show and
ShowDialog methods accomplish this. The Show method just makes the form visible to the user. The fol-
lowing code segment demonstrates how to create a form and show it to the user. Assume that the form
you want to display is called MyFormClass.

MyFormClass myForm = new MyFormClass();
myForm.Show();

That’s the simple way. The one drawback to this is that there isn’t any notification back to the calling
code that myForm is finished and has been exited. Sometimes this isn’t a big deal and the Show method
will work fine. If you do need some type of notification, the ShowDialog is a better option.

When the Show method is called, the code that follows the Show method is executed immediately.
When ShowDialog is called, the calling code is blocked and will wait until the form that ShowDialog
called is closed. Not only will the calling code be blocked, the form will optionally return a DialogResult
value. The DialogResult enumeration is a list of identifiers that describe the reason for the dialog being

600

Chapter 19

23 557599 Ch19.qxd 4/29/04 11:37 AM Page 600

closed. These include OK, Cancel, Yes, No, and several others. In order for the form to return a
DialogResult, the form’s DialogResult property must be set or the DialogResult property on one of the
form’s buttons must be set.

For example, let’s say that part of application asks for the phone number of a client. The form has a text
box for the phone number and two buttons, one is labeled OK and the other is labeled Cancel. If you set
the DialogResult of the OK button to DialogResult.OK and the DialogResult property on the Cancel but-
ton to DialogResult.Cancel, then when either of these buttons is selected, the form will become invisible
and returns to the calling form the appropriate DialogResult value. Now notice that the form does not
get destroyed; only the Visible property is set to false. That’s because you still must get values from the
form. In the case of this example, we need to phone number. By creating a property on the form for the
phone number, the parent form can now get the value and call the Close method on the form. This is
what the code for the child form looks like:

using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;

namespace SimpleWinApp
{

/// <summary>
/// Summary description for Phone.
/// </summary>
public class Phone : System.Windows.Forms.Form
{

private System.Windows.Forms.TextBox txtPhone;
private System.Windows.Forms.Button btnOK;
private System.Windows.Forms.Button btnCancel;
private System.Windows.Forms.Label label1;
/// <summary>
/// Required designer variable.
/// </summary>
private System.ComponentModel.Container components = null;

public Phone()
{

//
// Required for Windows Form Designer support
//
InitializeComponent();

//
// TODO: Add any constructor code after InitializeComponent call
//

}

/// <summary>
/// Clean up any resources being used.
/// </summary>
protected override void Dispose(bool disposing)
{

601

Windows Forms

23 557599 Ch19.qxd 4/29/04 11:37 AM Page 601

if(disposing)
{

if(components != null)
{

components.Dispose();
}

}
base.Dispose(disposing);

}

#region Windows Form Designer generated code
/// <summary>
/// Required method for Designer support - do not modify
/// the contents of this method with the code editor.
/// </summary>
private void InitializeComponent()
{

this.txtPhone = new System.Windows.Forms.TextBox();
this.btnOK = new System.Windows.Forms.Button();
this.btnCancel = new System.Windows.Forms.Button();
this.label1 = new System.Windows.Forms.Label();
this.SuspendLayout();
//
// txtPhone
//
this.txtPhone.Location = new System.Drawing.Point(112, 32);
this.txtPhone.Name = “txtPhone”;
this.txtPhone.TabIndex = 0;
this.txtPhone.Text = “”;
//
// btnOK
//
this.btnOK.DialogResult = System.Windows.Forms.DialogResult.OK;
this.btnOK.Location = new System.Drawing.Point(48, 88);
this.btnOK.Name = “btnOK”;
this.btnOK.TabIndex = 1;
this.btnOK.Text = “OK”;
//
// btnCancel
//
this.btnCancel.DialogResult =

System.Windows.Forms.DialogResult.Cancel;
this.btnCancel.Location = new System.Drawing.Point(152, 88);
this.btnCancel.Name = “btnCancel”;
this.btnCancel.TabIndex = 2;
this.btnCancel.Text = “Cancel”;
//
// label1
//
this.label1.Location = new System.Drawing.Point(8, 32);
this.label1.Name = “label1”;
this.label1.TabIndex = 3;
this.label1.Text = “Enter Phone #:”;
this.label1.TextAlign =

System.Drawing.ContentAlignment.MiddleRight;

602

Chapter 19

23 557599 Ch19.qxd 4/29/04 11:37 AM Page 602

//
// Phone
//
this.AutoScaleBaseSize = new System.Drawing.Size(5, 13);
this.ClientSize = new System.Drawing.Size(264, 155);
this.ControlBox = false;
this.Controls.Add(this.label1);
this.Controls.Add(this.btnCancel);
this.Controls.Add(this.btnOK);
this.Controls.Add(this.txtPhone);
this.HelpButton = true;
this.MaximizeBox = false;
this.MinimizeBox = false;
this.Name = “Phone”;
this.ShowInTaskbar = false;
this.Text = “Phone”;
this.ResumeLayout(false);

}
#endregion

public string PhoneNumber
{

get {return txtPhone.Text;}
set {txtPhone.Text = value;}

}

}
}

Now we are looking at the complete code for the Phone form. The first thing to notice is the fact that
there isn’t code to handle the click events of the buttons. Since we set the DialogResult property for each
of the buttons, the form disappears after either the OK or Cancel button is clicked. The only property we
have added is the PhoneNumber property. The following code shows the method in the parent form that
calls the Phone dialog:

Phone frm = new Phone();
frm.ShowDialog();
if(frm.DialogResult == DialogResult.OK)
{

MessageBox.Show(“Phone number is “ + frm.PhoneNumber);
}
else if(frm.DialogResult == DialogResult.Cancel)
{

MessageBox.Show(“Form was canceled.”);
}
frm.Close();

This looks simple enough. Create the new Phone object (frm). When the frm.ShowDialog() method is
called, the code in this method will stop and wait for the Phone form to return. We can then check the
DialogResult property of the Phone form. Since it has not been destroyed yet, just made invisible, we can
still access the public properties, one of them being the PhoneNumber property. Once we get the data we
need, then we can call the Close method on the form.

603

Windows Forms

23 557599 Ch19.qxd 4/29/04 11:37 AM Page 603

This works well, but what if the returned phone number is not formatted correctly. If we put the
ShowDialog inside of the loop, then we can just recall it and have the user re-enter the value. This way
we get a proper value or handle user who click Cancel.

while(true)
{

frm.ShowDialog();
if(frm.DialogResult == DialogResult.OK)
{

MessageBox.Show(“Phone number is “ + frm.PhoneNumber);
if(frm.PhoneNumber.Length == 8 | frm.PhoneNumber.Length == 12)
{

break;
}
else
{

MessageBox.Show(“Phone number was not formatted correctly.”);
}

}
else if(frm.DialogResult == DialogResult.Cancel)
{

MessageBox.Show(“Form was canceled.”);
break;

}
}
frm.Close();

Now if the phone number does not pass a simple test for length, the Phone form appears so the user can
correct the error. The ShowDialog box does not create a new instance of the form. Any text that is entered
on the form will still be there, so if the form has to be reset, it will be up to you to do that.

Appearance
The first thing that the user sees is the form for the application. It should be first and foremost func-
tional. If the application doesn’t solve a business problem, then it really doesn’t matter how it looks.
This is not to say that the form’s and application’s overall GUI design should not be pleasing to the eye.
Simple things like color combinations, font sizing, and window sizing can make an application much
easier for the user.

Sometimes you don’t want the user to have access to the system menu. This is the menu that appears
when you click the icon on the top-left corner of a window. Generally it has items such as Restore,
Minimize, Maximize, and Close on it. The ControlBox property allows you to set the visibility of the sys-
tem menu. You can also set the visibility of the Maximize and Minimize buttons with the MaximizeBox
and MinimizeBox properties. If you remove all of the buttons and then set the Text property to an empty
string (“”), then the title bar disappears completely.

If you set the Icon property of a form and you don’t set the ControlBox property to false, the icon will
appear in the top-left corner of the form. It’s common to set this to the app.ico. This makes each form’s
icon the same as the application icon.

The FormBorderStyle property sets the type of border that appears around the form. This uses the
FormBorderStyle enumeration. The values can be:

604

Chapter 19

23 557599 Ch19.qxd 4/29/04 11:37 AM Page 604

❑ Fixed3D

❑ FixedDialog

❑ FixedSingle

❑ FixedToolWindow

❑ None

❑ Sizable

❑ SizableToolWindow

Most of these are self-explanatory with the exception of the two tool window borders. A tool window
will not appear in the taskbar, regardless of how ShowInTaskBar is set. Also a Tool window will not
show in the list of windows when the user presses Alt-Tab. The default setting is Sizable.

Unless a requirement dictates otherwise, colors for most GUI elements should be set to system colors, and
not to specific colors. This way if some users like to have all of their buttons green with purple text, then the
application will follow along with the same colors. In order to set a control to use a specific system color,
you must call the FromKnownColor method of the System.Drawing.Color class. The FromKnownColor
method takes a KnownColor enumeration value. There are many colors defined in the enumeration, as well
as the various GUI element colors, such as Control, ActiveBorder and Desktop. So, for example, if the
Background color of the form should always match the Desktop color, the code would look like this:

myForm.BackColor = Color.FromKnownColor(KnownColor.Desktop);

Now if users change the color of their desktops, the background of the form changes as well. This is a
nice friendly touch to add to an application. Users might pick out some strange color combinations for
their desktops, but it is their choice.

Windows XP introduced a feature called visual styles. Visual styles change the way buttons, text boxes,
menus, and other controls look and react when the mouse pointer is either hovering or clicking. You can
enable visual styles for your application by calling the Application.EnableVisualStyles method.
This method has to be called before any type of GUI is instantiated. Because of this it is generally called
in the Main method, as demonstrated in this example:

[STAThread]
static void Main()
{

Application.EnableVisualStyles();
Application.Run(new Form1());

}

This code allows the various controls that support visual styles to take advantage of them. Because of an
issue with the EnableVisualStyles method, you might have to add an Application.DoEvents()
method right after the call to EnableVisualStyles. This should resolve the problem if icons on tool-
bars begin to disappear at runtime. Also EnableVisualStyles is available only in.NET Framework 1.1.

There is one more task pertaining to the controls that you have to accomplish. There is a FlatStyle prop-
erty that most controls expose. It takes a FlatStyle enumeration as its value. This property can take one of
four different values:

605

Windows Forms

23 557599 Ch19.qxd 4/29/04 11:37 AM Page 605

❑ Flat—Similar to flat, except that when the mouse pointer hovers over the control, it appears in 3D.

❑ Standard—The control appears in 3D.

❑ System—The look of the control is controlled by the operating system.

In order to enable visual styles the controls FlatStyle property should be set to FlatStyle.System. The
application will now take on the XP look and feel. Figures 19-7 and 19-8 demonstrate the difference in
the look of a simple application. Figure 19-7 shows the application with EnableVisualStyles set to on;
Figure 19-8 shows the same application with EnableVisualStyles set to off.

Figure 19-7

Figure 19-8

606

Chapter 19

23 557599 Ch19.qxd 4/29/04 11:37 AM Page 606

Multiple Document Interface (MDI)
MDI-type applications are used when you have an application that can show either multiple instances of
the same type of form or different forms that must be contained in some way. An example of multiple
instances of the same type of form is a text editor that can show multiple edit windows at the same time.
An example of the second type of application is Microsoft Access. You can have query windows, design
windows, and table windows all open at the same time. The windows never leave the boundaries of the
main Access application.

To create a MDI application you must have at least two forms in your project. One is the MdiParent and
the other is the MdiChild. Let’s look at an example of how MDI applications work. Create a new C#
Windows Application project. Instead of allowing a form to be the start-up class, add a new class and
call it StartUp. In the Startup class add a Main method. Be sure to set the StartUp object property in
the Project Properties dialog box to the StartUp class. After adding the Main method your Startup class
looks like this:

using System;
using System.Windows.Forms;

namespace SimpleMDIApp
{

/// <summary>
/// Summary description for StartUp.
/// </summary>
public class StartUp
{

[STAThread]
static void Main()
{

Application.Run(new ParentForm());
}

}
}

Next you must either add a new Form class and name it ParentForm or rename the class Form1 to
ParentForm. If you rename Form1 be sure to delete the Main method from it since you will be starting
the application from the StartUp class. You have to tell ParentForm that it is indeed a parent form for
MDI children forms. Setting IsMdiContainer to true will do this. If you have the form in the designer
you’ll notice that the background turns a dark gray color. This is to let you know that this is a MDI par-
ent form. You can still add controls to the form, but it is generally not recommended.

Next you must create child forms. Add a new form to the project and call it ChildForm. You can add a
couple of controls to it if want. Add another new form and call it AnotherChildForm. You can also add
controls to this form if you want. Currently these are standard forms that might appear in any project.
There is nothing at design time that determines that these forms are children of a MDI parent form. This
is done at runtime by setting the MdiParent property of the form.

607

Windows Forms

23 557599 Ch19.qxd 4/29/04 11:37 AM Page 607

To see how this works you must add a MainMenu control to the ParentForm. Add a File menu at the top
level and below it add a New menu option. In the New Click event handler you can instantiate a new
ChildForm and show it. Here is the code:

private void mnuFileNew_Click(object sender, System.EventArgs e)
{

ChildForm frm = new ChildForm();
frm.Name = string.Concat(“MDIChildForm”,

this.MdiChildren.Length.ToString());
frm.Text = frm.Name;
frm.MdiParent = this;
frm.Show();

}

A new ChildForm is created. Assign it to the object variable frm, and then assign a name to the new form
by concatenating the string MDIChildForm with the length of the MdiChildren property of the parent
form. The MdiChildren property is an Array of the current open MDI children form in the parent. Next,
set the form Text equal to the new Name you generated. This is what will show in the caption bar of the
form. The next line is where you set the MdiParent property of the child form to the parent form. Now
the ChildForm is truly a MDI child. And the last thing you do is show the form.

If you click the New menu choice three times, you should end up with a screen that resembles Figure 19-9.

Figure 19-9

608

Chapter 19

23 557599 Ch19.qxd 4/29/04 11:37 AM Page 608

The Mdi child forms do not all have to be the same form. If you add another menu item and call it
Another New, you can add similar code to its click event. The only difference would be to create a new
AnotherChildForm instead of ChildForm. Now if you click the New menu choice a couple of times and
the Another New menu choice a couple of times, the item you see should resemble Figure 19-10.

Figure 19-10

Notice that the number keeps incrementing regardless of the child form. The MdiChildren property only
keeps one Array object. Any type of form that is created as a MdiChild will be added to the array.

One problem that you have is that the only way to close the child forms is to click the Close icon in the
top-right corner of the form. You must add a Menu to the child forms so that you can gracefully close the
child forms. Add a new MainMenu to your ChildForm. Now typically the first item in a menu set is File.
The next item is Edit and so on. On the child menu you don’t want to do that, however. When the child
form is shown, its menu structure will automatically be merged with the parent’s menu. If the parent’s
menu already has File, Edit, and so on, what happens is that you will have two File menus, and two Edit
menus—not a desirable feature. So on the ChildForm, create the menu structure that just relates to the
form. For this example, add a Child menu as the top-level menu. Under it will be the Close menu choice.
Now when you run the example and show a child form with a menu, the new menu appears merged
with the parent form, not the child form.

One other MDI menu item is the MdiList property. This property shows a list of currently open child
windows. Add a new menu choice with the menu text of Window to the parent. Set the MergeOrder
order to 3 and the MdiList property to true. Now when you open a couple of child windows, the
Window menu always stays to the farthest right, because the MergeOrder is higher then the others, and
it contains a list of currently open windows. The text in the menu is the same text that is in the caption of
the child window (Text property of the child form).

609

Windows Forms

23 557599 Ch19.qxd 4/29/04 11:37 AM Page 609

Custom Controls
Using controls and components is a big part of what makes developing with a forms package such as
Windows Forms so productive. The ability to create your own controls, components, and user controls
makes it even more productive. By creating controls, functionality can be encapsulated into packages
that can be reused over and over.

There are a number of ways to create a control. You can start from scratch, deriving your class from
either Control, ScrollableControl, or ContainerControl. You will have to override the Paint event and do
all of your drawing, not to mention adding the functionality that your control is supposed to provide. If
the control is supposed to be an enhanced version of a current control, the thing to do is to derive from
the control that is being enhanced. For example, if a TextBox control is needed that changes background
color of the ReadOnly property is set, then creating a completely new TextBox control would be a waste
of time. Derive from the TextBox control and override the ReadOnly property. Since the ReadOnly prop-
erty of the TextBox control is not marked override we have to use the new clause. The following code
shows the new ReadOnly property:

public new bool ReadOnly
{

get { return base.ReadOnly;}
set {

if(value)
this.BackgroundColor = Color.Red;

else
this.BackgroundColor = Color.FromKnowColor(KnownColor.Window);

base.ReadOnly = value;
}

}

For the property get, you return what the base object is set to. The way that the property handles the
process of making a text box read-only is not relevant here, so you just pass that functionality to the base
object. In the property set, check to if the passed in value is true or false. If it is true, then change the
color to the read-only color (Red in this case); if it is false, then set the BackgroundColor to the default.
Finally, pass the value down to the base object so that the text box actually does become read-only. As
you can see, by overriding one simple property, you can add new functionality to a control.

Control attributes
You can add attributes to the custom control that will enhance the design time capabilities of the control.
The following table describes some the more useful attributes.

Attribute Name Description

BindableAttribute Used at design time to determine of the property supports two-way
data binding.

BrowsableAttribute Determines if the property is shown in the visual designer.

CategoryAttribute Determines under what category the property is displayed in the
property window. Use on predefined categories or create new ones.
Default is Misc.

610

Chapter 19

23 557599 Ch19.qxd 4/29/04 11:37 AM Page 610

Attribute Name Description

DefaultEventAttribute Specifies the default event for a class.

DefaultPropertyAttribute Specifies the default property for a class.

DefaultValueAttribute Specifies the default value for a property. Typically, this is the initial
value.

DecriptionAttribute This is the text that appears at the bottom of the designer window
when the property is selected.

DesignOnlyAttribute This marks the property as being editable in design mode only.

There are other attributes that relate to the editor that the property uses in design time and other
advanced design time capabilities. The Category and Description attributes should almost always be
added. This helps other developers who use the control to better understand the properties purpose.
In order to add Intellisence support you should add XML comments for each property, method, and
event. When the control is compiled with the /doc option, the XML file of comments that is generated
will provide intellisence for the control.

TreeView-based custom control
In this section we show you how to develop a custom control based on the TreeView control. This control
displays the file structure of a drive. We’ll add properties that set the base or root folder and determine
whether files and folders will be displayed. We will also use the various attributes that we discussed in
the previous section.

As with any new project, requirements for the control have to be defined. Here is a list of basic require-
ments that have to be implemented:

❑ Read folders and files and display to user.

❑ Display folder structure in a tree-like hierarchical view.

❑ Optionally hide files from view.

❑ Define what folder should be the base or root folder.

❑ Return the currently selected folder.

❑ Provide the ability to delay loading of the file structure.

This should be a good starting point. One requirement has been satisfied by the fact the TreeView control
will be the base of the new control.

The TreeView control displays data in a hierarchical format. It displays text describing the object in the
list and optionally an icon. This list can be expanded and contracted by clicking an object or using the
arrows keys.

Create a new Windows Control Library project in Visual Studio .NET named FolderTree, and delete the
class UserControl1. Add a new class and call it FolderTree. Since FolderTree will be derived from
TreeView, change the class declaration from

611

Windows Forms

23 557599 Ch19.qxd 4/29/04 11:37 AM Page 611

public class FolderTree

to

public class FolderTree : System.Windows.Forms.TreeView

At this point we actually have a fully functional and working FolderTree control. It will do everything
that the TreeView can do, and nothing more.

The TreeView control maintains a collection of TreeNode objects. We can’t load files and folders directly
into the control. There are a couple of ways we can map the TreeNode that is loaded into the Nodes col-
lection of the TreeView and the file or folder that it represents.

For example, when each folder is processed, a new TreeNode object is created, and the text property is
set to the name of the file or folder. If at some point additional information about the file or folder is
needed, we have to make another trip to the disk to gather that information or store additional data
regarding the file or folder in the Tag property.

Another method is to create a new class that is derived from TreeNode. New properties and methods
can be added and the base functionality of the TreeNode is still there. This is the path that we use in this
example. It allows for a more flexible design. If we need new properties, we can add them easily and
without breaking the existing code.

There are two types of objects that we must load into the control: folders and files. Each has its own
characteristics. For example, folders have a DirectoryInfo object that contains additional information,
files have a FileInfo object. Because of these differences there we use two separate classes to load the
TreeView control: FileNode and FolderNode. We add these two classes to the project, each is derived
from TreeNode. This is the listing for FileNode:

using System;
using System.Windows.Forms;
using System.IO;

namespace FolderTree
{

/// <summary>
/// Summary description for FileNode.
/// </summary>
public class FileNode : System.Windows.Forms.TreeNode
{

string _fileName = “”;
FileInfo _info;

public FileNode(string fileName)
{

_fileName = fileName;
_info = new FileInfo(_fileName);
base.Text = _info.Name;

}

public string FileName

612

Chapter 19

23 557599 Ch19.qxd 4/29/04 11:37 AM Page 612

{
get {return _fileName;}
set {_fileName = value;}

}

public FileInfo FileNodeInfo
{

get {return _info;}
}

}
}

The name of the file that is being processed is passed into the constructor of FileNode. In the constructor
the FileInfo object for the file is created and set to the member variable _info. The base.Text property
is set to the name of the file. Since we are deriving from TreeNode this sets the TreeNodes Text property.
This is the text that is displayed in the TreeView control.

There are two properties added to retrieve the data. FileName returns the name of the file and FileNodeInfo
returns the FileInfo object for the file.

Here is the code for the FolderNode class. It is very similar to the FileNode class in structure. The dif-
ferences are that we have a DirectoryInfo property instead of FileInfo, and instead of FileName we
have FolderPath.

using System;
using System.Windows.Forms;
using System.IO;

namespace FolderTree
{

/// <summary>
/// Summary description for DiskObject.
/// </summary>
public class FolderNode : System.Windows.Forms.TreeNode
{

string _folderPath = “”;
DirectoryInfo _info;

public FolderNode(string folderPath)
{

_folderPath = folderPath;
_info = new DirectoryInfo(folderPath);
this.Text = _info.Name;

}

public string FolderPath
{

get {return _folderPath;}
set {_folderPath = value;}

}
public DirectoryInfo FolderNodeInfo
{

613

Windows Forms

23 557599 Ch19.qxd 4/29/04 11:37 AM Page 613

get {return _info;}
}

}
}

Now we can construct the FolderTree control. Based on the requirements, we need a property to read
and set the RootFolder. We also need a ShowFiles property for determining if files should be shown in
the tree. A SelectedFolder property returns the currently highlighted folder in the tree. This is what
the code looks like so far for the FolderTree control:

using System;
using System.Windows.Forms;
using System.IO;
using System.ComponentModel;

namespace FolderTree
{

/// <summary>
/// Summary description for FolderTreeCtrl.
/// </summary>
public class FolderTree : System.Windows.Forms.TreeView
{

string _rootFolder = “”;
bool _showFiles = true;
bool _inInit = false;

public FolderTree()
{

//
// TODO: Add constructor logic here
//

}

[Category(“Behavior”),
Description(“Gets or sets the base or root folder of the tree”),
DefaultValue(“C:\\”)]

public string RootFolder
{

get {return _rootFolder;}
set
{

_rootFolder = value;
if(!_inInit)

InitializeTree();

}
}

[Category(“Behavior”),

614

Chapter 19

23 557599 Ch19.qxd 4/29/04 11:37 AM Page 614

Description(“Indicates whether files will be seen in the list.”),
DefaultValue(true)]

public bool ShowFiles
{

get {return _showFiles;}
set {_showFiles = value;}

}

[Browsable(false)]
public string SelectedFolder
{

get
{

if(this.SelectedNode is FolderNode)
return ((FolderNode)this.SelectedNode).FolderPath;

return “”;
}

}
}

}

We added three properties: ShowFiles, SelectedFolder, and RootFolder. Notice the attributes that have
been added. We set Category, Description, and DefaultValues for the ShowFiles and RootFolder. These
two properties will appear in the property browser in design mode. The SelectedFolder really has no
meaning at design time, so we select the Browsable=false attribute. SelectedFolder does not appear in
the property browser. However, since it is a public property, it will appear in Intellisence and is accessi-
ble in code.

Next, we have to initialize the loading of the file system. Initializing a control can be tricky. Both design
time and runtime initializing must be well thought-out. When a control is sitting on a designer, it is actu-
ally running. If there is a call to a database in the constructor, for example, this call will execute when
you drop the control on the designer. In the case of the FolderTree control this can be an issue.

Let’s take a look at the method that is actually going to load the files:

private void LoadTree(FolderNode folder)
{

string[] dirs = Directory.GetDirectories(folder.FolderPath);
foreach(string dir in dirs)
{

FolderNode tmpfolder = new FolderNode(dir);
folder.Nodes.Add(tmpfolder);
LoadTree(tmpfolder);

}
if(_showFiles)
{

string[] files = Directory.GetFiles(folder.FolderPath);
foreach(string file in files)
{

615

Windows Forms

23 557599 Ch19.qxd 4/29/04 11:37 AM Page 615

FileNode fnode = new FileNode(file);
folder.Nodes.Add(fnode);

}

}
}

_showFiles is a Boolean member variable that is set from the ShowFiles property. If true, then files are
also shown in the tree. The only question now is when should LoadTree be called. We have several options.
It can be called when the RootFolder property is set. That is desirable in some situations, but not at design
time. Remember that the control is “live” on the designer so when the RootNode property is set, the control
will attempt to load the files system.

What we can do to solve this is to check the DesignMode property. This returns true if the control is in
the designer. Now we can write the code to initialize the control:

private void InitializeTree()
{

if(!this.DesignMode && _rootFolder != “”)
{

FolderNode rootNode = new FolderNode(_rootFolder);
LoadTree(rootNode);
this.Nodes.Clear();
this.Nodes.Add(rootNode);

}
}

If the control is not in design mode and _rootFolder is not an empty string, then the loading of the tree
will begin. The Root node is created first and this is passed into the LoadTree method.

Another option is to implement a public Init method. In the Init method the call to LoadTree can
happen. The problem with this option is that the developer who uses your control is required to make
the Init call. Depending on the situation this might be an acceptable solution.

For added flexibility the ISupportInitialize interface can be implemented. ISupportInitialize has
two methods, BeginInit and EndInit. When a control implements ISupportInitialize the BeginInit
and EndInit methods are called automatically in the generated code in InitilizeComponent. This allows
the initialization process to be delayed until all of the properties are set. ISupportInitialize allows the
code in the parent form to delay initialization as well. If the RootNode property is being set in code, a call to
BeginInit first will allow the RootNode property as well as other properties to be set or actions to be per-
formed before the control loads the files system. When EndInit is called, the control initializes. This is what
BeginInit and EndInit look like:

#region ISupportInitialize Members

void ISupportInitialize.BeginInit()
{

_inInit = true;
}

616

Chapter 19

23 557599 Ch19.qxd 4/29/04 11:37 AM Page 616

void ISupportInitialize.EndInit()
{

if(_rootFolder != “”)
{

InitializeTree();
}

_inInit = false;
}

#endregion

In the BeginInit method all that is done is a member variable _inInit is set to true. This flag is used
to determine if the control is in the initialization process and is used in the RootFolder property. If the
RootFolder property is set outside of the InitilizeComponent class then the tree will need to be reini-
tialized. In the RootFolder property we check to see if _inInit is true or false. If it is true then we
don’t want to go through the initialization process. If _inInit is false then we call InitializeTree.
We could also have a public Init method and accomplish the same task.

In the EndInit method we check to see if the control is in design mode and if _rootFolder has a valid
path assigned to it. Only then is InitializeTree called.

In order to add a final professional-looking touch, we have to add a bitmap image. This is the icon that
shows up in the toolbox when the control is added to a project. The bitmap image should be 16 × 16 pixels
and 16 colors. You can create this image file with any graphics editor as long as the size and color depth
are set properly. You can even create this file in Visual Studio .NET: Right-click the project and select Add
New Item. From the list select Bitmap File to open the graphics editor. After you have created the bitmap
file, add it to the project, making sure it is in the same namespace and has the same name as the control.
Finally, set the Build Action of the bitmap to Embedded Resource: Right-click the bitmap file in the
Solution Explorer and select Properties. Select Embedded Resource form the Build Action property.

To test the control, create a TestHarness project in the same solution. The TestHarness is a simple
Windows Forms application with a single form. In the references section add a reference to the
FolderTreeCtl project. In the Toolbox windows add a reference to the FolderTreeCtl.DLL. FolderTreeCtl
should now show up in the toolbox with the bitmap added as the icon. Click the icon and drag it to the
TestHarness form. Set the RootFolder to an available folder and run the solution.

This is by no means a complete control. There are several things that could be enhanced to make this a
full featured, production-ready control. For example, we could add:

❑ Exceptions—If the control tries to load a folder that the user does not have access to an exception
is raised.

❑ Background loading—Loading a large folder tree can take a long time. Enhancing the initializa-
tion process to take advantage of a background thread for loading is a good idea.

❑ Color codes—We can make the text of certain file types a different color.

❑ Icons—We can add an ImageList control and add an icon to each file or folder as it is loaded.

617

Windows Forms

23 557599 Ch19.qxd 4/29/04 11:37 AM Page 617

User control
User controls are one of the more powerful features of Windows Forms. They allow encapsulating user
interface designs into nice reusable packages that can be plugged into project after project. It is not
uncommon for an organization to have a couple of libraries of frequently used user controls. Not only
can user interface functionality be contained in user controls but common data validation can be incor-
porated in them as well. Things like formatting phone numbers or id numbers. A predefined list of items
can be in the user control for fast loading of a list box or combo box. State codes or country codes fit into
this category. Incorporating as much functionality that does not depend on the current application as
possible into a user control makes the control that much more useful in the organization.

In this section we create a simple address user control. We also will add the various events that make the
control ready for data binding. The address control will have text entry for two address lines, city, state
and zip code.

To create a user control in a current project, just right-click the project in Solution Explorer and select
Add and then select Add New User Control. You can also create a new Control Library project and add
user controls to it. After a new user control has been started, you will see a form without any borders on
the designer. This is where you drop the controls that make up the user control. Remember that a user
control is actually one or more controls added to a container control. So it is somewhat like creating a
form. For the address control there are five TextBox controls and three Label controls. The controls can
be arranged any way that seems appropriate (see Figure 19-11).

Figure 19-11

618

Chapter 19

23 557599 Ch19.qxd 4/29/04 11:37 AM Page 618

The TextBox controls in this example are named as follows:

❑ txtAddress1

❑ txtAddress2

❑ txtCity

❑ txtState

❑ txtZip

After the TextBox controls are in place and have valid names, add the public properties. You might be
tempted to set the visibility of the TextBox controls to public instead of private. However, this is not a
good idea, because it defeats the purpose of encapsulating the functionality that you might want to add
to the properties. Here is a listing of the properties that must be added:

public string AddressLine1
{

get{return txtAddress1.Text;}
set{

if(txtAddress1.Text != value)
{

txtAddress1.Text = value;
if(AddressLine1Changed != null)

AddressLine1Changed(this, PropertyChangedEventArgs.Empty);
}

}
}

public string AddressLine2
{

get{return txtAddress2.Text;}
set{

if(txtAddress2.Text != value)
{

txtAddress2.Text = value;
if(AddressLine2Changed != null)

AddressLine2Changed(this, PropertyChangedEventArgs.Empty);
}

}
}

public string City
{

get{return txtCity.Text;}
set{

if(txtCity.Text != value)
{

txtCity.Text = value;
if(CityChanged != null)

CityChanged(this, PropertyChangedEventArgs.Empty);
}

619

Windows Forms

23 557599 Ch19.qxd 4/29/04 11:37 AM Page 619

}
}

public string State
{

get{return txtState.Text;}
set{

if(txtState.Text != value)
{

txtState.Text = value;
if(StateChanged != null)

StateChanged(this, PropertyChangedEventArgs.Empty);
}

}
}

public string Zip
{

get{return txtZip.Text;}
set{

if(txtZip.Text != value)
{

txtZip.Text = value;
if(ZipChanged != null)

ZipChanged(this, PropertyChangedEventArgs.Empty);
}

}
}

The property gets are fairly straightforward. The property returns the value of the corresponding TextBox
controls text property. The property sets, however, are doing a bit more work. All of the property sets
work the same way. A check is made to see if the value of the property is actually changing or not. If the new
value is the same as the current value, then a quick escape can be made. If there is a new value sent in, then
set the text property of the TextBox to the new value and test to see if an event has been instantiated. The
event to look for is the changed event for the property. It has a specific naming format, propertynameChanged
where propertyname is the name of the property. In the case of the AddressLine1 property, this event is
called AddressLine1Changed. The properties are declared as follows:

public event EventHandler AddressLine1Changed;
public event EventHandler AddressLine2Changed;
public event EventHandler CityChanged;
public event EventHandler StateChanged;
public event EventHandler ZipChanged;

The purpose of the events is to notify binding that the property has changed. Once validation occurs,
binding will make sure that the new value makes its way back to the object that the control is bound to.
There is one other step that should be done to support binding. A change to the text box by the user will
not set the property directly. So the propertynameChanged event must be raised when the text box
changes as well. The easiest way to do this is to monitor the TexhChanged event of the TextBox control.

620

Chapter 19

23 557599 Ch19.qxd 4/29/04 11:37 AM Page 620

This example has only one TextChanged event handler and all of the text boxes use it. The control name
is checked to see which control raised the event and the appropriate propertynameChanged event is
raised. Here is the code for the event handler:

private void TextBoxControls_TextChanged(
object sender, System.EventArgs e)

{
switch(((TextBox)sender).Name)
{

case “txtAddress1” :
if(AddressLine1Changed != null)

AddressLine1Changed(this, EventArgs.Empty);

break;

case “txtAddress2” :
if(AddressLine2Changed != null)

AddressLine2Changed(this, EventArgs.Empty);

break;

case “txtCity” :
if(CityChanged != null)

CityChanged(this, EventArgs.Empty);

break;

case “txtState” :
if(StateChanged != null)

StateChanged(this, EventArgs.Empty);

break;

case “txtZip” :
if(ZipChanged != null)

ZipChanged(this, EventArgs.Empty);

break;

}
}

This example uses a simple switch statement to determine which text box raised the TextChanged
event. Then a check is made to verify that the event is valid and not equal to null. Then Changed event is
raised. One thing to note is that an empty EventArgs is sent (EventArgs.Empty). Because these events
have been added to the properties to support data binding does not mean that the only way to use the
control is with data binding. The properties can be set in and read from code without using data bind-
ing. They have been added so that the user control is able to use binding if it is available. This is just one
way of making the user control as flexible as possible so that it might be used in as many situations as
possible.

621

Windows Forms

23 557599 Ch19.qxd 4/29/04 11:37 AM Page 621

Remembering that a user control is essentially a control with some added features, all of the design time
issues that we discussed in the previous section apply here as well. Initializing user controls can bring
on the same issues that we saw in the FolderTree example. Care must be taken in the design of user con-
trols so that access to data stores that might not be available to other developers using your control is
avoided.

The other thing that is similar to the control creation is the attributes that can be applied to user controls.
The public properties and methods of the user control are displayed in the Properties Window when
the control is placed on the designer. In the example of the address user control it is a good idea to add
Category, Description, and DefaultValue attributes to the address properties. A new AddressData cate-
gory can be created and the default values would all be “”. Here is an example of these attributes
applied to the AddressLine1 property:

[Category(“AddressData”),
Description(“Gets or sets the AddressLine1 value”),
DefaultValue(“”)]

public string AddressLine1
{

get{return txtAddress1.Text;}
set{

if(txtAddress1.Text != value)
{

txtAddress1.Text = value;
if(AddressLine1Changed != null)

AddressLine1Changed(this, EventArgs.Empty);
}

}
}

As you can see, all that needs to be done to add a new category is set the text in the Category attribute.
The new category is automatically added.

There still is a lot of room for improvement. For example, we could include a list of state names and abbre-
viations in the control. Instead of just the state property, the user control could expose both the state name
and state abbreviation properties. Exception handling should also be added. We could also add validation
for the address lines. Making sure the casing is correct, we might ask ourselves whether AddressLine1
could be optional, or whether apartment and suite numbers should be entered on AddressLine2 and not on
AddressLine1.

Summary
This chapter has given you the basics for building Windows client-based applications. We explained
each of the basic control by discussing the hierarchy of the Windows.Forms namespace and examining
the various properties and methods of the controls.

We also showed you how to create a basic custom control as well as a basic user control. The power and
flexibility of creating your own controls cannot be emphasized enough. By creating your own toolbox of
custom controls, Windows-based client application will become easier to develop and to test since you
will be reusing the same tested components over and over again.

622

Chapter 19

23 557599 Ch19.qxd 4/29/04 11:37 AM Page 622

Graphics with GDI+

This is the second of the three chapters that deal with user interaction and .NET Framework. In
Chapter 19 we focus on Windows Forms, discussing how to display a dialog box or SDI or MDI
window, and how to place various controls such as buttons, text boxes, and list boxes.

Although these standard controls are powerful and, by themselves, quite adequate for the complete
user interface for many applications, there are situations in which you need more flexibility. For
example, you might want to draw text in a given font in a precise position in a window, display
images without using a picture box control, or draw simple shapes or other graphics. None of this
can be done with the controls discussed in Chapter 19. To display that kind of output, the applica-
tion must instruct the operating system what to display and where in its window to display it.

Therefore, in this chapter we’re going to show you how to draw a variety of items including:

❑ Lines and simple shapes

❑ .BMP images and other image files

❑ Text

In the process, we’ll need to use a variety of helper objects, including pens (to define the character-
istics of lines), brushes (to define how areas are filled in), and fonts (to define the shape of the char-
acters of text). We’ll also go into some detail on how devices interpret and display different colors.

We’ll start, however, by discussing a technology called GDI+. GDI+ consists of the set of .NET base
classes that are available to control custom drawing on the screen. These classes arrange for the
appropriate instructions to be sent to graphics device drivers to ensure the correct output is placed
on the screen (or printed to a hard copy).

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 623

Understanding Drawing Principles
In this section, we’ll examine the basic principles that we need to understand in order to start drawing to
the screen. We’ll start by giving an overview of GDI, the underlying technology on which GDI+ is based,
and see how GDI and GDI+ are related. Then we’ll move on to a couple of simple examples.

GDI and GDI+
In general, one of the strengths of Windows—and indeed of modern operating systems in general—lies
in its ability to abstract the details of particular devices without input from the developer. For example,
you don’t need to understand anything about your hard drive device driver in order to programmati-
cally read and write files to disk; you simply call the appropriate methods in the relevant .NET classes
(or in pre-.NET days, the equivalent Windows API functions). This principle is also true when it comes
to drawing. When the computer draws anything to the screen, it does so by sending instructions to the
video card. However, there are many hundreds of different video cards on the market, most of which
have different instruction sets and capabilities. If you had to take that into account, and write specific
code for each video driver, writing any such application would be an almost impossible task. This is
why the Windows graphical device interface (GDI) has been around since the earliest versions of Windows.

GDI provides a layer of abstraction, hiding the differences between the different video cards. You simply
call the Windows API function to do the specific task, and internally the GDI figures out how to get your
particular video card to do whatever it is you want. Not only this, but if you have several display devices—
for example, monitors and printers—GDI achieves the remarkable feat of making your printer look the
same as your screen as far as your application is concerned. If you want to print something instead of
displaying it, you simply inform the system that the output device is the printer and then call the same
API functions in exactly the same way.

As you can see, the device-context object (DC) is a very powerful object and you won’t be surprised to
learn that under GDI all drawing had to be done through a device context. The DC was even used for
operations that don’t involve drawing to the screen or to any hardware device, such as modifying
images in memory.

Although GDI exposes a relatively high-level API to developers, it is still an API that is based on the old
Windows API, with C-style functions. GDI+ to a large extent sits as a layer between GDI and your appli-
cation, providing a more intuitive, inheritance-based object model. Although GDI+ is basically a wrapper
around GDI, Microsoft has been able through GDI+ to provide new features and claims to have made
some performance improvements.

The GDI+ part of the .NET base class library is huge, and we will scarcely scratch the surface of its features
in this chapter. That’s a deliberate decision, because trying to cover more than a tiny fraction of the library
would have turned this chapter into a huge reference guide that simply listed classes and methods. It’s
more important to understand the fundamental principles involved in drawing, so that you are in a good
position to explore the available classes. Full lists of all the classes and methods available in GDI+ are of
course available in the SDK documentation.

Visual Basic developers are likely to find the concepts involved in drawing quite unfamiliar, since Visual
Basic focuses on controls that handle their own painting. C++/MFC developers are likely to be in more
familiar territory since MFC does require developers to take control of more of the drawing process, using
GDI. However, even if you have a strong background in GDI, you’ll find a lot of the material presented in
this chapter is new.

624

Chapter 20

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 624

GDI+ namespaces
The following table provides an overview of the main namespaces you’ll need to explore to find the
GDI+ base classes.

Namespace Description

System.Drawing Contains most of the classes, structs, enums, and delegates con-
cerned with the basic functionality of drawing

System.Drawing.Drawing2D Provides most of the support for advanced 2D and vector
drawing, including anti-aliasing, geometric transformations,
and graphics paths

System.Drawing.Imaging Contains various classes that assist in the manipulation of
images (bitmaps, GIF files, and so on)

System.Drawing.Printing Contains classes to assist when specifically targeting a printer
or print preview window as the “output device”

System.Drawing.Design Contains some predefined dialog boxes, property sheets, and
other user interface elements concerned with extending the
design-time user interface

System.Drawing.Text Contains classes to perform more advanced manipulation of
fonts and font families

You should note that almost all of the classes and structs that we use in this chapter are taken from the
System.Drawing namespace.

Device contexts and the Graphics object
In GDI, the way that you identify which device you want your output to go to is through an object
known as the device context (DC). The DC stores information about a particular device and is able to
translate calls to the GDI API functions into whatever instructions need to be sent to that device. You can
also query the device context to find out what the capabilities of the corresponding device are (for exam-
ple, whether a printer prints in color or only in black and white), so the output can be adjusted accord-
ingly. If you ask the device to do something it’s not capable of, the DC will normally detect this, and take
appropriate action (which, depending on the situation, might mean throwing an error or modifying the
request to get the closest match that the device is actually capable of using).

However, the DC doesn’t only deal with the hardware device. It acts as a bridge to Windows and is able
to take account of any requirements or restrictions placed on the drawing by Windows. For example, if
Windows knows that only a portion of your application’s window needs to be redrawn, the DC can trap
and nullify attempts to draw outside that area. Due to the DC’s relationship with Windows, working
through the device context can simplify your code in other ways.

For example, hardware devices need to be told where to draw objects, and they usually want coordinates
relative to the top-left corner of the screen (or output device). Usually, however, your application will be
thinking of drawing something at a certain position within the client area (the area reserved for drawing)
of its own window, possibly using its own coordinate system. Since the window might be positioned any-
where on the screen, and a user might move it at any time, translating between the two coordinate systems

625

Graphics with GDI+

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 625

is potentially a difficult task. However, the DC always knows where your window is and is able to perform
this translation automatically.

With GDI+, the device context is wrapped up in the .NET base class System.Drawing.Graphics. Most
drawing is done by calling methods on an instance of Graphics. In fact, since the Graphics class is the
class that is responsible for handling most drawing operations, very little gets done in GDI+ that doesn’t
involve a Graphics instance somewhere, so understanding how to manipulate this object is the key to
understanding how to draw to display devices with GDI+.

Drawing Shapes
To show this at work, we’re going to start off with a short example, DisplayAtStartup, to illustrate draw-
ing to an application’s main window. The examples in this chapter are all created in Visual Studio .NET
as C# Windows applications. Recall that for this type of project the code wizard gives us a class called
Form1, derived from System.Windows.Form, which represents the application’s main window. Unless
otherwise stated, in all code samples, new or modified code means code that we’ve added to the wizard-
generated code. (You can download the sample code from the Wrox Web site at www.wrox.com.)

In .NET usage, when we are talking about applications that display various controls, the terminology
form has largely replaced window to represent the rectangular object that occupies an area of the screen
on behalf of an application. In this chapter, we’ve tended to stick to the term window, since in the con-
text of manually drawing items it’s rather more meaningful. We’ll also talk about the form when we’re
referring to the .NET class used to instantiate the form/window. Finally, we’ll use the terms drawing
and painting interchangeably to describe the process of displaying some item on the screen or other dis-
play device.

The first example will simply create a form and draw to it in the constructor, when the form starts up.
Note that this is not actually the best or the correct way to draw to the screen—we’ll quickly find that
this example has a problem in that it is unable to redraw anything after starting up. However this sam-
ple illustrates quite a few points about drawing without our having to do very much work.

For this sample, we start Visual Studio .NET and create a Windows application. We first set the back-
ground color of the form to white. We’ve put this line in the InitializeComponent() method so that
Visual Studio .NET recognizes the line and is able to alter the design view appearance of the form. We
could have used the design view to set the background color, but this would have resulted in pretty
much the same line being added automatically:

private void InitializeComponent()
{

this.AutoScaleBaseSize = new System.Drawing.Size(5, 13);
this.ClientSize = new System.Drawing.Size(292, 266);
this.Name = “Form1”;
this.Text = “DrawShapesSample”;

this.BackColor = Color.White;

Then we add code to the Form1 constructor. We create a Graphics object using the form’s Create
Graphics() method. This Graphics object contains the Windows DC we need to draw with. The
device context created is associated with the display device, and also with this window:

626

Chapter 20

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 626

public Form1()
{

InitializeComponent();

Graphics dc = this.CreateGraphics();
this.Show();
Pen bluePen = new Pen(Color.Blue, 3);
dc.DrawRectangle(bluePen, 0,0,50,50);
Pen redPen = new Pen(Color.Red, 2);
dc.DrawEllipse(redPen, 0, 50, 80, 60);

}

As you can see, we then call the Show() method to display the window. This is really done to force the
window to display immediately, because we can’t actually do any drawing until the window has been
displayed. If the window isn’t displayed then there’s nothing for us to draw onto.

Finally, we display a rectangle at coordinates (0,0) and with width and height 50, and an ellipse with
coordinates (0,50) and with width 80 and height 50. Note that coordinates (x,y) translates to x pixels to
the right and y pixels down from the top-left corner of the client area of the window—and these coordi-
nates start from the top-left corner of the shape to be displayed.

The overloads that we are using of the DrawRectangle() and DrawEllipse() methods each take five
parameters. The first parameter of each is an instance of the class System.Drawing.Pen. A Pen is one of
a number of supporting objects to help with drawing—it contains information about how lines are to be
drawn. Our first pen instructs that lines should be the color blue with a width of 3 pixels; the second pen
instructs that lines should be red and have a width of 2 pixels. The final four parameters are coordinates
and size. For the rectangle, they represent the (x,y) coordinates of the top left-hand corner of the rectan-
gle in addition to its width and height. For the ellipse these numbers represent the same thing, except
that we are talking about a hypothetical rectangle that the ellipse just fits into, rather than the ellipse
itself. Figure 20-1 shows the result of running this code. Of course, since this is not a color book, you
cannot see the colors.

Figure 20-1

627

Graphics with GDI+

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 627

Figure 20-1 demonstrates a couple of points. First, you can see clearly where the client area of the window
is located. It’s the white area—the area that has been affected by our setting the BackColor property. And
notice that the rectangle nestles up in the corner of this area, as you’d expect when we specified coordi-
nates of (0,0) for it. Second, notice that the top of the ellipse overlaps the rectangle slightly, which you
wouldn’t expect from the coordinates we gave in the code. The culprit here is Windows and where it
places the lines that border the rectangle and ellipse. By default, Windows will try to center the line on the
border of the shape—that’s not always possible to do exactly, because the line has to be drawn on pixels
(obviously), but normally the border of each shape theoretically lies between two pixels. The result is that
lines that are 1 pixel thick will get drawn just inside the top and left sides of a shape, but just outside the
bottom and right sides—which means that shapes that strictly speaking are next to each other will have
their borders overlap by one pixel. We’ve specified wider lines; therefore the overlap is greater. It is possi-
ble to change the default behavior by setting the Pen.Alignment property, as detailed in the SDK docu-
mentation, but for these purposes the default behavior is adequate.

Unfortunately, if you actually run the sample you’ll notice the form behaves a bit strangely. It’s fine if you
just leave it there, and it’s fine if you drag it around the screen with the mouse. If you try minimizing the
window and then restoring it, then our carefully drawn shapes just vanish! The same thing happens if
you drag another window across the sample. If you drag another window across it so that it only
obscures a portion of our shapes, then drag the other window away again, you’ll find the temporarily
obscured portion has disappeared and you’re left with half an ellipse or half a rectangle!

So what’s going on? The problem arises when part of a window is hidden, because Windows usually
discards immediately all the information concerning exactly what has been displayed. This is something
Windows has to do or else the memory usage for storing screen data would be astronomical. A typical
computer might be running with the video card set to display 1024×768 pixels, perhaps in a 24-bit color
mode, which implies that each pixel on the screen occupies 3 bytes—2.25MB to display the screen. (We’ll
cover what 24-bit color means later in this chapter.) However, it’s not uncommon for a user to work with
10 or 20 minimized windows in the taskbar. In a worst-case scenario, we might have 20 windows, each
of which would occupy the whole screen if it wasn’t minimized. If Windows actually stored the visual
information those windows contained, ready for when the user restores them, that would amount to
some 45MB! These days, a good graphics card might have 64MB of memory and be able to cope with
that, but it was only a couple of years ago that 4MB was considered generous in a graphics card—and
the excess would need to be stored in the computer’s main memory. A lot of people still have old
machines, some of them with only 4MB graphic cards. Clearly it wouldn’t be practical for Windows to
manage its user interface like that.

The moment any part of a window is hidden, the “hidden” pixels get lost, because Windows frees the
memory that was holding those pixels. It does, however, note that a portion of the window is hidden, and
when it detects that it is no longer hidden, it asks the application that owns the window to redraw its con-
tents. There are a couple of exceptions to this rule—generally for cases in which a small portion of a win-
dow is hidden very temporarily (a good example is when you select an item from the main menu and that
menu item drops down, temporarily obscuring part of the window below). In general, however, you can
expect that if part of your window is hidden, your application will need to redraw it later.

That’s the source of the problem for our sample application. We placed our drawing code in the Form1
constructor, which is called just once when the application starts up, and you can’t call the construc-
tor again to redraw the shapes when required later on.

When working with Windows Forms server controls, there is no need to know anything about how to
accomplish this task. This is because the standard controls are pretty sophisticated and they are able to

628

Chapter 20

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 628

redraw themselves correctly whenever Windows asks them to. That’s one reason why when program-
ming controls you don’t need to worry about the actual drawing process at all. If we are taking responsi-
bility for drawing to the screen in our application then we also need to make sure our application will
respond correctly whenever Windows asks it to redraw all or part of its window. In the next section, we
will modify our sample to do just that.

Painting Shapes Using OnPaint()
If the above explanation has made you worried that drawing your own user interface is going to be
terribly complicated, don’t worry. Getting your application to redraw itself when necessary is actually
quite easy.

Windows notifies an application that some repainting needs to be done by raising a Paint event.
Interestingly, the Form class has already implemented a handler for this event so you don’t need to add
one yourself. The Form1 handler for the Paint event will at some point in its processing call up a virtual
method, OnPaint(), passing to it a single PaintEventArgs parameter. This means that all we need to
do is override OnPaint() to perform our painting.

Although we’ve chosen to work by overriding OnPaint(), it’s equally possible to achieve the same results
by simply adding our own event handler for the Paint event (a Form1_Paint() method, say)—in much
the same way as you would for any other Windows Forms event. This other approach is arguably more
convenient, since you can add a new event handler through the Visual Studio .NET properties window,
saving yourself from typing some code. However, our approach, of overriding OnPaint(), is slightly more
flexible in terms of letting us control when the call to the base class window processing occurs, and is the
approach recommended in the documentation. We suggest you use this approach for consistency.

We’ll create a new Windows Application called DrawShapes to do this. As before, we set the background
color to white using the Properties Window. We’ll also change the form’s text to DrawShapes sample.
Then we add the following code to the generated code for the Form1 class:

protected override void OnPaint(PaintEventArgs e)
{

base.OnPaint(e);
Graphics dc = e.Graphics;
Pen bluePen = new Pen(Color.Blue, 3);
dc.DrawRectangle(bluePen, 0,0,50,50);
Pen redPen = new Pen(Color.Red, 2);
dc.DrawEllipse(redPen, 0, 50, 80, 60);

}

Notice that OnPaint() is declared as protected, because it is normally used internally within the class,
so there’s no reason for any other code outside the class to know about its existence.

PaintEventArgs is a class that is derived from the EventArgs class normally used to pass in informa-
tion about events. PaintEventArgs has two additional properties, of which the more important one is a
Graphics instance, already primed and optimized to paint the required portion of the window. This
means that you don’t have to call CreateGraphics() to get a DC in the OnPaint() method—you’ve
already been provided with one. We’ll look at the other additional property soon; it contains more
detailed information about which area of the window actually needs repainting.

629

Graphics with GDI+

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 629

In our implementation of OnPaint(), we first get a reference to the Graphics object from PaintEvent-
Args, then we draw our shapes exactly as we did before. At the end we call the base class’s OnPaint()
method. This step is important. We’ve overridden OnPaint() to do our own painting, but it’s possible
that Windows may have some additional work of its own to do in the painting process—any such work
will be dealt with in an OnPaint() method in one of the .NET base classes.

For this example, you’ll find that removing the call to base.OnPaint() doesn’t seem to have any
effect, but don’t ever be tempted to leave this call out. You might be stopping Windows from doing its
work properly and the results could be unpredictable.

OnPaint() will also be called when the application first starts up and our window is displayed for the
first time, so there is no need to duplicate the drawing code in the constructor.

Running this code gives the same results initially as for our previous example, except that now our
application behaves itself properly when you minimize it or hide parts of the window.

Using the Clipping Region
Our DrawShapes sample from the previous section illustrates the main principles involved with drawing
to a window, although it’s not very efficient. The reason is that it attempts to draw everything in the win-
dow, irrespective of how much needs to be drawn. Figure 20-2 shows the result of running the DrawShapes
example and opening another window and moving it over the DrawShapes form so part of it is hidden.

Figure 20-2

So far, so good. However, when we move the overlapping window so that the DrawShapes window is
fully visible again, Windows will as usual send a Paint event to the form, asking it to repaint itself. The
rectangle and ellipse both lie in the top-left corner of the client area, and so were visible all the time;
therefore, there’s actually nothing that needs to be done in this case apart from repaint the white back-
ground area. However, Windows doesn’t know that, so it thinks it should raise the Paint event, result-
ing in our OnPaint() implementation being called. OnPaint() will then unnecessarily attempt to
redraw the rectangle and ellipse.

630

Chapter 20

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 630

Actually, in this case, the shapes will not get repainted because of the device context. Windows has pre-
initialized the device context with information concerning what area actually needed repainting. In the
days of GDI, the region that is marked for repainting used to be known as the invalidated region, but with
GDI+ the terminology has largely changed to clipping region. The device context knows what this region
is; therefore, it will intercept any attempts to draw outside this region and not pass the relevant drawing
commands on to the graphics card. That sounds good, but there’s still a potential performance hit here.
We don’t know how much processing the device context had to do before it figured out that the drawing
was outside the invalidated region. In some cases it might be quite a lot, since calculating which pixels
need to be changed to what color can be very processor-intensive (although a good graphics card will
provide hardware acceleration to help with some of this).

The bottom line to this is that asking the Graphics instance to do some drawing outside the invalidated
region is almost certainly wasting processor time and slowing your application down. In a well-designed
application, your code will help out the device context by carrying out a few simple checks, to see if the
proposed drawing work is likely to be needed before it calls the relevant Graphics instance methods.
In this section we’re going to code a new example. DrawShapesWithClipping, by modifying the
DisplayShapes example to do just that. In our OnPaint() code, we’ll do a simple test to see whether the
invalidated region intersects the area we need to draw in, and only call the drawing methods if it does.

First, we need to obtain the details of the clipping region. This is where an extra property, ClipRectangle,
on PaintEventArgs comes in. ClipRectangle contains the coordinates of the region to be repainted,
wrapped up in an instance of a struct, System.Drawing.Rectangle. Rectangle is quite a simple struct—
it contains four properties of interest: Top, Bottom, Left, and Right. These respectively contain the verti-
cal coordinates of the top and bottom of the rectangle, and the horizontal coordinates of the left and right
edges.

Next, we need to decide what test we’ll use to determine whether drawing should take place. We’ll go
for a simple test here. Notice, that in our drawing, the rectangle and ellipse are both entirely contained
within the rectangle that stretches from point (0,0) to point (80,130) of the client area; actually, point
(82,132) to be on the safe side, since we know that the lines might stray a pixel or so outside this area.
So we’ll check whether the top-left corner of the clipping region is inside this rectangle. If it is, we’ll go
ahead and redraw. If it isn’t, we won’t bother.

Here is the code to do this:

protected override void OnPaint(PaintEventArgs e)
{

base.OnPaint(e);
Graphics dc = e.Graphics;

if (e.ClipRectangle.Top < 132 && e.ClipRectangle.Left < 82)
{

Pen bluePen = new Pen(Color.Blue, 3);
dc.DrawRectangle(bluePen, 0,0,50,50);
Pen redPen = new Pen(Color.Red, 2);
dc.DrawEllipse(redPen, 0, 50, 80, 60);

}
}

631

Graphics with GDI+

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 631

Note that what gets displayed is exactly the same as before. However, performance is improved now by
the early detection of some cases in which nothing needs to be drawn. Notice also that we’ve chosen a
fairly crude test of whether to proceed with the drawing. A more refined test might be to check sepa-
rately, whether the rectangle or the ellipse needs to be redrawn. However, there’s a balance here. You can
make your tests in OnPaint() more sophisticated, improving performance, but you’ll also make your
own OnPaint() code more complex. It’s almost always worth putting some test in, because you’ve writ-
ten the code so you understand far more about what is being drawn than the Graphics instance, which
just blindly follows drawing commands.

Measuring Coordinates and Areas
In our last example, we encountered the base struct, Rectangle, which is used to represent the coordi-
nates of a rectangle. GDI+ actually uses several similar structures to represent coordinates or areas. The
following table lists the structs that are defined in the System.Drawing namespace.

Struct Main Public Properties

struct Point X, Y

struct PointF

struct Size Width, Height

struct SizeF

struct Rectangle Left, Right, Top, Bottom, Width, Height, X, Y, Location, Size

struct RectangleF

Note that many of these objects have a number of other properties, methods, or operator overloads not
listed here. In this section we’ll just discuss some of the most important ones.

Point and PointF
We’ll look at Point first. Point is conceptually the simplest of these structs. Mathematically, it’s com-
pletely equivalent to a 2D vector. It contains two public integer properties, which represent how far
you move horizontally and vertically from a particular location (perhaps on the screen), as shown in
Figure 20-3.

Figure 20-3

Point A

Point B

20 units

10 units
Y

X

632

Chapter 20

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 632

In order to get from point A to point B, you move 20 units across and 10 units down, marked as x and y
on the diagram as this is how they are commonly referred to. The following Point struct would repre-
sent that line:

Point ab = new Point(20, 10);
Console.WriteLine(“Moved {0} across, {1} down”, ab.X, ab.Y);

X and Y are read-write properties, which means you can also set the values in a Point like this:

Point ab = new Point();
ab.X = 20;
ab.Y = 10;
Console.WriteLine(“Moved {0} across, {1} down”, ab.X, ab.Y);

Note that although conventionally horizontal and vertical coordinates are referred to as x and y coordinates
(lowercase), the corresponding Point properties are X and Y (uppercase) because the usual convention in
C# is for public properties to have names that start with an uppercase letter.

PointF is essentially identical to Point, except that X and Y are of type float instead of int. PointF is
used when the coordinates are not necessarily integer values. A cast has been defined so that you can
implicitly convert from Point to PointF. (Note that because Point and PointF are structs, this cast
involves actually making a copy of the data.) There is no corresponding reverse case—to convert from
PointF to Point you have to copy the values across, or use one of three conversion methods, Round(),
Truncate(), and Ceiling():

PointF abFloat = new PointF(20.5F, 10.9F);
// converting to Point
Point ab = new Point();
ab.X = (int)abFloat.X;
ab.Y = (int)abFloat.Y;
Point ab1 = Point.Round(abFloat);
Point ab2 = Point.Truncate(abFloat);
Point ab3 = Point.Ceiling(abFloat);

// but conversion back to PointF is implicit
PointF abFloat2 = ab;

You might be wondering what a unit is measured in. By default, GDI+ interprets units as pixels along the
screen (or printer, whatever the graphics device is); that’s how the Graphics object methods will view
any coordinates that they get passed as parameters. For example, the point new Point(20,10) represents
20 pixels across the screen and 10 pixels down. Usually these pixels are measured from the top left corner
of the client area of the window, as has been the case in our examples up to now. However, that won’t
always be the case. For example, on some occasions you might want to draw relative to the top-left corner
of the whole window (including its border), or even to the top-left corner of the screen. In most cases,
however, unless the documentation tells you otherwise, you can assume you’re talking pixels relative to
the top-left corner of the client area.

We’ll have more to say on this subject later on, after we’ve examined scrolling, when we mention the
three different coordinate systems in use—world , page, and device coordinates.

633

Graphics with GDI+

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 633

Size and SizeF
Like Point and PointF, sizes come in two varieties. The Size struct is for when you are using int
types; SizeF is available if you need to use float types. Otherwise Size and SizeF are identical. We’ll
focus on the Size struct here.

In many ways the Size struct is identical to the Point struct. It has two integer properties that represent
a distance horizontally and a distance vertically. The main difference is that instead of X and Y, these
properties are named Width and Height. We can represent our earlier diagram using this code:

Size ab = new Size(20,10);
Console.WriteLine(“Moved {0} across, {1} down”, ab.Width, ab.Height);

Although strictly speaking, Size mathematically represents exactly the same thing as Point; conceptu-
ally it is intended to be used in a slightly different way. Point is used when we are talking about where
something is, and Size is used when we are talking about how big it is. However, because Size and
Point are so closely related, there are even supported conversions between these two:

Point point = new Point(20, 10);
Size size = (Size) point;
Point anotherPoint = (Point) size;

As an example, think about the rectangle we drew earlier, with top-left coordinate (0,0) and size (50,50).
The size of this rectangle is (50,50) and might be represented by a Size instance. The bottom-right corner
is also at (50,50), but that would be represented by a Point instance. To see the difference, suppose we
draw the rectangle in a different location, so its top left coordinate is at (10,10):

dc.DrawRectangle(bluePen, 10,10,50,50);

Now the bottom-right corner is at coordinate (60,60), but the size is unchanged at (50,50).

The addition operator has been overloaded for Point and Size structs, so that it is possible to add a
Size to a Point struct, resulting in another Point struct:

static void Main(string[] args)
{

Point topLeft = new Point(10,10);
Size rectangleSize = new Size(50,50);
Point bottomRight = topLeft + rectangleSize;
Console.WriteLine(“topLeft = “ + topLeft);
Console.WriteLine(“bottomRight = “ + bottomRight);
Console.WriteLine(“Size = “ + rectangleSize);

}

This code, running as a simple console application, called PointsAndSizes, produces the output shown
in Figure 20-4.

Note that this output also shows how the ToString() method has been overridden in both Point and
Size to display the value in {X,Y} format.

634

Chapter 20

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 634

Figure 20-4

It is also possible to subtract a Size from a Point struct to give a Point struct, and you can add two
Size structs together, giving another Size. It is not possible, however, to add a Point struct to another
Point. Microsoft decided that adding Point structs doesn’t conceptually make sense, and so chose not
supply any overload to the + operator that would have allowed that.

You can also explicitly cast a Point to a Size struct and vice versa:

Point topLeft = new Point(10,10);
Size s1 = (Size)topLeft;
Point p1 = (Point)s1;

With this cast s1.Width is assigned the value of topLeft.X, and s1.Height is assigned the value of
topLeft.Y. Hence, s1 contains (10,10). p1 will end up storing the same values as topLeft.

Rectangle and RectangleF
These structures represent a rectangular region (usually of the screen). Just as with Point and Size,
we’ll only consider the Rectangle struct here. RectangleF is basically identical except that those of its
properties that represent dimensions all use float, whereas those of Rectangle use int.

A Rectangle struct can be thought of as composed of a point, representing the top-left corner of the
rectangle, and a Size struct, which represents how large it is. One of its constructors actually takes a
Point struct and a Size struct as its parameters. We can see this by rewriting our earlier code from the
DrawShapes sample that draws a rectangle:

Graphics dc = e.Graphics;
Pen bluePen = new Pen(Color.Blue, 3);
Point topLeft = new Point(0,0);
Size howBig = new Size(50,50);
Rectangle rectangleArea = new Rectangle(topLeft, howBig);
dc.DrawRectangle(bluePen, rectangleArea);

This code also uses an alternative override of Graphics.DrawRectangle(), which takes a Pen and a
Rectangle struct as its parameters.

You can also construct a Rectangle struct by supplying the top-left horizontal coordinate, top-left verti-
cal coordinate, width, and height separately, and in that order, as individual numbers:

Rectangle rectangleArea = new Rectangle(0, 0, 50, 50);

635

Graphics with GDI+

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 635

Rectangle makes quite a few read-write properties available to set or extract its dimensions in different
combinations. See the following table for details.

Property Description

int Left x-coordinate of left-hand edge

int Right x-coordinate of right-hand edge

int Top y-coordinate of top

int Bottom y-coordinate of bottom

int X Same as Left

int Y Same as Top

int Width Width of rectangle

int Height Height of rectangle

Point Location Top-left corner

Size Size Size of rectangle

Note that these properties are not all independent. For example, setting Width also affects the value of
Right.

Region
Region represents an area of the screen that has some complex shape. For example the shaded area in
Figure 20-5 could be represented by Region.

Figure 20-5

As you can imagine, the process of initializing a Region instance is itself quite complex. Broadly speak-
ing, you can do it by indicating either what component simple shapes make up the region or what path
you take as you trace round the edge of the region. If you do need to start working with areas like this,
then it’s worth looking up the Region class in the SDK documentation.

636

Chapter 20

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 636

A Note about Debugging
We’re just about ready to do some more advanced types of drawing now. First, however, I just want to say
a few things about debugging. If you have tried setting break points in the examples of this chapter you
will have noticed that debugging drawing routines isn’t quite as simple as debugging other parts of your
program. This is because entering and leaving the debugger often causes Paint messages to be sent to
your application. The result can be that setting a break point in your OnPaint() override simply causes
your application to keep painting itself over and over again, so it’s basically unable to do anything else.

A typical scenario is as follows. You want to find out why your application is displaying something
incorrectly, so you set a break point within the OnPaint() event. As expected, the application hits your
break point and the debugger comes in, at which point your developer environment MDI window
comes to the foreground. If you’re anything like me, you probably have the developer environments set
to full screen display so you can more easily view all the debugging information, which means it always
completely hides the application you are debugging.

Moving on, you examine the values of some variables and hopefully find out something useful. Then
you press F5 to tell the application to continue, so that you can go on to see what happens when the
application displays something else after some processing. Unfortunately, the first thing that happens is
that the application comes to the foreground and Windows efficiently detects that the form is visible
again and promptly sends it a Paint event. This means, of course, that your break point is hit again. If
that’s what you want, fine. More commonly what you really want is to hit the break point later, when
the application is drawing something more interesting, perhaps after you’ve selected some menu option
to read in a file or in some other way changed what gets displayed. It looks like you’re stuck. Either you
don’t have a break point in OnPaint() at all, or your application can never get beyond the point where
it’s displaying its initial startup window.

There is a workaround to this problem.

If you have a big screen the easiest way is simply to keep your developer environment window tiled
rather than maximized and keep it well away from your application window, so your application never
is hidden in the first place. Unfortunately, in most cases that is not a practical solution, because that
would make your developer environment window too small. An alternative that uses the same principle
is to have your application declare itself as the topmost application while you are debugging. You do
this by setting a property in the Form class, TopMost, which you can easily do in the
InitializeComponent() method:

private void InitializeComponent()
{

this.TopMost = true;

You can also set this property through the Properties window in Visual Studio .NET.

Being a TopMost window means your application can never be hidden by other windows (except other
topmost windows). It always remains above other windows even when another application has the
focus. This is how the Task Manager behaves.

Even with this technique you have to be careful, because you can never be certain when Windows might
decide for some reason to raise a Paint event. If you really want to trap some problem that occurs in

637

Graphics with GDI+

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 637

OnPaint() in some specific circumstance (for example, the application draws something after you select
a certain menu option, and something goes wrong at that point), then the best way to do this is to place
some dummy code in OnPaint() that tests some condition, which will only be true in the specified cir-
cumstances—and then place the break point inside the if block, like this:

protected override void OnPaint(PaintEventArgs e)
{

// Condition() evaluates to true when we want to break
if (Condition() == true)
{

int ii = 0; // <-- SET BREAKPOINT HERE!!!
}

This is a quick-and-easy way of setting a conditional break point.

Drawing Scrollable Windows
Our earlier DrawShapes sample worked very well, because everything we needed to draw fit into the
initial window size. In this section we’re going to look at what we need to do if that’s not the case.

We expand our DrawShapes sample to demonstrate scrolling. To make things a bit more realistic, we’ll
start by creating an example, BigShapes, in which we make the rectangle and ellipse a bit bigger. Also,
while we’re at it, we’ll demonstrate how to use the Point, Size, and Rectangle structs by using them
to assist in defining the drawing areas. With these changes, the relevant part of the Form1 class looks
like this:

// member fields
private Point rectangleTopLeft = new Point(0, 0);
private Size rectangleSize = new Size(200,200);
private Point ellipseTopLeft = new Point(50, 200);
private Size ellipseSize = new Size(200, 150);
private Pen bluePen = new Pen(Color.Blue, 3);
private Pen redPen = new Pen(Color.Red, 2);

protected override void OnPaint(PaintEventArgs e)
{

base.OnPaint(e);
Graphics dc = e.Graphics;

if (e.ClipRectangle.Top < 350 || e.ClipRectangle.Left < 250)
{

Rectangle rectangleArea =
new Rectangle (rectangleTopLeft, rectangleSize);

Rectangle ellipseArea =
new Rectangle (ellipseTopLeft, ellipseSize);

dc.DrawRectangle(bluePen, rectangleArea);
dc.DrawEllipse(redPen, ellipseArea);

}
}

638

Chapter 20

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 638

Note that we’ve also turned the Pen, Size, and Point objects into member fields—this is more efficient
than creating a new Pen every time we need to draw anything, as we have been doing up to now.

The result of running this example looks like Figure 20-6.

Figure 20-6

We can see a problem instantly. The shapes don’t fit in our 300×300 pixel drawing area.

Normally, if a document is too large to display, an application will add scroll bars to let you scroll the
window and look at a chosen part of it. This is another area in which if we were building Windows
Forms using standard controls, then we’d just let the .NET runtime and the base classes handle every-
thing for us. If your form has various controls attached to it, then the Form instance will normally know
where these controls are and it will therefore know if its window becomes so small that scroll bars are
necessary. The Form instance also automatically adds the scroll bars for you, and it is also able to draw
correctly whichever portion of the screen you’ve scrolled to. In that case there is nothing you need to do
in your code. In this chapter, however, we’re taking responsibility for drawing to the screen; therefore,
we’re going to have to help the Form instance out when it comes to scrolling.

Getting the scroll bars added is actually very easy. The Form can still handle all that for us, because it
doesn’t know how big an area we will want to draw in. (The reason it hasn’t in the earlier BigShapes
sample is that Windows doesn’t know they are needed.) What we need to figure out is the size of a rect-
angle that stretches from the top-left corner of the document (or equivalently, the top-left corner of the
client area before we’ve done any scrolling), and which is just big enough to contain the entire docu-
ment. In this chapter, we’ll refer to this area as the document area. As shown in Figure 20-7, for this
example the document area is (250, 350) pixels.

639

Graphics with GDI+

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 639

Figure 20-7

It is easy to tell the form how big the document is. We use the relevant property,
Form.AutoScrollMinSize. Therefore we can add this code to either the InitializeComponent()
method or the Form1 constructor:

private void InitializeComponent()
{

this.AutoScaleBaseSize = new System.Drawing.Size(5, 13);
this.ClientSize = new System.Drawing.Size(292, 266);
this.Name = “Form1”;
this.Text = “BigShapes”;
this.BackColor = Color.White;
this.AutoScrollMinSize = new Size(250, 350);

}

Alternatively the AutoScrollMinSize property can be set using the Visual Studio .NET Properties
window.

Setting the minimum size at application startup and leaving it thereafter is fine in this particular exam-
ple, because we know that is how big the screen area will always be. Our document never changes size
while this particular application is running. Keep in mind, however, that if your application does things
like display contents of files or something else for which the area of the screen might change, you will
need to set this property at other times (and in that case you’ll have to sort out the code manually—the
Visual Studio .NET Properties window can only help you with the initial value that a property has when
the form is constructed).

Setting AutoScrollMinSize is a start, but it’s not yet quite enough. Figure 20-8 shows what our sample
application looks like now—initially we get the screen that correctly displays the shapes.

200

200

200

150
50

(250, 350)

640

Chapter 20

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 640

Figure 20-8

Notice that not only has the form correctly set the scroll bars; it has also correctly sized them to indicate
what proportion of the document is currently displayed. You can try resizing the window while the sam-
ple is running—you’ll find the scroll bars respond properly, and even disappear if we make the window
big enough so that they are no longer needed.

However, look at what happens when we actually use one of the scrollbars and scroll down a bit (see in
Figure 20-9). Clearly, something has gone wrong!

Figure 20-9

What’s wrong is that we haven’t taken into account the position of the scrollbars in the code in our
OnPaint() override. We can see this very clearly if we force the window to repaint itself completely
by minimizing and restoring it (see Figure 20-10).

641

Graphics with GDI+

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 641

Figure 20-10

The shapes have been painted, just as before, with the top-left corner of the rectangle nestled into the
top-left corner of the client area—just as if we hadn’t moved the scroll bars at all.

Before we explain how to correct this problem, let’s take a closer look at precisely what is happening in
these screenshots.

We’ll start with the BigShapes sample, shown in Figure 20-8. In this example, the entire window has just
been repainted. Reviewing our code we learn that it instructs the graphics instance to draw a rectangle
with top-left coordinates (0,0)—relative to the top-left corner of the client area of the window—which is
what has been drawn. The problem is that the graphics instance by default interprets coordinates as rela-
tive to the client window—it is unaware of the scroll bars. Our code as yet does not attempt to adjust the
coordinates for the scroll bar positions. The same goes for the ellipse.

Now, we can tackle the screenshot in Figure 20-9. After we scroll down, we notice that the top half of the
window looks fine. That’s because it was drawn when the application first started up. When you scroll
windows, Windows doesn’t ask the application to redraw what was already on the screen. Windows is
smart enough to figure out for itself which bits of what’s currently being displayed on the screen can be
smoothly moved around to match where the scrollbars now are located. That’s a much more efficient pro-
cess, since it may be able to use some hardware acceleration to do that too. The bit in this screenshot that’s
wrong is the bottom third of the window. This part of the window didn’t get drawn when the application
first appeared, since before we started scrolling it was outside the client area. This means that Windows
asks our BigShapes application to draw this area. It’ll raise a Paint event passing in just this area as the
clipping rectangle. And that’s exactly what our OnPaint() override has done.

One way of looking at the problem is that we are at the moment expressing our coordinates relative to
the top-left corner of the start of the document—we need to convert them to express them relative to the
top-left corner of the client area instead (see Figure 20-11).

642

Chapter 20

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 642

Figure 20-11

To make the diagram clearer we’ve actually extended the document further downward and to the right,
beyond the boundaries of the screen, but this doesn’t change our reasoning. We’ve also assumed a small
horizontal scroll as well as a vertical one.

In Figure 20-11 the thin rectangles mark the borders of the screen area and of the entire document. The
thick lines mark the rectangle and ellipse that we are trying to draw. P marks some arbitrary point that
we are drawing and which we are using as an example. When calling the drawing methods we’ve sup-
plied the graphics instance with the vector from point B to (say) point P, expressed as a Point instance.
We actually need to give it the vector from point A to point P.

The problem is that we don’t know what the vector from A to P is. We know what B to P is—that’s just
the coordinates of P relative to the top-left corner of the document—the position where we want to draw
point P in the document. We also know the vector from B to A is just the amount we’ve scrolled by; this
is stored in a property of the Form class called AutoScrollPosition. However, we don’t know the vec-
tor from A to P.

Now, if you remember your high school math, you will know how to solve this problem—you subtract the
one vector from the other. Say, for example, to get from B to P you move 150 pixels across and 200 pixels
down, while to get from B to A you have to move 10 pixels across and 57 pixels down. That means to get
from A to P you have to move 140 (=150 minus 10) pixels across and 143 (=200 minus 57) pixels down. To
make it even simpler, the Graphics class actually implements a method that will do these calculations for
us. It’s called TranslateTransform(). You pass it the horizontal and vertical coordinates that say where
the top left of the client area is relative to the top-left corner of the document (our AutoScrollPosition
property, that is the vector from B to A in the diagram). The Graphics device will now work out all its
coordinates, taking into account where the client area is relative to the document.

Translating this long explanation into code, all we typically need to do is add this line to our drawing
code:

dc.TranslateTransform(this.AutoScrollPosition.X, this.AutoScrollPosition.Y);

Document
B

A

P

Client Area
(Screen)

643

Graphics with GDI+

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 643

Though in our example, it’s a little more complicated because we are also separately testing whether we
need to do any drawing by looking at the clipping region. We need to adjust this test to take the scroll
position into account too. When we’ve done that, the full drawing code for the sample looks like this:

protected override void OnPaint(PaintEventArgs e)
{

base.OnPaint(e);
Graphics dc = e.Graphics;
Size scrollOffset = new Size(this.AutoScrollPosition);
if (e.ClipRectangle.Top+scrollOffset.Width < 350 ||

e.ClipRectangle.Left+scrollOffset.Height < 250)
{

Rectangle rectangleArea = new Rectangle
(rectangleTopLeft+scrollOffset, rectangleSize);

Rectangle ellipseArea = new Rectangle
(ellipseTopLeft+scrollOffset, ellipseSize);

dc.DrawRectangle(bluePen, rectangleArea);
dc.DrawEllipse(redPen, ellipseArea);

}
}

Now we have our scroll code working perfectly; we can at last obtain a correctly scrolled screenshot (see
Figure 20-12).

Figure 20-12

World, Page, and Device Coordinates
The distinction between measuring position relative to the top-left corner of the document and measur-
ing it relative to the top-left corner of the screen (desktop) is so important that GDI+ has special names
for these coordinate systems:

❑ World coordinates specify the position of a point measured in pixels from the top-left corner of
the document.

❑ Page coordinates specify the position of a point measured in pixels from the top-left corner of
the client area.

644

Chapter 20

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 644

Developers familiar with GDI will note that world coordinates correspond to what in GDI were known
as logical coordinates. Page coordinates correspond to what used to be known as device coordinates. As
a developer familiar with GDI you should also note that the way you code conversion between logical
and device coordinates has changed in GDI+. In GDI, conversions took place via the device context,
using the LPtoDP() and DPtoLP() Windows API functions. In GDI+, it’s the Control class, from
which both Form and all the various Windows Forms controls derive, that maintains the information
needed to carry out the conversion.

GDI+ also distinguishes a third coordinate system, which is now known as device coordinates. Device
coordinates are similar to page coordinates, except that we do not use pixels as the unit of measurement.
Instead we use some other unit that can be specified by the user by calling the Graphics.PageUnit
property. Possible units, besides the default of pixels, include inches and millimeters. Although we
won’t use the PageUnit property in this chapter, you might find it useful as a way of getting around the
different pixel densities of devices. For example, 100 pixels on most monitors will occupy something like
an inch. However, laser printers can have 1,200 or more dpi (dots per inch), which means that a shape
specified to be 100 pixels wide will look a lot smaller when printed on it. By setting the units to, say,
inches and specifying that the shape should be 1 inch wide, you can ensure that the shape will look the
same size on the different devices.

Colors
In this section, we discuss the ways that you can specify what color you want something to be drawn in.

Colors in GDI+ are represented by instances of the System.Drawing.Color struct. Generally, once
you’ve instantiated this struct, you won’t do much with the corresponding Color instance—you just
pass it to whatever other method you are calling that requires a Color. We’ve encountered this struct
before, when we set the background color of the client area of the window in each of our samples, as
well as when we set the colors of the various shapes we were displaying. The Form.BackColor prop-
erty actually returns a Color instance. In this section, we’ll look at this struct in more detail. In particu-
lar, we’ll examine several different ways that you can construct a Color.

Red-Green-Blue (RGB) Values
The total number of colors that can be displayed by a monitor is huge—over 16 million. To be exact the
number is 2 to the power 24, which works out to 16,777,216. Obviously we need some way of indexing
those colors so we can indicate which of these is the color we want to display at any given pixel.

The most common way of indexing colors is by dividing them into the red, green, and blue components.
This idea is based on the theory that any color that the human eye can distinguish can be constructed
from a certain amount of red light, a certain amount of the green light, and a certain amount of blue
light. These colors are known as components. In practice, it’s found that if we divide the amount of each
component light into 256 possible intensities, then that gives a sufficiently fine gradation to be able to
display images that are perceived by the human eye to be of photographic quality. We therefore specify
colors by giving the amounts of these components on a scale of 0 to 255 where 0 means that the compo-
nent is not present and 255 means that it is at its maximum intensity.

We can now see where are quoted figure of 16,777,216 colors comes from, since that number is just
256 cubed.

645

Graphics with GDI+

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 645

This gives us our first way of telling GDI+ about a color. You can indicate a color’s red, green, and blue
values by calling the static function Color.FromArgb(). Microsoft has chosen not to supply a construc-
tor to do this task. The reason is that there are other ways, besides the usual RGB components, to indi-
cate a color. Because of this, Microsoft felt that the meaning of parameters passed to any constructor they
defined would be open to misinterpretation:

Color redColor = Color.FromArgb(255,0,0);
Color funnyOrangyBrownColor = Color.FromArgb(255,155,100);
Color blackColor = Color.FromArgb(0,0,0);
Color whiteColor = Color.FromArgb(255,255,255);

The three parameters are, respectively, the quantities of red, green, and blue. There are a number of other
overloads to this function, some of which also allow you to specify something called an alpha-blend
(that’s the A in the name of the method, FromArgb()). Alpha blending is beyond the scope of this chap-
ter, but it allows you to paint a color semitransparently by combining it with whatever color was already
on the screen. This can give some beautiful effects and is often used in games.

The Named Colors
Constructing a Color using FromArgb() is the most flexible technique, since it literally means you can
specify any color that the human eye can see. However, if you want a simple, standard, well-known
color such as red or blue, it’s a lot easier to just be able to name the color you want. Hence Microsoft has
also provided a large number of static properties in Color, each of which returns a named color. It was
one of these properties that we used when we set the background color of our windows to white in our
samples:

this.BackColor = Color.White;

// has the same effect as:
// this.BackColor = Color.FromArgb(255, 255 , 255);

There are several hundred such colors. The full list is given in the SDK documentation. They include all the
simple colors: Red, White, Blue, Green, Black, and so on, as well as such delights as MediumAquamarine,
LightCoral, and DarkOrchid. There is also a KnownColor enumeration, which lists the named colors.

Incidentally, although it might look that way, these named colors have not been chosen at random. Each
one represents a precise set of RGB values, and they were originally chosen many years ago for use on the
Internet. The idea was to provide a useful set of colors right across the spectrum whose names would be
recognized by Web browsers, thus saving you from having to write explicit RGB values in your HTML
code. A few years ago these colors were also important because early browsers couldn’t necessarily display
very many colors accurately, and the named colors were supposed to provide a set of colors that would be
displayed correctly by most browsers. These days that aspect is less important since modern web browsers
are quite capable of displaying any RGB value correctly. There are also Web-safe color palettes available
that provide developers with a comprehensive list of colors that work with most browsers.

Graphics Display Modes and the Safety Palette
Although we’ve said that in principle monitors can display any of the over 16 million RGB colors, in
practice this depends on how you’ve set the display properties on your computer. In Windows, there are

646

Chapter 20

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 646

traditionally three main color options (although some machines might provide other options depending
on the hardware): true color (24-bit), high color (16-bit), and 256 colors. (On some graphics cards these
days, true color is actually marked as 32-bit. This has to do with optimizing the hardware, though in that
case only 24 bits of the 32 bits are used for the color itself.)

Only true-color mode allows you to display all of the RGB colors simultaneously. This sounds like the
best option, but it comes at a cost: 3 bytes are needed to hold a full RGB value, which means 3 bytes of
graphics card memory are needed to hold each pixel that is displayed. If graphics card memory is at a
premium (a restriction that’s less common now than it used to be) you might want to choose one of the
other modes. High color mode gives you 2 bytes per pixel. That’s enough to give 5 bits for each RGB
component. So instead of 256 gradations of red intensity you just get 32 gradations; the same for blue
and green, which gives a total of 65,536 colors. That is just about enough to give apparent photographic
quality on a casual inspection, though areas of subtle shading tend to be broken up a bit.

The 256-color mode gives you even fewer colors. However, in this mode, you get to choose which colors.
What happens is that the system sets up something known as a palette. This is a list of 256 colors chosen
from the 16 million RGB colors. Once you’ve specified the colors in the palette, the graphics device will
be able to display just those colors. The palette can be changed at any time, but the graphics device can
only display 256 different colors on the screen at any one time. The 256-color mode is only used when
high performance and video memory is at a premium. Most computer games will use this mode, and
they can still achieve decent-looking graphics because of a very careful choice of palette.

In general, if a display device is in high-color or 256-color mode and a particular RGB color is requested,
it will pick the nearest mathematical match from the pool of colors that it is able to display. It’s for this
reason that it’s important to be aware of the color modes. If you are drawing something that involves
subtle shading or photographic quality images, and the user does not have 24-bit color mode selected,
she might not see the image the same way you intended it. So if you’re doing that kind of work with
GDI+, you should test your application in different color modes. (It is also possible for your application
to programmatically set a given color mode, though we won’t discuss this in this chapter for lack of
space.)

The Safety Palette
For reference, we’ll quickly mention the safety palette, which is a very commonly used default palette.
The way it works is that we set six equally spaced possible values for each color component: 0, 51, 102,
153, 204, and 255. In other words, the red component can have any of these values. So can the green
component. So can the blue component. So possible colors from the safety palette include (0,0,0), black;
(153,0,0), a fairly dark shade of red; (0, 255,102), green with a smattering of blue added; and so on. This
gives us a total of 6 cubed = 216 colors. The idea is that this gives us an easy way of having a palette that
contains colors from right across the spectrum and of all degrees of brightness, although in practice this
doesn’t actually work that well because equal mathematical spacing of color components doesn’t mean
equal perception of color differences by the human eye. Because the safety palette used to be widely
used, however, you’ll still find a fair number of applications and images exclusively use colors from the
safety palette.

If you set Windows to 256-color mode, you’ll find the default palette you get is the safety palette, with 20
Windows standard colors added to it, and 20 spare colors.

647

Graphics with GDI+

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 647

Pens and Brushes
In this section, we’ll review two helper classes that are needed in order to draw shapes. We’ve already
encountered the Pen class, which we used to instruct the graphics instance how to draw lines. A related
class is System.Drawing.Brush, which instructs the graphics instance how to fill regions. For example,
the Pen is needed to draw the outlines of the rectangle and ellipse in our previous examples. If we had
needed to draw these shapes as solid, we would have used a brush to specify how to fill them in. One
aspect of both of these classes is that you will hardly ever call any methods on them. You simply con-
struct a Pen or Brush instance with the required color and other properties, and then pass it to drawing
methods that require a Pen or Brush.

We discuss brushes first, then pens.

If you’ve programmed using GDI before, you have noticed from the first couple of examples that pens
are used in a different way in GDI+. In GDI the normal practice was to call a Windows API function,
SelectObject(), which actually associated a pen with the device context. That pen was then used in
all drawing operations that required a pen until you informed the device context otherwise, by calling
SelectObject() again. The same principle held for brushes and other objects such as fonts or
bitmaps. With GDI+ Microsoft has opted for a stateless model in which there is no default pen or other
helper object. Rather, you simply specify with each method call the appropriate helper object to be used
for that particular method.

Brushes
GDI+ has several different kinds of brush—more than we have space to go into in this chapter, so we’ll
just explain the simpler ones to give you an idea of the principles. Each type of brush is represented by
an instance of a class derived from the abstract class System.Drawing.Brush. The simplest brush,
System.Drawing.SolidBrush, indicates that a region is to be filled with solid color:

Brush solidBeigeBrush = new SolidBrush(Color.Beige);
Brush solidFunnyOrangyBrownBrush =

new SolidBrush(Color.FromArgb(255,155,100));

Alternatively, if the brush is one of the Web-safe colors you can construct the brush using another class,
System.Drawing.Brushes. Brushes is one of those classes that you never actually instantiate (it has a
private constructor to stop you from doing that). It simply has a large number of static properties, each
of which returns a brush of a specified color. You can use Brushes like this:

Brush solidAzureBrush = Brushes.Azure;
Brush solidChocolateBrush = Brushes.Chocolate;

The next level of complexity is a hatch brush, which fills a region by drawing a pattern. This type of
brush is considered more advanced, so it’s in the Drawing2D namespace, represented by the class
System.Drawing.Drawing2D.HatchBrush. The Brushes class can’t help you with hatch brushes—
you’ll need to construct one explicitly by supplying the hatch style and two colors, the foreground color
followed by the background color (you can omit the background color, in which case it defaults to
black). The hatch style comes from an enumeration, System.Drawing.Drawing2D.HatchStyle. You
can choose from a large number of HatchStyle values (see the SDK documentation for the full list). To
give you an idea, typical styles include ForwardDiagonal, Cross, DiagonalCross, SmallConfetti,
and ZigZag. Examples of constructing a hatch brush include:

648

Chapter 20

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 648

Brush crossBrush = new HatchBrush(HatchStyle.Cross, Color.Azure);

// background color of CrossBrush is black

Brush brickBrush = new HatchBrush(HatchStyle.DiagonalBrick,
Color.DarkGoldenrod, Color.Cyan);

Solid and hatch brushes are the only brushes available under GDI. GDI+ has added a couple of new
styles of brush:

❑ System.Drawing.Drawing2D.LinearGradientBrush fills in an area with a color that varies
across the screen.

❑ System.Drawing.Drawing2D.PathGradientBrush is similar, but in this case the color varies
along a path around the region to be filled.

Note that both brushes can render some spectacular effects if used carefully.

Pens
Unlike brushes, pens are represented by just one class: System.Drawing.Pen. However, the pen is
slightly more complex than the brush, because it needs to indicate how thick lines should be (how many
pixels wide) and, for a wide line, how to fill the area inside the line. Pens can also specify a number of
other properties, which are beyond the scope of this chapter, but which include the Alignment property
that we mentioned earlier. This property indicates where in relation to the border of a shape a line
should be drawn, as well as what shape to draw at the end of a line (whether to round off the shape).

The area inside a thick line can be filled with solid color, or it can be filled using a brush. Hence, a Pen
instance might contain a reference to a Brush instance. This is quite powerful, as it means you can draw
lines that are colored in by using, say, hatching or linear shading. There are four different ways that you
can construct a Pen instance that you have designed yourself. You can do it by passing a color, or you
can do it by passing in a brush. Both of these constructors will produce a pen with a width of one pixel.
Alternatively, you can pass in a color or a brush, and additionally a float, which represents the width
of the pen. (It needs to be a float in case we are using non-default units such as millimeters or inches
for the Graphics object that will do the drawing, so we can, for example, specify fractions of an inch.)
For example, you can construct pens like this:

Brush brickBrush = new HatchBrush(HatchStyle.DiagonalBrick,
Color.DarkGoldenrod, Color.Cyan);

Pen solidBluePen = new Pen(Color.FromArgb(0,0,255));
Pen solidWideBluePen = new Pen(Color.Blue, 4);
Pen brickPen = new Pen(brickBrush);
Pen brickWidePen = new Pen(brickBrush, 10);

Additionally, for the quick construction of pens, you can use the class System.Drawing.Pens, which,
like the Brushes class, contains a number of stock pens. These pens all have one-pixel width and come
in the usual sets of Web-safe colors. This allows you to construct pens in this way:

Pen solidYellowPen = Pens.Yellow;

649

Graphics with GDI+

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 649

Drawing Shapes and Lines
We’ve almost finished the first part of the chapter, in which we’ve covered all the basic classes and
objects required in order to draw specified shapes and so on to the screen. We’ll round off by reviewing
some of the drawing methods the Graphics class makes available and presenting a short example that
illustrates the use of several brushes and pens.

System.Drawing.Graphics has a large number of methods that allow you to draw various lines, outline
shapes, and solid shapes. Once again there are too many to provide a comprehensive list here, but the fol-
lowing table lists the main ones and should give you some idea of the variety of shapes you can draw.

Method Typical Parameters What it Draws

DrawLine Pen, start and end points A single straight line

DrawRectangle Pen, position, and size Outline of a rectangle

DrawEllipse Pen, position, and size Outline of an ellipse

FillRectangle Brush, position, and size Solid rectangle

FillEllipse Brush, position, and size Solid ellipse

DrawLines Pen, array of points Series of lines, connecting each point to the
next one in the array

DrawBezier Pen, 4 points A smooth curve through the two end
points, with the remaining two points used
to control the shape of the curve

DrawCurve Pen, array of points A smooth curve through the points

DrawArc Pen, rectangle, two angles Portion of circle within the rectangle
defined by the angles

DrawClosedCurve Pen, array of points Like DrawCurve but also draws a straight
line to close the curve

DrawPie Pen, rectangle, two angles Wedge-shaped outline within the rectangle

FillPie Brush, rectangle, two angles Solid wedge-shaped area within the
rectangle

DrawPolygon Pen, array of points Like DrawLines but also connects first and
last points to close the figure drawn

Before we leave the subject of drawing simple objects, we’ll round off with a simple example that demon-
strates the kinds of visual effect you can achieve using brushes. The example is called ScrollMoreShapes,
and it’s essentially a revision of ScrollShapes. Besides the rectangle and ellipse, we’ll add a thick line and
fill in the shapes with various custom brushes. We’ve already explained the principles of drawing so we
let the code speak for itself. First, because of our new brushes, we need to indicate we are using the
System.Drawing.Drawing2D namespace:

650

Chapter 20

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 650

using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;

Next are some extra fields in our Form1 class, which contain details of the locations where the shapes are
to be drawn, as well as various pens and brushes we will use:

private Rectangle rectangleBounds = new Rectangle(new Point(0,0),
new Size(200,200));

private Rectangle ellipseBounds = new Rectangle(new Point(50,200),
new Size(200,150));

private Pen bluePen = new Pen(Color.Blue, 3);
private Pen redPen = new Pen(Color.Red, 2);
private Brush solidAzureBrush = Brushes.Azure;
private Brush solidYellowBrush = new SolidBrush(Color.Yellow);
static private Brush brickBrush = new HatchBrush(HatchStyle.DiagonalBrick,

Color.DarkGoldenrod, Color.Cyan);
private Pen brickWidePen = new Pen(brickBrush, 10);

The brickBrush field has been declared as static, so that we can use its value to initialize the
brickWidePen field. C# won’t let us use one instance field to initialize another instance field, because
it’s not defined which one will be initialized first. However, declaring the field as static solves the prob-
lem. Since only one instance of the Form1 class will be instantiated, it is immaterial whether the fields
are static or instance fields.

Here is the OnPaint() override:

protected override void OnPaint(PaintEventArgs e)
{

base.OnPaint(e);
Graphics dc = e.Graphics;
Point scrollOffset = this.AutoScrollPosition;
dc.TranslateTransform(scrollOffset.X, scrollOffset.Y);
if (e.ClipRectangle.Top+scrollOffset.X < 350 ||

e.ClipRectangle.Left+scrollOffset.Y < 250)
{

dc.DrawRectangle(bluePen, rectangleBounds);
dc.FillRectangle(solidYellowBrush, rectangleBounds);
dc.DrawEllipse(redPen, ellipseBounds);
dc.FillEllipse(solidAzureBrush, ellipseBounds);
dc.DrawLine(brickWidePen, rectangleBounds.Location,

ellipseBounds.Location+ellipseBounds.Size);
}

}

As before we also set the AutoScrollMinSize to (250,350). Figure 20-13 shows the new results.

651

Graphics with GDI+

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 651

Figure 20-13

Notice that the thick diagonal line has been drawn on top of the rectangle and ellipse, because it was the
last item to be painted.

Displaying Images
One of the most common things you might want to do with GDI+ is display an image that already exists
in a file. This is actually a lot simpler than drawing your own user interface, because the image is
already pre-drawn. Effectively, all you have to do is load the file and instruct GDI+ to display it. The
image can be a simple line drawing, an icon, or a complex image such as a photograph. You can also
manipulate the image by stretching or rotating it, or simply displaying only a portion of it.

In this section, just for a change, we’ll present the sample first. Then we’ll discuss some of the issues you
need to be aware of when displaying images. We can do this, because the code needed to display an
image is so simple.

The class we need is the .NET base class, System.Drawing.Image. An instance of Image represents one
image. Reading in an image simply takes one line of code:

Image myImage = Image.FromFile(“FileName”);

FromFile() is a static member of Image and is the usual way of instantiating an image. The file can be
any of the commonly supported graphics file formats, including .bmp, .jpg, .gif, and .png.

Displaying an image is also very simple, assuming you have a suitable Graphics instance at hand—a
call to either Graphics.DrawImageUnscaled() or Graphics.DrawImage()suffices. There are quite a
few overloads of these methods, allowing you a lot of flexibility in the information you supply in terms
of where the image is located and how big it is to be drawn. But we will use DrawImage(), like this:

dc.DrawImage(myImage, points);

652

Chapter 20

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 652

In this line of code, dc is assumed to be a Graphics instance, while myImage is the Image to be dis-
played. points is an array of Point structs, where points[0], points[1], and points[2] are the
coordinates of top-left, top-right, and bottom-left corner of the image.

Images are probably the area in which developers familiar with GDI will notice the biggest difference
between GDI and GDI+. In GDI, displaying an image involved several nontrivial steps. If the image
was a bitmap, loading it was reasonably simple. But if it was any other file type, loading it would
involve a sequence of calls to OLE objects. Actually getting a loaded image onto the screen involved get-
ting a handle to it, selecting it into a memory device context, then performing a block transfer between
device contexts. Although the device contexts and handles are still there behind the scenes, and will be
needed if you want to start doing sophisticated editing of the images from your code, simple tasks have
now been extremely well wrapped up in the GDI+ object model.

We’ll illustrate the process of displaying an image with an example called DisplayImage. The example
simply displays a .jpg file in the application’s main window. To keep things simple, the path of the .jpg
file is hard-coded into the application (so if you run the example you’ll need to change it to reflect the
location of the file in your system). The .jpg file we’ll display is a sunset picture in London.

As with the other examples, the DisplayImage project is a standard C# Visual Studio .NET 2003-generated
Windows application. We add the following fields to our Form1 class:

Image piccy;
private Point [] piccyBounds;

We then load the file in the Form1() constructor:

public Form1()
{

InitializeComponent();

piccy =
Image.FromFile(@”C:\ProCSharp\GdiPlus\Images\CF4Group.bmp”);

this.AutoScrollMinSize = piccy.Size;
piccyBounds = new Point[3];
piccyBounds[0] = new Point(0,0); // top left
piccyBounds[1] = new Point(piccy.Width,0); // top right
piccyBounds[2] = new Point(0,piccy.Height); // bottom left

}

Note that the size in pixels of the image is obtained as its Size property, which we use to set the docu-
ment area. We also set up the piccyBounds array, which is used to identify the position of the image on
the screen. We have chosen the coordinates of the three corners to draw the image in its actual size and
shape here, but if we’d wanted the image to be resized, stretched, or even sheared into a non-rectangular
parallelogram, we could do so simply by changing the values of the Points in the piccyBounds array.

The image is displayed in the OnPaint() override:

protected override void OnPaint(PaintEventArgs e)
{

base.OnPaint(e);
Graphics dc = e.Graphics;

653

Graphics with GDI+

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 653

dc.ScaleTransform(1.0f, 1.0f);
dc.TranslateTransform(this.AutoScrollPosition.X, this.AutoScrollPosition.Y);
dc.DrawImage(piccy, piccyBounds);

}

Finally, note the modification made to the code wizard-generated Form1.Dispose() method:

protected override void Dispose(bool disposing)
{

piccy.Dispose();
if(disposing)
{

if (components != null)
{

components.Dispose();
}

}
base.Dispose(disposing);

}

Disposing of the image as soon as possible when it’s no longer needed is important, because images gen-
erally take up a lot of memory while in use. After Image.Dispose() has been called, the Image instance
no longer refers to any actual image, and so it can no longer be displayed (unless you load a new image).

Figure 20-14 shows the result of running this code.

Figure 20-14

654

Chapter 20

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 654

Issues When Manipulating Images
Although displaying images is very simple, it still pays to have some understanding what’s going on
behind the scenes.

The most important point to understand about images is that they are always rectangular. That’s not just
a convenience, but because of the underlying technology. It’s because all modern graphics cards have
hardware built in that can efficiently copy blocks of pixels from one area of memory to another area of
memory, provided that the block of pixels represents a rectangular region. This hardware-accelerated
operation can occur virtually as one single operation, and as such is extremely fast. Indeed, it is the key
to modern high-performance graphics. This operation is known as a bitmap block transfer (or BitBlt).
Graphics.DrawImageUnscaled() internally uses a BitBlt, which is why you can see a huge image,
perhaps containing as many as a million pixels, appearing almost instantly. If the computer had to copy
the image to the screen pixel by pixel, you’d see the image gradually being drawn over a period of up to
several seconds.

BitBlts are very efficient; therefore almost all drawing and manipulation of images is carried out using
them. Even some editing of images will be done by manipulating portions of images with BitBlts
between DCs that represent areas of memory. In the days of GDI, the Windows 32 API function BitBlt()
was arguably the most important and widely used function for image manipulation, though with GDI+
the BitBlt operations are largely hidden by the GDI+ object model.

It’s not possible to BitBlt areas of images that are not rectangular, although similar effects can be easily
simulated. One way is to mark a certain color as transparent for the purposes of a BitBlt, so that areas
of that color in the source image will not overwrite the existing color of the corresponding pixel in the
destination device. It is also possible to specify that in the process of a BitBlt, each pixel of the resultant
image will be formed by some logical operation (such as a bitwise AND) on the colors of that pixel in the
source image and in the destination device before the BitBlt. Such operations are supported by hard-
ware acceleration and can be used to give a variety of subtle effects. Note that the Graphics object
implements another method, DrawImage(). This is similar to DrawImageUnscaled() but comes in a
large number of overloads that allow you to specify more complex forms of BitBlt to be used in the
drawing process. DrawImage() also allows you to draw (using BitBlt) only a specified part of the
image, or to perform certain other operations on it such as scaling it (expanding or reducing it in size)
as it is drawn.

Drawing Text
We’ve left the very important topic of displaying text until this late in the chapter because drawing text
to the screen is (in general) more complex than drawing simple graphics. Although displaying a line or
two of text when you’re not that bothered about the appearance is extremely easy—it takes one single
call to the Graphics.DrawString() method, if you are trying to display a document that has a fair
amount of text in it, you rapidly find that things become a lot more complex. This is for two reasons:

❑ If you’re concerned about getting the appearance just right, you must understand fonts. Where
shape drawing requires brushes and pens as helper objects, the process of drawing text requires
fonts as helper objects. And understanding fonts is not a trivial task.

655

Graphics with GDI+

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 655

❑ Text needs to be very carefully laid out in the window. Users generally expect words to follow
naturally from one word to another and to be lined up with clear spaces in between. Doing that
is harder than you might think. For starters, you don’t usually know in advance how much
space on the screen a word is going to take up. That has to be calculated (using the Graphics.
MeasureString() method). Also, the space a word occupies on the screen affects where in the
document every subsequent word is placed. If your application does any line wrapping then
it’ll need to assess word sizes carefully before deciding where to place the line break. The next
time you run Microsoft Word, look carefully at the way Word is continually repositioning text
as you do your work: there’s a lot of complex processing going on there. Chances are that any
GDI+ application you work on won’t be nearly as complex as Word. However, if you need to
display any text, then many of the same considerations apply.

In short, good quality text processing is tricky to get right. However, putting a line of text on the screen,
assuming you know the font and where you want it to go, is actually very simple. Therefore, the next thing
we’ll do is present a quick example that shows how to display some text, followed by a short review of the
principles of fonts and font families and a more realistic (and involved) text-processing example, CapsEditor.

Simple Text Example
This example, DisplayText, is our usual Windows Forms effort. This time we override OnPaint() and
added member fields as follows:

private System.ComponentModel.Container components = null;
private Brush blackBrush = Brushes.Black;
private Brush blueBrush = Brushes.Blue;
private Font haettenschweilerFont = new Font(“Haettenschweiler”, 12);
private Font boldTimesFont = new Font(“Times New Roman”, 10, FontStyle.Bold);
private Font italicCourierFont = new Font(“Courier”, 11, FontStyle.Italic |

FontStyle.Underline);

protected override void OnPaint(PaintEventArgs e)
{

base.OnPaint(e);
Graphics dc = e.Graphics;
dc.DrawString(“This is a groovy string”, haettenschweilerFont, blackBrush,

10, 10);
dc.DrawString(“This is a groovy string “ +

“with some very long text that will never fit in the box”,
boldTimesFont, blueBrush,
new Rectangle(new Point(10, 40), new Size(100, 40)));

dc.DrawString(“This is a groovy string”, italicCourierFont, blackBrush,
new Point(10, 100));

}

Figure 20-15 shows the result of running this example.

The example demonstrates the use of the Graphics.DrawString() method to draw items of text. The
method DrawString() comes in a number of overloads, of which we demonstrate three. The different
overloads require parameters that indicate the text to be displayed, the font that the string should be
drawn in, and the brush that should be used to construct the various lines and curves that make up each
character of text. There are a couple of alternatives for the remaining parameters. In general, however, it
is possible to specify either a Point (or equivalently, two numbers) or a Rectangle.

656

Chapter 20

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 656

Figure 20-15

If you specify a Point, the text will start with its top-left corner at that Point and simply stretch out to
the right. If you specify a Rectangle, then the Graphics instance will lay out the string inside that
rectangle. If the text doesn’t fit within the boundaries of the rectangle, then it’ll be cut off (see the fourth
line of text in Figure 20-15). Passing a rectangle to DrawString() means that the drawing process will
take longer, as DrawString() will need to figure out where to put line breaks, but the result may look
nicer, provided the string fits in the rectangle!

This example also shows a couple of ways of constructing fonts. You always need to include the name of
the font, and its size (height). You can also optionally pass in various styles that modify how the text is to
be drawn (bold, underline, and so on).

Fonts and Font Families
We all think intuitively that we have a fairly good understanding of fonts; after all we look at them
almost all the time. A font describes exactly how each letter should be displayed. Selection of the appro-
priate font and providing a reasonable variety of fonts within a document are important factors in
improving readability.

Oddly, our intuitive understanding usually isn’t quite correct. Most people, if asked to name a font,
might mention Arial or Times New Roman (if they are Windows users) or Times or Helvetica (if they are
Mac OS users). In fact, these are not fonts at all—they are font families. The font family tells you in generic
terms the visual style of the text and is a key factor in the overall appearance of your application. Most
of us will have become used to recognizing the styles of the most common font families, even if we’re
not consciously aware of it.

An actual font would be something like Arial 9-point italic. In other words, the size and other modifica-
tions to the text are specified as well as the font family. These modifications might include whether it is
bold, italic, underlined, or displayed in SMALL CAPS or as a subscript; this is technically referred to as the
style, though in some ways the term is misleading, since the visual appearance is determined as much
by the font family.

657

Graphics with GDI+

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 657

The way the size of the text is measured is by specifying its height. The height is measured in points—a
traditional unit that represents 1/72 of an inch (0.351 mm). So letters in a 10-point font are roughly 1/7"
or 3.5 mm high. However, you won’t get seven lines of 10-point text into one inch of vertical screen or
paper space, because you need to allow for the spacing between the lines as well.

Strictly speaking, measuring the height isn’t quite as simple as that, since there are several different
heights that you must consider. For example, there is the height of tall letters like the A or F (this is the
measurement that we are referring to when we talk about the height), the additional height occupied by any
accents on letters like Å or Ñ (the internal leading), and the extra height below the baseline needed for the
tails of letters like y and g (the descent). However, for this chapter we won’t worry about that. Once you
specify the font family and the main height, these subsidiary heights are determined automatically.

When you’re dealing with fonts you might also encounter some other terms that are commonly used to
describe certain font families.

❑ Serif font families have little tick marks at the ends of many of the lines that make up the char-
acters (these ticks are known as serifs). Times New Roman is a classic example of this.

❑ Sans serif font families, by contrast, don’t have these ticks. Good examples of sans serif fonts
are Arial and Verdana. The lack of tick marks often gives text a blunt, in-your-face appearance,
so sans serif fonts are often used for important text.

❑ A True Type font family is one that is defined by expressing the shapes of the curves that make
up the characters in a precise mathematical manner. This means that that the same definition
can be used to calculate how to draw fonts of any size within the family. These days, virtually
all the fonts you might use are true type fonts. Some older font families from the days of
Windows 3.1 were defined by individually specifying the bitmap for each character separately
for each font size, but the use of these fonts is now discouraged.

Microsoft has provided two main classes that we need to deal with when selecting or manipulating
fonts. These are:

❑ System.Drawing.Font

❑ System.Drawing.FontFamily

We have already seen the main use of the Font class. When we want to draw text we instantiate an
instance of Font and pass it to the DrawString() method to indicate how the text should be drawn.
A FontFamily instance is used to represent a family of fonts.

One use of the FontFamily class is if you know you want a font of a particular type (Serif, Sans Serif or
Monospace), but don’t mind which font. The static properties GenericSerif, GenericSansSerif, and
GenericMonospace return default fonts that satisfy these criteria:

FontFamily sansSerifFont = FontFamily.GenericSansSerif;

Generally speaking, however, if you’re writing a professional application, you will want to choose your
font in a more sophisticated way. Most likely, you will implement your drawing code so that it checks the
font families available and selects the appropriate one, perhaps by taking the first available one on a list of
preferred fonts. And if you want your application to be very user-friendly, the first choice on the list will
probably be the one that the user selected the last time they ran your software. Usually, if you’re dealing

658

Chapter 20

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 658

with the most popular font families, such as Arial and Times New Roman, you’ll be safe. However, if you
do try to display text using a font that doesn’t exist, then the results aren’t always predictable and you’re
quite likely to find that Windows just substitutes the standard system font, which is very easy for the sys-
tem to draw but it doesn’t look very pleasant—and if it does appear in your document it’s likely to give
the impression of software that is of poor quality.

You can find out what fonts are available on your system using a class called InstalledFontCollection,
which is in the System.Drawing.Text namespace. This class implements a property, Families, which is
an array of all the fonts that are available to use on your system:

InstalledFontCollection insFont = new InstalledFontCollection();
FontFamily [] families = insFont.Families;
foreach (FontFamily family in families)
{

// do processing with this font family

}

Example: Enumerating Font Families
In this section, we will work through a quick example, EnumFontFamilies, which lists all the font fami-
lies available on the system and illustrates them by displaying the name of each family using an appro-
priate font (the 10-point regular version of that font family). Figure 20-16 shows the result of running
EnumFontFamilies.

Figure 20-16

659

Graphics with GDI+

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 659

Of course, the results that you get will depend on the fonts you have installed on your computer.

For this sample we have as usual created a standard C# Windows Application, EnumFontFamilies. We
start off by adding an extra namespace to be searched. We will be using the InstalledFontCollection
class, which is defined in System.Drawing.Text.

using System;
using System.Drawing;
using System.Drawing.Text;

We then add the following constant to the Form1 class:

private const int margin = 10;

margin is the size of the left and top margin between the text and the edge of the document—it stops the
text from appearing right at the edge of the client area.

This is designed as a quick-and-easy way of showing off font families; therefore the code is crude and in
many instances doesn’t do things the way you ought to in a real application. For example, here we hard-
code an estimated value for the document size of (200,1500) and set the AutoScrollMinSize property
to this value using the Visual Studio .NET Properties window. Normally you would have to examine the
text to be displayed to work out the document size. We do that in the next section.

Here is the OnPaint() method:

protected override void OnPaint(PaintEventArgs e)
{

base.OnPaint(e);
int verticalCoordinate = margin;
Point topLeftCorner;
InstalledFontCollection insFont = new InstalledFontCollection();
FontFamily [] families = insFont.Families;
e.Graphics.TranslateTransform(AutoScrollPosition.X,

AutoScrollPosition.Y);
foreach (FontFamily family in families)
{

if (family.IsStyleAvailable(FontStyle.Regular))
{

Font f = new Font(family.Name, 12);
topLeftCorner = new Point(margin, verticalCoordinate);
verticalCoordinate += f.Height;
e.Graphics.DrawString (family.Name, f,

Brushes.Black,topLeftCorner);
f.Dispose();

}
}

}

In this code we start off by using an InstalledFontCollection object to obtain an array that contains
details of all the available font families. For each family, we instantiate a 12-point Font. We use a simple
constructor for Font—there are many more that allow additional options to be specified. The construc-
tor we’ve picked takes two parameters, the name of the family and the size of the font:

660

Chapter 20

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 660

Font f = new Font(family.Name, 12);

This constructor builds a font that has the regular style. To be on the safe side, however, we first check
that this style is available for each font family before attempting to display anything using that font. This
is done using the FontFamily.IsStyleAvailable() method. This check is important, because not all
fonts are available in all styles:

if (family.IsStyleAvailable(FontStyle.Regular))

FontFamily.IsStyleAvailable() takes one parameter, a FontStyle enumeration. This enumeration
contains a number of flags that might be combined with the bitwise OR operator. The possible flags are
Bold, Italic, Regular, Strikeout, and Underline.

Finally, note that we use a property of the Font class, Height, which returns the height needed to display
text of that font, in order to work out the line spacing:

Font f = new Font(family.Name, 12);
topLeftCorner = new Point(margin, verticalCoordinate);
verticalCoordinate += f.Height;

Again, to keep things simple, our version of OnPaint() reveals some bad programming practices. For a
start, we haven’t bothered to check what area of the document actually needs drawing—we just try to dis-
play everything. Also, instantiating a Font is, as remarked earlier, a computationally intensive process, so
we really ought to save the fonts rather than instantiating new copies every time OnPaint() is called. As a
result of the way the code has been designed, you might note that this example actually takes a noticeable
time to paint itself. In order to try to conserve memory and help the garbage collector out we do, however,
call Dispose() on each font instance after we have finished with it. If we didn’t, then after 10 or 20 paint
operations, there’d be a lot of wasted memory storing fonts that are no longer needed.

Editing a Text Document:
The CapsEditor Sample

We now come to the extended example in this chapter. The CapsEditor example is designed to demonstrate
how the principles of drawing that we’ve learned so far have to be applied in a more realistic context. The
CapsEditor example does not require any new material, apart from responding to user input via the
mouse, but it shows how to manage the drawing of text so that the application maintains performance
while ensuring that the contents of the client area of the main window are always kept up to date.

The CapsEditor program is functionally quite simple. It allows the user to read in a text file, which is
then displayed line by line in the client area. If the user double-clicks any line, that line will be changed
to all uppercase. That’s literally all the sample does. Even with this limited set of features, we’ll find that
the work involved in making sure everything is displayed in the right place while considering perfor-
mance issues is quite complex. In particular, we have a new element here: the contents of the document
can change—either when the user selects the menu option to read a new file, or when she double-clicks
to capitalize a line. In the first case we need to update the document size so the scroll bars still work cor-
rectly, and we have to redisplay everything. In the second case, we need to check carefully whether the
document size has changed, and what text needs to be redisplayed.

661

Graphics with GDI+

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 661

We’ll start by reviewing the appearance of CapsEditor. When the application is first run, it has no docu-
ment loaded and resembles Figure 20-17.

Figure 20-17

The File menu has two options: Open, which evokes OpenFileDialog when selected and reads in
whatever file the user clicks, and Exit, which closes the application when clicked. Figure 20-18 shows
CapsEditor displaying its own source file, Form1.cs. (We’ve also double-clicked a couple of lines to con-
vert them to uppercase.)

Figure 20-18

The sizes of the horizontal and vertical scrollbars are correct. The client area will scroll just enough to
view the entire document. CapsEditor doesn’t try to wrap lines of text—the example is already compli-
cated enough as is. It just displays each line of the file exactly as it is read in. There are no limits to the
size of the file, but we are assuming it is a text file and doesn’t contain any non-printable characters.

662

Chapter 20

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 662

Let’s begin by adding a using command:

using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;
using System.IO;

This is because we’ll be using the StreamReader class, which is in the System.IO namespace. Next
we’ll add some fields to the Form1 class:

#region Constant fields
private const string standardTitle = “CapsEditor”;

// default text in titlebar
private const uint margin = 10;

// horizontal and vertical margin in client area
#endregion

#region Member fields
private ArrayList documentLines = new ArrayList(); // the ‘document’
private uint lineHeight; // height in pixels of one line
private Size documentSize; // how big a client area is needed to

// display document
private uint nLines; // number of lines in document
private Font mainFont; // font used to display all lines
private Font emptyDocumentFont; // font used to display empty message
private Brush mainBrush = Brushes.Blue;

// brush used to display document text
private Brush emptyDocumentBrush = Brushes.Red;

// brush used to display empty document message
private Point mouseDoubleClickPosition;

// location mouse is pointing to when double-clicked
private OpenFileDialog fileOpenDialog = new OpenFileDialog();

// standard open file dialog
private bool documentHasData = false;

// set to true if document has some data in it
#endregion

Most of these fields should be self-explanatory. The documentLines field is an ArrayList that contains
the actual text of the file that has been read in. In a real sense, this is the field that contains the data in the
document” Each element of documentLines contains information for one line of text that has been read
in. Since it’s an ArrayList, rather than a plain array, we can dynamically add elements to it as we read
in a file. Note also that we’ve used #region preprocessor directives to block bits of the program to make
it easier to edit.

As previously mentioned, each documentLines element contains information about a line of text. This
information is actually an instance of another class, TextLineInformation:

663

Graphics with GDI+

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 663

class TextLineInformation
{

public string Text;
public uint Width;

}

TextLineInformation looks like a classic case where you’d normally use a struct rather than a class since
it’s just there to group a couple of fields. However, its instances are always accessed as elements of an
ArrayList, which expects its elements to be stored as reference types, so declaring TextLineInformation
as a class makes things more efficient by saving a lot of boxing and unboxing operations.

Each TextLineInformation instance stores a line of text—and that can be thought of as the smallest
item that is displayed as a single item. In general, for each similar item in a GDI+ application, you’d
probably want to store the text of the item, as well as the world coordinates of where it should be dis-
played and its size (the page coordinates will change frequently, whenever the user scrolls, whereas
world coordinates will normally only change when other parts of the document are modified in some
way). In this case we’ve only stored the Width of the item. The reason is because the height in this case
is just the height of whatever our selected font is. It’s the same for all lines of text so there’s no point stor-
ing it separately for each one; we store it once, in the Form1.lineHeight field. As for the position... well
in this case the x coordinate is just equal to the margin, and the y coordinate is easily calculated as:

margin + lineHeight*(however many lines are above this one)

If we’d been trying to display and manipulate, say, individual words instead of complete lines, then the
x position of each word would have to be calculated using the widths of all the previous words on that
line of text, but I wanted to keep it simple here, which is why we’re treating each line of text as one sin-
gle item.

Let’s turn to the main menu now. This part of the application is more the realm of Windows Forms (see
Chapter 19) than of GDI+. Add the menu options using the design view in Visual Studio .NET, but rename
them as menuFile, menuFileOpen, and menuFileExit. Next add event handlers for the File Open and
File Exit menu options using the Visual Studio .NET Properties window. The event handlers have their
Visual Studio .NET–generated names of menuFileOpen_Click() and menuFileExit_Click().

Add some extra initialization code in the Form1() constructor:

public Form1()
{

InitializeComponent();

CreateFonts();
fileOpenDialog.FileOk += new

System.ComponentModel.CancelEventHandler(
this.OpenFileDialog_FileOk);
fileOpenDialog.Filter =

“Text files (*.txt)|*.txt|C# source files (*.cs)|*.cs”;

}

The event handler added here is for when the user clicks OK in the File Open dialog box. We have also
set the filter for the Open File dialog box, so that we can only load text files—we’ve opted for .txt files as
well as C# source files, so we can use the application to examine the source code for our samples.

664

Chapter 20

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 664

CreateFonts() is a helper method that sorts out the fonts we intend to use:

private void CreateFonts()
{

mainFont = new Font(“Arial”, 10);
lineHeight = (uint)mainFont.Height;
emptyDocumentFont = new Font(“Verdana”, 13, FontStyle.Bold);

}

The actual definitions of the handlers are pretty standard stuff:

protected void OpenFileDialog_FileOk(object Sender, CancelEventArgs e)
{

this.LoadFile(fileOpenDialog.FileName);
}

protected void menuFileOpen_Click(object sender, EventArgs e)
{

fileOpenDialog.ShowDialog();
}

protected void menuFileExit_Click(object sender, EventArgs e)
{

this.Close();
}

Next, we’ll examine the LoadFile() method. It’s the method that handles the opening and reading of a
file (as well as ensuring a Paint event is raised to force a repaint with the new file):

private void LoadFile(string FileName)
{

StreamReader sr = new StreamReader(FileName);
string nextLine;
documentLines.Clear();
nLines = 0;
TextLineInformation nextLineInfo;
while ((nextLine = sr.ReadLine()) != null)
{

nextLineInfo = new TextLineInformation();
nextLineInfo.Text = nextLine;
documentLines.Add(nextLineInfo);
++nLines;

}
sr.Close();
documentHasData = (nLines>0) ? true : false;

CalculateLineWidths();
CalculateDocumentSize();

this.Text = standardTitle + “ - “ + FileName;
this.Invalidate();

}

665

Graphics with GDI+

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 665

Most of this function is just standard file-reading stuff (see Chapter 30). Note that as the file is read, we
progressively add lines to documentLines ArrayList, so this array ends up containing information for
each of the lines in order. After we’ve read in the file, we set the documentHasData flag, which indicates
whether there is actually anything to display. Our next task is to work out where everything is to be dis-
played, and, having done that, how much client area we need to display the file—the document size that
will be used to set the scroll bars. Finally, we set the title bar text and call Invalidate(). Invalidate()
is an important method supplied by Microsoft, so we’ll discuss its use first, before we examine the code
for the CalculateLineWidths() and CalculateDocumentSize() methods.

The Invalidate() Method
Invalidate() is a member of System.Windows.Forms.Form. It marks an area of the client window as
invalid and, therefore, in need of repainting, and then makes sure a Paint event is raised. There are a
couple of overrides to Invalidate(): you can pass it a rectangle that specifies (in page coordinates)
precisely which area of the window needs repainting, or if you don’t pass any parameters it’ll just mark
the entire client area as invalid.

You might wonder why we are doing it this way. If we know that something needs painting, why don’t
we just call OnPaint() or some other method to do the painting directly? The answer is that in general,
calling painting routines directly is regarded as bad programming practice—if your code decides it
wants some painting done, you should call Invalidate(). Here’s why:

❑ Drawing is almost always the most processor-intensive task a GDI+ application will carry out,
so doing it in the middle of other work holds up the other work. With our example, if we’d
directly called a method to do the drawing from the LoadFile() method, then the LoadFile()
method wouldn’t return until that drawing task was complete. During that time, our applica-
tion can’t respond to any other events. On the other hand, by calling Invalidate() we are sim-
ply getting Windows to raise a Paint event before immediately returning from LoadFile().
Windows is then free to examine the events that are in line to be handled. How this works inter-
nally is that the events sit as what are known as messages in a message queue. Windows periodi-
cally examines the queue, and if there are events in it, it picks one and calls the corresponding
event handler. Although the Paint event might be the only one sitting in the queue (so
OnPaint() gets called immediately anyway), in a more complex application there might be
other events that ought to get priority over our Paint event. In particular, if the user has
decided to quit the application, this will be marked by a message known as WM_QUIT.

❑ Related to the previous point, if you have a more complicated, multithreaded, application,
you’ll probably want just one thread to handle all the drawing. Using Invalidate() to route
all drawing through the message queue provides a good way of ensuring that the same thread
(whatever thread is responsible for the message queue, this will be the thread that called
Application.Run()) does all the drawing, no matter what other thread requested the drawing
operation.

❑ There’s an additional performance-related reason. Suppose at about the same time a couple of
different requests to draw part of the screen come in. Maybe your code has just modified the
document and wants to ensure the updated document is displayed, while at the same time the
user has just moved another window that was covering part of the client area out of the way.
By calling Invalidate(), you are giving windows a chance to notice that this has occurred.
Windows can then merge the Paint events if appropriate, combining the invalidated areas, so
that the painting is only done once.

666

Chapter 20

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 666

❑ Finally, the code to do the painting is probably going to be one of the most complex parts of the
code in your application, especially if you have a very sophisticated user interface. The guys
who have to maintain your code in a couple of years time will thank you for having kept your
painting code all in one place and as simple as you reasonably can—something that’s easier to
do if you don’t have too many pathways into it from other parts of the program.

The bottom line from all this is that it is good practice to keep all your painting in the OnPaint() routine,
or in other methods called from that method. However, you have to strike a balance; if you want to replace
just one character on the screen and you know perfectly well that it won’t affect anything else that you’ve
drawn, then you might decide that it’s not worth the overhead of going through Invalidate(), and just
write a separate drawing routine.

In a very complicated application, you might even write a full class that takes responsibility for drawing
to the screen. A few years ago when MFC was the standard technology for GDI-intensive applications,
MFC followed this model, with a C++ class, C<ApplicationName>View that was responsible for paint-
ing. However, even in this case, this class had one member function, OnDraw(), which was designed to
be the entry point for most drawing requests.

Calculating Item Sizes and Document Size
We’ll return to the CapsEditor example now and examine the CalculateLineWidths() and
CalculateDocumentSize() methods that are called from LoadFile():

private void CalculateLineWidths()
{

Graphics dc = this.CreateGraphics();
foreach (TextLineInformation nextLine in documentLines)
{

nextLine.Width = (uint)dc.MeasureString(nextLine.Text,
mainFont).Width;

}
}

This method simply runs through each line that has been read in and uses the Graphics.MeasureString()
method to work out and store how much horizontal screen space the string requires. We store the value,
because MeasureString() is computationally intensive. If we hadn’t made the CapsEditor sample so sim-
ple that we can easily work out the height and location of each item, this method would almost certainly
have needed to be implemented in such a way as to compute all those quantities too.

Now we know how big each item on the screen is, and we can calculate where each item goes, we are in
a position to work out the actual document size. The height is basically the number of lines multiplied
by the height of each line. The width will need to be worked out by iterating through the lines to find the
longest. For both height and width, we will also want to make an allowance for a small margin around
the displayed document, to make the application look more attractive.

Here’s the method that calculates the document size:

private void CalculateDocumentSize()
{

if (!documentHasData)

667

Graphics with GDI+

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 667

{
documentSize = new Size(100, 200);

}
else
{

documentSize.Height = (int)(nLines*lineHeight) + 2*(int)margin;
uint maxLineLength = 0;
foreach (TextLineInformation nextWord in documentLines)
{

uint tempLineLength = nextWord.Width + 2*margin;
if (tempLineLength > maxLineLength)

maxLineLength = tempLineLength;
}
documentSize.Width = (int)maxLineLength;

}
this.AutoScrollMinSize = documentSize;

}

This method first checks whether there is any data to be displayed. If there isn’t we cheat a bit and use a
hard-coded document size, which is big enough to display the big red <Empty Document> warning. If
we’d wanted to really do it properly, we’d have used MeasureString() to check how big that warning
actually is.

Once we’ve worked out the document size, we tell the Form instance what the size is by setting the
Form.AutoScrollMinSize property. When we do this, something interesting happens behind the
scenes. In the process of setting this property, the client area is invalidated and a Paint event is raised, for
the very sensible reason that changing the size of the document means scroll bars will need to be added or
modified and the entire client area will almost certainly be repainted. Why is that interesting? If you look
back at the code for LoadFile() you’ll realize that our call to Invalidate() in that method is actually
redundant. The client area will be invalidated anyway when we set the document size. I left the explicit
call to Invalidate() in the LoadFile() implementation to illustrate how in general you should nor-
mally do things. In fact in this case, all calling Invalidate() again will do is needlessly request a dupli-
cate Paint event. However, this in turn illustrates what I was saying about how Invalidate() gives
Windows the chance to optimize performance. The second Paint event won’t in fact get raised: Windows
will see that there’s a Paint event already sitting in the queue and will compare the requested invalidated
regions to see if it needs to do anything to merge them. In this case, both Paint events will specify the
entire client area, so nothing needs to be done, and Windows will quietly drop the second Paint request.
Of course, going through that process will take up a little bit of processor time, but it’ll be a negligible
amount of time compared to how long it takes to actually do some painting.

OnPaint()
Now we’ve seen how CapsEditor loads the file, it’s time to look at how the painting is done:

protected override void OnPaint(PaintEventArgs e)
{

base.OnPaint(e);
Graphics dc = e.Graphics;
int scrollPositionX = this.AutoScrollPosition.X;
int scrollPositionY = this.AutoScrollPosition.Y;
dc.TranslateTransform(scrollPositionX, scrollPositionY);

668

Chapter 20

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 668

if (!documentHasData)
{

dc.DrawString(“<Empty document>”, emptyDocumentFont,
emptyDocumentBrush, new Point(20,20));

base.OnPaint(e);
return;

}

// work out which lines are in clipping rectangle
int minLineInClipRegion =

WorldYCoordinateToLineIndex(e.ClipRectangle.Top –
scrollPositionY);

if (minLineInClipRegion == -1)
minLineInClipRegion = 0;

int maxLineInClipRegion =
WorldYCoordinateToLineIndex(e.ClipRectangle.Bottom –

scrollPositionY);
if (maxLineInClipRegion >= this.documentLines.Count ||

maxLineInClipRegion == -1)
maxLineInClipRegion = this.documentLines.Count-1;

TextLineInformation nextLine;
for (int i=minLineInClipRegion; i<=maxLineInClipRegion ; i++)
{

nextLine = (TextLineInformation)documentLines[i];
dc.DrawString(nextLine.Text, mainFont, mainBrush,

this.LineIndexToWorldCoordinates(i));
}

}

At the heart of this OnPaint() override is a loop that goes through each line of the document, calling
Graphics.DrawString() to paint each one. The rest of this code is mostly to do with optimizing the
painting—the usual stuff about figuring out what exactly needs painting instead of rushing in and
telling the graphics instance to redraw everything.

We begin by checking if there is any data in the document. If there isn’t, we draw a quick message say-
ing so, call the base class’s OnPaint() implementation, and exit. If there is data, then we start looking at
the clipping rectangle. The way we do this is by calling another method that we’ve written, WorldY-
CoordinateToLineIndex(). We’ll examine this method next, but essentially it takes a given y position
relative to the top of the document, and works out what line of the document is being displayed at that
point.

The first time we call the WorldYCoordinateToLineIndex() method, we pass it the coordinate value
(e.ClipRectangle.Top - scrollPositionY). This is just the top of the clipping region, converted to
world coordinates. If the return value is –1, then we’ll play safe and assume we need to start at the
beginning of the document (this is the case if the top of the clipping region is within the top margin).

Once we’ve done all that, we essentially repeat the same process for the bottom of the clipping rectangle,
in order to find the last line of the document that is inside the clipping region. The indices of the first and
last lines are respectively stored in minLineInClipRegion and maxLineInClipRegion, so then we can
just run a for loop between these values to do our painting. Inside the painting loop, we actually need to
do roughly the reverse transformation to the one performed by WorldYCoordinateToLineIndex(). We

669

Graphics with GDI+

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 669

are given the index of a line of text, and we need to check where it should be drawn. This calculation is
actually quite simple, but we’ve wrapped it up in another method, LineIndexToWorldCoordinates(),
which returns the required coordinates of the top left corner of the item. The returned coordinates are
world coordinates, but that’s fine, because we have already called TranslateTransform() on the Graphics
object so that we need to pass it world, rather than page, coordinates when asking it to display items.

Coordinate Transforms
In this section, we’ll examine the implementation of the helper methods that we’ve written in the CapsEditor
sample to help us with coordinate transforms. These are the WorldYCoordinateToLineIndex() and
LineIndexToWorldCoordinates() methods that we referred to in the previous section, as well as a couple
of other methods.

First, LineIndexToWorldCoordinates() takes a given line index, and works out the world coordinates
of the top left corner of that line, using the known margin and line height:

private Point LineIndexToWorldCoordinates(int index)
{

Point TopLeftCorner = new Point(
(int)margin, (int)(lineHeight*index + margin));

return TopLeftCorner;
}

We also use a method that roughly does the reverse transform in OnPaint(). WorldYCoordinateTo-
LineIndex() works out the line index, but it only takes into account a vertical world coordinate. This is
because it is used to work out the line index corresponding to the top and bottom of the clip region.

private int WorldYCoordinateToLineIndex(int y)
{

if (y < margin)
return -1;

return (int)((y-margin)/lineHeight);
}

There are three more methods, which will be called from the handler routine that responds to the user
double-clicking the mouse. First, we have a method that works out the index of the line being displayed
at given world coordinates. Unlike WorldYCoordinateToLineIndex(), this method takes into account
the x and y positions of the coordinates. It returns –1 if there is no line of text covering the coordinates
passed in:

private int WorldCoordinatesToLineIndex(Point position)
{

if (!documentHasData)
return -1;

if (position.Y < margin || position.X < margin)
return -1;

int index = (int)(position.Y-margin)/(int)this.lineHeight;
// check position isn’t below document
if (index >= documentLines.Count)

return -1;

670

Chapter 20

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 670

// now check that horizontal position is within this line
TextLineInformation theLine =

(TextLineInformation)documentLines[index];
if (position.X > margin + theLine.Width)

return -1;

// all is OK. We can return answer
return index;

}

Finally, on occasions we also need to convert between line index and page, rather than world, coordinates.
The following methods achieve this:

private Point LineIndexToPageCoordinates(int index)
{

return LineIndexToWorldCoordinates(index) +
new Size(AutoScrollPosition);

}

private int PageCoordinatesToLineIndex(Point position)
{

return WorldCoordinatesToLineIndex(position - new
Size(AutoScrollPosition));

}

Note that when converting to page coordinates, we add the AutoScrollPosition, which is negative.

Although these methods by themselves don’t look particularly interesting, they do illustrate a general
technique that you’ll probably need to use often. With GDI+, we’ll often find ourselves in a situation
where we have been given specific coordinates (for example the coordinates of where the user has
clicked the mouse) and we’ll need to figure out what item is being displayed at that point. Or it could
happen the other way round—given a particular display item, whereabouts should it be displayed?
Hence, if you are writing a GDI+ application, you’ll probably find it useful to write methods that do the
equivalent of the coordinate transformation methods illustrated here.

Responding to User Input
So far, with the exception of the File menu in the CapsEditor sample, everything we’ve done in this
chapter has been one way: the application has talked to the user, by displaying information on the
screen. Almost all software of course works both ways: the user can talk to the software as well. We’re
now going to add that facility to CapsEditor.

Getting a GDI+ application to respond to user input is actually a lot simpler than writing the code to
draw to the screen (we have already covered how to handle user input in Chapter 19). Essentially, you
override methods from the Form class that get called from the relevant event handler, in much the same
way that OnPaint() is called when a Paint event is raised.

The following table lists the methods you might want to override when the user clicks or moves the
mouse.

671

Graphics with GDI+

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 671

Method Called when...

OnClick(EventArgs e) Mouse is clicked.

OnDoubleClick(EventArgs e) Mouse is double-clicked.

OnMouseDown(MouseEventArgs e) Left mouse button pressed.

OnMouseHover(MouseEventArgs e) Mouse stays still somewhere after moving.

OnMouseMove(MouseEventArgs e) Mouse is moved.

OnMouseUp(MouseEventArgs e) Left mouse button is released.

If you want to detect when the user types in any text, then you’ll probably want to override the methods
listed in the following table.

Method Called When...

OnKeyDown(KeyEventArgs e) A key is pressed.

OnKeyPress(KeyPressEventArgs e) A key is pressed and released.

OnKeyUp(KeyEventArgs e) A pressed key is released.

Note that some of these events overlap. For example, if the user presses a mouse button this will raise
the MouseDown event. If the button is immediately released again, this will raise the MouseUp event and
the Click event. Also, some of these methods take an argument that is derived from EventArgs rather
than an instance of EventArgs itself. These instances of derived classes can be used to give more infor-
mation about a particular event. MouseEventArgs has two properties X and Y, which give the device
coordinates of the mouse at the time it was pressed. Both KeyEventArgs and KeyPressEventArgs
have properties that indicate which key or keys the event concerns.

That’s all there is to it. It’s up to you to think about the logic of precisely what you want to do. The only
point to note is that you’ll probably find yourself doing a bit more logic work with a GDI+ application than
you would have with a Windows.Forms application. That’s because in a Windows.Forms application you
are typically responding to high-level events (TextChanged for a text box, for example). By contrast with
GDI+, the events tend to be more elementary—user clicks the mouse or presses the H key. The action your
application takes is likely to depend on a sequence of events rather than a single event. For example, say
your application works like Word for Windows, where in order to select some text the user clicks the left
mouse button, then moves the mouse and releases the left mouse button. Your application receives the
MouseDown event, but there’s not much you can do with this event except record that the mouse was
clicked with the cursor in a certain position. Then, when the MouseMove event is received, you’ll want to
check from the record whether the left button is currently down, and if so highlight text as the user selects
it. When the user releases the left mouse button, your corresponding action (in the OnMouseUp() method)
will need to check whether any dragging took place while the mouse button was down, and act accord-
ingly. Only at this point is the sequence complete.

Another point to consider is that, because certain events overlap, you will often have a choice of which
event you want your code to respond to.

672

Chapter 20

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 672

The golden rule really is to think carefully about the logic of every combination of mouse movement or
click and keyboard event that the user might initiate, and ensure that your application responds in a
way that is intuitive and in accordance with the expected behavior of applications in every case. Most of
your work here will be in thinking rather than in coding, though the coding you do will be tricky,
because you might need to take into account a lot of combinations of user input. For example, what
should your application do if the user starts typing in text while one of the mouse buttons is held down?
It might sound like an improbable combination, but sooner or later some user is going to try it!

For the CapsEditor example, we are keeping things very simple, so we don’t really have any combina-
tions to think about. The only thing we are going to respond to is when the user double-clicks, in which
case we capitalize whatever line of text the mouse pointer is hovering over.

This should be a fairly simple task, but there is one snag. We need to trap the DoubleClick event, but
the previous table shows that this event takes an EventArgs parameter, not a MouseEventArgs parame-
ter. The trouble is that we’ll need to know where the mouse is when the user double-clicks, if we are to
identify correctly the line of text to be capitalized—and you need a MouseEventArgs parameter to do
that. There are two workarounds. One is to use a static method that is implemented by the Form1 object,
Control.MousePosition, to find out the mouse position:

protected override void OnDoubleClick(EventArgs e)
{

Point MouseLocation = Control.MousePosition;
// handle double click

}

In most cases this will work. However, there could be a problem if your application (or even some other
application with a high priority) is doing some computationally intensive work at the moment the user
double-clicks. It just might happen in that case that the OnDoubleClick() event handler doesn’t get
called until perhaps half a second or so after the user has double-clicked. You don’t really want delays
like that, because they usually annoy users intensely, but even so, occasionally it does happen, and
sometimes for reasons beyond the control of your app (a slow computer, for instance). Trouble is, half a
second is easily enough time for the mouse to get moved halfway across the screen, in which case your
call to Control.MousePosition will return the completely wrong location!

A better way here is to rely on one of the many overlaps between mouse-event meanings. The first part
of double-clicking a mouse involves pressing the left button down. This means that if
OnDoubleClick() is called then we know that OnMouseDown() has also just been called, with the
mouse at the same location. We can use the OnMouseDown() override to record the position of the
mouse, ready for OnDoubleClick(). This is the approach we take in CapsEditor:

protected override void OnMouseDown(MouseEventArgs e)
{

base.OnMouseDown(e);
this.mouseDoubleClickPosition = new Point(e.X, e.Y);

}

Now let’s look at our OnDoubleClick() override. There’s quite a bit more work to do here:

protected override void OnDoubleClick(EventArgs e)
{

int i = PageCoordinatesToLineIndex(this.mouseDoubleClickPosition);

673

Graphics with GDI+

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 673

if (i >= 0)
{

TextLineInformation lineToBeChanged =
(TextLineInformation)documentLines[i];

lineToBeChanged.Text = lineToBeChanged.Text.ToUpper();
Graphics dc = this.CreateGraphics();
uint newWidth =(uint)dc.MeasureString(lineToBeChanged.Text,

mainFont).Width;
if (newWidth > lineToBeChanged.Width)

lineToBeChanged.Width = newWidth;
if (newWidth+2*margin > this.documentSize.Width)
{

this.documentSize.Width = (int)newWidth;
this.AutoScrollMinSize = this.documentSize;

}
Rectangle changedRectangle = new Rectangle(

LineIndexToPageCoordinates(i),
new Size((int)newWidth,
(int)this.lineHeight));

this.Invalidate(changedRectangle);
}
base.OnDoubleClick(e);

}

We start off by calling PageCoordinatesToLineIndex() to work out which line of text the mouse
pointer was hovering over when the user double-clicked. If this call returns –1 then we weren’t over any
text, so there’s nothing to do; except, of course, call the base class version of OnDoubleClick() to let
Windows do any default processing.

Assuming we’ve identified a line of text, we can use the string.ToUpper() method to convert it to
uppercase. That was the easy part. The hard part is figuring out what needs to be redrawn where.
Fortunately, because we kept this example simple, there aren’t too many combinations. We can assume
for a start, that converting to uppercase will always either leave the width of the line on the screen
unchanged or increase it. Capital letters are bigger than lowercase letters; therefore, the width will never
go down. We also know that since we are not wrapping lines, our line of text won’t overflow to the next
line and push out other text below. Our action of converting the line to uppercase won’t, therefore, actu-
ally change the locations of any of the other items being displayed. That’s a big simplification!

The next thing the code does is use Graphics.MeasureString() to work out the new width of the text.
There are now just two possibilities:

❑ The new width might make our line the longest line, and cause the width of the entire docu-
ment to increase. If that’s the case then we’ll need to set AutoScrollMinSize to the new size so
that the scrollbars are correctly placed.

❑ The size of the document might be unchanged.

In either case, we need to get the screen redrawn, by calling Invalidate(). Only one line has changed;
therefore, we don’t want to have the entire document repainted. Rather, we need to work out the bounds
of a rectangle that contains just the modified line, so that we can pass this rectangle to Invalidate(),
ensuring that just that line of text will be repainted. That’s precisely what the previous code does. Our
call to Invalidate() initiates a call to OnPaint() when the mouse event handler finally returns.

674

Chapter 20

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 674

Keeping in mind our earlier comments about the difficulty in setting a break point in OnPaint(), if you
run the sample and set a break point in OnPaint() to trap the resultant painting action, you’ll find that
the PaintEventArgs parameter to OnPaint() does indeed contain a clipping region that matches the
specified rectangle. And since we’ve overloaded OnPaint() to take careful account of the clipping
region, only the one required line of text will be repainted.

Printing
So far we’ve focused exclusively on drawing to the screen. However, at some point you will probably also
want to be able to produce a hard copy of the data. That’s the topic of this section. We’re going to extend
the CapsEditor sample so that it is able to print preview and print the document that is being edited.

Unfortunately, we don’t have enough space to go into too much detail about printing here, so the print-
ing functionality we will implement is very basic. Usually, if you are implementing the ability for an
application to print data, you will need to add three items to the application’s main File menu:

❑ Page Setup, which allows the user to choose options such as which pages to print, which printer
to use and so on.

❑ Print Preview, which opens a new Form that displays a mock-up of what the printed copy
should look like.

❑ Print, which prints the document.

In our case, to keep things simple, we won’t implement a Page Setup menu option. Printing will only be
possible using default settings. Note, however, that, if you do want to implement Page Setup, Microsoft
has already written a page setup dialog class for you to use: System.Windows.Forms.PrintDialog.
You will normally want to write an event handler that displays this form, and saves the settings chosen
by the user.

In many ways printing is just the same as displaying to a screen. You will be supplied with a device con-
text (Graphics instance) and call all the usual display commands against that instance. Microsoft has
written a number of classes to assist you in doing this; the two main ones that we need to use are
System.Drawing.Printing.PrintDocument and System.Drawing.Printing.PrintPreview-
Dialog. These two classes handle the process of making sure that drawing instructions passed to a
device context are handled appropriately for printing, leaving you to think about the logic of what to
print where.

There are some important differences between printing or print previewing on the one hand, and dis-
playing to the screen on the other hand. Printers cannot scroll; instead they turn out pages. So you’ll
need to make sure you find a sensible way of dividing your document into pages, and draw each page
as requested. Among other things that means calculating how much of your document will fit onto a sin-
gle page, and therefore how many pages you’ll need, and which page each part of the document needs
to be written to.

Despite the above complications, the process of printing is quite simple. Programmatically, the steps you
need to go through look roughly like this:

675

Graphics with GDI+

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 675

❑ Printing. You instantiate a PrintDocument object, and call its Print() method. This method
signals the PrintPage eventto print the first page. PrintPage takes a PrintPageEventArgs
parameter, which supplies information concerning paper size and setup, as well as a Graphics
object used for the drawing commands. You should therefore have written an event handler for
this event, and have implemented this handler to print a page. This event handler should also
set a Boolean property of the PrintPageEventArgs, HasMorePages, to either true or false
to indicate whether there are more pages to be printed. The PrintDocument.Print() method
will repeatedly raise the PrintPage event until it sees that HasMorePages has been set to false.

❑ Print Previewing. In this case, you instantiate both a PrintDocument object and a Print-
PreviewDialog object. You attach the PrintDocument to the PrintPreviewDialog (using the
property PrintPreviewDialog.Document) and then call the dialog’s ShowDialog() method.
This method modally displays the dialog, which turns out to be a standard Windows print pre-
view form, and which displays pages of the document. Internally, the pages are displayed once
again by repeatedly raising the PrintPage event until the HasMorePages property is false.
There’s no need to write a separate event handler for this; you can use the same event handler
as used for printing each page since the drawing code ought to be identical in both cases. (After
all, whatever is print previewed ought to look identical to the printed version!)

Implementing Print and Print Preview
Now that we’ve outlined this process in broad strokes, let’s see how this works in code terms. You can
download the code as the PrintingCapsEdit project at www.wrox.com; it consists of the CapsEditor pro-
ject, with the changes highlighted in the following snippet.

We begin by using the Visual Studio .NET design view to add two new items to the File menu: Print
and Print Preview. We also use the properties window to name these items menuFilePrint and
menuFilePrintPreview, and to set them to be disabled when the application starts up (we can’t print
anything until a document has been opened!). We arrange for these menu items to be enabled by adding
the following code to the main form’s LoadFile() method, which is responsible for loading a file into
the CapsEditor application:

private void LoadFile(string FileName)
{

StreamReader sr = new StreamReader(FileName);
string nextLine;
documentLines.Clear();
nLines = 0;
TextLineInformation nextLineInfo;
while ((nextLine = sr.ReadLine()) != null)
{

nextLineInfo = new TextLineInformation();
nextLineInfo.Text = nextLine;
documentLines.Add(nextLineInfo);
++nLines;

}
sr.Close();
if (nLines > 0)
{

documentHasData = true;
menuFilePrint.Enabled = true;
menuFilePrintPreview.Enabled = true;

676

Chapter 20

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 676

}
else
{

documentHasData = false;
menuFilePrint.Enabled = false;
menuFilePrintPreview.Enabled = false;

}

CalculateLineWidths();
CalculateDocumentSize();

this.Text = standardTitle + “ - “ + FileName;
this.Invalidate();

}

The highlighted code above is the new code we have added to this method. Next we add a member field
to the Form1 class:

public class Form1 : System.Windows.Forms.Form
{

private int pagesPrinted = 0;

This field will be used to indicate which page we are currently printing. We are making it a member
field, since we will need to remember this information between calls to the PrintPage event handler.

Next, the event handlers that handle the selection of the Print or Print Preview menu options:

private void menuFilePrintPreview_Click(object sender, System.EventArgs e)
{

this.pagesPrinted = 0;
PrintPreviewDialog ppd = new PrintPreviewDialog();
PrintDocument pd = new PrintDocument();
pd.PrintPage += new PrintPageEventHandler

(this.pd_PrintPage);
ppd.Document = pd;
ppd.ShowDialog();

}

private void menuFilePrint_Click(object sender, System.EventArgs e)
{

this.pagesPrinted = 0;
PrintDocument pd = new PrintDocument();
pd.PrintPage += new PrintPageEventHandler

(this.pd_PrintPage);
pd.Print();

}

We’ve already outlined the steps involved in printing, and we can see that these event handlers are sim-
ply implementing that procedure. In both cases we are instantiating a PrintDocument object and attach-
ing an event handler to its PrintPage event. In the case of printing, we call PrintDocument.Print(),
while for print previewing, we attach the PrintDocument object to a PrintPreviewDialog and call the
preview dialog box object’s ShowDialog() method. The real work to the PrintPage event is done in
the event handler. Here is what this handler looks like:

677

Graphics with GDI+

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 677

private void pd_PrintPage(object sender, PrintPageEventArgs e)
{

float yPos = 0;
float leftMargin = e.MarginBounds.Left;
float topMargin = e.MarginBounds.Top;
string line = null;

// Calculate the number of lines per page.
int linesPerPage = (int)(e.MarginBounds.Height /

mainFont.GetHeight(e.Graphics));
int lineNo = this.pagesPrinted * linesPerPage;

// Print each line of the file.
int count = 0;
while(count < linesPerPage && lineNo < this.nLines)
{

line = ((TextLineInformation)this.documentLines[lineNo]).Text;
yPos = topMargin + (count * mainFont.GetHeight(e.Graphics));
e.Graphics.DrawString(line, mainFont, Brushes.Blue,

leftMargin, yPos, new StringFormat());
lineNo++;
count++;

}

// If more lines exist, print another page.
if(this.nLines > lineNo)

e.HasMorePages = true;
else

e.HasMorePages = false;
pagesPrinted++;

}

After declaring a couple of local variables, the first thing we do is work out how many lines of text can
be displayed on one page, which will be the height of a page divided by the height of a line and rounded
down. The height of the page can be obtained from the PrintPageEventArgs.MarginBounds property.
This property is a RectangleF struct that has been initialized to give the bounds of the page. The height
of a line is obtained from the Form1.mainFont field, which is the font used for displaying the text.
There is no reason here for not using the same font for printing too. Note that for the PrintingCapsEditor
sample, the number of lines per page is always the same, so we arguably could have cached the value
the first time we calculated it. However, the calculation isn’t too hard, and in a more sophisticated appli-
cation the value might change, so it’s not bad practice to recalculate it every time we print a page.

We also initialize a variable called lineNo. This gives the zero-based index of the line of the document that
will be the first line of this page. This information is important because in principle, the pd_PrintPage()
method could have been called to print any page, not just the first page. lineNo is computed as the num-
ber of lines per page times the number of pages that have so far been printed.

Next we run through a loop, printing each line. This loop will terminate either when we find that we
have printed all the lines of text in the document, or when we find that we have printed all the lines that
will fit on this page, whichever condition occurs first. Finally, we check whether there is any more of the

678

Chapter 20

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 678

document to be printed, and set the HasMorePages property of our PrintPageEventArgs accordingly,
and also increment the pagesPrinted field, so that we know to print the correct page the next time the
PrintPage event handler is invoked.

One point to note about this event handler is that we do not worry about where the drawing commands
are being sent. We simply use the Graphics object that was supplied with the PrintPageEventArgs.
The PrintDocument class that Microsoft has written will internally take care of making sure that, if we
are printing, the Graphics object will have been hooked up to the printer; if we are print previewing,
then the Graphics object will have been hooked up to the print preview form on the screen.

Finally, we need to ensure the System.Drawing.Printing namespace is searched for type definitions:

using System;
using System.Drawing;
using System.Drawing.Printing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;
using System.IO;

All that remains is to compile the project and check that the code works. Figure 20-19 shows what hap-
pens when you run CapsEdit, load a text document (as before, we’ve picked the C# source file for the
project), and select Print Preview.

Figure 20-19

679

Graphics with GDI+

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 679

In Figure 20-19, we have scrolled to page 5 of the document, and set the preview to display normal size.
The PrintPreviewDialog has supplied quite a lot of features for us, as you can see by looking at the
toolbar at the top of the form. The options available include printing the document, zooming in or out,
and displaying two, three, four, or six pages together. These options are all fully functional, without our
having to do any work. Figure 20-20 shows the result of changing the zoom to auto and clicking to dis-
play four pages (third toolbar button from the right).

Figure 20-20

Summary
In this chapter, we’ve covered the area of drawing to a display device, where the drawing is done by your
code rather than by some predefined control or dialog box—the realm of GDI+. GDI+ is a powerful tool,
and there are many .NET base classes available to help you draw to a device. We’ve seen that the process of
drawing is actually relatively simple—in most cases you can draw text or sophisticated figures or display
images with just a couple of C# statements. However, managing your drawing—the behind-the-scenes
work involving working out what to draw, where to draw it, and what does or doesn’t need repainting in
any given situation—is far more complex and requires careful algorithm design. For this reason, it is also
important to have a good understanding of how GDI+ works, and what actions Windows takes in order to
get something drawn. In particular, because of the architecture of Windows, it is important that where pos-
sible drawing should be done by invalidating areas of the window and relying on Windows to respond by
issuing a Paint event.

680

Chapter 20

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 680

There are many more .NET classes for drawing than we’ve had space to cover in this chapter. However, if
you’ve worked through it and understood the principles involved in drawing, you’ll be in an excellent
position to explore them by looking at their lists of methods in the SDK documentation and instantiating
instances of them to see what they do. In the end, drawing, like almost any other aspect of programming,
requires logic, careful thought, and clear algorithms if you want to go beyond the standard controls. Your
software will benefit in both user-friendliness and visual appearance if it is well thought out. There are
many applications out there that rely entirely on controls for their user interface. While this can be effec-
tive, such applications very quickly end up resembling each other. By adding some GDI+ code to do some
custom drawing you can mark out your software as distinct and make it appear more original, which can
only help increase your sales!

681

Graphics with GDI+

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 681

24 557599 Ch20.qxd 4/29/04 11:39 AM Page 682

Part IV: Data

Chapter 21: Data Access with .NET

Chapter 22: Viewing .NET Data

Chapetr 23: Manipulating XML

Chapter 24: Working with Active Directory

25 557559 PP04.qxd 4/29/04 11:36 AM Page 683

25 557559 PP04.qxd 4/29/04 11:36 AM Page 684

Data Access with .NET

This chapter discusses how to get at data from your C# programs using ADO.NET and covers the
following details:

❑ Connecting to the database—We explain how to use the new SqlConnection and
OleDbConnection classes to connect to and disconnect from the database.

❑ Executing commands—ADO.NET has command objects, which can execute SQL com-
mands or issue a stored procedure with return values. We discuss the various command
object options and show how commands can be used for each of the options presented by
the Sql and OleDB classes.

❑ Stored procedures—We detail how to call stored procedures with command objects,
and how the results of those stored procedures can be integrated into the data cached
on the client.

❑ The ADO.NET object model—This is significantly different from the objects available with
ADO, and we discuss the DataSet, DataTable, DataRow, and DataColumn classes as
well as the relationships between tables and constraints that are part of DataSet.

❑ Using XML and XML schemas—We examine the XML framework on which ADO.NET
is built.

As is the case with the other chapters, you can download the code for the examples used in this
chapter from the Wrox Web site at www.wrox.com. Let’s begin with a brief tour of ADO.NET.

ADO.NET Overview
ADO.NET is more than just a thin veneer over some existing API. The similarity to ADO is fairly
minimal—the classes and methods of accessing data are completely different.

26 557599 Ch21.qxd 4/29/04 11:37 AM Page 685

ADO (ActiveX Data Objects) is a library of COM components that has had many incarnations over
the last few years. Currently at version 2.7, ADO consists primarily of the Connection, Command,
Recordset, and Field objects. Using ADO, a connection is opened to the database, some data is
selected into a record set consisting of fields, that data is then manipulated and updated on the server,
and the connection isclosed. ADO also introduced a so-called disconnected record set, which is used
when keeping the connection open for long periods of time is not desirable.

There were several problems that ADO did not address satisfactorily, most notably the unwieldiness (in
physical size) of a disconnected recordset. This support was more necessary than ever with the evolution
of Web-centric computing, so a fresh approach was required. There are a number of similarities between
ADO.NET programming and ADO (not only the name), so upgrading from ADO shouldn’t be too diffi-
cult. What’s more, if you’re using SQL Server, there’s a fantastic new set of managed classes that are
tuned to squeeze maximum performance out of the database. This alone should be reason enough to
migrate to ADO.NET.

ADO.NET ships with four database client namespaces: one for SQL Server, another for Oracle, the third
for ODBC datasources, and the fourth for any database exposed through OLEDB. If your database of
choice is not SQL Server or Oracle then the OLEDB route should be taken unless you have no other
choice than to use ODBC.

Namespaces
All of the examples in this chapter access data in one way or another. The following namespaces expose
the classes and interfaces used in .NET data access:

❑ System.Data—All generic data access classes

❑ System.Data.Common—Classes shared (or overridden) by individual data providers

❑ System.Data.Odbc—ODBC provider classes

❑ System.Data.OleDb—OLE DB provider classes

❑ System.Data.Oracle—Oracle provider classes

❑ System.Data.SqlClient—SQL Server provider classes

❑ System.Data.SqlTypes—SQL Server data types

The main classes in ADO.NET are listed in the following subsections.

Shared Classes
ADO.NET contains a number of classes that are used regardless of whether you are using the SQL
Server classes or the OLE DB classes.

The following classes are contained in the System.Data namespace:

❑ DataSet—This object is designed for disconnected use and can contain a set of DataTables
and include relationships between these tables.

❑ DataTable—A container of data that consists of one or more DataColumns and, when populated,
will have one or more DataRows containing data.

686

Chapter 21

26 557599 Ch21.qxd 4/29/04 11:37 AM Page 686

❑ DataRow—A number of values, akin to a row from a database table, or a row from a spreadsheet.

❑ DataColumn—This object contains the definition of a column, such as the name and data type.

❑ DataRelation—A link between two DataTable classes within a DataSet class. Used for foreign
key and master/detail relationships.

❑ Constraint—This class defines a rule for a DataColumn class (or set of data columns), such as
unique values.

The following classes can be found in the System.Data.Common namespace:

❑ DataColumnMapping—Maps the name of a column from the database with the name of a column
within a DataTable.

❑ DataTableMapping—Maps a table name from the database to a DataTable within a DataSet.

Database-Specific Classes
In addition to the shared classes introduced in the previous section, ADO.NET contains a number of
database-specific classes. These classes implement a set of standard interfaces defined within the
System.Data namespace, allowing the classes to be used in a generic manner if necessary. For example,
both the SqlConnection and OleDbConnection classes implement the IDbConnection interface.

❑ SqlCommand, OleDbCommand, OracleCommand, and ODBCCommand—Used as wrappers for SQL
statements or stored procedure calls.

❑ SqlCommandBuilder, OleDbCommandBuilder, OracleCommandBuilder, and
ODBCCommandBuilder—Used to generate SQL commands (such as INSERT, UPDATE, and
DELETE statements) from a SELECT statement.

❑ SqlConnection, OleDbConnection, OracleConnection, ODBCConnection—Used to connect
to the database. Similar to an ADO Connection.

❑ SqlDataAdapter, OleDbDataAdapter, OracleDataAdapter, ODBCDataAdapter—Used to
hold select, insert, update, and delete commands, which are then used to populate a DataSet
and update the Database.

❑ SqlDataReader, OleDbDataReader, OracleDataReader, ODBCDataReader—Used as a for-
ward only, connected data reader.

❑ SqlParameter, OleDbParameter, OracleParameter, ODBCParameter—Used to define a
parameter to a stored procedure.

❑ SqlTransaction, OleDbTransaction, OracleTransaction, ODBCTransaction—Used for a
database transaction, wrapped in an object.

As can be seen from the previous list, there are four classes for each type of object—one for each of the
providers that are part of .NET version 1.1. In the rest of this chapter, unless otherwise stated, the prefix
<provider> is used to indicate that the particular class used is dependant on the database provider in use.

The most important new feature of the ADO.NET classes is that they are designed to work in a discon-
nected manner, which is important in today’s highly Web-centric world. It is now common practice to
architect a service (such as an online bookshop) to connect to a server, retrieve some data, and then work

687

Data Access with .NET

26 557599 Ch21.qxd 4/29/04 11:37 AM Page 687

on that data on the client before reconnecting and passing the data back for processing. The discon-
nected nature of ADO.NET enables this type of behavior.

ADO 2.1 introduced the disconnected record set, which would permit data to be retrieved from a
database, passed to the client for processing, and then reattached to the server. This used to be cumber-
some to use, because disconnected behavior was not part of the original design. The ADO.NET classes
are different—in all but one case (the <provider>DataReader) they are designed for use offline from the
database.

The classes and interfaces used for data access in.NET Framework are introduced in the course of this
chapter. The focus is mainly on the SQL classes when connecting to the database, because the Framework
SDK samples install an MSDE database (SQL Server). In most cases the OleDb, Oracle and ODBC
classes mimic exactly the SQL code.

Using Database Connections
In order to access the database, you need to provide connection parameters, such as the machine that the
database is running on, and possibly your login credentials. Anyone who has worked with ADO will be
familiar with the .NET connection classes, OleDbConnection and SqlConnection. Figure 21-1 shows
the connection classes and the interfaces they support.

Figure 21-1

The examples in this chapter use the Northwind database, which is installed with the .NET Framework
SDK samples. The following code snippet illustrates how to create, open, and close a connection to the
Northwind database:

using System.Data.SqlClient;

string source = “server=(local)\\NetSDK;” +
“integrated security=SSPI;” +
“database=Northwind”;

SqlConnection conn = new SqlConnection(source);
conn.Open();

System.Data.IDbConnection System.Data.Odbc.OdbcConnection

System.Data.IDbConnection System.Data.OleDb.OleDbConnection

System.Data.IDbConnection System.Data.OracleClient.OracleConnection

System.Data.IDbConnection System.Data.SqlClient.SqlConnection

688

Chapter 21

26 557599 Ch21.qxd 4/29/04 11:37 AM Page 688

// Do something useful

conn.Close();

The connection string should be very familiar to you if you’ve used ADO or OLE DB before—indeed,
you should be able to cut and paste from your old code if you use the OleDb provider. In the example
connection string, the parameters used are as follows (the parameters are delimited by a semicolon in
the connection string):

❑ server=(local)\\NetSDK—This denotes the database server to connect to. SQL Server permits
a number of separate database server processes to be running on the same machine, so here we’re
connecting to the NetSDK processes on the local machine.

❑ integrated security=SSPI—This uses Windows Authentication to connect to the database,
which is highly recommended over using a username and password within the source code.

❑ database=Northwind—This describes the database instance to connect to; each SQL Server
process can expose several database instances.

The example opens a database connection using the defined connection string and then closes that con-
nection. Once the connection has been opened, you can issue commands against the data source, and
when you’re finished, the connection can be closed.

SQL Server has another mode of authentication—it can use Windows-integrated security, so that the cre-
dentials supplied at logon are passed to SQL Server. This is accomplished by removing the uid and pwd
portions of the connection string, and adding in Integrated Security=SSPI.

In the download code available for this chapter, you will find the file Login.cs that simplifies the examples
in this chapter. It is linked to all the example code, and includes database connection information used for
the examples; you can alter this to supply your own server name, user, and password as appropriate. This
by default uses Windows-integrated security; however, you can change the username and password as
appropriate.

The following subsections provide some best practices using ADO.NET.

Using Connections Efficiently
In general, when using scarce resources in .NET, such as database connections, windows, or graphics
objects, it is good practice to ensure that each resource is closed after use. Although the designers of
.NET have implemented automatic garbage collection, which will tidy up eventually, it is necessary to
release resources as early as possible to avoid starvation of resources.

This is all too apparent when writing code that accesses a database, bcause keeping a connection open
for slightly longer than necessary can affect other sessions. In extreme circumstances, not closing a con-
nection can lock other users out of an entire set of tables, considerably hurting application performance.
Closing database connections should be considered mandatory, so this section shows how to structure
your code so as to minimize the risk of leaving a resource open.

There are two main ways to ensure that database connections and the like are released after use.

689

Data Access with .NET

26 557599 Ch21.qxd 4/29/04 11:37 AM Page 689

Option One: try...catch...finally
The first option to ensure that resources are cleaned up is to use try...catch...finally blocks, and
ensure that you close any open connections within the finally block. Here’s a short example:

try
{

// Open the connection
conn.Open();
// Do something useful

}
catch (Exception ex)
{

// Do something about the exception
}
finally
{

// Ensure that the connection is freed
conn.Close () ;

}

Within the finally block you can release any resources you have used. The only trouble with this
method is that you have to ensure that you close the connection—it is all too easy to forget to add in the
finally clause, so something less prone to vagaries in coding style might be worthwhile.

Also, you might find that you open a number of resources (say two database connections and a file)
within a given method, so the cascading of try...catch...finally blocks can sometimes become less
easy to read. There is however another way to guarantee resource cleanup—the using statement.

Option Two: The using block statement
During development of C#, the debate on how .NET uses nondeterministic destruction became very
heated.

In C++, as soon as an object went out of scope, its destructor would be automatically called. This was
great news for designers of resource-based classes, because the destructor was the ideal place to close
the resource if the user had forgotten to do so. A C++ destructor is called whenever an object goes out
of scope—so for instance if an exception was raised and not caught, all destructors would be called.

With C# and the other managed languages, there is no concept of automatic, deterministic destruction.
Instead there is the garbage collector, which disposes of resources at some point in the future. What
makes this nondeterministic is that you have little say over when this process actually happens.
Forgetting to close a database connection could cause all sorts of problems for a .NET executable.
Luckily, help is at hand. The following code demonstrates how to use the using clause to ensure that
objects that implement the IDisposable interface (see Chapter 4) are cleared up immediately after the
block exits.

string source = “server=(local)\\NetSDK;” +
“integrated security=SSPI;” +
“database=Northwind”;

690

Chapter 21

26 557599 Ch21.qxd 4/29/04 11:37 AM Page 690

using (SqlConnection conn = new SqlConnection (source))
{

// Open the connection
conn.Open () ;

// Do something useful
}

In this instance, the using clause ensures that the database connection is closed, regardless of how the
block is exited.

Looking at the IL code for the Dispose() method of the connection classes , all of them check the cur-
rent state of the connection object, and if open will call the Close() method. A great tool for browsing
.NET assemblies is Reflector (available at /www.aisto.com/roeder/dotnet/). This tool permits you to
view the IL code for any .NET method, and will also reverse-engineer the IL into source code so you can
easily see what a given method is doing.

When programming, you should use at least one of these methods, and probably both. Wherever you
acquire resources it is good practice to use the using statement; even though we all mean to write the
Close() statement, sometimes we forget, and in the face of exceptions the using clause does the right
thing. There is no substitute for good exception handling either, so in most instances I would suggest
you use both methods together as in the following example:

try
{

using (SqlConnection conn = new SqlConnection (source))
{

// Open the connection
conn.Open () ;

// Do something useful

// Close it myself
conn.Close () ;

}
}
catch (Exception e)
{

// Do something with the exception here...
}

Note that we called Close() which isn’t strictly necessary, because the using clause will ensure that
this is done anyway. However, you should ensure that any resources such as this are released as soon
as possible—you might have more code in the rest of the block and there’s no point locking a resource
unnecessarily.

In addition, if an exception is raised within the using block, the IDisposable.Dispose method will be
called on the resource guarded by the using clause, which in this example ensures that the database
connection is always closed. This produces easier to read code than having to ensure you close a connec-
tion within an exception clause.

691

Data Access with .NET

26 557599 Ch21.qxd 4/29/04 11:37 AM Page 691

In conclusion, if you are writing a class that wraps a resource, whatever that resource may be, always
implement the IDisposable interface to close the resource. That way anyone coding with your class
can use the using() statement and guarantee that the resource will be cleared up.

Transactions
Often when there is more than one update to be made to the database, these updates must be performed
within the scope of a transaction. A transaction in ADO.NET is initiated by calling one of the
BeginTransaction() methods on the database connection object. These methods return an object that
implements the IDbTransaction interface, defined within System.Data.

The following sequence of code initiates a transaction on a SQL Server connection:

string source = “server=(local)\\NetSDK;” +
“integrated security=SSPI;” +
“database=Northwind”;

SqlConnection conn = new SqlConnection(source);
conn.Open();
SqlTransaction tx = conn.BeginTransaction();

// Execute some commands, then commit the transaction

tx.Commit();
conn.Close();

When you begin a transaction, you can choose the isolation level for commands executed within that
transaction. The level determines how changes made in one database session are viewed by another.
Not all database engines support all of the four levels presented in the following table.

Isolation Level Description

ReadCommitted The default for SQL Server. This level ensures that data written by one
transaction will only be accessible in a second transaction after the first
transaction commits.

ReadUncommitted This permits your transaction to read data within the database, even data
that has not yet been committed by another transaction. For example, if
two users were accessing the same database, and the first inserted some
data without concluding their transaction (by means of a Commit or
Rollback), then the second user with their isolation level set to ReadUn-
committed could read the data.

RepeatableRead This level, which extends the ReadCommitted level, ensures that if the
same statement is issued within the transaction, regardless of other poten-
tial updates made to the database, the same data will always be returned.
This level does require extra locks to be held on the data, which could
adversely affect performance.

This level guarantees that, for each row in the initial query, no changes
can be made to that data. It does, however, permit “phantom” rows to
show up—these are completely new rows that another transaction might
have inserted while your transaction is running.

692

Chapter 21

26 557599 Ch21.qxd 4/29/04 11:37 AM Page 692

Isolation Level Description

Serializable This is the most “exclusive” transaction level, which in effect serializes
access to data within the database. With this isolation level, phantom
rows can never show up, so a SQL statement issued within a serializable
transaction will always retrieve the same data. The negative performance
impact of a Serializable transaction should not be underestimated—if
you don’t absolutely need to use this level of isolation, stay away from it.

The SQL Server default isolation level, ReadCommitted, is a good compromise between data coherence
and data availability, because fewer locks are required on data than in RepeatableRead or Serializable
modes. However, there are situations where the isolation level should be increased, and so within .NET
you can simply begin a transaction with a different level from the default. There are no hard-and-fast rules
as to which levels to pick—that comes with experience.

If you are currently using a database that does not support transactions, it is well worth changing to a
database that does. Once I was working as a trusted employee, and had been given complete access to
the bug database. I typed in what I thought was delete from bug where id=99999, but in fact had typed a
< rather than an =. I deleted the entire database of bugs (except the one I wanted to!). Luckily for me our
I.S. team backed up the database on a nightly basis and we could restore this, but a rollback command
would have been much easier.

Commands
We briefly touched on the idea of issuing commands against a database in the “Using Database
Connections” section. A command is, in its simplest form, a string of text containing SQL statements that
is to be issued to the database. A command could also be a stored procedure, or the name of a table that
will return all columns and all rows from that table (in other words, a SELECT *-style clause).

A command can be constructed by passing the SQL clause as a parameter to the constructor of the
Command class, as shown in this example:

string source = “server=(local)\\NetSDK;” +
“integrated security=SSPI;” +
“database=Northwind”;

string select = “SELECT ContactName,CompanyName FROM Customers”;
SqlConnection conn = new SqlConnection(source);
conn.Open();

SqlCommand cmd = new SqlCommand(select, conn);

The <provider>Command classes have a property called CommandType, which is used to define
whether the command is a SQL clause, a call to a stored procedure, or a full table statement (which
simply selects all columns and rows from a given table). The following table summarizes the
CommandType enumeration:

693

Data Access with .NET

26 557599 Ch21.qxd 4/29/04 11:37 AM Page 693

CommandType Example

Text (default) String select = “SELECT ContactName FROM Customers”;

SqlCommand cmd = new SqlCommand(select , conn);

StoredProcedure SqlCommand cmd = new SqlCommand(“CustOrderHist”, conn);

cmd.CommandType = CommandType.StoredProcedure;

cmd.Parameters.Add(“@CustomerID”, “QUICK”);

TableDirect OleDbCommand cmd = new OleDbCommand(“Categories”, conn);

cmd.CommandType = CommandType.TableDirect;

When executing a stored procedure, it might be necessary to pass parameters to that procedure. The pre-
vious example sets the @CustomerID parameter directly, although there are other ways of setting the
parameter value, which we will look at later in the chapter.

The TableDirect command type is only valid for the OleDb provider; other providers will throw an
exception if you attempt to use this command type with them.

Executing Commands
After you have defined the command, you need to execute it. There are a number of ways to issue the
statement, depending on what you expect to be returned (if anything) from that command. The
<provider>Command classes provide the following execute methods:

❑ ExecuteNonQuery()—Executes the command but does not return any output

❑ ExecuteReader()—Executes the command and returns a typed IDataReader

❑ ExecuteScalar()—Executes the command and returns a single value

In addition to these methods, the SqlCommand class also exposes the following method

❑ ExecuteXmlReader()—Executes the command and returns an XmlReader object, which can
be used to traverse the XML fragment returned from the database.

As with the other chapters, you can download the sample code from the Wrox Web site at www.wrox.com.

ExecuteNonQuery()
This method is commonly used for UPDATE, INSERT, or DELETE statements, where the only returned
value is the number of records affected. This method can, however, return results if you call a stored
procedure that has output parameters.

using System;
using System.Data.SqlClient;
public class ExecuteNonQueryExample

694

Chapter 21

26 557599 Ch21.qxd 4/29/04 11:37 AM Page 694

{
public static void Main(string[] args)
{

string source = “server=(local)\\NetSDK;” +
“integrated security=SSPI;” +
“database=Northwind”;

string select = “UPDATE Customers “ +
“SET ContactName = ‘Bob’ “ +
“WHERE ContactName = ‘Bill’”;

SqlConnection conn = new SqlConnection(source);
conn.Open();
SqlCommand cmd = new SqlCommand(select, conn);
int rowsReturned = cmd.ExecuteNonQuery();
Console.WriteLine(“{0} rows returned.”, rowsReturned);
conn.Close();

}
}

ExecuteNonQuery() returns the number of rows affected by the command as an int.

ExecuteReader()
This method executes the command and returns a typed data reader object, depending on the provider
in use. The object returned can be used to iterate through the record(s) returned, as shown in the follow-
ing code:

using System;
using System.Data.SqlClient;
public class ExecuteReaderExample
{

public static void Main(string[] args)
{

string source = “server=(local)\\NetSDK;” +
“integrated security=SSPI;” +
“database=Northwind”;

string select = “SELECT ContactName,CompanyName FROM Customers”;
SqlConnection conn = new SqlConnection(source);
conn.Open();
SqlCommand cmd = new SqlCommand(select, conn);
SqlDataReader reader = cmd.ExecuteReader();
while(reader.Read())
{

Console.WriteLine(“Contact : {0,-20} Company : {1}” ,
reader[0] , reader[1]);

}
}

}

Figure 21-2 shows the output of this code.

695

Data Access with .NET

26 557599 Ch21.qxd 4/29/04 11:37 AM Page 695

Figure 21-2

The <provider>DataReader objects are discussed later in this chapter.

ExecuteScalar()
On many occasions it is necessary to return a single result from a SQL statement, such as the count of
records in a given table, or the current date/time on the server. The ExecuteScalar method can be
used in such situations:

using System;
using System.Data.SqlClient;
public class ExecuteScalarExample
{

public static void Main(string[] args)
{

string source = “server=(local)\\NetSDK;” +
“integrated security=SSPI;” +
“database=Northwind”;

string select = “SELECT COUNT(*) FROM Customers”;
SqlConnection conn = new SqlConnection(source);
conn.Open();
SqlCommand cmd = new SqlCommand(select, conn);
object o = cmd.ExecuteScalar();
Console.WriteLine (o) ;

}
}

The method returns an object, which you can cast in the appropriate type if required.

ExecuteXmlReader() (SqlClient Provider Only)
As its name implies, this method executes the command and returns an XmlReader object to the caller.
SQL Server permits a SQL SELECT statement to be extended with a FOR XML clause. This clause can take
one of three options:

❑ FOR XML AUTO—Builds a tree based on the tables in the FROM clause

❑ FOR XML RAW—Maps result set rows to elements, with columns mapped to attributes

❑ FOR XML EXPLICIT—Requires that you specify the shape of the XML tree to be returned

696

Chapter 21

26 557599 Ch21.qxd 4/29/04 11:37 AM Page 696

Professional SQL Server 2000 XML (Wrox Press, ISBN 1-861005-46-6) includes a complete description of
these options. For this example use AUTO:

using System;
using System.Data.SqlClient;
using System.Xml;
public class ExecuteXmlReaderExample
{

public static void Main(string[] args)
{

string source = “server=(local)\\NetSDK;” +
“integrated security=SSPI;” +
“database=Northwind”;

string select = “SELECT ContactName,CompanyName “ +
“FROM Customers FOR XML AUTO”;

SqlConnection conn = new SqlConnection(source);
conn.Open();
SqlCommand cmd = new SqlCommand(select, conn);
XmlReader xr = cmd.ExecuteXmlReader();
xr.Read();
string s;
do
{

s = xr.ReadOuterXml();
if (s!=””)

Console.WriteLine(s);
} while (s!= “”);
conn.Close();

}
}

Note that we have to import the System.Xml namespace in order to output the returned XML. This
namespace and further XML capabilities of .NET Framework are explored in more detail in Chapter 24.

Here we include the FOR XML AUTO clause in the SQL statement, then call the ExecuteXmlReader()
method. Figure 21-3 shows the output of this code.

Figure 21-3

697

Data Access with .NET

26 557599 Ch21.qxd 4/29/04 11:37 AM Page 697

In the SQL clause, we specified FROM Customers, so an element of type Customers is shown in the out-
put. To this are added attributes, one for each column selected from the database. This builds up an XML
fragment for each row selected from the database.

Calling Stored Procedures
Calling a stored procedure with a command object is just a matter of defining the name of the stored
procedure, adding a definition for each parameter of the procedure, then executing the command with
one of the methods presented in the previous section.

In order to make the examples in this section more useful, a set of stored procedures has been defined
that can be used to insert, update, and delete records from the Region table in the Northwind sample
database. Despite its small size this is a good candidate to choose for the example, as it can be used to
define examples for each of the types of stored procedures you will commonly write.

Calling a stored procedure that returns nothing
The simplest example of calling a stored procedure is one that returns nothing to the caller. There are
two such procedures defined in the following two subsections: one for updating a pre-existing Region
record and one for deleting a given Region record.

Record Update
Updating a Region record is fairly trivial, as there is only one column that can be modified (assuming
primary keys cannot be updated). You can type these examples directly into the SQL Server Query
Analyzer, or run the StoredProcs.sql file that is part of the downloadable code for this chapter. This file
installs each of the stored procedures in this section:

CREATE PROCEDURE RegionUpdate (@RegionID INTEGER,
@RegionDescription NCHAR(50)) AS

SET NOCOUNT OFF
UPDATE Region

SET RegionDescription = @RegionDescription
WHERE RegionID = @RegionID

GO

An update command on a more real-world table might need to re-select and return the updated record in
its entirety. This stored procedure takes two input parameters (@RegionID and @RegionDescription),
and issues an UPDATE statement against the database.

To run this stored procedure from within .NET code, you need to define a SQL command and execute it:

SqlCommand aCommand = new SqlCommand(“RegionUpdate”, conn);

aCommand.CommandType = CommandType.StoredProcedure;
aCommand.Parameters.Add(new SqlParameter (“@RegionID”,

SqlDbType.Int,
0,

“RegionID”));
aCommand.Parameters.Add(new SqlParameter(“@RegionDescription”,

SqlDbType.NChar,

698

Chapter 21

26 557599 Ch21.qxd 4/29/04 11:37 AM Page 698

50,
“RegionDescription”));

aCommand.UpdatedRowSource = UpdateRowSource.None;

This code creates a new SqlCommand object named aCommand, and defines it as a stored procedure. We
then add each parameter in turn, and finally set the expected output from the stored procedure to one of
the values in the UpdateRowSource enumeration, which is discussed later in this chapter.

The stored procedure takes two parameters: the unique primary key of the Region record being updated,
and the new description to be given to this record. After the command has been created, it can be exe-
cuted by issuing the following commands:

aCommand.Parameters[0].Value = 999;
aCommand.Parameters[1].Value = “South Western England”;
aCommand.ExecuteNonQuery();

Here the value of each parameter is set, then the stored procedure is executed. Because the procedure
returns nothing, ExecuteNonQuery() will suffice. Command parameters may be set by ordinal num-
bers (as shown in the previous example) or by name.

Record Deletion
The next stored procedure required is one that can be used to delete a Region record from the database:

CREATE PROCEDURE RegionDelete (@RegionID INTEGER) AS
SET NOCOUNT OFF
DELETE FROM Region
WHERE RegionID = @RegionID

GO

This procedure only requires the primary key value of the record. The code uses a SqlCommand object to
call this stored procedure as follows:

SqlCommand aCommand = new SqlCommand(“RegionDelete” , conn);
aCommand.CommandType = CommandType.StoredProcedure;
aCommand.Parameters.Add(new SqlParameter(“@RegionID” , SqlDbType.Int , 0 ,

“RegionID”));
aCommand.UpdatedRowSource = UpdateRowSource.None;

This command only accepts a single parameter as shown in the following code, which will execute the
RegionDelete stored procedure; here we see an example of setting the parameter by name:

aCommand.Parameters[“@RegionID”].Value= 999;
aCommand.ExecuteNonQuery();

Calling a stored procedure that returns output parameters
Both of the previous examples execute stored procedures that return nothing. If a stored procedure
includes output parameters, then these need to be defined within the .NET client so that they can be
filled when the procedure returns. The following example shows how to insert a record into the
database, and return the primary key of that record to the caller.

699

Data Access with .NET

26 557599 Ch21.qxd 4/29/04 11:37 AM Page 699

Record insertion
The Region table only consists of a primary key (RegionID) and description field (RegionDescription).
To insert a record, this numeric primary key needs to be generated, and then a new row needs to be
inserted into the database. The primary key generation in this example has been simplified by creating
one within the stored procedure. The method used is exceedingly crude, which is why we have a section
on key generation later in this chapter. For now this primitive example suffices:

CREATE PROCEDURE RegionInsert(@RegionDescription NCHAR(50),
@RegionID INTEGER OUTPUT)AS

SET NOCOUNT OFF
SELECT @RegionID = MAX(RegionID)+ 1
FROM Region
INSERT INTO Region(RegionID, RegionDescription)
VALUES(@RegionID, @RegionDescription)

GO

The insert procedure creates a new Region record. As the primary key value is generated by the database
itself, this value is returned as an output parameter from the procedure (@RegionID). This is sufficient
for this simple example, but for a more complex table (especially one with default values), it is more
common not to utilize output parameters, and instead select the entire inserted row and return this to
the caller. The .NET classes can cope with either scenario.

SqlCommand aCommand = new SqlCommand(“RegionInsert” , conn);
aCommand.CommandType = CommandType.StoredProcedure;
aCommand.Parameters.Add(new SqlParameter(“@RegionDescription” ,

SqlDbType.NChar ,
50 ,
“RegionDescription”));

aCommand.Parameters.Add(new SqlParameter(“@RegionID” ,
SqlDbType.Int,
0 ,
ParameterDirection.Output ,
false ,
0 ,
0 ,
“RegionID” ,
DataRowVersion.Default ,
null));

aCommand.UpdatedRowSource = UpdateRowSource.OutputParameters;

Here, the definition of the parameters is much more complex. The second parameter, @RegionID, is
defined to include its parameter direction, which in this example is Output. In addition to this flag, on the
last line of the code, the UpdateRowSource enumeration is used to indicate that data will be returned from
this stored procedure via output parameters. This flag is mainly used when issuing stored procedure calls
from a DataTable (which is discussed later in this chapter).

Calling this stored procedure is similar to the previous examples, except in this instance the output
parameter is read after executing the procedure:

aCommand.Parameters[“@RegionDescription”].Value = “South West”;
aCommand.ExecuteNonQuery();
int newRegionID = (int) aCommand.Parameters[“@RegionID”].Value;

700

Chapter 21

26 557599 Ch21.qxd 4/29/04 11:37 AM Page 700

After executing the command, the value of the @RegionID parameter is read and cast to an integer.

You might be wondering what to do if the stored procedure you call returns output parameters and a set of
rows. In this instance, define the parameters as appropriate, and rather than calling ExecuteNonQuery(),
call one of the other methods (such as ExecuteReader()) that will permit you to traverse any record(s)
returned.

Fast Data Access: The Data Reader
A data reader is the simplest and fastest way of selecting some data from a data source, but also the least
capable. You cannot directly instantiate a data reader object—an instance is returned from the appropriate
database’s command object (such as SqlCommand) after having called the ExecuteReader() method.

The following code demonstrates how to select data from the Customers table in the Northwind
database. The example connects to the database, selects a number of records, loops through these
selected records, and outputs them to the console.

This example utilizes the OLE DB provider as a brief respite from the SQL provider. In most cases the
classes have a one-to-one correspondence with their SqlClient cousins; for example, there is the
OleDbConnection object, which is similar to the SqlConnection object used in the previous examples.

To execute commands against an OLE DB data source, the OleDbCommand class is used. The following
code shows an example of executing a simple SQL statement and reading the records by returning an
OleDbDataReader object.

Note the second using directive below that makes available the OleDb classes:

using System;
using System.Data.OleDb;

All the data providers currently available are shipped within the same DLL, so it is only necessary to
reference the System.Data.dll assembly to import all classes used in this section:

public class DataReaderExample
{

public static void Main(string[] args)
{

string source = “Provider=SQLOLEDB;” +
“server=(local)\\NetSDK;” +
“integrated security=SSPI;” +
“database=northwind”;

string select = “SELECT ContactName,CompanyName FROM Customers”;
OleDbConnection conn = new OleDbConnection(source);
conn.Open();
OleDbCommand cmd = new OleDbCommand(select , conn);
OleDbDataReader aReader = cmd.ExecuteReader();
while(aReader.Read())

Console.WriteLine(“‘{0}’ from {1}” ,
aReader.GetString(0) , aReader.GetString(1));

701

Data Access with .NET

26 557599 Ch21.qxd 4/29/04 11:37 AM Page 701

aReader.Close();
conn.Close();

}
}

The preceding code includes many familiar aspects of C# already covered in this chapter. To compile the
example, issue the following command:

csc /t:exe /debug+ DataReaderExample.cs /r:System.Data.dll

The following code from the previous example creates a new OLE DB .NET database connection, based
on the source connection string:

OleDbConnection conn = new OleDbConnection(source);
conn.Open();
OleDbCommand cmd = new OleDbCommand(select, conn);

The third line creates a new OleDbCommand object, based on a particular SELECT statement, and the
database connection to be used when the command is executed. When you have a valid command, you
need to execute it, which returns an initialized OleDbDataReader:

OleDbDataReader aReader = cmd.ExecuteReader();

An OleDbDataReader is a forward-only “connected” cursor. In other words, you can only traverse
through the records returned in one direction, and the database connection used is kept open until the
data reader has been closed.

The OleDbDataReader class cannot be instantiated directly—it is always returned by a call to the
ExecuteReader() method of the OleDbCommand class. Once you have an open data reader, there are vari-
ous ways to access the data contained within the reader.

When the OleDbDataReader object is closed (via an explicit call to Close(), or the object being garbage
collected), the underlying connection may also be closed, depending on which of the ExecuteReader()
methods is called. If you call ExecuteReader() and pass CommandBehavior.CloseConnection, you
can force the connection to be closed when the reader is closed.

The OleDbDataReader class has an indexer that permits access (although not type-safe access) to any
field using the familiar array style syntax:

object o = aReader[0];
object o = aReader[“CategoryID”];

Assuming that the CategoryID field was the first in the SELECT statement used to populate the reader,
these two lines are functionally equivalent, although the second is slower than the first; to verify this a
test application was written that performed a million iterations of accessing the same column from an
open data reader, just to get some numbers that were big enough to read. You probably don’t read the
same column a million times in a tight loop, but every (micro) second counts, and you might as well
write code that is as close to optimal as possible.

An OleDbDataReader keeps the database connection open until explicitly closed.

702

Chapter 21

26 557599 Ch21.qxd 4/29/04 11:37 AM Page 702

As an aside, the numeric indexer took on average 0.09 seconds for the million accesses, and the textual
one 0.63 seconds. The reason for this difference is that the textual method looks up the column number
internally from the schema and then accesses it using its ordinal. If you know this information before-
hand you can do a better job of accessing the data.

So should you use the numeric indexer? Maybe, but there is a better way.

In addition to the indexers presented above, OleDbDataReader has a set of type-safe methods that can
be used to read columns. These are fairly self-explanatory, and all begin with Get. There are methods to
read most types of data, such as GetInt32, GetFloat, GetGuid, and so on.

The million iterations using GetInt32 took 0.06 seconds. The overhead in the numeric indexer is
incurred while getting the data type, calling the same code as GetInt32, then boxing (and in this
instance unboxing) an integer. So, if you know the schema beforehand, are willing to use cryptic num-
bers instead of column names, and you can be bothered to use a type-safe function for each and every
column access, you stand to gain somewhere in the region of a ten-fold speed increase over using a tex-
tual column name (when selecting those million copies of the same column).

Needless to say, there is a tradeoff between maintainability and speed. If you must use numeric index-
ers, define constants within class scope for each of the columns that you will be accessing. The code
above can be used to select data from any OLE DB database; however, there are a number of SQL
Server–specific classes that can be used with the obvious portability tradeoff.

The following example is the same as the above, except in this instance the OLE DB provider and all ref-
erences to OLE DB classes have been replaced with the SQL counterparts. The changes in the code from
the previous example have been highlighted. The example is in the 04_DataReaderSql directory:

using System;
using System.Data.SqlClient;
public class DataReaderSql
{

public static int Main(string[] args)
{

string source = “server=(local)\\NetSDK;” +
“integrated security=SSPI;” +
“database=northwind”;

string select = “SELECT ContactName,CompanyName FROM Customers”;
SqlConnection conn = new SqlConnection(source);
conn.Open();
SqlCommand cmd = new SqlCommand(select , conn);
SqlDataReader aReader = cmd.ExecuteReader();
while(aReader.Read())

Console.WriteLine(“‘{0}’ from {1}” , aReader.GetString(0) ,
aReader.GetString(1));

aReader.Close();
conn.Close();
return 0;

}
}

Notice the difference? If you’re typing this in, then do a global replace on OleDb with Sql, change the
data source string and recompile. It’s that easy!

703

Data Access with .NET

26 557599 Ch21.qxd 4/29/04 11:37 AM Page 703

The same performance tests were run on the indexers for the SQL provider, and this time the numeric
indexers were both exactly the same at 0.13 seconds for the million accesses, and the string-based
indexer ran at about 0.65 seconds. You would expect the native SQL Server provider to be faster than
going through OleDb, which up until this was tested under the release version of .NET it was. This
might be an anomaly due to the simplistic test approach we’ve been using (selecting the same value
1,000,000 times); a real-world test should show better performance from the managed SQL provider.

Managing Data and Relationships:
The DataSet Class

The DataSet class has been designed as an offline container of data. It has no notion of database connec-
tions. In fact, the data held within a DataSet doesn’t necessarily need to have come from a database—
it could just as easily be records from a CSV file, or points read from a measuring device.

A DataSet class consists of a set of data tables, each of which will have a set of data columns and data
rows (see Figure 21-4). In addition to defining the data, you can also define links between tables within
the DataSet class. One common scenario would be when defining a parent-child relationship (com-
monly known as master/detail). One record in a table (say Order) links to many records in another table
(say Order_Details). This relationship can be defined and navigated within the DataSet.

Figure 21-4

The following sections describe the classes that are used with a DataSet class.

Data Tables
A data table is very similar to a physical database table—it consists of a set of columns with particular
properties, and might have zero or more rows of data. A data table might also define a primary key,
which can be one or more columns, and might also contain constraints on columns. The generic term for
this information used throughout the rest of the chapter is schema.

DataTable

DataSet

DataRow

DataTable DataRow

704

Chapter 21

26 557599 Ch21.qxd 4/29/04 11:37 AM Page 704

There are several ways to define the schema for a particular data table (and indeed the DataSet class as
a whole). These are discussed after we introduce data columns and data rows. Figure 21-5 shows some
of the objects that are accessible through the data table:

Figure 21-5

A DataTable object (and also a DataColumn) can have an arbitrary number of extended properties asso-
ciated with it. This collection can be populated with any user-defined information pertaining to the object.
For example, a given column might have an input mask used to validate the contents of that column—a
typical example is the U.S. social security number. Extended properties are especially useful when the
data is constructed within a middle tier and returned to the client for some processing. You could, for
example, store validation criteria (such as min and max) for numeric columns in extended properties and
use this in the UI tier when validating user input.

When a data table has been populated—by selecting data from a database, reading data from a file, or
manually populating within code—the Rows collection will contain this retrieved data.

The Columns collection contains DataColumn instances that have been added to this table. These define
the schema of the data, such as the data type, nullability, default values, and so on. The Constraints
collection can be populated with either unique or primary key constraints.

One example of where the schema information for a data table is used is when displaying that data in a
DataGrid (which is discussed in Chapter 22). The DataGrid control uses properties such as the data
type of the column to decide what control to use for that column. A bit field within the database will be
displayed as a check box within the DataGrid. If a column is defined within the database schema as NOT
NULL, then this fact will be stored within the DataColumn so that it can be tested when the user attempts
to move off a row.

Data Columns
A DataColumn object defines properties of a column within the DataTable, such as the data type of that
column, whether the column is read-only, and various other facts. A column can be created in code, or it
can be automatically generated by the runtime.

DataTable

Columns DataColumn

Rows DataRows

Constraints Constraint

ExtendedProperties Object

705

Data Access with .NET

26 557599 Ch21.qxd 4/29/04 11:37 AM Page 705

When creating a column, it is also useful to give it a name; otherwise the runtime will generate a name
for you in the form Columnn where n is an incrementing number.

The data type of the column can be set either by supplying it in the constructor, or by setting the DataType
property. Once you have loaded data into a data table you cannot alter the type of a colum—you’ll just
receive an ArgumentException.

Data columns can be created to hold the following .NET Framework data types:

Boolean Decimal Int64 TimeSpan

Byte Double Sbyte UInt16

Char Int16 Single UInt32

DateTime Int32 String UInt64

Once created, the next thing to do with a DataColumn object is to set up other properties, such as the
nullability of the column or the default value. The following code fragment shows a few of the more
common options to set on a DataColumn object:

DataColumn customerID = new DataColumn(“CustomerID” , typeof(int));
customerID.AllowDBNull = false;
customerID.ReadOnly = false;
customerID.AutoIncrement = true;
customerID.AutoIncrementSeed = 1000;
DataColumn name = new DataColumn(“Name” , typeof(string));
name.AllowDBNull = false;
name.Unique = true;

The following tbale shows the properties that can be set on a DataColumn object:

Property Description

AllowDBNull If true, permits the column to be set to DBNull.

AutoIncrement Defines that this column value is automatically generated as an incre-
menting number.

AutoIncrementSeed Defines the initial seed value for an AutoIncrement column.

AutoIncrementStep Defines the step between automatically generated column values,
with a default of one.

Caption Can be used for displaying the name of the column on screen.

ColumnMapping Defines how a column is mapped into XML when a DataSet class is
saved by calling DataSet.WriteXml.

ColumnName The name of the column. This is auto-generated by the runtime if not
set in the constructor.

DataType Defines the System.Type value of the column.

706

Chapter 21

26 557599 Ch21.qxd 4/29/04 11:37 AM Page 706

Property Description

DefaultValue Can define a default value for a column.

Expression Defines the expression to be used in a computed column.

Data rows
This class makes up the other part of the DataTable class. The column within a data table are defined in
terms of the DataColumn class. The actual data within the table is accessed using the DataRow object.
The following example shows how to access rows within a data table. First, the connection details:

string source = “server=(local)\\NetSDK;” +
“uid=QSUser;pwd=QSPassword;” +
“database=northwind”;

string select = “SELECT ContactName,CompanyName FROM Customers”;
SqlConnection conn = new SqlConnection(source);

The following code introduces the SqlDataAdapter class, which is used to place data into a DataSet
class. SqlDataAdapter issues the SQL clause and fills a table in the DataSet class called Customers
with the output of the following query. (For more details on the SqlDataAdapter class see the section
“Populating a DataSet”.)

SqlDataAdapter da = new SqlDataAdapter(select, conn);
DataSet ds = new DataSet();
da.Fill(ds , “Customers”);

In the code below, you might notice the use of the DataRow indexer to access values from within that
row. The value for a given column can be retrieved using one of the several overloaded indexers. These
permit you to retrieve a value knowing the column number, name, or DataColumn:

foreach(DataRow row in ds.Tables[“Customers”].Rows)
Console.WriteLine(“‘{0}’ from {1}” , row[0] ,row[1]);

One of the most appealing aspects of DataRow is that it is versioned. This permits you to receive various
values for a given column in a particular row. The versions are described in the following table:

DataRow Version Value Description

Current The value existing at present within the column. If no edit has
occurred, this will be the same as the original value. If an edit (or
edits) have occurred, the value will be the last valid value entered.

Default The default value (in other words, any default set up for the column).

Original The value of the column when originally selected from the database.
If the DataRow’s AcceptChanges method is called, then this value
will update to the Current value.

Proposed When changes are in progress for a row, it is possible to retrieve this
modified value. If you call BeginEdit() on the row and make
changes, each column will have a proposed value until either
EndEdit() or CancelEdit() is called.

707

Data Access with .NET

26 557599 Ch21.qxd 4/29/04 11:37 AM Page 707

The version of a given column could be used in many ways. One example is when updating rows within
the database, in which instance it is common to issue a SQL statement such as the following:

UPDATE Products
SET Name = Column.Current
WHERE ProductID = xxx
AND Name = Column.Original;

Obviously this code would never compile, but it shows one use for original and current values of a col-
umn within a row.

To retrieve a versioned value from the DataRow indexer, use one of the indexer methods that accept a
DataRowVersion value as a parameter. The following snippet shows how to obtain all values of each
column in a DataTable object:

foreach (DataRow row in ds.Tables[“Customers”].Rows)
{

foreach (DataColumn dc in ds.Tables[“Customers”].Columns)
{

Console.WriteLine (“{0} Current = {1}” , dc.ColumnName ,
row[dc,DataRowVersion.Current]);

Console.WriteLine (“ Default = {0}” , row[dc,DataRowVersion.Default]);
Console.WriteLine (“ Original = {0}” , row[dc,DataRowVersion.Original]);

}
}

The whole row has a state flag called RowState, which can be used to determine what operation is
needed on the row when it is persisted back to the database. The RowState property is set to keep track
of all the changes made to the DataTable, such as adding new rows, deleting existing rows, and chang-
ing columns within the table. When the data is reconciled with the database, the row state flag is used to
determine what SQL operations should occur. The following table provides an overview of the flags that
are defined by the DataRowState enumeration.

DataRowState Value Description

Added Indicates that the row has been newly added to a DataTable’s Rows
collection. All rows created on the client are set to this value, and will
ultimately issue SQL INSERT statements when reconciled with the
database.

Deleted Indicates that the row has been marked as deleted from the DataTable
by means of the DataRow.Delete() method. The row still exists within
the DataTable, but will not normally be viewable on screen (unless a
DataView has been explicitly set up). DataViews will be discussed in
the next chapter. Rows marked as deleted in the DataTable will be
deleted from the database when reconciled.

Detached Indicates that a row is in this state immediately after it is created, and can
also be returned to this state by calling DataRow.Remove(). A detached
row is not considered to be part of any data table, and as such no SQL for
rows in this state will be issued.

708

Chapter 21

26 557599 Ch21.qxd 4/29/04 11:37 AM Page 708

DataRowState Value Description

Modified Indicates that a row will be Modified if the value in any column has
been changed.

Unchanged Indicates that the row has not been changed since the last call to
AcceptChanges().

The state of the row depends also on what methods have been called on the row. The AcceptChanges()
method is generally called after successfully updating the data source (that is, after persisting changes to
the database).

The most common way to alter data in a DataRow is to use the indexer; however, if you have a number
of changes to make you also need to consider the BeginEdit() and EndEdit() methods.

When an alteration is made to a column within a DataRow, the ColumnChanging event is raised on the
row’s DataTable. This permits you to override the ProposedValue property of the DataColumn-
ChangeEventArgs class, and change it as required. This is one way of performing some data validation
on column values. If you call BeginEdit() before making changes, the ColumnChanging event will not
be raised. This permits you to make multiple changes and then call EndEdit() to persist these changes.
If you want to revert to the original values, call CancelEdit().

A DataRow can be linked in some way to other rows of data. This permits the creation of navigable links
between rows, which is common in master/detail scenarios. The DataRow contains a GetChildRows()
method that will return an array of associated rows from another table in the same DataSet as the cur-
rent row. These are discussed in the “Data Relationships” section later in this chapter.

Schema generation
There are three ways to create the schema for a DataTable:

❑ Let the runtime do it for you.

❑ Write code to create the table(s).

❑ Use the XML schema generator.

Runtime schema generation
The DataRow example shown earlier presented the following code for selecting data from a database
and populating a DataSet class:

SqlDataAdapter da = new SqlDataAdapter(select , conn);
DataSet ds = new DataSet();
da.Fill(ds , “Customers”);

This is obviously easy to use, but it has a few drawbacks as well. For example, you have to make do with
the default column names, which might work for you, but in certain instances you might want to rename
a physical database column (say PKID) to something more user-friendly.

709

Data Access with .NET

26 557599 Ch21.qxd 4/29/04 11:37 AM Page 709

You could naturally alias columns within your SQL clause, as in SELECT PID AS PersonID FROM
PersonTable; I would always recommend not renaming columns within SQL, because a column only
really needs to have a “pretty” name onscreen.

Another potential problem with automated DataTable/DataColumn generation is that you have no
control over the column types that the runtime chooses for your data. It does a fairly good job of decid-
ing the correct data type for you, but as usual there are instances where you need more control. For
example, you might have defined an enumerated type for a given column, so as to simplify user code
written against your class. If you accept the default column types that the runtime generates, the column
will likely be an integer with a 32-bit range, as opposed to an enum with your predefined options.

Lastly, and probably most problematic, is that when using automated table generation, you have no
type-safe access to the data within the DataTable—you are at the mercy of indexers, which return
instances of object rather than derived data types. If you like sprinkling your code with typecast
expressions then skip the following sections.

Hand-coded schema
Generating the code to create a DataTable, replete with associated DataColumns is fairly easy. The exam-
ples within this section access the Products table from the Northwind database shown in Figure 21-6.

Figure 21-6

The following code manufactures a DataTable, which corresponds to the above schema (but doesn’t
cover the nullability of columns).

public static void ManufactureProductDataTable(DataSet ds)
{

DataTable products = new DataTable(“Products”);
products.Columns.Add(new DataColumn(“ProductID”, typeof(int)));
products.Columns.Add(new DataColumn(“ProductName”, typeof(string)));
products.Columns.Add(new DataColumn(“SupplierID”, typeof(int)));
products.Columns.Add(new DataColumn(“CategoryID”, typeof(int)));
products.Columns.Add(new DataColumn(“QuantityPerUnit”, typeof(string)));
products.Columns.Add(new DataColumn(“UnitPrice”, typeof(decimal)));
products.Columns.Add(new DataColumn(“UnitsInStock”, typeof(short)));
products.Columns.Add(new DataColumn(“UnitsOnOrder”, typeof(short)));
products.Columns.Add(new DataColumn(“ReorderLevel”, typeof(short)));
products.Columns.Add(new DataColumn(“Discontinued”, typeof(bool)));
ds.Tables.Add(products);

}

710

Chapter 21

26 557599 Ch21.qxd 4/29/04 11:37 AM Page 710

You can alter the code in the DataRow example to utilize this newly generated table definition as follows:

string source = “server=(local)\\NetSDK;” +
“integrated security=sspi;” +
“database=Northwind”;

string select = “SELECT * FROM Products”;
SqlConnection conn = new SqlConnection(source);
SqlDataAdapter cmd = new SqlDataAdapter(select, conn);
DataSet ds = new DataSet();
ManufactureProductDataTable(ds);
cmd.Fill(ds, “Products”);
foreach(DataRow row in ds.Tables[“Products”].Rows)

Console.WriteLine(“‘{0}’ from {1}”, row[0], row[1]);

The ManufactureProductDataTable() method creates a new DataTable, adds each column in turn,
and finally appends this to the list of tables within the DataSet. The DataSet has an indexer that takes
the name of the table and returns that DataTable to the caller.

The previous example is still not really type-safe, as indexers are being used on columns to retrieve the
data. What would be better is a class (or set of classes) derived from DataSet, DataTable, and DataRow
that define type-safe accessors for tables, rows, and columns. You can generate this code yourself; t’s not
particularly tedious and you end up with truly type-safe data access classes.

If you don’t like generating these type-safe classes yourself then help is at hand. .NET Framework
includes support for using XML schemas to define a DataSet class, a DataTable class, and the other
classes that have been described in this section. (For more details on this method see the section “XML
Schemas” later in this chapter.)

Data Relationships
When writing an application, it is often necessary to obtain and cache various tables of information. The
DataSet class is the container for this information. With regular OLE DB it was necessary to provide a
strange SQL dialect to enforce hierarchical data relationships, and the provider itself was not without its
own subtle quirks.

The DataSet class on the other hand has been designed from the start to establish relationships between
data tables with ease. The code in this section shows how to generate manually and populate two tables
with data. So, if you don’t have access to SQL Server or the NorthWind database, you can run this exam-
ple anyway.

DataSet ds = new DataSet(“Relationships”);
ds.Tables.Add(CreateBuildingTable());
ds.Tables.Add(CreateRoomTable());
ds.Relations.Add(“Rooms”,

ds.Tables[“Building”].Columns[“BuildingID”],
ds.Tables[“Room”].Columns[“BuildingID”]);

The tables used in this example are shown in Figure 21-7. They contain a primary key and name field,
with the Room table having BuildingID as a foreign key.

711

Data Access with .NET

26 557599 Ch21.qxd 4/29/04 11:37 AM Page 711

Figure 21-7

These tables have been kept deliberately simple. The following code shows how to iterate through the
rows in the Building table, and traverse the relationship to list all of the child rows from the room table.

foreach(DataRow theBuilding in ds.Tables[“Building”].Rows)
{

DataRow[] children = theBuilding.GetChildRows(“Rooms”);
int roomCount = children.Length;
Console.WriteLine(“Building {0} contains {1} room{2}”,

theBuilding[“Name”],
roomCount,
roomCount > 1 ? “s” : “”);

// Loop through the rooms
foreach(DataRow theRoom in children)

Console.WriteLine(“Room: {0}”, theRoom[“Name”]);
}

The key difference between the DataSet class and the old-style hierarchical Recordset object is in the
way the relationship is presented. In a hierarchical Recordset object, the relationship was presented as a
pseudo-column within the row. This column itself was a Recordset object that could be iterated through.
Under ADO.NET, however, a relationship is traversed simply by calling the GetChildRows() method:

DataRow[] children = theBuilding.GetChildRows(“Rooms”);

This method has a number of forms, but the simple example shown above just uses the name of the rela-
tionship to traverse between parent and child rows. It returns an array of rows that can be updated as
appropriate by using the indexers as shown in earlier examples.

What’s more interesting with data relationships is that they can be traversed both ways. Not only can
you go from a parent to the child rows, but you can also find a parent row (or rows) from a child record
simply by using the ParentRelations property on the DataTable class. This property returns a Data-
RelationCollection, which can be indexed using the [] array syntax (for example, ParentRelations-
[“Rooms”]), or as an alternative the GetParentRows() method can be called as shown below:

foreach(DataRow theRoom in ds.Tables[“Room”].Rows)
{

DataRow[] parents = theRoom.GetParentRows(“Rooms”);
foreach(DataRow theBuilding in parents)

Console.WriteLine(“Room {0} is contained in building {1}”,
theRoom[“Name”],
theBuilding[“Name”]);

}

There are two methods with various overrides available for retrieving the parent row(s):
GetParentRows() (which returns an array of zero or more rows) and GetParentRow() (which
retrieves a single parent row given a relationship).

712

Chapter 21

26 557599 Ch21.qxd 4/29/04 11:37 AM Page 712

Data Constraints
Changing the data type of columns created on the client is not the only thing a DataTable is good for.
ADO.NET permits you to create a set of constraints on a column (or columns), which are then used to
enforce rules within the data.

The following table lists the constraint types that are currently supported by the runtime, embodied as
classes in the System.Data namespace.

Constraint Description

ForeignKeyConstraint Enforces a link between two DataTables within a DataSet

UniqueConstraint Ensures that entries in a given column are unique

Setting a primary key
As is common for a table in a relational database, you can supply a primary key, which can be based on
one or more columns from the DataTable.

The following code creates a primary key for the Products table, whose schema we constructed by hand
earlier.

Note that a primary key on a table is just one form of constraint. When a primary key is added to a
DataTable, the runtime also generates a unique constraint over the key column(s). This is because there
isn’t actually a constraint type of PrimaryKey—a primary key is simply a unique constraint over one or
more columns.

public static void ManufacturePrimaryKey(DataTable dt)
{

DataColumn[] pk = new DataColumn[1];
pk[0] = dt.Columns[“ProductID”];
dt.PrimaryKey = pk;

}

Because a primary key can contain several columns, it is typed as an array of DataColumns. A table’s
primary key can be set to those columns simply by assigning an array of columns to the property.

To check the constraints for a table, you can iterate through the ConstraintCollection. For the auto-
generated constraint produced by the above code, the name of the constraint is Constraint1. That’s not
a very useful name, so to avoid this problem it is always best to create the constraint in code first, then
define which column(s) make up the primary key.

The following code names the constraint before creating the primary key:

DataColumn[] pk = new DataColumn[1];
pk[0] = dt.Columns[“ProductID”];
dt.Constraints.Add(new UniqueConstraint(“PK_Products”, pk[0]));
dt.PrimaryKey = pk;

Unique constraints can be applied to as many columns as you want.

713

Data Access with .NET

26 557599 Ch21.qxd 4/29/04 11:37 AM Page 713

Setting a foreign key
In addition to unique constraints, a DataTable class can also contain foreign key constraints. These are
primarily used to enforce master/detail relationships, but can also be used to replicate columns between
tables if you set the constraint up correctly. A master/detail relationship is one where there is commonly
one parent record (say an order) and many child records (order lines), linked by the primary key of the
parent record.

A foreign key constraint can only operate over tables within the same DataSet, so the following example
uses the Categories table from the Northwind database (shown in Figure 21-8), and assigns a constraint
between it and the Products table.

Figure 21-8

The first step is to generate a new data table for the Categories table.

DataTable categories = new DataTable(“Categories”);
categories.Columns.Add(new DataColumn(“CategoryID”, typeof(int)));
categories.Columns.Add(new DataColumn(“CategoryName”, typeof(string)));
categories.Columns.Add(new DataColumn(“Description”, typeof(string)));
categories.Constraints.Add(new UniqueConstraint(“PK_Categories”,

categories.Columns[“CategoryID”]));
categories.PrimaryKey = new DataColumn[1]

{categories.Columns[“CategoryID”]};

The last line of the previous code creates the primary key for the Categories table. The primary key in
this instance is a single column; however, it is possible to generate a key over multiple columns using
the array syntax shown.

Then the constraint can be created between the two tables:

DataColumn parent = ds.Tables[“Categories”].Columns[“CategoryID”];
DataColumn child = ds.Tables[“Products”].Columns[“CategoryID”];
ForeignKeyConstraint fk =

new ForeignKeyConstraint(“FK_Product_CategoryID”, parent, child);
fk.UpdateRule = Rule.Cascade;
fk.DeleteRule = Rule.SetNull;
ds.Tables[“Products”].Constraints.Add(fk);

This constraint applies to the link between Categories.CategoryID and Products.CategoryID.
There are four different ForeignKeyConstraint—use those that permit you to name the constraint.

714

Chapter 21

26 557599 Ch21.qxd 4/29/04 11:37 AM Page 714

Setting Update and Delete constraints
In addition to defining the fact that there is some type of constraint between parent and child tables, you
can define what should happen when a column in the constraint is updated.

The previous example sets the update rule and the delete rule. These rules are used when an action
occurs to a column (or row) within the parent table, and the rule is used to decide what should happen
to row(s) within the child table that could be affected. There are four different rules that can be applied
through the Rule enumeration:

❑ Cascade—If the parent key has been updated, then copy the new key value to all child records.
If the parent record has been deleted, delete the child records also. This is the default option.

❑ None—No action whatsoever. This option leaves orphaned rows within the child data table.

❑ SetDefault—Each child record affected has the foreign key column(s) set to its default value, if
one has been defined.

❑ SetNull—All child rows have the key column(s) set to DBNull. (Following the naming conven-
tion that Microsoft uses, this should really be SetDBNull).

This covers the main classes that make up the constituent parts of the DataSet class, and has shown
how to generate manually each of these classes in code. You can also define a DataTable, DataRow,
DataColumn, DataRelation, and Constraint using the XML schema file(s) and the XSD tool that
ships with .NET. The following section describes how to set up a simple schema and generate type-safe
classes to access your data.

XML Schemas
XML is firmly entrenched in ADO.NET—indeed, the remoting format for passing data between objects
is now XML. With the .NET runtime, it is possible to describe a DataTable class within an XML schema
definition file (XSD). What’s more, you can define an entire DataSet class, with a number of DataTable
classes, a set of relationships between these tables, and include various other details to fully describe
the data.

When you have defined an XSD file, there is a new tool in the runtime that will convert this schema to
the corresponding data access class(es), such as the type-safe product DataTable class shown above.
Let’s start with a simple XSD file (Products.xsd) that describes the same information as the Products
sample discussed earlier, and then extend it to include some extra functionality.

<?xml version=”1.0” encoding=”utf-8” ?>
<xs:schema id=”Products” targetNamespace=”http://tempuri.org/XMLSchema1.xsd”
xmlns:mstns=”http://tempuri.org/XMLSchema1.xsd”
xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns:msdata=”urn:schemas-microsoft-com:xml-msdata”>

Constraints are only enforced within a DataSet class if the EnforceConstraints
property of the DataSet is true.

715

Data Access with .NET

26 557599 Ch21.qxd 4/29/04 11:37 AM Page 715

<xs:element name=”Product”>
<xs:complexType>

<xs:sequence>
<xs:element name=”ProductID” msdata:ReadOnly=”true”

msdata:AutoIncrement=”true” type=”xs:int” />
<xs:element name=”ProductName” type=”xs:string” />
<xs:element name=”SupplierID” type=”xs:int” minOccurs=”0” />
<xs:element name=”CategoryID” type=”xs:int” minOccurs=”0” />
<xs:element name=”QuantityPerUnit” type=”xs:string” minOccurs=”0” />
<xs:element name=”UnitPrice” type=”xs:decimal” minOccurs=”0” />
<xs:element name=”UnitsInStock” type=”xs:short” minOccurs=”0” />
<xs:element name=”UnitsOnOrder” type=”xs:short” minOccurs=”0” />
<xs:element name=”ReorderLevel” type=”xs:short” minOccurs=”0” />
<xs:element name=”Discontinued” type=”xs:boolean” />

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

These options are covered in detail in Chapter 24; for now, this file basically defines a schema with the
id attribute set to Products. A complex type called Product is defined, which contains a number of
elements, one for each of the fields within the Products table.

These items map to data classes as follows. The Products schema maps to a class derived from DataSet.
The Product complex type maps to a class derived from DataTable. Each subelement maps to a class
derived from DataColumn. The collection of all columns maps to a class derived from DataRow.

Thankfully there is a tool within.NET Framework that produces the code for these classes with the help
of the input XSD file. Because its sole job in life is to perform various functions on XSD files, the tool
itself is called XSD.EXE.

Generating Code with XSD
Assuming you save the above file as Product.xsd, you would convert the file into code by issuing the
following command in a command prompt:

xsd Product.xsd /d

This creates the file Product.cs.

There are various switches that can be used with XSD to alter the output generated. Some of the more
commonly used are shown in the following table.

Switch Description

/dataset (/d) Enables you to generate classes derived from DataSet, Data-
Table, and DataRow.

/language:<language> Permits you to choose which language the output file will be writ-
ten in. C# is the default, but you can choose VB for a Visual Basic
.NET file.

716

Chapter 21

26 557599 Ch21.qxd 4/29/04 11:37 AM Page 716

Switch Description

/namespace:<namespace> Enables you to define the namespace that the generated code
should reside within. The default is no namespace.

An abridged version of the output from XSD for the Products schema is shown below. The output has
been altered slightly to fit into a format appropriate for the book. To see the complete output, run
XSD.EXE on the Products schema (or one of your own making) and take a look at the .cs file generated.
The example includes the entire source code plus the Product.xsd file. (Note this output is part of the
downloadable code file at www.wrox.xom)

//--
// <autogenerated>
// This code was generated by a tool.
// Runtime Version: 1.1.4322.573
//
// Changes to this file may cause incorrect behavior and will be lost if
// the code is regenerated.
// </autogenerated>
//--

//
// This source code was auto-generated by xsd, Version=1.1.4322.573.
//
using System;
using System.Data;
using System.Xml;
using System.Runtime.Serialization;

[Serializable()]
[System.ComponentModel.DesignerCategoryAttribute(“code”)]
[System.Diagnostics.DebuggerStepThrough()]
[System.ComponentModel.ToolboxItem(true)]
public class Products : DataSet
{

private ProductDataTable tableProduct;
public Products()
public ProductDataTable Product
public override DataSet Clone()
public delegate void ProductRowChangeEventHandler (object sender,

ProductRowChangeEvent e);

[System.Diagnostics.DebuggerStepThrough()]
public class ProductDataTable : DataTable, System.Collections.IEnumerable

[System.Diagnostics.DebuggerStepThrough()]
public class ProductRow : DataRow

}

All private and protected members have been removed from the above so as to concentrate on the public
interface. The emboldened ProductDataTable and ProductRow definitions show the positions of two
nested classes, which will be implemented next. We review the code for these classes after a brief expla-
nation of the DataSet-derived class.

717

Data Access with .NET

26 557599 Ch21.qxd 4/29/04 11:37 AM Page 717

The Products() constructor calls a private method, InitClass(), which constructs an instance of the
DataTable-derived class ProductDataTable, and adds the table to the Tables collection of the
DataSet class. The Products data table can be accessed by the following code:

DataSet ds = new Products();
DataTable products = ds.Tables[“Products”];

Or, more simply by using the property Product, available on the derived DataSet object:

DataTable products = ds.Product;

As the Product property is strongly typed, you could naturally use ProductDataTable rather than the
DataTable reference shown above.

The ProductDataTable class includes far more code:

[System.Diagnostics.DebuggerStepThrough()]
public class ProductDataTable : DataTable, System.Collections.IEnumerable
{

private DataColumn columnProductID;
private DataColumn columnProductName;
private DataColumn columnSupplierID;
private DataColumn columnCategoryID;
private DataColumn columnQuantityPerUnit;
private DataColumn columnUnitPrice;
private DataColumn columnUnitsInStock;
private DataColumn columnUnitsOnOrder;
private DataColumn columnReorderLevel;
private DataColumn columnDiscontinued;

internal ProductDataTable() : base(“Product”)
{

this.InitClass();
}

The ProductDataTable class, derived from DataTable and implementing the IEnumerable interface,
defines a private DataColumn instance for each of the columns within the table. These are initialized
again from the constructor by calling the private InitClass() member. Each column is given an inter-
nal accessor, which is used by the DataRow class (which we describe shortly).

[System.ComponentModel.Browsable(false)]
public int Count
{

get { return this.Rows.Count; }
}
internal DataColumn ProductIDColumn
{

get { return this.columnProductID; }
}
// Other row accessors removed for clarity -- there is one for each of the columns

Adding rows to the table is taken care of by the two overloaded (and significantly different)
AddProductRow() methods. The first takes an already constructed DataRow and returns a void.

718

Chapter 21

26 557599 Ch21.qxd 4/29/04 11:37 AM Page 718

The second takes a set of values, one for each of the columns in the DataTable, constructs a new row,
sets the values within this new row, adds the row to the DataTable object and returns the row to the
caller. Such widely different functions shouldn’t really have the same name!

public void AddProductRow(ProductRow row)
{

this.Rows.Add(row);
}

public ProductRow AddProductRow (string ProductName , int SupplierID ,
int CategoryID , string QuantityPerUnit ,
System.Decimal UnitPrice , short UnitsInStock ,
short UnitsOnOrder , short ReorderLevel ,
bool Discontinued)

{
ProductRow rowProductRow = ((ProductRow)(this.NewRow()));
rowProductRow.ItemArray = new object[]
{

null,
ProductName,
SupplierID,
CategoryID,
QuantityPerUnit,
UnitPrice,
UnitsInStock,
UnitsOnOrder,
ReorderLevel,
Discontinued

};
this.Rows.Add(rowProductRow);
return rowProductRow;

}

Just like the InitClass() member in the DataSet-derived class, which added the table into the DataSet
class, the InitClass() member in ProductDataTable adds columns to the DataTable class. Each col-
umn’s properties are set as appropriate, and the column is then appended to the columns collection.

private void InitClass()
{

this.columnProductID = new DataColumn (“ProductID”,
typeof(int),
null,
System.Data.MappingType.Element);

this.Columns.Add(this.columnProductID);
// Other columns removed for clarity

this.columnProductID.AutoIncrement = true;
this.columnProductID.AllowDBNull = false;
this.columnProductID.ReadOnly = true;
this.columnProductName.AllowDBNull = false;
this.columnDiscontinued.AllowDBNull = false;

}

public ProductRow NewProductRow()

719

Data Access with .NET

26 557599 Ch21.qxd 4/29/04 11:37 AM Page 719

{
return ((ProductRow)(this.NewRow()));

}

NewRowFromBuilder() is called internally from the DataTableclass’s NewRow() method. Here it cre-
ates a new strongly typed row. The DataRowBuilder instance is created by the DataTable class, and its
members are only accessible within the System.Data assembly.

protected override DataRow NewRowFromBuilder(DataRowBuilder builder)
{

return new ProductRow(builder);
}

The last class to discuss is the ProductRow class, derived from DataRow. This class is used to provide
type-safe access to all fields in the data table. It wraps the storage for a particular row, and provides
members to read (and write) each of the fields in the table.

In addition, for each nullable field, there are functions to set the field to null, and check if the field is
null. The following example shows the functions for the SupplierID column:

[System.Diagnostics.DebuggerStepThrough()]
public class ProductRow : DataRow
{

private ProductDataTable tableProduct;

internal ProductRow(DataRowBuilder rb) : base(rb)
{

this.tableProduct = ((ProductDataTable)(this.Table));
}

public int ProductID
{

get { return ((int)(this[this.tableProduct.ProductIDColumn])); }
set { this[this.tableProduct.ProductIDColumn] = value; }

}
// Other column accessors/mutators removed for clarity

public bool IsSupplierIDNull()
{

return this.IsNull(this.tableProduct.SupplierIDColumn);
}

public void SetSupplierIDNull()
{

this[this.tableProduct.SupplierIDColumn] = System.Convert.DBNull;
}

}

The following code utilizes the class’ ouptut from the XSD tool to retrieve data from the Products table
and display that data to the console:

720

Chapter 21

26 557599 Ch21.qxd 4/29/04 11:37 AM Page 720

using System;
using System.Data;
using System.Data.SqlClient;

public class XSD_DataSet
{

public static void Main()
{

string source = “server=(local)\\NetSDK;” +
“uid=QSUser;pwd=QSPassword;” +
“database=northwind”;

string select = “SELECT * FROM Products”;
SqlConnection conn = new SqlConnection(source);
SqlDataAdapter da = new SqlDataAdapter(select , conn);
Products ds = new Products();
da.Fill(ds , “Product”);
foreach(Products.ProductRow row in ds.Product)
Console.WriteLine(“‘{0}’ from {1}” ,

row.ProductID ,
row.ProductName);

}
}

The main areas of interest are highlighted. The output of the XSD file contains a class derived from
DataSet, Products, which is created and then filled by the use of the data adapter. The foreach state-
ment uses the strongly typed ProductRow and also the Product property, which returns the Product
data table.

To compile this example, issue the following commands:

xsd product.xsd /d

and

csc /recurse:*.cs

The first generates the Products.cs file from the Products.XSD schema, and then the csc command utilizes
the /recurse:*.cs parameter to go through all files with the extension .cs and add these to the resulting
assembly.

Populating a DataSet
After you have defined the schema of your data set, replete with DataTable, DataColumn, and
Constraint classes, and whatever else is necessary, you need to be able to populate the DataSet
class with some information. There are two main ways to read data from an external source and insert
it into the DataSet class:

❑ Use a data adapter.

❑ Read XML into the DataSet class.

721

Data Access with .NET

26 557599 Ch21.qxd 4/29/04 11:37 AM Page 721

Populating a DataSet Class with a Data Adapter
The section on data rows briefly introduced the SqlDataAdapter class, as shown in the following code:

string select = “SELECT ContactName,CompanyName FROM Customers”;
SqlConnection conn = new SqlConnection(source);
SqlDataAdapter da = new SqlDataAdapter(select , conn);
DataSet ds = new DataSet();
da.Fill(ds , “Customers”);

The two highlighted lines show the SqlDataAdapter class in use; the other data adapter classes are
again virtually identical in functionality to the Sql equivalent.

The adapter classes are all derived from a common base class rather than a set of interfaces, as are most
of the other database-specific classes. Here is the inheritance hierarchy:

System.Data.Common.DataAdapter
System.Data.Common.DbDataAdapter

System.Data.Odbc.OdbcDataAdapter
System.Data.OleDb.OleDbDataAdapter
System.Data.OracleClient.OracleDataAdapter
System.Data.SqlClient.SqlDataAdapter

In order to retrieve data into a DataSet, it is necessary to have some form of command that is executed to
select that data. The command in question could be a SQL SELECT statement, a call to a stored procedure,
or for the OLE DB provider, a TableDirect command. The previous example uses one of the construc-
tors available on SqlDataAdapter that converts the passed SQL SELECT statement into a SqlCommand,
and issues this when the Fill() method is called on the adapter.

In the stored procedures example earlier in this chapter, the INSERT, UPDATE and DELETE procedures
were defined but the SELECT procedure was not. That gap is filled in the next section, which also shows
how to call a stored procedure from a SqlDataAdapter class to populate data in a DataSet class.

Using a stored procedure in a data adapter
The first step in this example is to define the stored procedure. The stored procedure to SELECT data is
as follows:

CREATE PROCEDURE RegionSelect AS
SET NOCOUNT OFF
SELECT * FROM Region

GO

This stored procedure can be typed directly into the SQL Server Query Analyzer, or you can run the
StoredProc.sql file that is provided for use by this example.

Next, the SqlCommand that executes this stored procedure needs to be defined. Again the code is very
simple, and most of it was already presented in the earlier section on issuing commands:

private static SqlCommand GenerateSelectCommand(SqlConnection conn)
{

SqlCommand aCommand = new SqlCommand(“RegionSelect” , conn);

722

Chapter 21

26 557599 Ch21.qxd 4/29/04 11:37 AM Page 722

aCommand.CommandType = CommandType.StoredProcedure;
aCommand.UpdatedRowSource = UpdateRowSource.None;
return aCommand;

}

This method generates the SqlCommand that calls the RegionSelect procedure when executed. All that
remains is to hook up this command to a SqlDataAdapter class, and call the Fill() method:

DataSet ds = new DataSet();
// Create a data adapter to fill the DataSet
SqlDataAdapter da = new SqlDataAdapter();
// Set the data adapter’s select command
da.SelectCommand = GenerateSelectCommand (conn);
da.Fill(ds , “Region”);

Here the SqlDataAdapter class, is created, and the generated SqlCommand is then assigned to the
SelectCommand property of the data adapter. Subsequently Fill() is called, which will execute the
stored procedure and insert all rows returned into the Region DataTable (which in this instance is
generated by the runtime).

There’s more to a data adapter than just selecting data by issuing a command, as discussed in the section
“Persisting DataSet Changes”.

Populating a DataSet from XML
In addition to generating the schema for a given DataSet and associated tables and so on, a DataSet
class can read and write data in native XML, such as a file on disk, a stream, or a text reader.

To load XML into a DataSet class, simply call one of the ReadXML() methods to read data from a disk
file, as shown in this example:

DataSet ds = new DataSet();
ds.ReadXml(“.\\MyData.xml”);

The ReadXml() method attempts to load any inline schema information from the input XML, and if found,
uses this schema in the validation of any data loaded from that file. If no inline schema is found then the
DataSet will extend its internal structure as data is loaded. This is similar to the behavior of Fill() in the
previous example, which retrieves the data and constructs a DataTable based on the data selected.

Persisting DataSet Changes
After editing data within a DataSet, it is usually necessary to persist these changes. The most common
example would be selecting data from a database, displaying it to the user, and returning those updates
to the database.

In a less “connected” application, changes might be persisted to an XML file, transported to a middle-tier
application server, and then processed to update several data sources.

A DataSet class can be used for either of these examples, and what’s more it’s really easy to do.

723

Data Access with .NET

26 557599 Ch21.qxd 4/29/04 11:37 AM Page 723

Updating with Data Adapters
In addition to the SelectCommand that an SqlDataAdapter most likely includes, you can also define
an InsertCommand, UpdateCommand, and DeleteCommand. As these names imply, these objects are
instances of the command object appropriate for your provider such as SqlCommand and OleDbCommand).

With this level of flexibility, you are free to tune the application by judicious use of stored procedures for
frequently used commands (say SELECT and INSERT), and use straight SQL for less commonly used
commands such as DELETE. In general it is recommended to provide stored procedures for all database
interaction, because it is faster and easier to tune.

This example uses the stored procedure code from the “Calling Stored Procedures” section for inserting,
updating, and deleting Region records, coupled with the RegionSelect procedure written above,
which produces an example that utilizes each of these commands to retrieve and update data in a
DataSet class. The main body of code is shown in the following section.

Inserting a new row
There are two ways to add a new row to a DataTable. The first way is to call the NewRow() method,
which returns a blank row that you then populate and add to the Rows collection, as follows:

DataRow r = ds.Tables[“Region”].NewRow();
r[“RegionID”]=999;
r[“RegionDescription”]=”North West”;
ds.Tables[“Region”].Rows.Add(r);

The second way to add a new row would be to pass an array of data to the Rows.Add() method as shown
in the following code:

DataRow r = ds.Tables[“Region”].Rows.Add
(new object [] { 999 , “North West” });

Each new row within the DataTable will have its RowState set to Added. The example dumps out the
records before each change is made to the database, so after adding the following row (either way) to the
DataTable, the rows will look something like the following. Note that the right-hand column shows the
row state.

New row pending inserting into database
1 Eastern Unchanged
2 Western Unchanged
3 Northern Unchanged
4 Southern Unchanged
999 North West Added

To update the database from the DataAdapter, call one of the Update() methods as shown below:

da.Update(ds , “Region”);

724

Chapter 21

26 557599 Ch21.qxd 4/29/04 11:37 AM Page 724

For the new row within the DataTable, this executes the stored procedure (in this instance
RegionInsert). The example then dumps the state of the data so you can see that changes have been
made to the database.

New row updated and new RegionID assigned by database
1 Eastern Unchanged
2 Western Unchanged
3 Northern Unchanged
4 Southern Unchanged
5 North West Unchanged

Look at the last row in the DataTable. The RegionID had been set in code to 999, but after executing
the RegionInsert stored procedure the value has been changed to 5. This is intentional—the database
will often generate primary keys for you, and the updated data in the DataTable is due to the fact that
the SqlCommand definition within our source code has the UpdatedRowSource property set to
UpdateRowSource.OutputParameters:

SqlCommand aCommand = new SqlCommand(“RegionInsert” , conn);

aCommand.CommandType = CommandType.StoredProcedure;
aCommand.Parameters.Add(new SqlParameter(“@RegionDescription” ,

SqlDbType.NChar ,
50 ,
“RegionDescription”));

aCommand.Parameters.Add(new SqlParameter(“@RegionID” ,
SqlDbType.Int,
0 ,
ParameterDirection.Output ,
false ,
0 ,
0 ,
“RegionID” , // Defines the SOURCE column
DataRowVersion.Default ,
null));

aCommand.UpdatedRowSource = UpdateRowSource.OutputParameters;

What this means is that whenever a data adapter issues this command, the output parameters should be
mapped to the source of the row, which in this instance was a row in a DataTable. The flag states what
data should be updated—the stored procedure has an output parameter that is mapped to the DataRow.
The column it applies to is RegionID, as this is defined within the command definition.

The following table shows the values for UpdateRowSource.

UpdateRowSource Value Description

Both A stored procedure might return output parameters and also a
complete database record. Both of these data sources are used to
update the source row.

725

Data Access with .NET

Table continued on following page

26 557599 Ch21.qxd 4/29/04 11:37 AM Page 725

UpdateRowSource Value Description

FirstReturnedRecord This infers that the command returns a single record, and that the
contents of that record should be merged into the original source
DataRow. This is useful where a given table has a number of
default (or computed) columns, as after an INSERT statement these
need to be synchronized with the DataRow on the client. An exam-
ple might be ‘INSERT (columns) INTO (table) WITH (primarykey)’,
then ‘SELECT (columns) FROM (table) WHERE (primarykey)’. The
returned record would then be merged into the original row.

None All data returned from the command is discarded.

OutputParameters Any output parameters from the command are mapped onto the
appropriate column(s) in the DataRow.

Updating an existing row
Updating an existing row within the DataTable is just a case of utilizing the DataRow class’s indexer
with either a column name or column number, as shown in the following code:

r[“RegionDescription”]=”North West England”;
r[1] = “North East England”;

Both of these statements are equivalent (in this example):

Changed RegionID 5 description
1 Eastern Unchanged
2 Western Unchanged
3 Northern Unchanged
4 Southern Unchanged
5 North West England Modified

Prior to updating the database, the row updated has its state set to Modified as shown above.

Deleting a row
Deleting a row is a matter of calling the Delete() method:

r.Delete();

A deleted row has its row state set to Deleted, but you cannot read columns from the deleted DataRow,
because they are no longer valid. When the adaptor’s Update() method is called, all deleted rows will
use the DeleteCommand, which in this instance executes the RegionDelete stored procedure.

Writing XML Output
As you have seen already, the DataSet class has great support for defining its schema in XML, and just
like you can read data from an XML document, you can also write data to an XML document.

726

Chapter 21

26 557599 Ch21.qxd 4/29/04 11:37 AM Page 726

The DataSet.WriteXml() method enables you to output various parts of the data stored within the
DataSet. You can elect to output just the data, or the data and the schema. The following code shows an
example of both for the Region example shown above:

ds.WriteXml(“.\\WithoutSchema.xml”);
ds.WriteXml(“.\\WithSchema.xml” , XmlWriteMode.WriteSchema);

The first file, WithoutSchema.xml is shown below:

<?xml version=”1.0” standalone=”yes”?>
<NewDataSet>

<Region>
<RegionID>1</RegionID>
<RegionDescription>Eastern </RegionDescription>

</Region>
<Region>

<RegionID>2</RegionID>
<RegionDescription>Western </RegionDescription>

</Region>
<Region>

<RegionID>3</RegionID>
<RegionDescription>Northern </RegionDescription>

</Region>
<Region>

<RegionID>4</RegionID>
<RegionDescription>Southern </RegionDescription>

</Region>
</NewDataSet>

The closing tag on RegionDescription is over to the right of the page, because the database column is
defined as NCHAR(50), which is a 50 character string padded with spaces.

The output produced in the WithSchema.xml file includes the XML schema for the DataSet as well as
the data itself:

<?xml version=”1.0” standalone=”yes”?>
<NewDataSet>

<xs:schema id=”NewDataSet” xmlns=””
xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns:msdata=”urn:schemas-microsoft-com:xml-msdata”>

<xs:element name=”NewDataSet” msdata:IsDataSet=”true”>
<xs:complexType>

<xs:choice maxOccurs=”unbounded”>
<xs:element name=”Region”>

<xs:complexType>
<xs:sequence>

<xs:element name=”RegionID”
msdata:AutoIncrement=”true”
msdata:AutoIncrementSeed=”1”
type=”xs:int” />

<xs:element name=”RegionDescription”
type=”xs:string” />

</xs:sequence>

727

Data Access with .NET

26 557599 Ch21.qxd 4/29/04 11:37 AM Page 727

</xs:complexType>
</xs:element>

</xs:choice>
</xs:complexType>

</xs:element>
</xs:schema>
<Region>

<RegionID>1</RegionID>
<RegionDescription>Eastern </RegionDescription>

</Region>
<Region>

<RegionID>2</RegionID>
<RegionDescription>Western </RegionDescription>

</Region>
<Region>

<RegionID>3</RegionID>
<RegionDescription>Northern </RegionDescription>

</Region>
<Region>

<RegionID>4</RegionID>
<RegionDescription>Southern </RegionDescription>

</Region>
</NewDataSet>

Note the use in this file of the msdata schema, which defines extra attributes for columns within a
DataSet, such as AutoIncrement and AutoIncrementSeed—these attributes correspond directly with
the properties definable on a DataColumn class.

Working with ADO.NET
In this section we address some common scenarios when developing data access applications with
ADO.NET.

Tiered Development
Producing an application that interacts with data is often done by splitting up the application into tiers.
A common model is to have an application tier (the front end), a data services tier, and the database itself.

One of the difficulties with this model is deciding what data to transport between tiers, and the format
that it should be transported in. With ADO.NET you’ll be pleased to learn that these wrinkles have been
ironed out, and support for this style of architecture is part of the design.

Copying and merging data
Ever tried copying an entire OLE DB record set? In .NET it’s easy to copy a DataSet:

DataSet source = {some dataset};
DataSet dest = source.Copy();

728

Chapter 21

26 557599 Ch21.qxd 4/29/04 11:37 AM Page 728

This creates an exact copy of the source DataSet—each DataTable, DataColumn, DataRow, and
Relation will be copied, and all data will be in exactly the same state as it was in the source. If all you
want to copy is the schema of the DataSet, you can use the following code:

DataSet source = {some dataset};
DataSet dest = source.Clone();

This again copies all tables, relations, and so on. However, each copied DataTable will be empty. This
process really couldn’t be more straightforward.

A common requirement when writing a tiered system, whether based on Win32 or the Web, is to be able
to ship as little data as possible between tiers. This reduces the amount of resources consumed.

To cope with this requirement, the DataSet class has the GetChanges() method. This simple method per-
forms a huge amount of work, and returns a DataSet with only the changed rows from the source data
set. This is ideal for passing data between tiers, because only a minimal set of data has to be passed along.

The following example shows how to generate a “changes” DataSet:

DataSet source = {some dataset};
DataSet dest = source.GetChanges();

Again, this is trivial. Under the hood, things are a little more interesting. There are two overloads of the
GetChanges() method. One overload takes a value of the DataRowState enumeration, and returns
only rows that correspond to that state (or states). GetChanges() simply calls GetChanges(Deleted |
Modified | Added), and first checks to ensure that there are some changes by calling HasChanges(). If
no changes have been made, then null is returned to the caller immediately.

The next operation is to clone the current DataSet. Once done, the new DataSet is set up to ignore con-
straint violations (EnforceConstraints = false), and then each changed row for every table is copied
into the new DataSet.

When you have a DataSet that just contains changes, you can then move these off to the data services
tier for processing. After the data has been updated in the database, the “changes” DataSet can be
returned to the caller (for example, there might be some output parameters from the stored procedures
that have updated values in the columns). These changes can then be merged into the original DataSet
using the Merge() method. Figure 21-9 depicts this sequence of operations.

Figure 21-9

Client Tier Data Services Tier

DataSet

Changes

Merge

Update

New DataDataSet

Database Tier

729

Data Access with .NET

26 557599 Ch21.qxd 4/29/04 11:37 AM Page 729

Key Generation with SQL Server
The RegionInsert stored procedure presented earlier in this chapter is one example of generating a
primary key value on insertion into the database. The method for generating the key in this particular
example is fairly crude and wouldn’t scale well, so for a real application you should use some other
strategy for generating keys.

Your first instinct might be to define an identity column, and return the @@IDENTITY value from the
stored procedure. The following stored procedure shows how this might be defined for the Categories
table in the Northwind example database. Type this stored procedure into SQL Query Analyzer, or run
the StoredProcs.sql file that is part of the code download.

CREATE PROCEDURE CategoryInsert(@CategoryName NVARCHAR(15),
@Description NTEXT,
@CategoryID INTEGER OUTPUT) AS

SET NOCOUNT OFF
INSERT INTO Categories (CategoryName, Description)

VALUES(@CategoryName, @Description)
SELECT @CategoryID = @@IDENTITY

GO

This inserts a new row into the Category table, and returns the generated primary key to the caller (the
value of the CategoryID column). You can test the procedure by typing in the following SQL in Query
Analyzer:

DECLARE @CatID int;
EXECUTE CategoryInsert ‘Pasties’ , ‘Heaven Sent Food’ , @CatID OUTPUT;
PRINT @CatID;

When executed as a batch of commands, this inserts a new row into the Categories table, and returns the
identity of the new record, which is then displayed to the user.

Let’s say that some months down the line, someone decides to add a simple audit trail, which will
record all insertions and modifications made to the category name. In that case, you define a table simi-
lar to the one shown in Figure 21-10, which will record the old and new value of the category.

Figure 21-10

The script for this table is included in the StoredProcs.sql file. The AuditID column is defined as an
IDENTITY column. You then construct a couple of database triggers that will record changes to the
CategoryName field:

730

Chapter 21

26 557599 Ch21.qxd 4/29/04 11:37 AM Page 730

CREATE TRIGGER CategoryInsertTrigger
ON Categories
AFTER UPDATE

AS
INSERT INTO CategoryAudit(CategoryID , OldName , NewName)

SELECT old.CategoryID, old.CategoryName, new.CategoryName
FROM Deleted AS old,

Categories AS new
WHERE old.CategoryID = new.CategoryID;

GO

For those of you used to Oracle stored procedures, SQL Server doesn’t exactly have the concept of OLD
and NEW rows, instead for an insert trigger there is an in memory table called Inserted, and for deletes
and updates the old rows are available within the Deleted table.

This trigger retrieves the CategoryID of the record(s) affected, and stores this together with the old and
new value of the CategoryName column.

Now, when you call your original stored procedure to insert a new CategoryID, you receive an identity
value; however, this is no longer the identity value from the row inserted into the Categories table, it is
now the new value generated for the row in the CategoryAudit table. Ouch!

To view the problem first hand, open a copy of SQL Server Enterprise manager, and view the contents of
the Categories table (see Figure 21-11).

Figure 21-11

This lists all the categories in the Northwind database.

The next identity value for the Categories table should be 9, so a new row can be inserted by executing
the code shown below, to see what ID is returned:

DECLARE @CatID int;
EXECUTE CategoryInsert ‘Pasties’ , ‘Heaven Sent Food’ , @CatID OUTPUT;
PRINT @CatID;

The output value of this on a test PC was 1. If you look at the CategoryAudit table shown in Figure 21-12,
you will find that this is the identity of the newly inserted audit record, not that of the category record
created.

731

Data Access with .NET

26 557599 Ch21.qxd 4/29/04 11:37 AM Page 731

Figure 21-12

The problem lies in the way that @@IDENTITY actually works. It returns the LAST identity value created
by your session, so as shown in Figure 21-12 it isn’t completely reliable.

There are two other identity functions that you can use instead of @@IDENTITY, but neither are free from
possible problems. The first, SCOPE_IDENTITY(), returns the last identity value created within the cur-
rent scope. SQL Server defines scope as a stored procedure, trigger, or function. This may work most of
the time, but if for some reason someone adds another INSERT statement into the stored procedure, then
you can receive this value rather than the one you expected.

The other identity function, IDENT_CURRENT(), returns the last identity value generated for a given
table in any scope. For example, if two users were accessing SQL Server at exactly the same time, it
might be possible to receive the other user’s generated identity value.

As you might imagine, tracking down a problem of this nature isn’t easy. The moral of the story is to
beware when utilizing IDENTITY columns in SQL Server.

Naming Conventions
The following tips and conventions are not directly .NET related. However, they are worth sharing and
following, especially when naming constraints as above. Feel free to skip this section if you already have
your own views on this subject.

Conventions for database tables:

❑ Always use singular names—Product rather than Products. This one is largely due to having
to explain to customers a database schema; it’s much better grammatically to say “The Product
table contains products” than “The Products table contains products”. Check out the
Northwind database to see an example of how not to do this.

❑ Adopt some form of naming convention for the fields that go into a table—Ours is <Table>_ID
for the primary key of a table (assuming that the primary key is a single column), Name for the
field considered to be the user-friendly name of the record, and Description for any textual
information about the record itself. Having a good table convention means you can look at vir-
tually any table in the database and instinctively know what the fields are used for.

Conventions for database columns:

❑ Use singular rather than plural names.

❑ Any columns that link to another table should be named the same as the primary key of that
table. For example, a link to the Product table would be Product_ID, and to the Sample table
Sample_ID. This isn’t always possible, especially if one table has multiple references to another.
In that case use your own judgment.

732

Chapter 21

26 557599 Ch21.qxd 4/29/04 11:37 AM Page 732

❑ Date fields should have a suffix of _On, as in Modified_On, Created_On. Then it’s easy to read
some SQL output and infer what a column means just by its name.

❑ Fields that record the user should be suffixed with _By, as in Modified_By and Created_By.
Again, this aids legibility.

Conventions for constraints:

❑ If possible, include in the name of the constraint the table and column name, as in
CK_<Table>_<Field>. For example, CK_PERSON_SEX for a check constraint on the SEX column
of the PERSON table. A foreign key example would be FK_Product_Supplier_ID, for the for-
eign key relationship between product and supplier.

❑ Show the type of constraint with a prefix, such as CK for a check constraint and FK for a foreign
key constraint. Feel free to be more specific, as in CK_PERSON_AGE_GT0 for a constraint on the
age column indicating that the age should be greater than zero.

❑ If you have to trim the length of the constraint, do it on the table name part rather than the col-
umn name. When you get a constraint violation, it’s usually easy to infer which table was in
error, but sometimes not so easy to check which column caused the problem. Oracle has a 30-
character limit on names, which is easy to surpass.

Stored procedures
Just like the obsession many have fallen into over the past few years of putting a C in front of each and
every class they have declared (you know you have!), many SQL Server developers feel compelled to
prefix every stored procedure with sp_ or something similar. This is not a good idea.

SQL Server uses the sp_ prefix for all (well, most) system stored procedures. So, on the one hand, you
risk confusing your users into thinking that ‘sp_widget’ is something that comes as standard with SQL
Server. In addition, when looking for a stored procedure, SQL Server will treat procedures with the sp_
prefix differently from those without.

If you use this prefix, and do not qualify the database/owner of the stored procedure, then SQL Server
will look in the current scope and then jump into the master database and look up the stored procedure
there. Without the sp_ prefix your users would get an error a little earlier. What’s worse, and also possi-
ble to do, is to create a local stored procedure (one within your database) that has the same name and
parameters as a system stored procedure. Avoid this at all costs—if in doubt, don’t prefix.

When calling stored procedures, always prefix with the owner of the procedure, as in
dbo.selectWidgets. This is slightly faster than not using the prefix as SQL Server has less work to do
to find the stored proc. Something like this is not likely to have a huge impact on the execution speed of
your application, but it is a tuning trick that is essentially available for free.

Above all, when naming entities, whether within the database or within code, be consistent.

733

Data Access with .NET

26 557599 Ch21.qxd 4/29/04 11:37 AM Page 733

Summary
The subject of data access is a large one, especially in .NET, because there is an abundance of new mate-
rial to cover. This chapter has provided an outline of the main classes in the ADO.NET namespaces, and
shown how to use the classes when manipulating data from a data source.

Firstly, the Connection object was explored, through the use of both the SqlConnection (SQL Server
specific) and OleDbConnection (for any OLE DB data sources). The programming model for these two
classes is so similar that one can normally be substituted for the other and the code will continue to run.
With the advent of .NET version 1.1, you can now use an Oracle provider and also an ODBC provider.

We also discussed how to use connections properly, so that these scarce resources could be closed as
early as possible. All of the connection classes implement the IDisposable interface, called when the
object is placed within a using clause. If there’s one thing you should take away from this chapter, it is
the importance of closing database connections as early as possible.

Furthermore we discussed database commands by way of examples that executed with no returned data
to calling stored procedures with input and output parameters. We described various execute methods,
including the ExecuteXmlReader method available only on the SQL Server provider. This vastly simpli-
fies the selection and manipulation of XML-based data.

The generic classes within the System.Data namespace were all described in detail, from the DataSet
class through DataTable, DataColumn, DataRow and on to relationships and constraints. The DataSet
class is an excellent container of data, and various methods make it ideal for cross-tier data flow. The
data within a DataSet is represented in XML for transport, and in addition, methods are available that
pass a minimal amount of data between tiers. The ability of having many tables of data within a single
DataSet can greatly increase its usability; being able to maintain relationships automatically between
master/details rows will be expanded upon in the next chapter.

Having the schema stored within a DataSet is one thing, but .NET also includes the data adapter that,
next to various Command objects, can be used to select data into a DataSet and subsequently update
data in the data store. One of the beneficial aspects of a data adapter is that a distinct command can be
defined for each of the four actions: SELECT, INSERT, UPDATE and DELETE. The system can create a
default set of commands based on database schema information and a SELECT statement, but for the
best performance, a set of stored procedures can be used, with the DataAdapter’s commands defined
appropriately to pass only the necessary information to these stored procedures.

We also co vered the XSD tool (XSD.EXE) was described, using an example that shows how to work
with classes based on an XML schema from within .NET. The classes produced are ready to be used
within an application, and their automatic generation can save many hours of laborious typing.

Finally, we discussed some best practices and naming conventions for database development.

Armed with this knowledge, you’re now in a good position to move on to Chapter 22, which explores
the use of Visual Studio and the .NET Windows Forms data controls.

734

Chapter 21

26 557599 Ch21.qxd 4/29/04 11:37 AM Page 734

Viewing .NET Data

This chapter builds on the content of Chapter 21, which covers various ways of selecting and
changing data, showing you how to present data to the user by binding to various Windows con-
trols. More specifically, this chapter discusses:

❑ The most revolutionary aspect of the .NET data access model, the new DataGrid control,
the most

❑ The .NET data-binding capabilities and how they work

❑ How to use the Server Explorer to create a connection and generate a DataSet class (all
without writing a line of code)

❑ How to use hit testing and reflection on rows in the DataGrid

You can download the source code for the examples in this chapter from the Wrox Web site at
www.wrox.com.

The DataGrid Control
One of the best features of the new DataGrid control is its flexibility—the data source can be
an Array, DataTable, DataView, DataSet class, or a component that implements either the
IListSource or IList interface. The DataGrid control gives you a variety of views of the
same data. In its simplest guise, data can be displayed (as in a DataSet class) by calling the
SetDataBinding() method. This new control also provides more complex capabilities, which
we discuss in this chapter in the course of this chapter.

Displaying Tabular Data
Chapter 21 introduces numerous ways of selecting data and reading it into a data table, although
the data is displayed in a very basic fashion using Console.WriteLine().

27 557599 Ch22.qxd 4/29/04 11:41 AM Page 735

In the following example, we demonstrate how to retrieve some data and display it in a DataGrid con-
trol. For this purpose, we build a new application, DisplayTabularData, shown in Figure 22-1.

Figure 22-1

This simple application selects every record from the customer table in the Northwind database, and dis-
plays these records to the user in the DataGrid control. The following snippet shows the the code for
this example:

using System;
using System.Windows.Forms;
using System.Data;
using System.Data.SqlClient;

public class DisplayTabularData : System.Windows.Forms.Form
{

private System.Windows.Forms.Button retrieveButton;
private System.Windows.Forms.DataGrid dataGrid;
public DisplayTabularData()
{

this.AutoScaleBaseSize = new System.Drawing.Size(5, 13);
this.ClientSize = new System.Drawing.Size(464, 253);
this.Text = “01_DisplayTabularData”;

This initial section of code creates the main window class and defines the instance variables for that
class. It also specifies some properties of the window. Next comes the code that creates the DataGrid
control.

this.dataGrid = new System.Windows.Forms.DataGrid();
dataGrid.BeginInit();
dataGrid.Location = new System.Drawing.Point(8, 8);
dataGrid.Size = new System.Drawing.Size(448, 208);
dataGrid.TabIndex = 0;
dataGrid.Anchor = AnchorStyles.Bottom | AnchorStyles.Top |

AnchorStyles.Left | AnchorStyles.Right;
this.Controls.Add(this.dataGrid);
dataGrid.EndInit();

736

Chapter 22

27 557599 Ch22.qxd 4/29/04 11:41 AM Page 736

The second line: dataGrid.BeginInit(); disables the firing of events on the grid, which is useful
when making many modifications to the control. If events are not inhibited, each change to the grid
could force a redraw on screen. The location and size of the control are then defined, as is the tab index,
and the control is set to anchor to both the top left and bottom right corners of the window, so that its
proportions track those of the main application window.

Next we create the button. We follow the same basic steps as in the previous snippet to initialize the
button:

this.retrieveButton = new System.Windows.Forms.Button();
retrieveButton.Location = new System.Drawing.Point(384, 224);
retrieveButton.Size = new System.Drawing.Size(75, 23);
retrieveButton.TabIndex = 1;
retrieveButton.Anchor = AnchorStyles.Bottom | AnchorStyles.Right;
retrieveButton.Text = “Retrieve”;
retrieveButton.Click += new System.EventHandler

(this.retrieveButton_Click);
this.Controls.Add(this.retrieveButton);

}

The button raises the Click event, so a handler for this event (retrieveButton_Click) is also
defined:

protected void retrieveButton_Click(object sender, System.EventArgs e)
{

retrieveButton.Enabled = false;
string source = “server=(local)\\NetSDK;” +

“uid=QSUser;pwd=QSPassword;” +
“database=Northwind”;

After selecting the data from the Customers table and filling the data set, the data is bound to the grid by
calling the SetDataBinding method. The data set and name of the table within that data set are passed
to this method. A grid can only display the data from one DataTable at a time, even if the DataSet con-
tains multiple tables. Further on in the chapter, there is an example of displaying data from a DataSet
with multiple DataTables. Of course, the data within the DataSet class could come from many actual
database tables (or a view over many tables):

string select = “SELECT * FROM Customers” ;
SqlConnection conn = new SqlConnection(source);
SqlDataAdapter da = new SqlDataAdapter(select , conn);
DataSet ds = new DataSet();
da.Fill(ds , “Customers”);
dataGrid.SetDataBinding(ds , “Customers”);

}
static void Main()
{

Application.Run(new DisplayTabularData());
}

}

To compile this example, type the following at a command prompt:

csc /t:winexe /debug+ /r:System.dll /r:System.Data.dll /r:system.windows.forms.dll
/recurse:*.cs

737

Viewing .NET Data

27 557599 Ch22.qxd 4/29/04 11:41 AM Page 737

The /recurse:*.cs parameter will compile all .cs files in the current directory and all subdirectories. Here
it is used to ensure that all associated code files are included into the executable.

Data Sources
The DataGrid control provides a flexible way to display data; in addition to calling SetDataBinding()
with a DataSet and the name of the table to display, this method can be called with any of the following
data sources:

❑ An array (the grid can bind to any one dimensional array)

❑ DataTable

❑ DataView

❑ DataSet or DataViewManager

❑ Components that implement the IListSource interface

❑ Components that implement the IList interface

The following sections will give an example of each of these data sources.

Displaying data from an array
At first glance this seems to be easy. Create an array, fill it with some data, and call SetDataBinding
(array, null) on the DataGrid control. Here’s some example code:

string[] stuff = new string[] {“One”, “Two”, “Three”};
dataGrid.SetDataBinding(stuff, null);

SetDataBinding accepts two parameters. The first is the data source, which is the array in this instance.
The second parameter should be null unless the data source is a DataSet or DataViewManager class,
in which case it should be the name of the table to be displayed.

You could replace the code in the previous example’s retrieveButton_Click event handler with the
array code above. The problem with this code is the resulting display (see Figure 22-2).

Figure 22-2

738

Chapter 22

27 557599 Ch22.qxd 4/29/04 11:41 AM Page 738

Instead of displaying the strings defined within the array, the grid is displays the length of those strings.
The reason for this is that when using an array as the source of data for a DataGrid control, the grid
looks for the first public property of the object within the array, and displays this value rather than the
string value. The first (and only) public property of a string is its length, so that is what is displayed.

One way to rectify this is to create a wrapper class for strings:

protected class Item
{

public Item(string text)
{

_text = text;
}
public string Text
{

get{return _text;}
}
private string _text;

}

Figure 22-3 shows the output when an array of this Item class (which could as well be a struct for all
the processing that it does) is added to our data source array code.

Figure 22-3

DataTable
There are two ways to display a DataTable within a DataGrid control:

❑ If your DataTable is standalone, call SetDataBinding(DataTable, null)

❑ If your DataTable is contained within a DataSet, call SetDataBinding(DataSet,
“<Table Name>”)

Figure 22-4 shows the result of running the Datasourcedatatable sample code.

739

Viewing .NET Data

27 557599 Ch22.qxd 4/29/04 11:41 AM Page 739

Figure 22-4

Note the display of the last column; it shows a check box instead of the more common edit control. The
DataGrid control, in the absence of any other information, will read the schema from the data source
(which in this case is the Products table), and infer from the column types what control is to be dis-
played. Don’t get too excited, though—the only two types that are currently supported are text boxes
and check boxes—any other sort of mapping has to be done manually.

The data in the database does not change when fields are altered in the data grid, because the data is
only stored locally on the client computer—there is no active connection to the database. Updating data
in the database is discussed later in this chapter.

Displaying data from a DataView
A DataView provides a means to filter and sort data within a DataTable. When data has been selected
from the database, it is common to permit the user to sort that data, such as by clicking on column head-
ings. In addition, the user might want to filter the data to show only certain rows, such as all those that
have been altered. A DataView can be filtered so that only selected rows are shown to the user; however,
it does not limit the columns from the DataTable.

An example of how to limit the columns shown is provided in the section “DataGridTableStyle and
DataGridColumnStyle” later in this chapter.

To create a DataView based on an existing DataTable use the following code:

DataView dv = new DataView(dataTable);

Once created, further settings can be altered on the DataView, which affect the data and operations per-
mitted on that data when it is displayed within the data grid. For example:

❑ Setting AllowEdit = false disables all column edit functionality for rows

❑ Setting AllowNew = false disables the new row functionality

❑ Setting AllowDelete = false disables the delete row capability

A DataView does not permit filtering of columns only rows

740

Chapter 22

27 557599 Ch22.qxd 4/29/04 11:41 AM Page 740

❑ Setting the RowStateFilter displays only rows of a given state

❑ Setting the RowFilter enables you to filter rows

❑ Sorting the rows by certain columns

The next section explains how to use the RowStateFilter setting; the other options are fairly self-
explanatory.

Filtering rows by data
After the DataView has been created, the data displayed by that view can be altered by setting the
RowFilter property. This property, typed as a string, is used as a means of filtering based on certain cri-
teria defined by the value of the string. Its syntax is similar to a WHERE clause in regular SQL, but it is
issued against data already selected from the database.

The following table shows some examples of filter clauses.

Clause Description

UnitsInStock > 50 Show only those rows where the UnitsInStock column is greater than 50.

Client = ‘Smith’ Return only the records for a given client.

County LIKE ‘C*’ Return all records where the County field begins with a C—in this
example, the rows for Cornwall, Cumbria, Cheshire, and Cambridge-
shire would be returned. The % character can be used as a single charac-
ter wildcard, whereas the * denotes a general wildcard that will match
zero or more characters.

The runtime will do its best to coerce the data types used within the filter expression into the appropri-
ate types for the source columns. As an example, it is perfectly legal to write “UnitsInStock > ‘50’” in
the earlier example, even though the column is an integer. If an invalid filter string is provided, then an
EvaluateException will be thrown.

Filtering rows on state
Each row within a DataView has a defined row state, which has one of the values shown in the follow-
ing table. This state can also be used to filter the rows viewed by the user.

DataViewRowState Description

Added Lists all rows that have been newly created.

CurrentRows Lists all rows except those that have been deleted.

Deleted Lists all rows that were originally selected and have been deleted; does
not show newly created rows that have been deleted.

ModifiedCurrent Lists all rows that have been modified, and shows the current value of
each column.

Table continued on following page

741

Viewing .NET Data

27 557599 Ch22.qxd 4/29/04 11:41 AM Page 741

DataViewRowState Description

ModifiedOriginal Lists all rows that have been modified, but shows the original value of
the column and not the current value.

OriginalRows Lists all rows which were originally selected from a data source. Does
not include new rows. Shows the original values of the columns (that is,
not the current values if changes have been made).

Unchanged Lists all rows that have not changed in any way.

Figure 22-5 shows a data grid that can have rows added, deleted, or amended, and a second data grid
that lists rows in one of the above states.

Figure 22-5

The filter not only applies to the rows that are visible, but also to the state of the columns within those
rows. This is evident when choosing the ModifiedOriginal or ModifiedCurrent selections. These
states are described in Chapter 21, and are based on the DataRowVersion enumeration. For example,
when the user has updated a column in the row, then the row will be displayed when either
ModifiedOriginal or ModifiedCurrent are chosen; however, the actual value will either be the
Original value selected from the database (if ModifiedOriginal is choosen), or the current value in
the DataColumn (if ModifiedCurrent is choosen).

Sorting rows
as Apart from filtering data, you might also have to sort the data within a DataView. To sort data in
ascending or descending order, simply click the column header in the DataGrid control (see Figure
22-6). The only trouble is that the control can only sort by one column, whereas the underlying
DataView control can sort by multiple columns.

742

Chapter 22

27 557599 Ch22.qxd 4/29/04 11:41 AM Page 742

Figure 22-6

When a column is sorted, either by clicking on the header (as shown on the ProductName column) or in
code, the DataGrid displays an arrow bitmap to indicate which column the sort has been applied to.

To set the sort order on a column programmatically, use the Sort property of the DataView:

dataView.Sort = “ProductName”;
dataView.Sort = “ProductName ASC, ProductID DESC”;

The first line sorts the data based on the ProductName column, as shown in Figure 22-6. The second line
sorts the data in ascending order, based on the ProductName column, then in descending order of
ProductID.

The DataView supports both ascending (default) and descending sort orders on columns. If more than
one column is sorted in code in the DataView, the DataGrid will cease to display any sort arrows.

Each column in the grid can be strongly typed, so its sort order is not based on the string representation
of the column but instead is based on the data within that column. The upshot is that if there is a date
column in the DataGrid, then the user can sort numerically on date rather than on the date string repre-
sentation.

Displaying data from a DataSet class
The DataGrid comes in to its own when displaying data from a DataSet. As with the preceding exam-
ples, the DataGrid can only display a single DataTable at a time. However, as shown in the following
example, DataSourceDataSet, it is possible to navigate relationships within the DataSet on screen. The
following code can be used to generate such a DataSet based on the Customers and Orders tables in the
Northwind database. This example loads data from these two DataTables, and then creates a relation-
ship between these tables called CustomerOrders:

string source = “server=(local)\\NetSDK;” +
“uid=QSUser;pwd=QSPassword;” +
“database=northwind”;

string orders = “SELECT * FROM Orders”;
string customers = “SELECT * FROM Customers”;
SqlConnection conn = new SqlConnection(source);

743

Viewing .NET Data

27 557599 Ch22.qxd 4/29/04 11:41 AM Page 743

SqlDataAdapter da = new SqlDataAdapter(orders, conn);
DataSet ds = new DataSet();
da.Fill(ds, “Orders”);
da = new SqlDataAdapter(customers , conn);
da.Fill(ds, “Customers”);
ds.Relations.Add(“CustomerOrders”,

ds.Tables[“Customers”].Columns[“CustomerID”],
ds.Tables[“Orders”].Columns[“CustomerID”]);

Once created, the data in the DataSet is bound to the DataGrid simply by calling SetDataBinding():

dataGrid1.SetDataBinding(ds, “Customers”);

This produce output shown in Figure 22-7.

Figure 22-7

Unlike the other DataGrids shown in this chapter, there is now a + sign to the left of each record. This
reflects the fact that the DataSet has a navigable relationship, between customers and orders. Any num-
ber of such relationships can defined in code.

When the user clicks the + sign, the list of relationships is shown (or hidden if already visible). Clicking
the name of the relationship enables you to navigate to the linked records (see Figure 22-8), in this exam-
ple listing all orders placed by the selected customer.

The DataGrid control also includes a couple of new icons in the top right corner. The arrow permits the
user to navigate to the parent row, and will change the display to that on the previous page. The header
row showing details of the parent record can be shown or hidden by clicking on the other button.

744

Chapter 22

27 557599 Ch22.qxd 4/29/04 11:41 AM Page 744

Figure 22-8

Displaying data in a data view manager
The display of data in a DataViewManager is the same as that for the DataSet shown in the previous
section. However, when a DataViewManager is created for a DataSet, an individual DataView is cre-
ated for each DataTable, which then permits the code to alter the displayed rows, based on a filter or
the row state as shown in the DataView example. Even if the code doesn’t need to filter data, it is good
practice to wrap the DataSet in a DataViewManager for display, as it provides more options when
revising the source code.

The following creates a DataViewManager based on the DataSet from the previous example, and then
alters the DataView for the Customers table to show only customers from the United Kingdom:

DataViewManager dvm = new DataViewManager(ds);
dvm.DataViewSettings[“Customers”].RowFilter = “Country=’UK’”;
dataGrid.SetDataBinding(dvm, “Customers”);

Figure 22-9 shows the output of the DataSourceDataViewManager sample code.

Figure 22-9

745

Viewing .NET Data

27 557599 Ch22.qxd 4/29/04 11:41 AM Page 745

IListSource and IList interfaces
The DataGrid also supports any object that exposes one of the interfaces IListSource or IList.
IListSource only has one method, GetList(), which returns an IList interface. IList on the other
hand is somewhat more interesting, and is implemented by a large number of classes in the runtime.
Some of the classes that implement this interface are Array, ArrayList, and StringCollection.

When using IList, the same caveat for the object within the collection holds true as for the Array
implementation shown earlier—if a StringCollection is used as the data source for the DataGrid,
the length of the strings is displayed within the grid, not the text of the item as expected.

DataGrid Class Hierarchy
The class hierarchy for the main parts of the DataGrid is shown in Figure 22-10.

Figure 22-10

Object

MarshalByRefObject

ValueType

ComponentModel.Component

Windows.Forms.DataGridCell

Windows.Forms.Control

Windows.Forms.DataGridColumnStyle

Windows.Forms.DataGridBoolColumn

Windows.Forms.DataGridTextBoxColumn

746

Chapter 22

27 557599 Ch22.qxd 4/29/04 11:41 AM Page 746

The DataGrid consists of zero or more DataGridTableStyles. These styles consist of zero or more
DataGridColumnStyles. A given cell in the grid can be accessed by means of the DataGridCell struct.

However, there’s more to DataGridTableStyle and DataGridColumnStyle than simply letting the
runtime create them for you. The following sections discuss these and the other main classes shown in
Figure 22-10.

DataGridTableStyle and DataGridColumnStyle
A DataGridTableStyle contains the visual representation of a DataTable. The DataGrid contains a
collection of these styles, accessible by the TableStyles property. When a DataTable is displayed, a
check is made through all DataGridTableStyle objects to find one with its MappingName property
equal to the TableName property of the DataTable. On finding a match, that style will be used in the
display of the table.

The DataGridTableStyle permits the definition of the visual parameters for the DataGrid, such as the
background and foreground color, the font used in the column header, and various other properties. The
DataGridColumnStyle can be used to refine the display options on a column-by-column basis, such as
setting the alignment for the data in the column, the text that is displayed for a null value, and the
width of the column on screen.

When the DataGrid displays a DataTable with a defined DataGridTableStyle, the only columns dis-
played are those for which a DataGridColumnStyle has been constructed. Only columns that have a
defined style will be displayed, which can be useful for hiding columns such as primary key values that
are not normally displayed. Column styles can also be defined as ReadOnly. This hiding of columns is
not as simple as if there were a method to filter columns similar to that of filtering rows, however it’s not
too difficult to use.

The following code shows an example of creating a DataGridTableStyle. The code creates a
DataGridTableStyle object, adds two DataGridColumnStyle objects, and then displays all of the
data in the Customers table. The code is shown in its entirety, because it is the basis for several examples
in this section. The first part of the code should be familiar from the earlier example:

using System;
using System.Windows.Forms;
using System.Data;
using System.Data.SqlClient;
public class CustomDataGridTableStyle : System.Windows.Forms.Form
{

private System.Windows.Forms.Button retrieveButton;
private System.Windows.Forms.DataGrid dataGrid;
public CustomDataGridTableStyle()
{

this.AutoScaleBaseSize = new System.Drawing.Size(5, 13);
this.ClientSize = new System.Drawing.Size(464, 253);
this.Text = “07_CustomDataGridTableStyle”;
this.dataGrid = new System.Windows.Forms.DataGrid();
dataGrid.BeginInit();
dataGrid.Location = new System.Drawing.Point(8, 8);
dataGrid.Size = new System.Drawing.Size(448, 208);
dataGrid.TabIndex = 0;

747

Viewing .NET Data

27 557599 Ch22.qxd 4/29/04 11:41 AM Page 747

dataGrid.Anchor = AnchorStyles.Bottom | AnchorStyles.Top |
AnchorStyles.Left | AnchorStyles.Right;

this.Controls.Add(this.dataGrid);
dataGrid.EndInit();
this.retrieveButton = new System.Windows.Forms.Button();
retrieveButton.Location = new System.Drawing.Point(384, 224);
retrieveButton.Size = new System.Drawing.Size(75, 23);
retrieveButton.TabIndex = 1;
retrieveButton.Anchor = AnchorStyles.Bottom | AnchorStyles.Right;
retrieveButton.Text = “Retrieve”;
retrieveButton.Click += new

System.EventHandler(this.retrieveButton_Click);
this.Controls.Add(this.retrieveButton);

}
protected void retrieveButton_Click(object sender, System.EventArgs e)
{

retrieveButton.Enabled = false;

This generates the DataSet that will be used, then creates the DataGridTableStyles for use in the
example, and finally binds the DataGrid to the DataSet. The CreateDataSet method is nothing par-
ticularly new as you will see shortly; it simply retrieves all rows from the Customers table:

DataSet ds = CreateDataSet();
CreateStyles(dataGrid);
dataGrid.SetDataBinding(ds, “Customers”);

}

The CreateStyles() method, however, is more interesting. The first few lines create the new
DataGridTableStyle object, and set its MappingName property. This property is used when the
DataGrid displays a given DataTable. The DataGrid can display rows in alternating colors. The code
here also defines the color for every second row (to get a glimpse of the output, look ahead to Figure
22-11)

private void CreateStyles(DataGrid dg)
{

DataGridTableStyle style = new DataGridTableStyle();
style.MappingName = “Customers”;
style.AlternatingBackColor = System.Drawing.Color.Bisque;
DataGridTextBoxColumn customerID = new DataGridTextBoxColumn();
customerID.HeaderText = “Customer ID”;
customerID.MappingName = “CustomerID”;
customerID.Width = 200;
DataGridTextBoxColumn name = new DataGridTextBoxColumn();
name.HeaderText = “Name”;
name.MappingName = “CompanyName”;
name.Width = 300;

After the columns have been defined, they are added to the GridColumnStyles collection of the
DataGridTableStyle object, which is then added to the TableStyles property of the DataGrid:

748

Chapter 22

27 557599 Ch22.qxd 4/29/04 11:41 AM Page 748

style.GridColumnStyles.AddRange
(new DataGridColumnStyle[]{customerID , name});

dg.TableStyles.Add(style);
}
private DataSet CreateDataSet()
{

string source = “server=(local)\\NetSDK;” +
“uid=QSUser;pwd=QSPassword;” +
“database=northwind”;

string customers = “SELECT * FROM Customers”;
SqlConnection con = new SqlConnection(source);
SqlDataAdapter da = new SqlDataAdapter(customers , con);
DataSet ds = new DataSet();
da.Fill(ds, “Customers”);
return ds;

}
static void Main()
{

Application.Run(new CustomDataGridTableStyle());
}

}

After creating the DataGridTableStyle object, two objects derived from DataGridColumnStyle are
created—in this instance they are text boxes. Each column has a number of defined properties. The fol-
lowing table lists some of the key properties.

Property Description

Alignment One of the HorizontalAlignment enumerated values: Left, Cen-
ter, or Right. This indicates how data in the column is justified.

FontHeight The size of the font in pixels. This defaults to the font size of the
DataGrid if no value is set. This property is protected, so can only
be modified by creating a subclass.

HeaderText The text displayed in the column heading.

MappingName The column in the DataTable represented by the displayed column.

NullText The text displayed within the column if the underlying data value is
DBNull.

PropertyDescriptor This is discussed later in this chapter.

ReadOnly A flag indicating whether the column is read-write or read-only.

Width The width of the column in pixels.

The display resulting from this CustomDataGridTableStyle sample code is shown in Figure 22-11.

749

Viewing .NET Data

27 557599 Ch22.qxd 4/29/04 11:41 AM Page 749

Figure 22-11

Data Binding
The previous examples have all used the DataGrid control, which is only one of the controls in the .NET
runtime that can be used to display data. The process of linking a control to a data source is called data
binding.

In MFC the process of linking data from class variables to a set of controls was termed Dialog Data
Exchange (DDX). The facilities available within .NET for binding data to controls is substantially easier to
use and also more capable. For example, in .NET you can bind data to most properties of a control, not
just the text property. You can also bind data in a similar manner to ASP.NET controls (see Chapter 25).

Simple Binding
A control that supports single binding typically displays only a single value at once, such as a text box or
radio button. The following example shows how to bind a column from a DataTable to a TextBox:

DataSet ds = CreateDataSet();
textBox1.DataBindings.Add(“Text”, ds , “Products.ProductName”);

After retrieving some data from the Products table and storing it in the returned DataSet with the
CreateDataSet() method as above, the second line then binds the Text property of the control
(textBox1) to the Products.ProductName column. Figure 22-12 shows the result of this type of data
binding.

Figure 22-12

750

Chapter 22

27 557599 Ch22.qxd 4/29/04 11:41 AM Page 750

The text box displays a string from the database. Figure 22-13 shows how the SQL Server Query
Analyzer tool could be used to verify the contents of the Products table to verify that it is the right col-
umn and value.

Figure 22-13

Having a single text box on screen with no way to scroll to the next or the previous record and no way to
update the database is not very useful, so the following section shows a more realistic example, and
introduces the other objects that are necessary for data binding to work.

Data-Binding Objects
Figure 22-14 shows a class hierarchy for the objects that are used in data binding. In this section we
discuss the BindingContext, CurrencyManager, and PropertyManager classes of the System
.Windows.Forms namespace, and show how they interact when data is bound to one or more controls
on a form. The shaded objects are those that are used in binding.

In the previous example, the DataBindings property of the TextBox control was used to bind a column
from a DataSet to the Text property of the control. The DataBindings property is an instance of the
ControlBindingsCollection shown above:

textBox1.DataBindings.Add(“Text”, ds, “Products.ProductName”);

This line adds a Binding object to the ControlBindingsCollection.

751

Viewing .NET Data

27 557599 Ch22.qxd 4/29/04 11:41 AM Page 751

Figure 22-14

BindingContext
Each Windows form has a BindingContext property. Incidentally, Form is derived from Control,
which is where this property is actually defined, so most controls have this property. A
BindingContext object has a collection of BindingManagerBase instances (see Figure 22-15). These
instances are created and added to the binding manager object when a control is data bound.

Object

Binding

BindingContext

BindingManagerBase

MarshalByRefObject

PropertyManager

CurrencyManager

BaseCollection

BindingCollection

ControlBindingsCollection

752

Chapter 22

27 557599 Ch22.qxd 4/29/04 11:41 AM Page 752

Figure 22-15

The BindingContext might contain several data sources, wrapped in either a CurrencyManager or a
PropertyManager. The decision on which class is used is based on the data source itself.

If the data source contains a list of items, such as a DataTable, DataView, or any object that implements
the IList interface, then a CurrencyManager will be used. A CurrencyManager can maintain the cur-
rent position within that data source. If the data source returns only a single value then a
PropertyManager will be stored within the BindingContext.

A CurrencyManager or PropertyManager is only created once for a given data source. If two text
boxes are bound to a row from a DataTable, only one CurrencyManager will be created within the
binding context.

Each control added to a form is linked to the form’s binding manager, so all controls share the same
instance. When a control is initially created, its BindingContext property is null. When the control is
added to the Controls collection of the form, the BindingContext is set to that of the form.

To bind a control to a form, an entry needs to be added to its DataBindings property, which is an
instance of ControlBindingsCollection. The following code shown creates a new binding:

textBox1.DataBindings.Add(“Text”, ds, “Products.ProductName”);

Internally, the Add() method of ControlBindingsCollection creates a new instance of a Binding
object from the parameters passed to this method, and adds this to the bindings collection represented in
Figure 22-16.

CurrencyManager

BindingContext

DataSource

Current Position

CurrencyManager

DataSource

753

Viewing .NET Data

27 557599 Ch22.qxd 4/29/04 11:41 AM Page 753

Figure 22-16

Figure 22-16 illustrates roughly what is going on when a Binding object is added to a Control. The
binding links the control to a data source, which is maintained within the BindingContext of the Form
(or control itself). Changes within the data source are reflected into the control, as are changes in the
control.

CurrencyManagerCurrencyManager

BindingContextBindingContext

Control

DataBindingsCollection

Binding

Property

DataSource

DataMember

Binding

Property

DataSource

DataMember

DataSource

CurrencyManager

BindingContext

754

Chapter 22

27 557599 Ch22.qxd 4/29/04 11:41 AM Page 754

Binding
This class links a property of the control to a member of the data source. When that member changes, the
control’s property is updated to reflect this change. The opposite is also true—if the text in the text box is
updated, this change is reflected in the data source.

Bindings can be set up from any column to any property of the control. For example, you can not only
bind the text of a text box, but also the color of that text box. It is possible to bind properties of a control
to completely different data sources; for example, the color of the cell might be defined in a colors table,
and the actual data might be defined in another table.

CurrencyManager and PropertyManager
When a Binding object is created, a corresponding CurrencyManager or PropertyManager object is
also created, provided this is the first time that data from the given source has been bound. The purpose
of this class is to define the position of the current record within the data source, and to coordinate all list
bindings when this current record is changed. Figure 22-17 displays two fields from the Products table,
and includes a way to move between records by means of a TrackBar control.

Figure 22-17

The following example shows the ScrollingDataBinding sample code in its entirety:

using System;
using System.Windows.Forms;
using System.Data;
using System.Data.SqlClient;

public class ScrollingDataBinding : System.Windows.Forms.Form
{

private Button retrieveButton;
private TextBox textName;
private TextBox textQuan;
private TrackBar trackBar;
private DataSet ds;

The application creates the window, including its controls, in the ScrollingDataBinding constructor:

public ScrollingDataBinding()
{

this.AutoScaleBaseSize = new System.Drawing.Size(5, 13);
this.ClientSize = new System.Drawing.Size(464, 253);
this.Text = “09_ScrollingDataBinding”;

755

Viewing .NET Data

27 557599 Ch22.qxd 4/29/04 11:41 AM Page 755

this.retrieveButton = new Button();
retrieveButton.Location = new System.Drawing.Point(4, 4);
retrieveButton.Size = new System.Drawing.Size(75, 23);
retrieveButton.TabIndex = 1;
retrieveButton.Anchor = AnchorStyles.Top | AnchorStyles.Left;
retrieveButton.Text = “Retrieve”;
retrieveButton.Click += new System.EventHandler

(this.retrieveButton_Click);
this.Controls.Add(this.retrieveButton);
this.textName = new TextBox();
textName.Location = new System.Drawing.Point(4, 31);
textName.Text = “Please click retrieve...”;
textName.TabIndex = 2;
textName.Anchor = AnchorStyles.Top | AnchorStyles.Left |

AnchorStyles.Right ;
textName.Size = new System.Drawing.Size(456, 20);
textName.Enabled = false;
this.Controls.Add(this.textName);
this.textQuan = new TextBox();
textQuan.Location = new System.Drawing.Point(4, 55);
textQuan.Text = “”;
textQuan.TabIndex = 3;
textQuan.Anchor = AnchorStyles.Top | AnchorStyles.Left |

AnchorStyles.Top;
textQuan.Size = new System.Drawing.Size(456, 20);
textQuan.Enabled = false;
this.Controls.Add(this.textQuan);
this.trackBar = new TrackBar();
trackBar.BeginInit();
trackBar.Dock = DockStyle.Bottom ;
trackBar.Location = new System.Drawing.Point(0, 275);
trackBar.TabIndex = 4;
trackBar.Size = new System.Drawing.Size(504, 42);
trackBar.Scroll += new System.EventHandler(this.trackBar_Scroll);
trackBar.Enabled = false;
this.Controls.Add(this.trackBar);

}

When the Retrieve button is clicked, the event handler selects all records from the Products table, and
stores this data in the private data set ds:

protected void retrieveButton_Click(object sender, System.EventArgs e)
{

retrieveButton.Enabled = false ;
ds = CreateDataSet();

Next, the two text controls are bound:

textName.DataBindings.Add(“Text” , ds ,
“Products.ProductName”);

textQuan.DataBindings.Add(“Text” , ds ,
“Products.QuantityPerUnit”);

trackBar.Minimum = 0 ;

756

Chapter 22

27 557599 Ch22.qxd 4/29/04 11:41 AM Page 756

trackBar.Maximum = this.BindingContext[ds,”Products”].Count -- 1;
textName.Enabled = true;
textQuan.Enabled = true;
trackBar.Enabled = true;

}

Here is a trivial record scrolling mechanism, which responds to movements of the TrackBar thumb:

protected void trackBar_Scroll(object sender , System.EventArgs e)
{

this.BindingContext[ds,”Products”].Position = trackBar.Value;
}
private DataSet CreateDataSet()
{

string source = “server=(local)\\NetSDK;” +
“uid=QSUser;pwd=QSPassword;” +
“database=northwind”;

string customers = “SELECT * FROM Products”;
SqlConnection con = new SqlConnection(source);
SqlDataAdapter da = new SqlDataAdapter(customers , con);
DataSet ds = new DataSet();
da.Fill(ds , “Products”);
return ds;

}
static void Main()
{

Application.Run(new ScrollingDataBinding());
}

}

When the data is originally retrieved, the maximum position on the track bar is set to be the number of
records. Then, in the scroll method above, the position of the BindingContext for the products
DataTable is set to the position of the scroll bar thumb. This changes the current record from the
DataTable, so all controls bound to the current row (in this example, the two text boxes) are updated.

Now that you know how to bind to various data sources, such as arrays, data tables, data views, and
various other containers of data and sort and filter that data, we can discuss how Visual Studio has been
extended to permit data access to be better integrated with the application.

Visual Studio.NET and Data Access
This section discusses some of the new ways that Visual Studio allows data to be integrated into the
GUI. More specifically, we discuss how to create a connection, select some data, generate a DataSet, and
use all of the generated objects to produce a simple application. The available tools enable you to create
a database connection with the OleDbConnection or SqlConnection classes. The class you use
depends on the type of database you are using. After a connection has been defined, you can create a
DataSet and populate it from within Visual Studio .NET. This generates an XSD file for the DataSet
(similar to the file that we created manually in Chapter 21) and the .cs code. The result is a type-safe
DataSet.

757

Viewing .NET Data

27 557599 Ch22.qxd 4/29/04 11:41 AM Page 757

Creating a Connection
First, create a new Windows application, then create a new database connection. Using the Server
Explorer (see Figure 22-18), you can manage various aspects of data access.

Figure 22-18

For this example, create a connection to the Northwind database. Select the Add Connection option from
the context menu available on the Data Connections item to launch a wizard that enables you to choose
a database provider. Select Microsoft OLE DB Provider for SQL Server. Figure 22-19 shows the second
page of the Data Link Properties dialog box.

Figure 22-19

Depending on your .NET Framework installation, the samples databases might be located in SQL Server,
MSDE (Microsoft SQL Server Data Engine), or both.

To connect to the local MSDE database, if it exists, type (local)\\NETSDK for the name of the server. To
connect to a regular SQL Server instance, type (local) to select a database on the current machine, or the
name of the desired server on the network. You may need to enter a username and password to access
the database.

758

Chapter 22

27 557599 Ch22.qxd 4/29/04 11:41 AM Page 758

Select the Northwind database from the drop-down list of databases, and to ensure everything is set up
correctly, click the Test Connection button. If everything is set up properly, you should see a message box
with a confirmation message.

To create a connection object, click and drag the newly added server to the main application window.
This creates a member variable of the appropriate connection type. Then add the following code to the
InitializeComponent method of the main form:

this.sqlConnection = new System.Data.SqlClient.SqlConnection();

//
// sqlConnection
//

this.sqlConnection.ConnectionString = “data source=(local)\\NETSDK;” +
“initial catalog=Northwind;” +
“user id=QSUser;password=QSPassword;” +
“persist security info=True;” +
“workstation id=BILBO;” +
“packet size=4096”;

As you can see, the connection string information is persisted directly in code.

When you add this object to the project, the sqlConnection1 object is displayed in the tray area at the
bottom of the Visual Studio window (see Figure 22-20).

Figure 22-20

The properties of this object can be altered by selecting it and showing the Properties dialog box (press F4).

Selecting Data
When the data connection has been defined, you can select a table (or view) from the available list, and
drag it to an active project form (see Figure 22-21),

759

Viewing .NET Data

27 557599 Ch22.qxd 4/29/04 11:41 AM Page 759

Figure 22-21

For this example, we have chosen the Customers table. When this object is dragged to the project (it can
be droped on the form or the server controls palette), it adds an object to the form derived from
SqlDataAdapter, or OleDbDataAdapter if you’re not using SQL Server.

The data adapter generated contains commands for SELECT, INSERT, UPDATE, and DELETE. Needless to
say, these can (and probably should) be tailored to call stored procedures rather than using straight SQL.
The wizard-generated code will do for now, however. Visual Studio .NET adds the following code to the
.cs file:

private System.Data.SqlClient.SqlCommand sqlSelectCommand1;
private System.Data.SqlClient.SqlCommand sqlInsertCommand1;
private System.Data.SqlClient.SqlCommand sqlUpdateCommand1;
private System.Data.SqlClient.SqlCommand sqlDeleteCommand1;
private System.Data.SqlClient.SqlDataAdapter sqlDataAdapter1;

There is an object defined for each of the SQL commands, and a SqlDataAdapter. Further down the
file, in the InitializeComponent() method, the wizard has generated code to create each one of these
commands as well as the data adapter.

There are two aspects of the code generated by Visual Studio .NET that are worth looking at: the
UpdateCommand and InsertCommand properties. Here is an abridged version showing the pertinent
information:

//
// sqlInsertCommand1
//
this.sqlInsertCommand1.CommandText = @”INSERT INTO Customers

(CustomerID, CompanyName, ContactName, ContactTitle, Address, City,
Region, PostalCode, Country, Phone, Fax)

VALUES (@CustomerID, @CompanyName, @ContactName, @ContactTitle, @Address, @City,
@Region, @PostalCode, @Country, @Phone, @Fax);

SELECT CustomerID, CompanyName, ContactName, ContactTitle, Address, City,
Region, PostalCode, Country, Phone, Fax

FROM Customers
WHERE (CustomerID = @CustomerID)”;

760

Chapter 22

27 557599 Ch22.qxd 4/29/04 11:41 AM Page 760

this.sqlInsertCommand2.Connection = this.sqlConnection1;

this.sqlInsertCommand2.Parameters.Add(
new System.Data.SqlClient.SqlParameter(“@CustomerID”,

System.Data.SqlDbType.NVarChar, 5, “CustomerID”));

// Other Parameters omitted for clarity

//
// sqlUpdateCommand1
//

this.sqlUpdateCommand2.CommandText = @”UPDATE Customers
SET CustomerID = @CustomerID, CompanyName = @CompanyName,

ContactName = @ContactName, ContactTitle = @ContactTitle,
Address = @Address, City = @City, Region = @Region,
PostalCode = @PostalCode, Country = @Country, Phone = @Phone, Fax = @Fax

WHERE (CustomerID = @Original_CustomerID)
AND (Address = @Original_Address OR @Original_Address IS NULL

AND Address IS NULL)
AND (City = @Original_City OR @Original_City IS NULL AND City IS NULL)
AND (CompanyName = @Original_CompanyName)
AND (ContactName = @Original_ContactName OR @Original_ContactName IS NULL

AND ContactName IS NULL)
AND (ContactTitle = @Original_ContactTitle OR @Original_ContactTitle IS NULL

AND ContactTitle IS NULL)
AND (Country = @Original_Country OR @Original_Country IS NULL

AND Country IS NULL)
AND (Fax = @Original_Fax OR @Original_Fax IS NULL AND Fax IS NULL)
AND (Phone = @Original_Phone OR @Original_Phone IS NULL AND Phone IS NULL)
AND (PostalCode = @Original_PostalCode OR @Original_PostalCode IS NULL

AND PostalCode IS NULL)
AND (Region = @Original_Region OR @Original_Region IS NULL

AND Region IS NULL);
SELECT CustomerID, CompanyName, ContactName, ContactTitle, Address, City, Region,

PostalCode, Country, Phone, Fax
FROM Customers
WHERE (CustomerID = @CustomerID)”;

this.sqlUpdateCommand2.Connection = this.sqlConnection1;
this.sqlUpdateCommand2.Parameters.Add(

new System.Data.SqlClient.SqlParameter(“@CustomerID”,
System.Data.SqlDbType.NVarChar, 5, “CustomerID”));

// Other parameters omitted for clarity

The main area of interest in these commands are the SQL statements that have been generated. For both
the INSERT and UPDATE commands there are actually two SQL statements: one for inserting or updating
data, and the other to reselect the row from the database.

These seemingly redundant clauses are used as a way to re-synchronize the data on the client machine
with that on the server. There might be defaults applied to columns when inserted, or database triggers
that fire to update some of the columns in the inserted/updated record, so re-syncing the data has some
benefit. The @Select2_CustomerID parameter used to reselect the data is the same value passed into
the INSERT/UPDATE statement for the primary key; the name has been generated by the wizard.

761

Viewing .NET Data

27 557599 Ch22.qxd 4/29/04 11:41 AM Page 761

For tables that include an IDENTITY column, the SQL generated uses the @@IDENTITY value after the
INSERT statement. As discussed in Chapter 21, relying on @@IDENTITY to produce primary keys can
result in some annoying bugs, so that’s one area of the SQL that you might have to change manually.
Similarly, if there are no calculated columns it seems a little wasteful to re-select all columns from the
original table just in case something has been updated.

The wizard-generated code works, but is less than optimal. For a production system, all the generated
SQL should probably be replaced with calls to stored procedures. If the INSERT or UPDATE clauses didn’t
have to re-synchronize the data, then the removal of the redundant SQL clause would speed up the
application a little.

Generating a DataSet
Now that the data adapter has been defined, you can use it to create a DataSet. To generate the
DataSet, select the data adapter and display its properties (press F4). Towards the bottom of the prop-
erty sheet there are three options: Configure Data Adapter, Generate Dataset, and Preview Data.

Select Generate DataSet. You will be prompted to provide a name for the new DataSet object before you
can choose the tables that you want to add to the data set. If you have dragged multiple tables from
Server Explorer and dropped them onto the form, you can link them from inside the dialog box to a sin-
gle DataSet.

What is actually created is an XSD schema, defining the DataSet and each table that was included in the
DataSet. This is similar to the hand-crafted example in Chapter 21, but in this instance the XSD file has
been created automatically:

In addition to the XSD file there is a (hidden) .cs file that defines various type-safe classes. To view this
file, click the Show All Files toolbar button (see Figure 22-22), and then expand the XSD file.

Figure 22-22

Visual Studio .NET creates a .cs file with the same name as the XSD file. The classes defined are as follows:

❑ A class derived from DataSet

❑ A class derived from DataTable for the data adapter chosen

762

Chapter 22

27 557599 Ch22.qxd 4/29/04 11:41 AM Page 762

❑ A class derived from DataRow, defining the columns accessible within the DataTable

❑ A class derived from EventArgs, used when a row changes

The tool used to generate this file is the same as in the previous chapter: xsd.exe.

The XSD file can be updated once the wizards have done their thing, but don’t be tempted to edit the .cs
file to tweak it in some way, because it will be regenerated when the project is recompiled, and all your
changes would be lost.

Updating the Data Source
So far our applications have selected data from the database. In this section, we discuss how to persist
changes to the database. If you followed the steps in the previous section, you should have an applica-
tion that contains a connection, data adapter and DataSet objects. All that is left to do is connect the
DataSet to a DataGrid, add some logic to retrieve data from the database, display it, and then simply
persist any changes back to the database.

Figure 22-23 shows the form for this example; the form is based on the UpdatingData sample code.

Figure 22-23

The form consists of a DataGrid control and two buttons. When the user clicks the Retrieve button, the
following code is executed:

private void retrieveButton_Click(object sender, System.EventArgs e)
{

// Fill the data adapter from the database
supplierDataAdapter.Fill (supplierDataSet , “Supplier”) ;

// And display the data in the data grid...
dataGrid1.SetDataBinding (supplierDataSet , “Supplier”) ;

// And disable the retrieve button...
retrieveButton.Enabled = false ;

}

763

Viewing .NET Data

27 557599 Ch22.qxd 4/29/04 11:41 AM Page 763

This code uses the data adapter created earlier (by dragging a database table from the Server Explorer)
to fill a DataSet. The Customer data table is filled with all records from the table of the same name in
the database. The call to SetDataBinding() then displays these records on screen.

After navigating through the data and making some changes, the user can click the Update button. This
action executes the following code:

private void updateButton_Click(object sender, System.EventArgs e)
{

// Update the database
int modified = supplierDataAdapter.Update (supplierDataSet , “Supplier”) ;

if (modified > 0)
MessageBox.Show (string.Format (“Modified {0} rows” , modified)) ;

}

This code is simple, because the data adapter is doing most of the work for you. The Update() method
loops through the data in the selected table of the DataSet, and for each change executes the appropri-
ate SQL statement against the database. Note that this method returns an int type, which is the number
of rows modified by the update. This number is used in this example to display the number of modified
rows.

Chapter 21 discusses in detail the use of the data adapter. In brief, it represents SQL statements for
SELECT, INSERT, UPDATE, and DELETE operations. Calling the Update() method executes the appropri-
ate statement for each modified row. This causes all modified rows to execute an UPDATE statement, all
deleted rows to issue a DELETE statement, and so on. The commands issued are by default simple SQL
statements. However, you can substitute stored procedures by creating the appropriate command
objects and assigning these to properties on the data adapter.

To reap all the benefits of using stored procedures without having to write them, use the Visual Studio
.NET wizards. Choose the Configure Data Adapter item from the data adapter’s context menu to show
the Configuration Wizard, which enables you to choose the source of data for the adapter (see Figure
22-24).

Select Create new stored procedures and click Next to step through the wizard and instruct it to generate
new stored procedures for SELECT, INSERT, UPDATE, and DELETE statements, and ultimately modify the
code generated within the project to add calls to these stored procedures instead of the calls to straight
SQL statements.

In addition to generating new stored procedures, existing stored procedures can be used to populate the
four SQL commands on the adapter. This might be useful when hand-crafted stored procedures are
already available, or when some other function is performed by a procedure, such as auditing changes
or updating linked records.

Building a Schema
Chapter 21 shows you how to define an XSD schema. Visual Studio .NET includes an editor for creating
XSD schemas. You can access this editor by choosing Add New Item from the Proejct menu and then
selecting the XML Schema item from the Data category (see Figure 22-25). Name your schema
TestSchema.xsd.

764

Chapter 22

27 557599 Ch22.qxd 4/29/04 11:41 AM Page 764

Figure 22-24

Figure 22-25

This adds two new files to the project: an .xsd file and a corresponding .xsx file (which is used by the
designer to store layout information for the schema elements that are designed). To create a correspond-
ing set of code for the schema, choose the Generate Dataset option from the Schema menu (see Figure
22-26).

765

Viewing .NET Data

27 557599 Ch22.qxd 4/29/04 11:41 AM Page 765

Figure 22-26

Choosing this option adds an extra C# file to the project, which is displayed below the XSD file in
Solution Explorer. This file is automatically generated whenever changes are made to the XSD schema,
and so should not be edited manually; it is generated with the xsd.exe tool.

The Visual Studio .NET editor has two views of an XSD file: Schema view and XML view. Clicking the
XML tab displays the raw schema template.

<?xml version=”1.0” encoding=”utf-8” ?>
<xs:schema id=”TestSchema”

targetNamespace=”http://tempuri.org/TestSchema.xsd”
elementFormDefault=”qualified”
xmlns=”http://tempuri.org/TestSchema.xsd”
xmlns:mstns=”http://tempuri.org/TestSchema.xsd”
xmlns:xs=”http://www.w3.org/2001/XMLSchema”>

</xs:schema>

This XSD script generates the following C# in the file TestSchema.cs. In the following code some of the
bodies of the methods have been omitted and/or formatted for easier reading; you can inspect the code
generated as you work through the example.

using System;
using System.Data;
using System.Xml;
using System.Runtime.Serialization;

[Serializable()]
[System.ComponentModel.DesignerCategoryAttribute(“code”)]
[System.Diagnostics.DebuggerStepThrough()]
[System.ComponentModel.ToolboxItem(true)]
public class TestSchema : DataSet
{

public TestSchema() { ... }

protected TestSchema(SerializationInfo info, StreamingContext context)

766

Chapter 22

27 557599 Ch22.qxd 4/29/04 11:41 AM Page 766

{ ... }
public override DataSet Clone() { ... }
protected override bool ShouldSerializeTables() { ... }
protected override bool ShouldSerializeRelations() { ... }
protected override void ReadXmlSerializable(XmlReader reader) { ... }
protected override System.Xml.Schema.XmlSchema GetSchemaSerializable()
{ ... }
internal void InitVars() { ... }
private void InitClass() { ... }
private void SchemaChanged(object sender,

System.ComponentModel.CollectionChangeEventArgs e)
{ ... }

}

This code provides the starting point for this section, so that the code changes can be described as items
are added into the XSD schema. The two main things to note are that an XSD schema is mapped to a
DataSet, and that this DataSet is serializable—note the protected constructor that can be used by an
ISerializable implementation. Serialization is covered in greater depth in Chapter 11.

Adding an element
To add a new top-level element, right-click inside your workspace and choose Add➪New Element from
the context menu. This displays in a new, unnamed element. Figure 22-27 shows the attributes for this
example’s product element.

Figure 22-27

When the XSD file is saved, the C# file is modified and a number of new classes is generated, as shown
in the following code. The most pertinent aspects of the code generated in the file TestSchema.cs are dis-
cussed in the next section.

public class TestSchema : DataSet
{

private ProductDataTable tableProduct;
[System.ComponentModel.DesignerSerializationVisibilityAttribute

(System.ComponentModel.DesignerSerializationVisibility.Content)]
public ProductDataTable Product
{

get
{

return this.tableProduct;
}

}
}

767

Viewing .NET Data

27 557599 Ch22.qxd 4/29/04 11:41 AM Page 767

A new member variable of the class ProductDataTable is created. This object is returned by the
Product property, and is constructed within the updated InitClass() method. From this small section
of code, it’s evident that the user of these classes can construct a DataSet from the class in this file, and
use DataSet.Products to return the products DataTable.

Generated DataTable
The following code is generated for the DataTable (Product) that was added to the schema template:

public delegate void ProductRowChangeEventHandler
(object sender, ProductRowChangeEvent e);

public class ProductDataTable : DataTable, System.Collections.IEnumerable
{

internal ProductDataTable() : base(“Product”)
{

this.InitClass();
}
[System.ComponentModel.Browsable(false)]
public int Count
{

get { return this.Rows.Count;}
}
public ProductRow this[int index]
{

get { return ((ProductRow)(this.Rows[index]));}
}
public event ProductRowChangeEventHandler ProductRowChanged;
public event ProductRowChangeEventHandler ProductRowChanging;
public event ProductRowChangeEventHandler ProductRowDeleted;
public event ProductRowChangeEventHandler ProductRowDeleting;

The generated ProductDataTable class is derived from DataTable, and includes an implementation of
the IEnumerable interface. Four events are defined that use the delegate defined above the class when
raised. This delegate is passed an instance of the ProductRowChangeEvent class, again defined by
Visual Studio .NET.

The generated code includes a class derived from DataRow, which permits type-safe access to columns
within the table. A new row can be created in one of two ways:

❑ Call the NewRow() (or generated NewProductRow()) method to return a new instance of the
row class. Pass this new row to the Rows.Add() method (or the type-safe AddProductRow()).

❑ Call the Rows.Add() (or generated AddProductRow()) method, and pass an array of objects,
one for each column in the table.

The following code demonstrates the AddProductRow() methods:

public void AddProductRow(ProductRow row)
{

this.Rows.Add(row);
}
public ProductRow AddProductRow (...)

768

Chapter 22

27 557599 Ch22.qxd 4/29/04 11:41 AM Page 768

{
ProductRow rowProductRow = ((ProductRow)(this.NewRow()));
rowProductRow.ItemArray = new Object[0];
this.Rows.Add(rowProductRow);
return rowProductRow;

}

As you can see, the second method creates a new row, inserts that row in the Rows collection of the
DataTable, and then returns this object to the caller. The bulk of the other methods on the DataTable
are for raising events.

Generated DataRow
The following code shows the ProductRow class:

public class ProductRow : DataRow
{

private ProductDataTable tableProduct;
internal ProductRow(DataRowBuilder rb) : base(rb)

{
this.tableProduct = ((ProductDataTable)(this.Table));

}
public string Name { ... }
public bool IsNameNull { ... }
public void SetNameNull { ... }

// Other accessors/mutators omitted for clarity
}

When attributes are added to an element, a property is added to the generated DataRow class as shown
above. The property has the same name as the attribute; in this example, for the Product row, we have
properties for Name, SKU, Description, and Price.

For each attribute added, several changes are made to the .cs file. In the following example, suppose
there is an attribute called ProductId of type int.

At first a private member is added to the ProductDataTable class (derived from DataTable), which is
the new DataColumn:

private DataColumn columnProductId;

This is joined by a property named ProductIDColumn. This property is defined as internal:

internal DataColumn ProductIdColumn
{

get { return this.columnProductId; }
}

The AddProductRow() method shown above is also modified; it now takes an integer ProductID, and
stores the value entered in the newly created column:

769

Viewing .NET Data

27 557599 Ch22.qxd 4/29/04 11:41 AM Page 769

public ProductRow AddProductRow (... , int ProductId)
{

ProductRow rowProductRow = ((ProductRow)(this.NewRow()));
rowProductRow.ItemArray = new Object[] { ... , ProductId};
this.Rows.Add(rowProductRow);
return rowProductRow;

}

Finally, in the ProductDataTable, there is a modification to the InitClass() method:

private void InitClass()
{

...
this.columnProductID = new DataColumn(“ProductID”, typeof(int), null,

System.Data.MappingType.Attribute);
this.Columns.Add(this.columnProductID);
this.columnProductID.Namespace = “”;

}

This creates the new DataColumn and adds it to the Columns collection of the DataTable. The final
parameter to the DataColumn constructor defines how this column is mapped to XML; this is of use
when the DataSet is saved to an XML file, for example.

The ProductRow class is updated to add an accessor for this column:

public int ProductId
{

get { return ((int)(this[this.tableProduct.ProductIdColumn])); }
set { this[this.tableProduct.ProductIdColumn] = value; }

}

Generated EventArgs
The final class that is added to the source code is a derivation of EventArgs, which provides methods
for directly accessing the row that has changed (or is changing), and for the action that is applied to that
row. This code has been omitted for brevity.

Other Common Requirements
A common requirement when displaying data is to provide a pop-up menu for a given row. There are
numerous ways of doing this. In this example, we focus on one approach that can simplify the code
required, especially if the display context is a DataGrid, where a DataSet with some relations is dis-
played. The problem here is that the context menu depends on the row that is selected, and that row
could be part of any source DataTable in the DataSet.

As the context menu functionality is likely to be general purpose in nature, the implementation here
uses a base class (ContextDataRow) that supports the menu-building code, and each data row class that
supports a pop-up menu derives from this base class.

When the user right-clicks on any part of a row in the DataGrid, the row is looked up to check if it
derives from ContextDataRow, and if so, PopupMenu()can be called. This could be implemented using
an interface; however, in this instance a base class provides a simpler solution.

770

Chapter 22

27 557599 Ch22.qxd 4/29/04 11:41 AM Page 770

This example demonstrates how to generate DataRow and DataTable classes that can be used to pro-
vide type-safe access to data in much the same way as the previous XSD sample. However, this time we
write the code ourselves to show how to use custom attributes and reflection in this context.

Figure 22-28 illustrates the class hierarchy for this example.

Figure 22-28

Here is the code for this example:

using System;
using System.Windows.Forms;
using System.Data;
using System.Data.SqlClient;
using System.Reflection;

public class ContextDataRow : DataRow
{

public ContextDataRow(DataRowBuilder builder) : base(builder)
{
}
public void PopupMenu(System.Windows.Forms.Control parent, int x, int y)
{

// Use reflection to get the list of popup menu commands
MemberInfo[] members = this.GetType().FindMembers (MemberTypes.Method,

BindingFlags.Public | BindingFlags.Instance ,
new System.Reflection.MemberFilter(Filter),
null);

if (members.Length > 0)
{

// Create a context menu

ContextMenu menu = new ContextMenu();

// Now loop through those members and generate the popup menu
// Note the cast to MethodInfo in the foreach
foreach (MethodInfo meth in members)

DataTable DataRow

ContextDataRow

CustomerRow

OrderRow

CustomerTable

OrderTable

771

Viewing .NET Data

27 557599 Ch22.qxd 4/29/04 11:41 AM Page 771

{

// Get the caption for the operation from the
// ContextMenuAttribute

ContextMenuAttribute[] ctx = (ContextMenuAttribute[])
meth.GetCustomAttributes(typeof(ContextMenuAttribute), true);

MenuCommand callback = new MenuCommand(this, meth);
MenuItem item = new MenuItem(ctx[0].Caption, new

EventHandler(callback.Execute));
item.DefaultItem = ctx[0].Default;
menu.MenuItems.Add(item);

}
System.Drawing.Point pt = new System.Drawing.Point(x,y);
menu.Show(parent, pt);

}
}

private bool Filter(MemberInfo member, object criteria)
{

bool bInclude = false;

// Cast MemberInfo to MethodInfo

MethodInfo meth = member as MethodInfo;
if (meth != null)

if (meth.ReturnType == typeof(void))
{

ParameterInfo[] parms = meth.GetParameters();
if (parms.Length == 0)
{

// Lastly check if there is a ContextMenuAttribute on the
// method...

object[] atts = meth.GetCustomAttributes
(typeof(ContextMenuAttribute), true);

bInclude = (atts.Length == 1);
}

}
return bInclude;

}
}

The ContextDataRow class is derived from DataRow, and contains just two member functions:
PopupMenu and Filter(). PopupMenu uses reflection to look for methods that correspond to a particu-
lar signature, and it displays a pop-up menu of these options to the user. Filter() is used as a delegate
by PopupMenu when enumerating methods. It simply returns true if the member function does corre-
spond to the appropriate calling convention:

MemberInfo[] members = this.GetType().FindMembers(MemberTypes.Method,
BindingFlags.Public | BindingFlags.Instance,
new System.Reflection.MemberFilter(Filter),
null);

772

Chapter 22

27 557599 Ch22.qxd 4/29/04 11:41 AM Page 772

This single statement is used to filter all methods on the current object, and return only those that match
the following criteria:

❑ The member must be a method

❑ The member must be a public instance method

❑ The member must return void

❑ The member must accept zero parameters

❑ The member must include the ContextMenuAttribute

The last of these criteria refers to a custom attribute, written specifically for this example. (We discuss it
after discussing the PopupMenu method.)

ContextMenu menu = new ContextMenu();
foreach (MethodInfo meth in members)
{

// ... Add the menu item
}
System.Drawing.Point pt = new System.Drawing.Point(x,y);
menu.Show(parent, pt);

A context menu instance is created, and a popup menu item is added for each method that matches the
above criteria. The menu is subsequently displayed as shown in Figure 22-29.

Figure 22-29

The main area of difficulty with this example is the following section of code, repeated once for each
member function that is to be displayed on the pop-up menu:

System.Type ctxtype = typeof(ContextMenuAttribute);
ContextMenuAttribute[] ctx = (ContextMenuAttribute[])

meth.GetCustomAttributes(ctxtype, true);
MenuCommand callback = new MenuCommand(this, meth);
MenuItem item = new MenuItem(ctx[0].Caption,

new EventHandler(callback.Execute));
item.DefaultItem = ctx[0].Default;
menu.MenuItems.Add(item);

773

Viewing .NET Data

27 557599 Ch22.qxd 4/29/04 11:41 AM Page 773

Each method that should be displayed on the context menu is attributed with the ContextMenu
Attribute. This defines a user-friendly name for the menu option, as a C# method name cannot include
spaces, and it’s wise to use real English on pop-up menus rather than some internal code. The attribute
is retrieved from the method, and a new menu item created and added to the menu items collection of
the pop-up menu.

This sample code also shows the use of a simplified Command class (a common design pattern). The
MenuCommand class used in this instance is triggered by the user choosing an item on the context menu,
and it forwards the call to the receiver of the method—in this case the object and method that was
attributed. This also helps keep the code in the receiver object more isolated from the user interface code.
We explain this code in the following sections.

Manufactured tables and rows
The XSD example earlier in the chapter showed the code produced when the Visual Studio .NET editor
is used to generate a set of data access classes. The following class shows the required methods for a
DataTable, which are fairly minimal (and they all have been generated manually):

public class CustomerTable : DataTable
{

public CustomerTable() : base(“Customers”)
{

this.Columns.Add(“CustomerID”, typeof(string));
this.Columns.Add(“CompanyName”, typeof(string));
this.Columns.Add(“ContactName”, typeof(string));

}
protected override System.Type GetRowType()
{

return typeof(CustomerRow);
}
protected override DataRow NewRowFromBuilder(DataRowBuilder builder)
{

return(DataRow) new CustomerRow(builder);
}

}

The first prerequisite of a DataTable is to override the GetRowType() method. This is used by the .NET
internals when generating new rows for the table. The type used to represent each row should be
returned from this method.

The next prerequisite is to implement NewRowFromBuilder(), which is called by the runtime when cre-
ating new rows for the table. That’s enough for a minimal implementation. This implementation
includes adding columns to the DataTable. Since we know the list of columns in this example, these
can add them accordingly. The corresponding CustomerRow class is fairly simple. It implements proper-
ties for each of the columns within the row, and then implements the methods that ultimately are dis-
played on the context menu:

public class CustomerRow : ContextDataRow
{

public CustomerRow(DataRowBuilder builder) : base(builder)
{
}

774

Chapter 22

27 557599 Ch22.qxd 4/29/04 11:41 AM Page 774

public string CustomerID
{

get { return (string)this[“CustomerID”];}
set { this[“CustomerID”] = value;}

}

// Other properties omitted for clarity

[ContextMenu(“Blacklist Customer”)]
public void Blacklist()
{

// Do something
}
[ContextMenu(“Get Contact”,Default=true)]
public void GetContact()
{

// Do something else
}

}

The class simply derives from ContextDataRow, including the appropriate getter/setter methods on
properties which are named the same as each field, and then a set of methods may be added that are
used when reflecting on the class:

[ContextMenu(“Blacklist Customer”)]
public void Blacklist()
{

// Do something
}

Each method that is to be displayed on the context menu has the same signature, and includes the cus-
tom ContextMenu attribute.

Using an attribute
The idea behind writing the ContextMenu attribute is to be able to supply a free text name for a given
menu option. The following example also adds a Default flag, which is used to indicate the default
menu choice. The entire attribute class is presented here:

[AttributeUsage(AttributeTargets.Method,AllowMultiple=false,Inherited=true)]
public class ContextMenuAttribute : System.Attribute
{

public ContextMenuAttribute(string caption)
{

Caption = caption;
Default = false;

}
public readonly string Caption;
public bool Default;

}

775

Viewing .NET Data

27 557599 Ch22.qxd 4/29/04 11:41 AM Page 775

The AttributeUsage attribute on the class marks ContextMenuAttribute as only being usable on a
method, and it also defines that there can only be one instance of this object on any given method. The
Inherited=true clause defines whether the attribute can be placed on a superclass method, and still
reflected on by a subclass.

There are a number of other members that could be added to this attribute, including:

❑ A hotkey for the menu option

❑ An image to be displayed

❑ Some text to be displayed in the toolbar as the mouse pointer rolls over the menu option

❑ A help context ID

Dispatching methods
When a menu is displayed in .NET, each menu option is linked to the processing code for that option by
means of a delegate. In implementing the mechanism for connecting menu choices to code, you have
two options:

❑ Implement a method with the same signature as the System.EventHandler. This is defined as
shown in this snippet:

public delegate void EventHandler(object sender, EventArgs e);

❑ Define a proxy class, which implements the above delegate, and forwards calls to the received
class. This is known as the Command pattern, and is what has been chosen for this example.

The Command pattern separates the sender and the receiver of the call by means of a simple intermedi-
ate class. This may be overkill for such an example, but it makes the methods on each DataRow simpler
(because they don’t need the parameters passed to the delegate), and it is more extensible:

public class MenuCommand
{

public MenuCommand(object receiver, MethodInfo method)
{

Receiver = receiver;
Method = method;

}
public void Execute(object sender, EventArgs e)
{

Method.Invoke(Receiver, new object[] {});
}
public readonly object Receiver;
public readonly MethodInfo Method;

}

The class simply provides an EventHandler delegate (the Execute method), which invokes the desired
method on the receiver object. This example handles two different types of row: rows from the
Customers table and rows from the Orders table. Naturally, the processing options for each of these
types of data are likely to differ. Figure 22-29 shows the operations available for a Customer row,
whereas Figure 22-30 shows the options available for an Order row:

776

Chapter 22

27 557599 Ch22.qxd 4/29/04 11:41 AM Page 776

Figure 22-30

Getting the selected row
The last piece of the puzzle for this example is how to work out which row within the DataSet the user
has selected. You might think that it must be a property on the DataGrid. However, this control is not
available in this context. The hit test information obtained from within the MouseUp() event handler
might also be a likely candidate to look at, but that only helps if the data displayed is from a single
DataTable.

Remember how the grid is filled:

dataGrid.SetDataBinding(ds,”Customers”);

This method adds a new CurrencyManager to the BindingContext, which represents the current
DataTable and the DataSet. Now, the DataGrid has two properties, DataSource and DataMember,
which are set when the SetDataBinding() is called. DataSource in this instance refers to a DataSet,
and DataMember are Customers.

Given the data source, a data member, and the binding context of the form, the current row can be
located with the following code:

protected void dataGrid_MouseUp(object sender, MouseEventArgs e)
{

// Perform a hit test
if(e.Button == MouseButtons.Right)
{

// Find which row the user clicked on, if any
DataGrid.HitTestInfo hti = dataGrid.HitTest(e.X, e.Y);

// Check if the user hit a cell
if(hti.Type == DataGrid.HitTestType.Cell)
{

// Find the DataRow that corresponds to the cell
//the user has clicked upon

777

Viewing .NET Data

27 557599 Ch22.qxd 4/29/04 11:41 AM Page 777

After calling dataGrid.HitTest() to calculate where the user has clicked the mouse, the
BindingManagerBase instance for the data grid is retrieved:

BindingManagerBase bmb = this.BindingContext[dataGrid.DataSource,
dataGrid.DataMember];

This uses the DataGrid’s DataSource and DataMember to name the object to be returned. All that is left
now is to find the row the user clicked and display the context menu. With a right-click on a row, the
current row indicator doesn’t normally move, but that’s not good enough for us. The row indicator
should be moved and then the pop-up menu should be displayed. The HitTestInfo object includes the
row number, so the BindingManagerBase object’s current position can be changed as follows:

bmb.Position = hti.Row;

This changes the cell indicator, and at the same time means that when a call is made into the class to get
the Row, then the current row is returned and not the previous one selected:

DataRowView drv = bmb.Current as DataRowView;
if(drv != null)
{

ContextDataRow ctx = drv.Row as ContextDataRow;
if(ctx != null) ctx.PopupMenu(dataGrid,e.X,e.Y);

}
}

}
}

As the DataGrid is displaying items from a DataSet, the Current object within the
BindingManagerBase collection is a DataRowView, which is tested by an explicit cast in the previous
code. If this succeeds, the actual row that the DataRowView wraps can be retrieved by performing
another cast to check if it is indeed a ContextDataRow, and finally pop up a menu.

In this example, you’ll notice that two data tables, Customers and Orders, have been created, and a
relationship has been defined between these tables, so that when the user clicks CustomerOrders they
see a filtered list of orders. When the user clicks, the DataGrid changes the DataMember from
Customers to Customers.CustomerOrders, which just so happens to be the correct object that the
BindingContext indexer uses to retrieve the data being shown.

Summary
This chapter has introduced some of the methods of displaying data under .NET. There are a large num-
ber of classes to be explored in System.Windows.Forms, and the DataGrid has been used to display
data from many different data sources, such as an Array, DataTable, or DataSet.

The DataGrid control provides many innovative features, including the ability to navigate parent-child
relationships defined within a DataSet, while being highly customizable.

Because it is not always appropriate to display data in a grid, we also dicussed how to link a column of
data to a single control in the user interface. The binding capabilities of .NET make this type of user

778

Chapter 22

27 557599 Ch22.qxd 4/29/04 11:41 AM Page 778

interface very easy to support, because it’s generally just a case of binding a control to a column and let-
ting .NET do the rest of the work.

Furthermore we explored the integration of Visual Studio .NET and XML schemas. We discussed XSD
and automatic code generation, and presented a minimal implementation of XSD using a hand-crafted
example. Using an XSD schema to generate DataSet code can save you a lot of time (and typing),
because this tool takes care of all of the underlying code.

The following chapter explores in more detail how you can use XML in Visual Studio .NET, and how
well it has been integrated into .NET Framework.

779

Viewing .NET Data

27 557599 Ch22.qxd 4/29/04 11:41 AM Page 779

27 557599 Ch22.qxd 4/29/04 11:41 AM Page 780

Manipulating XML

XML plays a significant role in .NET Framework. Not only does .NET Framework allow you to
use XML in your application; .NET Framework itself uses XML for configuration files and source
code documentation, as well as SOAP, Web services, and ADO.NET just to name a few.

To accommodate this extensive use of XML, .NET Framework includes the System.Xml names-
pace. This namespace is loaded with classes that can be used for the processing of XML, and many
of these classes are discussed in this chapter.

We explain how to use the XmlDocument class, which is the implementation of the document
object model (DOM), as well as what .NET offers as a replacement for SAX (the XmlReader and
XmlWriter classes). We also discuss the class implementations of XPath and XSLT and demon-
strate how XML and ADO.NET work together, and how easy it is to transform one to the other. We
also discuss how you can serialize your objects to XML and create an object from (or deserialize)
an XML document using classes in the System.Xml.Serialization namespace. More to the
point, we look at how you can incorporate XML into your C# applications.

You should note that the XML namespace allows you to get similar results in a number of different
ways. It is impossible to include all these variations in one chapter, so while exploring one possible
way of doing things we’ll try our best to mention in passing alternative routes that will yield the
same or similar results.

Since we don’t have the space to teach you XML from scratch, we are assuming that you are
already somewhat familiar with XML technology. For example, you should be familiar what ele-
ments, attributes, and nodes, and you should also know what is meant by a well-formed docu-
ment. You should also be familiar with SAX and DOM. If you want to find out more about XML,
Wrox’s Beginning XML (ISBN 1-861003-41-2) and Professional XML (ISBN 1-861003-11-0) are great
places to start.

Let’s begin our discussion with a brief overview of the current status of XML standards.

28 557599 Ch23.qxd 4/29/04 11:38 AM Page 781

XML Standards Support in .NET
The World Wide Web Consortium (W3C) has developed a set of standards that give XML its power and
potential. Without these standards, XML would not have the impact on the development world that it
does. The W3C Web site (www.w3.org) is a valuable source of all things XML.

As of August 2003, .NET Framework supports the following W3C standards:

❑ XML 1.0 (www.w3.org/TR/1998/REC-xml-19980210), including DTD support

❑ XML Namespaces (www.w3.org/TR/REC-xml-names), both stream-level and DOM

❑ XML Schemas (www.w3.org/2001/XMLSchema)

❑ XPath expressions (www.w3.org/TR/xpath)

❑ XSLT transformations (www.w3.org/TR/xslt)

❑ DOM Level 1 Core (www.w3.org/TR/REC-DOM-Level-1/)

❑ DOM Level 2 Core (www.w3.org/TR/DOM-Level-2-Core/)

❑ SOAP 1.1 (www.w3.org/TR/SOAP)

The level of standards support will be changing as the Framework matures and the W3C updates the
recommended standards. Because of this, you will always need to make sure you stay up-to-date with
the standards and the level of support provided by Microsoft.

Introducing the System.Xml Namespace
Support for processing XML is provided by the classes in the System.Xml namespace in .NET. Let’s take
a look (in no particular order) at some of the more important classes that the System.Xml namespace
provides. The following table lists the main XML reader and writer classes.

Class Name Description

XmlReader An abstract reader class that provides fast, non-cached XML data. Xml-
Reader is forward only, like the SAX parser.

XmlWriter An abstract writer class that provides fast, non-cached XML data in stream
or file format.

XmlTextReader Extends XmlReader. Provides fast forward-only stream access to XML data.

XmlTextWriter Extends XmlWriter. Fast forward-only generation of XML streams.

The following table lists some other useful classes for handling XML.

782

Chapter 23

28 557599 Ch23.qxd 4/29/04 11:38 AM Page 782

Class Name Description

XmlNode An abstract class that represents a single node in an XML document. Base
class for several classes in the XML namespace.

XmlDocument Extends XmlNode. This is the W3C DOM implementation. It provides a tree
representation in memory of an XML document, enabling navigation and
editing.

XmlDataDocument Extends XmlDocument. This is a document that can be loaded from XML
data or from relational data in an ADO.NET DataSet. Allows the mixing
of XML and relational data in the same view.

XmlResolver An abstract class that resolves external XML-based resources such as DTD
and schema references. Also used to process <xsl:include> and
<xsl:import> elements.

XmlUrlResolver Extends XmlResolver. Resolves external resources named by a uniform
resource identifier (URI).

Many of the classes in the System.Xml namespace provide a means to manage XML documents and
streams, while others (such as the XmlDataDocument class) provide a bridge between XML data stores
and the relational data stored in DataSets.

Using MSXML in .NET
What if you have a ton of code developed using the latest Microsoft parser (currently MSXML 4.0)? Do
you have to toss it away and start over if you want to use it with .NET? What if you are comfortable
using the MSXML 4.0 DOM? Do you have to switch to .NET right away?

The answer is no. XML 4.0, 3.0, or 2.0 can be used directly in your applications. When you add a refer-
ence to msxml4.DLL to your solution, you can start writing some code.

The following examples use books.xml as the source of data. This file can be downloaded from the Wrox
Web site (www.wrox.com), but it is also included in several examples in the .NET SDK. The books.xml
file is a book catalog for an imaginary bookstore. It includes book information such as genre, author
name, price, and ISBN number. As with the other chapters, you can download all code examples in this
chapter from the Wrox Web site. In order to run the examples, the XML data files will need to be in a
path structure that looks something like this:

/XMLChapter/Sample1
/XMLChapter/Sample2
/XMLChapter/Sample3
...

It is worth noting that the XML namespace is available to any language that is part
of the .NET family. This means that all of the examples in this chapter could also be
written in Visual Basic .NET, managed C++, and so on.

783

Manipulating XML

28 557599 Ch23.qxd 4/29/04 11:38 AM Page 783

You can call the directories anything you want, as long as the individual directories maintain their rela-
tive positions to each other. You can also modify the examples to point to anywhere you want. The
example code is commented to show which line(s) to change if you want to do this.

This is what the books.xml file looks like:

<?xml version=’1.0’?>
<!-- This file represents a fragment of a book store inventory database -->
<bookstore>

<book genre=”autobiography” publicationdate=”1981” ISBN=”1-861003-11-0”>
<title>The Autobiography of Benjamin Franklin</title>
<author>

<first-name>Benjamin</first-name>
<last-name>Franklin</last-name>

</author>
<price>8.99</price>

</book>
<book genre=”novel” publicationdate=”1967” ISBN=”0-201-63361-2”>

<title>The Confidence Man</title>
<author>

<first-name>Herman</first-name>
<last-name>Melville</last-name>

</author>
<price>11.99</price>

</book>
<book genre=”philosophy” publicationdate=”1991” ISBN=”1-861001-57-6”>

<title>The Gorgias</title>
<author>

<name>Plato</name>
</author>
<price>9.99</price>

</book>
</bookstore>

Let’s look at some code that uses MSXML 4.0 to load a list box with the ISBNs from books.xml. You’ll
find the full code in the MSXML_Sample folder of the download. You can copy this code into the Visual
Studio IDE or create a new Windows Form from scratch. This form contains a list box and a button. Both
use the default names of listBox1 and button1, with the Text property of button1 set to Load XML.

One thing that should be pointed out is that since MSXML 4 is a COM-based component, we will need
to create the interop assembly. The easiest way is to select Add Reference from the Project menu in the
Visual Studio IDE. Go to the COM tab and select Microsoft XML, v4.0 (or v3.0, v2.6). You will see
MSXML2 as the added namespace in Solution Explorer. Why is it MSXML2? When you import a COM
component the namespace that is given to the new assembly is the typelib name for the COM compo-
nent. In this case it is MSXML2. If you use TLBIMP you can change the namespace to something else if
you wish to.

Next we take a closer look at the most important lines from the MSXML_sample example code.

Since we now have the reference, we add the line:

using MSXML2;

784

Chapter 23

28 557599 Ch23.qxd 4/29/04 11:38 AM Page 784

We also need a class-level variable.

private DOMDocument40 doc;

Now we are ready to use MSXML in our application.

We want to take the ISBN from the list box, and, using a simple XPath search, find the book node that it
matches and display the node text (the book title and book price) in a message box XML Path
Language (XPath) is an XML notation that can be used for querying and filtering text in an XML docu-
ment. We will look more closely at how to use XPath in .NET later in the chapter.

Here is the event handler code for selecting an entry in the list box:

protected void listBox1_SelectedIndexChanged (
object sender, System.EventArgs e)

{
string srch=listBox1.SelectedItem.ToString();
IXMLDOMNode nd=doc.selectSingleNode(

“bookstore/book[@ISBN=’” + srch + “‘]”);
MessageBox.Show(nd.text);

}

Now we’ll look at the event handler for clicking the button. First, we load the books.xml file—note that
if you’re running the executable from somewhere that isn’t the bin/debug or bin/release folder, you’ll
need to adjust the path appropriately:

protected void button1_Click (object sender, System.EventArgs e)
{

doc=new DOMDocument40 ();
doc.load(“..\\..\\..\\books.xml”);

The next lines declare that nodes is a NodeList of book nodes. In this case there are three book nodes:

IXMLDOMNodeList nodes;
nodes = doc.selectNodes(“bookstore/book”);
IXMLDOMNode node=nodes.nextNode();

Then we loop through the nodes, and add the text value of the ISBN attribute to listBox1:

while(node!=null)
{

listBox1.Items.Add(node.attributes.getNamedItem(“ISBN”).text);
node=nodes.nextNode ();

}
}

Figure 23-1 shows the example executing. First the button was clicked to load the data into the list box.
Then an item in the list box was selected.

785

Manipulating XML

28 557599 Ch23.qxd 4/29/04 11:38 AM Page 785

Figure 23-1

Using System.Xml Classes
If you have done any work with MSXML 3.0 or 4.0, the previous code above will look pretty familiar. So
why would you want to do this if .NET Framework is supposed to have all of these wonderful XML
classes to use?

While the System.Xml namespace is powerful and relatively easy to use, it is different from the MSXML
3.0 model. If you are comfortable using MSXML 3.0, then use it until you become familiar with the
System.Xml namespace.

However, System.Xml classes have several advantages over MSXML classes. First, System.Xml is man-
aged code, so by using it you will gain all of the code security and type safety of using managed code.
Also, using COM interop incurs some overhead. Most importantly, however, the System.Xml names-
pace is easy to use and offers a great deal of flexibility. By the end of this chapter this will have become
very evident to you.

You should note that we will be using the books.xml file for several examples in this chapter, and the
code sample we just looked at will be the basis for many examples too.

Reading and Writing Streamed XML
Now that we have seen how things can be done today, let’s take a look at what .NET will allow us to do.
We start by looking at how to read and write XML.

The XmlReader and XmlWriter classes will feel familiar to anyone who has ever used SAX.
XmlReader-based classes provide a very fast, forward-only, read-only cursor that streams the XML data
for processing. Since it is a streaming model, the memory requirements are not very demanding.
However, you don’t have the navigation flexibility and the read or write capabilities that would be avail-

786

Chapter 23

28 557599 Ch23.qxd 4/29/04 11:38 AM Page 786

able from a DOM-based model. XmlWriter-based classes produce an XML document that conforms to
the W3C’s XML 1.0 Namespace Recommendations.

XmlReader and XmlWriter are both abstract classes. Figure 23-2 shows the classes that are derived from
XmlReader and XmlWriter.

Figure 23-2

XmlTextReader and XmlTextWriter work with either a stream-based object or TextReader/
TextWriter objects from the System.IO namespace. XmlNodeReader uses an XmlNode as its source
instead of a stream. The XmlValidatingReader adds DTD and schema validation and therefore offers
data validation. We’ll look at these a bit more closely later in this chapter.

Using the XmlTextReader Class
As mentioned previously, XmlTextReader is a lot like SAX. One of the biggest differences, however, is
that while SAX is a push type of model (that is, it pushes data out to the application, and the developer
has to be ready to accept it), the XmlTextReader has a pull model, where data is pulled into an applica-
tion requesting it. This provides an easier and more intuitive programming model. Another advantage
to this is that a pull model can be selective about the data that is sent to the application: if you don’t
want all of the data, then you don’t need to process it. In a push model, all of the XML data has to be
processed by the application, whether it is needed or not.

XmlReader

XmlWriter

XmlTextReader

XmlNodeReader

XmlValidatingReader

XmlTextWriter

787

Manipulating XML

28 557599 Ch23.qxd 4/29/04 11:38 AM Page 787

Let’s take a look at a very simple example of reading XML data, and then we can take a closer look at the
XmlTextReader class. You’ll find the code in the XmlReaderSample1 folder. Instead of using the names-
pace MSXML2 as in the previous example, we now use the following:

using System.Xml;

We also need to remove the following line from the module-level code:

private DOMDocument40 doc;

This is what our button click event handler looks like now:

protected void button1_Click (object sender, System.EventArgs e)
{

//Modify this path to find books.xml
string fileName = “..\\..\\..\\books.xml”;
//Create the new TextReader Object
XmlTextReader tr = new XmlTextReader(fileName);
//Read in a node at a time
while(tr.Read())
{

if(tr.NodeType == XmlNodeType.Text)
listBox1.Items.Add(tr.Value);

}
}

This is XmlTextReader at its simplest. First we create a string object with the name of the XML file.
We then create a new XmlTextReader object passing in the fileName string. XmlTextReader has thir-
teen different constructor overloads. We can pass in various combinations of strings (file names and
URLs), streams, and NameTables (when an element or attribute name occurs several times, it can be
stored in a NameTable, which allows for faster comparisons).

Just after an XmlTextReader object has been initialized, no node is selected. This is the only time that a
node isn’t current. When we go into the tr.Read() loop, the first Read() will move us to the first node
in the document. This would typically be the XML declaration node. In this sample, as we move to each
node we compare tr.NodeType against the XmlNodeType enumeration, and when we find a text node,
we add the text value to the list box. Figure 23-3 shows the result.

Read methods
There are several ways to move through the document. As shown in the previous example, Read()
takes us to the next node. We can then verify whether the node has a value (HasValue()) or, as you will
see shortly, whether the node has any attributes (HasAttributes()). We can also use the
ReadStartElement() method, which verifies whether the current node is the start element, and then
position you on to the next node. If you are not on the start element, an XmlException is raised. Calling
this method is the same as calling the IsStartElement() method, followed by a Read() method.

The ReadString() and ReadChars() methods both read in the text data from an element.
ReadString() returns a string object containing the data, while ReadChars() reads the data into an
array of chars.

788

Chapter 23

28 557599 Ch23.qxd 4/29/04 11:38 AM Page 788

Figure 23-3

ReadElementString() is similar to ReadString(), except that you can optionally pass in the name of
an element. If the next content node is not a start tag, or if the Name parameter does not match the cur-
rent node Name, then an exception is raised.

Here is an example of how ReadElementString() can be used (you’ll find the code in the
XmlReaderSample2 folder). Notice that this example uses FileStreams, so you will need to make sure
that you include the System.IO namespace via a using statement.

protected void button1_Click (object sender, System.EventArgs e)
{

//use a filestream to get the data
FileStream fs = new FileStream(“..\\..\\..\\books.xml”,FileMode.Open);
XmlTextReader tr = new XmlTextReader(fs);
while(!tr.EOF)
{

//if we hit an element type, try and load it in the listbox
if(tr.MoveToContent() == XmlNodeType.Element && tr.Name==”title”)
{

listBox1.Items.Add(tr.ReadElementString());
}
else
{

//otherwise move on
tr.Read();

}
}

}

In the while loop we use MoveToContent() to find each node of type XmlNodeType.Element with the
name title. We use the EOF property of the XmlTextReader as the loop condition. If the node is not of
type Element or not named title, the else clause will issue a Read() method to move to the next
node. When we find a node that matches the criteria, we add the result of a ReadElementString() to
the list box. This should leave us with just the book titles in the list box. Note that we don’t have to
issue a Read() call after a successful ReadElementString(). This is because ReadElementString()
consumes the entire Element, and positions you on the next node.

789

Manipulating XML

28 557599 Ch23.qxd 4/29/04 11:38 AM Page 789

If you remove && tr.Name==”title” from the if clause, you will have to catch the XmlException
exception when it is thrown. If you look at the data file, you will see that the first element that MoveTo
Content() will find is the <bookstore> element. Since it is an element, it will pass the check in the if
statement. However, since it does not contain a simple text type, it will cause ReadElementString() to
raise an XmlException. One way to work around this is to put the ReadElementString() call in a
function of its own. Then, if the call to ReadElementString() fails inside this function, we can deal
with the error and return to the calling function.

Let’s do this; we’ll call this new method LoadList(), and pass in the XmlTextReader as a parameter.
This is what the sample code looks like with these changes (you’ll find the code in the
XmlReaderSample3 folder):

protected void button1_Click (object sender, System.EventArgs e)
{

//use a filestream to get the data
FileStream fs = new FileStream(“..\\..\\..\\books.xml”,FileMode.Open);
XmlTextReader tr = new XmlTextReader(fs);
while(!tr.EOF)
{

//if we hit an element type, try and load it in the listbox
if(tr.MoveToContent() == XmlNodeType.Element)
{

LoadList(tr);
}
else
{

//otherwise move on
tr.Read();

}
}

}
private void LoadList(XmlReader reader)
{

try
{

listBox1.Items.Add(reader.ReadElementString());
}
// if an XmlException is raised, ignore it.
catch(XmlException er){}

}

After running this example the results should be the same as before. What we are seeing is that there is
more then one way to accomplish the same goal. This is where the flexibility of the classes in the
System.Xml namespace starts to become apparent.

Retrieving attribute data
As you play with the sample code, you might notice that when the nodes are read in, you don’t see any
attributes. This is because attributes are not considered part of a document’s structure. When you are on
an element node, you can check for the existence of attributes, and optionally retrieve the attribute values.

790

Chapter 23

28 557599 Ch23.qxd 4/29/04 11:38 AM Page 790

For example, the HasAttributes property returns true if there are any attributes; otherwise it returns
false. The AttributeCount property will tell you how many attributes there are, and the Get
Attribute() method gets an attribute by name or by index. If you want to iterate through the attributes
one at a time, there are also MoveToFirstAttribute() and MoveToNextAttribute() methods.

Here is an example of iterating through the attributes from XmlReaderSample4:

protected void button1_Click (object sender, System.EventArgs e)
{

//set this path to match your data path structure
string fileName = “..\\..\\..\\books.xml”;
//Create the new TextReader Object
XmlTextReader tr = new XmlTextReader(fileName);
//Read in node at a time
while(tr.Read())
{

//check to see if it’s a NodeType element
if(tr.NodeType == XmlNodeType.Element)
{

//if it’s an element, then let’s look at the attributes.
for(int i = 0; i < tr.AttributeCount; i++) {

listBox1.Items.Add(tr.GetAttribute(i));
}

}
}

This time we are looking for element nodes. When we find one, we loop through all of the attributes
and, using the GetAttribute() method, we load the value of the attribute into the list box. In this
example those attributes would be genre, publicationdate, and ISBN.

Using the XmlValidatingReader Class
If you want to validate an XML document, you’ll need to use the XmlValidatingReader class. It con-
tains the same functionality as XmlTextReader (both classes extend XmlReader), with the exception
that XmlValidatingReader adds a ValidationType property, a Schemas property, and a SchemaType
property.

You set the ValidationType property to the type of validation that you want to do. The following table
lists the valid values for this property.

Property Value Description

Auto If a DTD is declared in a <!DOCTYPE...> declaration, that DTD will be
loaded and processed. Default attributes and general entities defined in
the DTD will be made available.

If an XSD schemalocation attribute is found, the XSD is loaded and
processed, and will return any default attributes defined in the schema.

If a namespace with the MSXML x-schema: prefix is found, it will load
and process the XDR schema and return any default attributes defined.

Table continued on following page

791

Manipulating XML

28 557599 Ch23.qxd 4/29/04 11:38 AM Page 791

Property Value Description

DTD Validates according to DTD rules.

Schema Validates according to XSD schema.

XDR Validates according to XDR schema.

None No validation is performed.

After this property is set, a ValidationEventHandler will need to be assigned. This is an event that
gets raised when a validation error occurs. You can then react to the error in any way you see fit.

Let’s look at an example of how this works. First we add an XDR (XM-Data Reduced) schema names-
pace to our books.xml file, and rename this file booksVal.xml. It now looks like this:

<?xml version=’1.0’?>
<!-- This file represents a fragment of a book store inventory database -->
<bookstore xmlns=”x-schema:books.xdr”>

<book genre=”autobiography” publicationdate=”1981” ISBN=”1-861003-11-0”>
<title>The Autobiography of Benjamin Franklin</title>
<author>

<first-name>Benjamin</first-name>
<list-name>Franklin</list-name>

</author>
<price>8.99</price>

</book>
...

</bookstore>

Note that the bookstore element now has the attribute xmlns=”x-schema:books.xdr”. This will point
to the following XDR schema, called books.xdr:

<?xml version=”1.0”?>
<Schema xmlns=”urn:schemas-microsoft-com:xml-data”

xmlns:dt=”urn:schemas-microsoft-com:datatypes”>
<ElementType name=”first-name” content=”textOnly”/>
<ElementType name=”last-name” content=”textOnly”/>
<ElementType name=”name” content=”textOnly”/>
<ElementType name=”price” content=”textOnly” dt:type=”fixed.14.4”/>
<ElementType name=”author” content=”eltOnly” order=”one”>

<group order=”seq”>
<element type=”name”/>

</group>
<group order=”seq”>

<element type=”first-name”/>
<element type=”last-name”/>

</group>
</ElementType>
<ElementType name=”title” content=”textOnly”/>
<AttributeType name=”genre” dt:type=”string”/>
<ElementType name=”book” content=”eltOnly”>

<attribute type=”genre” required=”yes”/>

792

Chapter 23

28 557599 Ch23.qxd 4/29/04 11:38 AM Page 792

<element type=”title”/>
<element type=”author”/>
<element type=”price”/>

</ElementType>
<ElementType name=”bookstore” content=”eltOnly”>

<element type=”book”/>
</ElementType>

</Schema>

Now everything looks good except for the fact that we have a couple of attributes in the XML file that
are not defined in the schema (publicationdate and ISBN from the book element). We have added
these in order to show that validation is really taking place by raising a validation error. We can use the
following code (from XmlReaderSample5) to verify this.

First, you will also need to add the following line to your class:

using System.Xml.Schema;

Then add the following code to the button event handler:

protected void button1_Click (object sender, System.EventArgs e)
{

//change this to match your path structure.
string fileName = “..\\..\\..\\booksVal.xml”;
XmlTextReader tr=new XmlTextReader(fileName);
XmlValidatingReader trv = new XmlValidatingReader(tr);
//Set validation type
trv.ValidationType=ValidationType.XDR;
//Add in the Validation eventhandler
trv.ValidationEventHandler +=

new ValidationEventHandler(this.ValidationEvent);
//Read in node at a time
while(trv.Read())
{

if(trv.NodeType == XmlNodeType.Text)
listBox1.Items.Add(trv.Value);

}
}
public void ValidationEvent (object sender, ValidationEventArgs args)
{

MessageBox.Show(args.Message);
}

Here we create an XmlTextReader to pass to the XmlValidatingReader. Once the XmlValidating
Reader (trv) is created, we can use it in much the same way that we used XmlTextReader in the previ-
ous examples. The differences are that we specify the ValidationType, and add a ValidationEvent
Handler. You can handle the validation error any way that you see fit; in this example we are showing a
message box with the error. Figure 23-4 shows what the message box looks like when the
ValidationEvent is raised.

Unlike some parsers, once a validation error occurs, XmlValidatingReader will keep on reading. It’s
up to you to stop the reading and deal with the errors accordingly if you believe that the error is serious
enough.

793

Manipulating XML

28 557599 Ch23.qxd 4/29/04 11:38 AM Page 793

Figure 23-4

Using the Schemas property
The Schemas property of XmlValidatingReader holds an XmlSchemaCollection, which is found in
the System.Xml.Schema namespace. This collection holds pre-loaded XSD and XDR schemas. This
allows for very fast validation, especially if you need to validate several documents, since the schema
will not have to be reloaded on each validation. In order to make use of this performance gain, you cre-
ate an XmlSchemaCollection object. The Add() method, used to populate an XmlSchemaCollection,
has four overloads. You can pass in an XmlSchema-based object, an XmlSchemaCollection-based
object, a string with the namespace along with a string with the URI of the schema file, and finally a
string with the namespace and an XmlReader-based object that contains the schema.

Using the XmlTextWriter Class
The XmlTextWriter class allows you write XML to a stream, a file, or a TextWriter object. Like
XmlTextReader, it does so in a forward-only, non-cached manner. XmlTextWriter is highly config-
urable, allowing you to specify such things as whether or not to indent content, the amount to indent,
what quote character to use in attribute values, and whether namespaces are supported.

Let’s look at a simple example to see how the XmlTextWriter class can be used. You can find this exam-
ple in the XmlWriterSample1 folder:

private void button1_Click(object sender, System.EventArgs e)
{

// change to match your path structure
string fileName=”..\\..\\..\\booknew.xml”;
// create the XmlTextWriter
XmlTextWriter tw=new XmlTextWriter(fileName,null);
// set the formatting to indented
tw.Formatting=Formatting.Indented;
tw.WriteStartDocument();
// Start creating elements and attributes
tw.WriteStartElement(“book”);
tw.WriteAttributeString(“genre”,”Mystery”);
tw.WriteAttributeString(“publicationdate”,”2001”);
tw.WriteAttributeString(“ISBN”,”123456789”);
tw.WriteElementString(“title”,”The Case of the Missing Cookie”);
tw.WriteStartElement(“author”);
tw.WriteElementString(“name”,”Cookie Monster”);
tw.WriteEndElement();
tw.WriteElementString(“price”,”9.99”);
tw.WriteEndElement();
tw.WriteEndDocument();

794

Chapter 23

28 557599 Ch23.qxd 4/29/04 11:38 AM Page 794

//clean up
tw.Flush();
tw.Close();

}

Here we are writing to a new XML file called booknew.xml, adding the data for a new book. Note that
XmlTextWriter will overwrite an existing file with a new one. We will look at inserting a new element
or node into an existing document later in this chapter. We are instantiating the XmlTextWriter object
using a FileStream object as a parameter. We could also pass in a string with a file name and path, or a
TextWriter-based object. The next thing that we do is set the Indenting property. After this is set,
child nodes are automatically indented from the parent. WriteStartDocument()adds the document
declaration. Now we start writing data. First comes the book element, and then we add the genre, pub-
licationdate, and ISBN attributes, and then we write the title, author, and price elements. Note
that the author element has a child element name.

When we click the button, we produce the booknew.xml file, which looks like this:

<?xml version=”1.0”?>
<book genre=”Mystery” publicationdate=”2001” ISBN=”123456789”>

<title>The Case of the Missing Cookie</title>
<author>

<name>Cookie Monster</name>
</author>
<price>9.99</price>

</book>

The nesting of elements is controlled by paying attention to when you start and finish writing elements
and attributes. You can see this when we add the name child element to the authors element. Note how
the WriteStartElement() and WriteEndElement() method calls are arranged, and how that
arrangement produces the nested elements in the output file.

To go along with the WriteElementString() and WriteAttributeString() methods, there are sev-
eral other specialized write methods. WriteCData()outputs a CData section (<!CDATA[...]]>), writ-
ing out the text it takes as a parameter. WriteComment() writes out a comment in proper XML format.
WriteChars() writes out the contents of a char buffer. This works in a similar fashion to the
ReadChars() method that we looked at earlier; they both use the same type of parameters.
WriteChars() needs a buffer (an array of characters), the starting position for writing (an integer) and
the number of characters to write (an integer).

Reading and writing XML using the XmlReader and XmlWriter-based classes is surprisingly flexible
and simple to use. Next, we explain how the DOM is implemented in the System.Xml namespace,
through the XmlDocument and XmlNode classes.

Using the DOM in .NET
The DOM implementation in .NET supports the W3C DOM Level 1 and Core DOM Level 2 specifica-
tions. The DOM is implemented through the XmlNode class, which is an abstract class that represents a
node of an XML document.

795

Manipulating XML

28 557599 Ch23.qxd 4/29/04 11:38 AM Page 795

There is also an XmlNodeList class, which is an ordered list of nodes. This is a live list of nodes, and any
changes to any node are immediately reflected in the list. XmlNodeList supports indexed access or iter-
ative access. There is another abstract class, XmlCharacterData, that extends XmlLinkedNode, and pro-
vides text manipulation methods for other classes.

The XmlNode and XmlNodeList classes make up the core of the DOM implementation in.NET
Framework. The following table lists some of the classes that are based on XmlNode.

Class Name Description

XmlLinkedNode Returns the node immediately before or after the current node.
Adds NextSibling and PreviousSibling properties to
XmlNode.

XmlDocument Represents the entire document. Implements the DOM Level 1
and Level 2 specifications.

XmlDocumentFragment Represents a fragment of the document tree.

XmlAttribute Represents an attribute object of an XmlElement object.

XmlEntity Represents a parsed or unparsed entity node.

XmlNotation Contains a notation declared in a DTD or schema.

The following table list classes that extend XmlCharacterData.

Class Name Description

XmlCDataSection Represents a CData section of a document.

XmlComment Represents an XML comment object.

XmlSignificantWhitespace Represents a node with whitespace. Nodes created only if the
PreserveWhiteSpace flag is true.

XmlWhitespace Represents whitespace in element content. Nodes are created
only if the PreserveWhiteSpace flag is true.

XmlText Represents the textual content of an element or attribute.

The following table lists classes that extend the XmlLinkedNode.

796

Chapter 23

28 557599 Ch23.qxd 4/29/04 11:38 AM Page 796

Class Name Description

XmlDeclaration Represents the declaration node (<?xml version=’1.0’...>).

XmlDocumentType Represents data relating to the document type declaration.

XmlElement Represents an XML element object.

XmlEntityReferenceNode Represents an entity reference node.

XmlProcessingInstruction Contains an XML processing instruction.

As you can see, .NET makes available a class to fit just about any XML type that you might encounter.
Because of this, you end up with a very flexible and powerful tool set. We won’t look at every class in
detail, but we will use several examples to give you an idea of what you can accomplish. Figure 23-5
illustrates what the inheritance diagram looks like.

Using the XmlDocument Class
XmlDocument and its derived class XmlDataDocument (discussed later in this chapter) are the classes
that you will be using to represent the DOM in .NET. Unlike XmlReader and XmlWriter, XmlDocument
gives you read and write capabilities as well as random access to the DOM tree. XmlDocument resembles
the DOM implementation in MSXML. If you have experience programming with MSXML, then you will
feel comfortable using XmlDocument.

Let’s introduce an example that creates an XmlDocument object, loads a document from disk and loads a
list box with data from the title elements. This is similar to one of the examples that we constructed in
the XmlReader section. The difference here is that we will be selecting the nodes we want to work with,
instead of going through the entire document as in the XmlReader-based example.

Here is our code. Look at how simple it looks in comparison to the XmlReader example (the file can be
found in the DOMSample1 folder of the download):

private void button1_Click(object sender, System.EventArgs e)
{

// doc is declared at the module level
// change path to match your path structure
doc.Load(“..\\..\\..\\books.xml”);
// get only the nodes that we want
XmlNodeList nodeLst=doc.GetElementsByTagName(“title”);
// iterate through the XmlNodeList
foreach(XmlNode node in nodeLst) listBox1.Items.Add(node.InnerText);

}

Note that we also add the following declaration at the module level for the examples in this section:

private XmlDocument doc=new XmlDocument();

797

Manipulating XML

28 557599 Ch23.qxd 4/29/04 11:38 AM Page 797

Figure 23-5

XmlAttribute

XmlNode

XmlDocumentFragment

XmlEntity

XmlDocument

XmlDataDocument

XmlDeclaration

XmlDocumentType

XmlElement

XmlProcessingInstruction

XmlEntityReference

XmlCharacterData

XmlComment

XmlSignificantWhitespace

XmlText

XmlWhiteSpace

XmlLinkedNode

XmlNotation

798

Chapter 23

28 557599 Ch23.qxd 4/29/04 11:38 AM Page 798

If this is all that we wanted to do, using the XmlReader would have been a much more efficient way to
load the list box, because we just go through the document once, and then we are finished with it. This is
exactly the type of work that XmlReader was designed for. However, if we wanted to revisit a node,
then using XmlDocument is a better way. Let’s extend the previous example by adding another event
handler (this is DOMSample2):

private void listBox1_SelectedIndexChanged(object sender, System.EventArgs e)
{

//create XPath search string
string srch=”bookstore/book[title=’” + listBox1.SelectedItem.ToString()

+ “‘]”;
//look for the extra data
XmlNode foundNode = doc.SelectSingleNode(srch);
if(foundNode != null)

MessageBox.Show(foundNode.InnerText);
else

MessageBox.Show(“Not found”);
}

In this example, we load the list box with the titles from the books.xml document, as in the previous
example. When we click on the list box, it triggers the SelectedIndexChanged() event handler. In this
case, we take the text of the selected item in the list box (the book title) create an XPath statement and
pass it to the SelectSingleNode() method of the doc object. This returns the book element that the
title is part of (foundNode). Then we display the InnerText of the node in a message box. We can
keep clicking on items in the list box as many times as we want, since the document is loaded and stays
loaded until we release it.

A quick comment regarding the SelectSingleNode() method. This is an XPath implementation in the
XmlDocument class. There are the methods SelectSingleNode() and SelectNodes(). Both of these
methods are defined in XmlNode, which XmlDocument in based on. SelectSingleNode() returns an
XmlNode and SelectNodes() returns an XmlNodeList. However, the System.Xml.XPath namespace
contains a richer XPath implementation, and we will be looking at that in a later section.

Inserting nodes
Earlier we looked at an example using XmlTextWriter that created a new document. The limitation
was that it would not insert a node into a current document. With the XmlDocument class we can do just
that. Change the button1_Click() event handler from the last example to the following (DOMSample3
in the download code):

private void button1_Click(object sender, System.EventArgs e)
{

//change path to match your structure
doc.Load(“..\\..\\..\\books.xml”);
//create a new ‘book’ element
XmlElement newBook=doc.CreateElement(“book”);
//set some attributes
newBook.SetAttribute(“genre”,”Mystery”);
newBook.SetAttribute(“publicationdate”,”2001”);
newBook.SetAttribute(“ISBN”,”123456789”);
//create a new ‘title’ element
XmlElement newTitle=doc.CreateElement(“title”);

799

Manipulating XML

28 557599 Ch23.qxd 4/29/04 11:38 AM Page 799

newTitle.InnerText=”The Case of the Missing Cookie”;
newBook.AppendChild(newTitle);
//create new author element
XmlElement newAuthor=doc.CreateElement(“author”);
newBook.AppendChild(newAuthor);
//create new name element
XmlElement newName=doc.CreateElement(“name”);
newName.InnerText=”C. Monster”;
newAuthor.AppendChild(newName);
//create new price element
XmlElement newPrice=doc.CreateElement(“price”);
newPrice.InnerText=”9.95”;
newBook.AppendChild(newPrice);
//add to the current document
doc.DocumentElement.AppendChild(newBook);
//write out the doc to disk
XmlTextWriter tr=new XmlTextWriter(“..\\..\\..\\booksEdit.xml”,null);
tr.Formatting=Formatting.Indented;
doc.WriteContentTo(tr);
tr.Close();
//load listBox1 with all of the titles, including new one
XmlNodeList nodeLst=doc.GetElementsByTagName(“title”);
foreach(XmlNode node in nodeLst)

listBox1.Items.Add(node.InnerText);
}

After executing this code, you end up with the same functionality as in the previous example, but there
is one additional book in the list box, The Case of the Missing Cookie (a soon-to-be classic). Clicking on the
cookie caper title will show all of the same info as the other titles. Breaking down the code, we can see
that this is actually a fairly simple process. The first thing that we do is create a new book element:

XmlElement newBook = doc.CreateElement(“book”);

CreateElement() has three overloads that allow you to specify:

❑ The element name

❑ The name and namespace URI

❑ The prefix, localname, and namespace

Once the element is created we need to add attributes:

newBook.SetAttribute(“genre”,”Mystery”);
newBook.SetAttribute(“publicationdate”,”2001”);
newBook.SetAttribute(“ISBN”,”123456789”);

Now that we have the attributes created, we need to add the other elements of a book:

XmlElement newTitle = doc.CreateElement(“title”);
newTitle.InnerText = “The Case of the Missing Cookie”;
newBook.AppendChild(newTitle);

800

Chapter 23

28 557599 Ch23.qxd 4/29/04 11:38 AM Page 800

Once again we create a new XmlElement-based object (newTitle). Then we set the InnerText property
to the title of our new classic, and append the element as a child to the book element. We repeat this for
the rest of the elements in this book element. Note that we add the name element as a child to the
author element. This will give us the proper nesting relationship as in the other book elements.

Finally, we append the newBook element to the doc.DocumentElement node. This is the same level as
all of the other book elements. We have now updated an existing document with a new element.

The last thing to do is to write the new XML document to disk. In this example we create a new
XmlTextWriter, and pass it to the WriteContentTo() method. WriteContentTo() and WriteTo()
both take an XmlTextWriter as a parameter. WriteContentTo() saves the current node and all of its
children to the XmlTextWriter, whereas WriteTo() just saves the current node. Because doc is an
XmlDocument-based object, it represents the entire document and so that is what is saved. We could also
use the Save() method. It will always save the entire document. Save() has four overloads. You can
specify a string with the file name and path, a Stream-based object, a TextWriter-based object, or an
XmlWriter-based object.

We also call the Close() method on XmlTextWriter to flush the internal buffers and close the file.

Figure 23-6 shows what we get when we run this example. Notice the new entry at the bottom of the list:

Figure 23-6

If we wanted to create a document from scratch, we could use the XmlTextWriter, which we saw in
action earlier in the chapter. We can also use XmlDocument. Why would you use one in preference to the
other? If the data that you want streamed to XML is available and ready to write, then the
XmlTextWriter class would be the best choice. However, if you need to build the XML document a lit-
tle at a time, inserting nodes into various places, then creating the document with XmlDocument might
be the better choice. We can accomplish this by changing the following line:

doc.Load(“..\\..\\..\\books.xml”);

to this code (example DOMSample4):

801

Manipulating XML

28 557599 Ch23.qxd 4/29/04 11:38 AM Page 801

//create the declaration section
XmlDeclaration newDec = doc.CreateXmlDeclaration(“1.0”,null,null);
doc.AppendChild(newDec);
//create the new root element
XmlElement newRoot = doc.CreateElement(“newBookstore”);
doc.AppendChild(newRoot);

First, we create a new XmlDeclaration. The parameters are the version (always 1.0 for now), the
encoding, and the standalone flag. The encoding parameter should be set to a string that is part of
the System.Text.Encoding class if null isn’t used. (null defaults to UTF-8). The standalone flag
can be either yes, no, or null. If it is null then the attribute is not used and will not be included in
the document.

The next element that is created will become the DocumentElement. In this case, we called it
newBookstore so that you can see the difference. The rest of the code is the same as in the previous
example and works in the same way. This is booksEdit.xml, which is generated from the code:

<?xml version=”1.0”?>
<newBookstore>

<book genre=”Mystery” publicationdate=”2001” ISBN=”123456789”>
<title>The Case of the Missing Cookie</title>
<author>

<name>C. Monster</name>
</author>
<price>9.95</price>

</book>
</newBookstore>

We have not exhausted our exploration of the XmlDocument class, or of the other classes that help to cre-
ate the DOM model in .NET. However, you how powerful and flexible the DOM implementation in
.NET offers. You will want to use the XmlDocument class when you want to have random access to the
document, or the XmlReader-based classes when you want a streaming type model instead. Remember
that there is a cost for the flexibility of the XmlNode-based XmlDocument class—memory requirements
are higher and the performance of reading the document is not as good as using XmlReader. So think
carefully about which method best fits your needs.

Using XPath and XSLT in .NET
In this section, we discuss support for XPath and XSL Transforms (XSLT) in.NET Framework. XPath sup-
port is provided through the System.Xml.XPath namespace, and XSLT through the System.Xml.Xsl
namespace. The reason that we are looking at them together is that the XPathNavigator class of the
System.Xml.XPath namespace provides a very performance-oriented way of performing XSL
Transforms in .NET.

XPath is the query language for XML. You would use XPath to select a subset of elements based on ele-
ment text values or perhaps based on attribute values. XSLT is used to transform a base document into
another document of different structure or type.

We will first look at System.Xml.XPath and then discuss how it is used to feed the System.Xml.Xsl
classes.

802

Chapter 23

28 557599 Ch23.qxd 4/29/04 11:38 AM Page 802

The System.Xml.XPath Namespace
The System.Xml.XPath namespace is built for speed. It provides a read-only view of your XML docu-
ments, so there are no editing capabilities. Classes in this namespace are built to do fast iteration and
selections on the XML document in a cursor fashion.

Here is a table that lists the key classes in System.Xml.XPath, and gives a short description of the pur-
pose of each class:

Class Name Description

XPathDocument Provides a view of the entire XML document. Read-only.

XPathNavigator Provides the navigation capabilities to an XPathDocument.

XPathNodeIterator Provides iteration capabilities to a node set. XPath equivalent to a
nodeset in Xpath.

XPathExpression Represents a compiled XPath expression. Used by SelectNodes,
SelectSingleNodes, Evaluate, and Matches.

XPathException Is an XPath exception class.

XPathDocument
XPathDocument doesn’t offer any of the functionality of the XmlDocument class. If you need editing
capabilities, then XmlDocument is the way to go; if you’re using ADO.NET, go with XmlDataDocument
(discussed later in this chapter). However, if speed is of concern, then use XPathDocument as your store.
It has four overloads allowing you to open an XML document from a file and path string, a TextReader
object, an XmlReader object, or a Stream-based object.

XPathNavigator
XPathNavigator contains all of the methods for moving and selecting elements that you need. The fol-
lowing table lists some of the “move” methods defined in this class.

Method Name Description

MoveTo() Takes XPathNavigator as a parameter. Moves the current posi-
tion to be the same as that passed in to XPathNavigator.

MoveToAttribute() Moves to the named attribute. Takes the attribute name and
namespace as parameters.

MoveToFirstAttribute() Moves to the first attribute in the current element. Returns true if
successful.

MoveToNextAttribute() Moves to the next attribute in the current element. Returns true if
successful.

MoveToFirst() Moves to the first sibling in the current node. Returns true if suc-
cessful; otherwise it returns false.

Table continued on following page

803

Manipulating XML

28 557599 Ch23.qxd 4/29/04 11:38 AM Page 803

Method Name Description

MoveToLast() Moves to the last sibling in the current node. Returns true if
successful.

MoveToNext() Moves to the next sibling in the current node. Returns true if
successful.

MoveToPrevious() Moves to the previous sibling in the current node. Returns true if
successful.

MoveToFirstChild() Moves to the first child of the current element. Returns true if
successful.

MoveToId() Moves to the element with the ID supplied as a parameter. There
needs to be a schema for the document, and the data type for the
element must be of type ID.

MoveToParent() Moves to the parent of the current node. Returns true if
successful.

MoveToRoot() Moves to the root node of the document.

There are several Select() methods for selecting a subset of nodes to work with. All of these Select()
methods return an XPathNodeIterator object.

There are also SelectAncestors() and SelectChildren() methods that you can use. Both return an
XPathNodeIterator object. While Select() takes an XPath expression as a parameter, the other select
methods take XPathNodeType as a parameter.

You can extend XPathNavigator to use such things as the file system or registry as the store instead of
XPathDocument.

XPathNodeIterator
XPathNodeIterator can be thought of as the equivalent of a NodeList or a NodeSet in XPath. This
object has three properties and two methods:

❑ Clone—Creates a new copy of itself

❑ Count—Number of nodes in the XPathNodeIterator object

❑ Current—Returns an XPathNavigator pointing to the current node

❑ CurrentPosition()—Returns an integer with the current position

❑ MoveNext()—Moves to the next node that matches the XPath expression that created the
XpathNodeIterator

Using classes from the XPath namespace
The best way to see how these classes are used is to look at some code that iterates through the
books.xml document. This will allow you to see how the navigation works. In order to use the examples,
we first add a reference to the System.Xml.Xsl and System.Xml.XPath namespaces:

804

Chapter 23

28 557599 Ch23.qxd 4/29/04 11:38 AM Page 804

using System.Xml.XPath;
using System.Xml.Xsl;

For this example we are using the file booksxpath.xml. It is similar to the books.xml that we have been
using previously, except there are a couple of extra books added. Here’s the form code, which can be
found in the XPathXSLSample1 folder:

private void button1_Click(object sender, System.EventArgs e)
{

//modify to match your path structure
XPathDocument doc=new XPathDocument(“..\\..\\..\\booksxpath.xml”);
//create the XPath navigator
XPathNavigator nav=doc.CreateNavigator();
//create the XPathNodeIterator of book nodes
// that have genre attribute value of novel
XPathNodeIterator iter=nav.Select(“/bookstore/book[@genre=’novel’]”);

while(iter.MoveNext())
{

LoadBook(iter.Current);
}

}
private void LoadBook(XPathNavigator lstNav)
{

//We are passed an XPathNavigator of a particular book node
//we will select all of the descendents and
//load the list box with the names and values
XPathNodeIterator iterBook=lstNav.SelectDescendants

(XPathNodeType.Element,false);
while(iterBook.MoveNext())

listBox1.Items.Add(iterBook.Current.Name + “: “
+ iterBook.Current.Value);

}

The first thing we do in the button1_Click() method is to create the XPathDocument (called doc),
passing in the file and path string of the document we want opened. The next line is where the
XPathNavigator is created:

XPathNavigator nav = doc.CreateNavigator();

In the example you can see that we use the Select() method to retrieve a set of nodes that all have
novel as the value of the genre attribute. We then use the MoveNext() method to iterate through all of
the novels in the book list.

To load the data into the list box, we use the XPathNodeIterator.Current property. This creates a
new XPathNavigator object based on just the node that the XPathNodeIterator is pointing to. In this
case, we are creating an XPathNavigator for one book node in the document.

The LoadBook() method takes this XPathNavigator and creates another XPathNodeIterator
by issuing another type of select method, the SelectDescendants() method. This gives us an
XPathNodeIterator of all of the child nodes and children of the child nodes of the book node that
we passed to the LoadBook() method.

805

Manipulating XML

28 557599 Ch23.qxd 4/29/04 11:38 AM Page 805

Then we do another MoveNext() loop on the XPathNodeIterator and load the list box with the ele-
ment names and element values.

Figure 23-7 shows what the screen looks like after running the code. Note that novels are the only books
listed now.

Figure 23-7

What if we wanted to add up the cost of these books? XPathNavigator includes the Evaluate()
method for just this reason. Evaluate() has three overloads. The first one contains a string that is the
XPath function call. The second overload uses the XPathExpression object as a parameter, and the
third uses XPathExpression and an XPathNodeIterator as parameters. The changes are highlighted
below (this version of the code can be found in XPathXSLSample2):

private void button1_Click(object sender, System.EventArgs e)
{

//modify to match your path structure
XPathDocument doc = new XPathDocument(“..\\..\\..\\booksxpath.XML”);
//create the XPath navigator
XPathNavigator nav = doc.CreateNavigator();
//create the XPathNodeIterator of book nodes
// that have genre attribute value of novel
XPathNodeIterator iter = nav.Select(“/bookstore/book[@genre=’novel’]”);
while(iter.MoveNext())
{

LoadBook(iter.Current.Clone());
}
//add a break line and calculate the sum
listBox1.Items.Add(“========================”);
listBox1.Items.Add(“Total Cost = “

+ nav.Evaluate(“sum(/bookstore/book[@genre=’novel’]/price)”));
}

This time, we see the total cost of the books evaluated in the list box (see Figure 23-8).

806

Chapter 23

28 557599 Ch23.qxd 4/29/04 11:38 AM Page 806

Figure 23-8

The System.Xml.Xsl Namespace
The System.Xml.Xsl namespace contains the classes that .NET Framework uses to support XSL
Transforms. The contents of this namespace are available to any store whose classes implement the
IXPathNavigable interface. In.NET Framework that would currently include XmlDocument,
XmlDataDocument, and XPathDocument. Again, just as with XPath, use the store that makes the most
sense. If you plan to create a custom store, such as one using the file system, and you want to be able to
do transforms, be sure to implement the IXPathNavigable interface in your class.

XSLT is based on a streaming pull model. Because of this, you can chain several transforms together. You
could even apply a custom reader between transforms if needed. This allows a great deal of flexibility in
design.

Transforming XML
The first example we will look at takes the books.xml document and transforms it into a simple HTML
document for display using the XSLT file books.xsl. (This code can be found in the XPathXSLSample3
folder.) We will need to add the following using statements:

using System.IO;
using System.Xml.Xsl;
using System.Xml.XPath;

Here is the code to perform the transform:

private void button1_Click(object sender, System.EventArgs e)
{

//create the new XPathDocument
XPathDocument doc = new XPathDocument(“..\\..\\..\\booksxpath.xml”);
//create a new XslTransForm
XslTransform transForm = new XslTransform();
transForm.Load(“..\\..\\..\\books.xsl”);

807

Manipulating XML

28 557599 Ch23.qxd 4/29/04 11:38 AM Page 807

//this FileStream will be our output
FileStream fs=new FileStream(“..\\..\\..\\booklist.html”,

FileMode.Create);
//Create the navigator
XPathNavigator nav = doc.CreateNavigator();
//Do the transform. The output file is created here
transForm.Transform(nav, null, fs, null);

}

A transform doesn’t get any simpler than this. We create an XPathDocument-based object and an
XslTransform-based object. We load the booksxpath.xml file into the XPathDocument object, and
books.xsl file into XslTransform.

In this example, we also create a FileStream object to write the new HTML document to disk. If this
were an ASP.NET application, we would have used a TextWriter object and passed it to the
HttpResponse object instead. If we were transforming to another XML document we would have used
an XmlWriter-based object.

After the XPathDocument and XslTransform objects are ready, we create the XPathNavigator on the
XPathDocument, and pass the XPathNavigator and the FileStream into the Transform() method of
the XslTransform object. Transform() has several overloads, passing in combinations of navigators,
XsltArgumentList (more on this shortly), IO streams and XmlResolvers. The navigator parameter can
be XPathNavigator, or anything that implements the IXPathNavigable interface. The IO streams can
be a TextWriter, Stream, or XmlWriter-based object. The XmlResolver is used to manage the process
of getting a resource from an external source. The XmlResolver handles the security, opening the data
source and returning the data or stream. In .Net Framework 1.0 the XmlResolver parameter was not a
requirement. All of those versions of the Transform method have been deprecated and now the
XmlResolver parameter is required, however you can pass null if the features of an XmlResolver, namely
security and credential management are not needed.

The books.xsl document is a fairly straightforward style sheet. The document looks like this:

<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”/”>
<html>

<head>
<title>Price List</title>

</head>
<body>

<table>
<xsl:apply-templates/>

</table>
</body>

</html>
</xsl:template>

<xsl:template match=”bookstore”>
<xsl:apply-templates select=”book”/>

</xsl:template>
<xsl:template match=”book”>

<tr><td>
<xsl:value-of select=”title”/>

808

Chapter 23

28 557599 Ch23.qxd 4/29/04 11:38 AM Page 808

</td><td>
<xsl:value-of select=”price”/>

</td></tr>
</xsl:template>

</xsl:stylesheet>

Using XsltArgumentList
Earlier we mentioned XsltArgumentList. This is a way that you can bind an object with methods to a
namespace. Once this is done, you can invoke the methods during the transform. Let’s look at an exam-
ple to see how this works (located in XPathXSLSample4). Add the highlighted code to your sample code:

private void button1_Click(object sender, System.EventArgs e)
{

//new XPathDocument
XPathDocument doc=new XPathDocument(“..\\..\\..\\booksxpath.xml”);
//new XslTransform
XslTransform transForm=new XslTransform();
transForm.Load(“..\\..\\..\\booksarg.xsl”);
//new XmlTextWriter since we are creating a new XML document
XmlWriter xw=new XmlTextWriter(“..\\..\\..\\argSample.xml”,null);
//create the XsltArgumentList and new BookUtils object
XsltArgumentList argBook=new XsltArgumentList();
BookUtils bu=new BookUtils();
//this tells the argumentlist about BookUtils
argBook.AddExtensionObject(“urn:ProCSharp”,bu);
//new XPathNavigator
XPathNavigator nav=doc.CreateNavigator();
//do the transform
transForm.Transform(nav,argBook,xw,null);
xw.Close();

}
//simple test class
public class BookUtils
{

public BookUtils(){}

public string ShowText()
{

return “This came from the ShowText method!”;
}

}

This is what the output of the transform looks like; we’ve formatted the output for easier viewing
(argSample.xml):

<books>
<discbook>

<booktitle>The Autobiography of Benjamin Franklin</booktitle>
<showtext>This came from the ShowText method!</showtext>

</discbook>
<discbook>

<booktitle>The Confidence Man</booktitle>

809

Manipulating XML

28 557599 Ch23.qxd 4/29/04 11:38 AM Page 809

<showtext>This came from the ShowText method!</showtext>
</discbook>
<discbook>

<booktitle>The Gorgias</booktitle>
<showtext>This came from the ShowText method!</showtext>

</discbook>
<discbook>

<booktitle>The Great Cookie Caper</booktitle>
<showtext>This came from the ShowText method!</showtext>

</discbook>
<discbook>

<booktitle>A Really Great Book</booktitle>
<showtext>This came from the ShowText method!</showtext>

</discbook>
</books>

In this example, we define a new class, BookUtils. In this class we have one rather useless method that
returns the string “This came from the ShowText method!” In the button1_Click() event, we create
the XPathDocument and XslTransform objects just as we did before, with one exception. This time we
are going to create an XML document, so we use the XmlWriter instead of the FileStream that we
used before. The next change is here:

XsltArgumentList argBook=new XsltArgumentList();
BookUtils bu=new BookUtils();
argBook.AddExtensionObject(“urn:ProCSharp”,bu);

This is where we create the XsltArgumentList object. We create an instance of our BookUtils object,
and when we call the AddExtensionObject() method, we pass in a namespace for our extension, and
the object that we want to be able to call methods from. When we make the Transform() call, we pass
in the XsltArgumentList (argBook) along with the XPathNavigator and the XmlWriter object we
made.

Here is the booksarg.xsl document (based on books.xsl):

<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:bookUtil=”urn:ProCSharp”>

<xsl:output method=”xml” indent=”yes”/>

<xsl:template match=”/”>
<xsl:element name=”books”>

<xsl:apply-templates/>
</xsl:element>

</xsl:template>
<xsl:template match=”bookstore”>

<xsl:apply-templates select=”book”/>
</xsl:template>
<xsl:template match=”book”>

<xsl:element name=”discbook”>
<xsl:element name=”booktitle”>

<xsl:value-of select=”title”/>
</xsl:element>
<xsl:element name=”showtext”>

<xsl:value-of select=”bookUtil:ShowText()”/>

810

Chapter 23

28 557599 Ch23.qxd 4/29/04 11:38 AM Page 810

</xsl:element>
</xsl:element>

</xsl:template>
</xsl:stylesheet>

The two important new lines are highlighted. First we add the namespace that we created when we
added the object to XsltArgumentList. Then when we want to make the method call, we use standard
XSLT namespace prefixing syntax and make the method call.

Another way we could have accomplished this is with XSLT scripting. You can include C#, Visual Basic,
and JavaScript code in the style sheet. The great thing about this is that unlike current non-.NET imple-
mentations the script is compiled at the XslTransform.Load() call; this way you are executing already
compiled scripts, much the same way that ASP.NET works.

Let’s modify the previous XSLT file in this way. First we add the script to the style sheet. You can see the
following changes in booksscript.xsl:

<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:msxsl=”urn:schemas-microsoft-com:xslt”
xmlns:user=”http://wrox.com”>

<msxsl:script language=”C#” implements-prefix=”user”>

string ShowText()
{

return “This came from the ShowText method!”;

}
</msxsl:script>

<xsl:output method=”xml” indent=”yes”/>
<xsl:template match=”/”>

<xsl:element name=”books”>
<xsl:apply-templates/>

</xsl:element>
</xsl:template>

<xsl:template match=”bookstore”>
<xsl:apply-templates select=”book”/>

</xsl:template>
<xsl:template match=”book”>
<xsl:element name=”discbook”>
<xsl:element name=”booktitle”>

<xsl:value-of select=”title”/>
</xsl:element>
<xsl:element name=”showtext”>

<xsl:value-of select=”user:ShowText()”/>
</xsl:element>

</xsl:element>
</xsl:template>

</xsl:stylesheet>

Once again the changes are highlighted. We set the scripting namespace, add the code (which was
copied and pasted in from the Visual Studio .NET IDE), and make the call in the style sheet. The output
looks the same as that of the previous example.

811

Manipulating XML

28 557599 Ch23.qxd 4/29/04 11:38 AM Page 811

To summarize, the key thing to keep in mind when performing transforms is to remember to use the
proper XML data store. Use XPathDocument if you don’t need edit capabilities, XmlDataDocument if
you’re getting your data from ADO.NET, and XmlDocument if you need to be able to edit the data. In
each case you are dealing with the same process.

XML and ADO.NET
XML is the glue that binds ADO.NET to the rest of the world. ADO.NET was designed from the ground
up to work within the XML environment. XML is used to transfer the data to and from the data store
and the application or Web page. Since ADO.NET uses XML as the transport in remoting scenarios, data
can be exchanged with applications and systems that are not even aware of ADO.NET. Because of the
importance of XML in ADO.NET, there are some powerful features in ADO.NET that allow the reading
and writing of XML documents. The System.Xml namespace also contains classes that can consume or
utilize ADO.NET relational data.

Converting ADO.NET Data to XML
The first example that we are going to look at uses ADO.NET, streams, and XML to pull some data from
the Northwind database into a DataSet, load an XmlDocument object with the XML from the DataSet,
and load the XML into a list box. In order to run the next few examples, you need to add the following
using statements:

using System.Data;
using System.Xml;
using System.Data.SqlClient;
using System.IO;

Since we will be using XmlDocument, we also need to add the following at the module level:

private XmlDocument doc = new XmlDocument();

Also, for the ADO.NET samples we have added a DataGrid object to the forms. This will allow us to see
the data in the ADO.NET DataSet since it is bound to the grid, as well as the data from the generated
XML documents that we load in the list box. Here is the code for the first example (which can be found
in the ADOSample1 folder):

private void button1_Click(object sender, System.EventArgs e)
{

//create a dataset
DataSet ds = new DataSet(“XMLProducts”);
//connect to the northwind database and
//select all of the rows from products table
//make sure your login matches your version of SqlServer
SqlConnection conn = new SqlConnection

(@”server=GLYNNJ_CS\NetSDK;uid=sa;pwd=;database=northwind”);
SqlDataAdapter da = new SqlDataAdapter(“SELECT * FROM Products”,conn);

812

Chapter 23

28 557599 Ch23.qxd 4/29/04 11:38 AM Page 812

After we create the SqlDataAdapter, da, and the DataSet, ds, we instantiate a MemoryStream object, a
StreamReader object, and a StreamWriter object. The StreamReader and StreamWriter objects will
use the MemoryStream to move the XML around:

MemoryStream memStrm=new MemoryStream();
StreamReader strmRead=new StreamReader(memStrm);
StreamWriter strmWrite=new StreamWriter(memStrm);

We will use a MemoryStream so that we don’t have to write anything to disk, however, we could have
used any object that was based on the Stream class such as FileStream. Next, we fill the DataSet and
bind it to the DataGrid. The data in the DataSet will now be displayed in the DataGrid:

da.Fill(ds,”products”);
//load data into DataGrid
dataGrid1.DataSource=ds;
dataGrid1.DataMember=”products”;

This next step is where the XML is generated. We call the WriteXml() method from the DataSet class.
This method generates an XML document. There are two overloads to WriteXml(): one takes a string
with the file path and name, and the other adds a mode parameter. This mode is an XmlWriteMode enu-
meration, with possible values:

❑ IgnoreSchema

❑ WriteSchema

❑ DiffGram

IgnoreSchema is used if you don’t want WriteXml() to write an inline schema at the start of your XML
file; use the WriteSchema parameter if you do want one. We will look at DiffGrams later in this section.

ds.WriteXml(strmWrite,XmlWriteMode.IgnoreSchema);
memStrm.Seek(0,SeekOrigin.Begin);
//read from the memory stream to an XmlDocument object
doc.Load(strmRead);
//get all of the products elements
XmlNodeList nodeLst=doc.GetElementsByTagName(“ProductName”);
//load them into the list box
foreach(XmlNode nd in nodeLst)

listBox1.Items.Add(nd.InnerText);
}
private void listBox1_SelectedIndexChanged(object sender,

System.EventArgs e)
{

//when you click on the listbox,
//a message box appears with the unit price
string srch=”XMLProducts/products[ProductName=” +

‘“‘+ listBox1.SelectedItem.ToString() + ‘“‘ + “]”;
XmlNode foundNode=doc.SelectSingleNode(srch);
if(foundNode!=null)

MessageBox.Show(foundNode.SelectSingleNode(“UnitPrice”).InnerText);
else

MessageBox.Show(“Not found”);
}

813

Manipulating XML

28 557599 Ch23.qxd 4/29/04 11:38 AM Page 813

Figure 23-9 shows the data in the list as well as the bound data grid.

Figure 23-9

If we had only wanted the schema, we could have called WriteXmlSchema() instead of WriteXml().
This method has four overloads. One takes a string, which is the path and file name of where to write
the XML document. The second overload uses an object that is based on the XmlWriter class. The third
overload uses an object that is based on the TextWriter class. The fourth overload is derived from the
Stream class.

Also, if we wanted to persist the XML document to disk, we would have used something like this:

string file = “c:\\test\\product.xml”;
ds.WriteXml(file);

This would give us a well-formed XML document on disk that could be read in by another stream, or by
DataSet, or used by another application or Web site. Since no XmlMode parameter is specified, this
XmlDocument would have the schema included. In our example, we use the stream as a parameter to the
XmlDocument.Load() method.

Once the XmlDocument is prepared, we load the list box using the same XPath statement that we used
before. If you look closely, you’ll see that we changed the listBox1_SelectedIndexChanged() event
slightly. Instead of showing the InnerText of the element, we do another XPath search using
SelectSingleNode() to get the UnitPrice element. So now every time you select a product in the list

814

Chapter 23

28 557599 Ch23.qxd 4/29/04 11:38 AM Page 814

box, a MessageBox pops up with the UnitPrice. We now have two views of the data, but more impor-
tantly, we can manipulate the data using two different models. We can use the System.Data namespace
to use the data or we can use the System.Xml namespace on the data. This can lead to some very flexi-
ble designs in your applications, because now you are not tied to just one object model to program with.
This is the real power to the ADO.NET and System.Xml combination. You have multiple views of the
same data and multiple ways to access the data.

In the following example we will simplify the process by eliminating the three streams and by using
some of the ADO capabilities built into the System.Xml namespace. We will need to change the module-
level line of code:

private XmlDocument doc = new XmlDocument();

to:

private XmlDataDocument doc;

We need this because we are now using the XmlDataDocument. Here is the code (which can be found in
the ADOSample2 folder):

private void button1_Click(object sender, System.EventArgs e)
{

//create a dataset
DataSet ds=new DataSet(“XMLProducts”);
//connect to the northwind database and
//select all of the rows from products table
//make changes to connect string to match your login and server name
SqlConnection conn=new SqlConnection

(@”server=GLYNNJ_CS\NetSDK;uid=sa;pwd=;database=northwind”);
SqlDataAdapter da=new SqlDataAdapter(“SELECT * FROM products”,conn);
//fill the dataset
da.Fill(ds,”products”);
//load data into grid
dataGrid1.DataSource=ds;
dataGrid1.DataMember=”products”;
doc=new XmlDataDocument(ds);
//get all of the products elements
XmlNodeList nodeLst=doc.GetElementsByTagName(“ProductName”);
//load them into the list box
//we’ll use a for loop this time
for(int ctr=0;ctr<nodeLst.Count;ctr++)

listBox1.Items.Add(nodeLst[ctr].InnerText);
}

As you can see, the code to load the DataSet object into the XML document has been simplified. Instead
of using the XmlDocument class, we are using the XmlDataDocument class. This class was built specifi-
cally for using data with a DataSet object.

The XmlDataDocument is based on the XmlDocument class, so it has all of the functionality that the
XmlDocument class has. One of the main differences is the overloaded constructor that the XmlData
Document has. Note the line of code that instantiates XmlDataDocument (doc):

doc = new XmlDataDocument(ds);

815

Manipulating XML

28 557599 Ch23.qxd 4/29/04 11:38 AM Page 815

It passes in the DataSet object that we created, ds, as a parameter. This creates the XML document from
the DataSet, and we don’t have to use the Load() method. In fact, if you instantiate a new
XmlDataDocument object without passing in a DataSet as the parameter, it will contain a DataSet with
the name NewDataSet that has no DataTables in the tables collection. There is also a DataSet prop-
erty that you can set after an XmlDataDocument-based object is created.

Suppose we add the following line of code after the DataSet.Fill() call:

ds.WriteXml(“c:\\test\\sample.xml”, XmlWriteMode.WriteSchema);

In this case, the following XML file, sample.xml, is produced in the folder c:\test:

<?xml version=”1.0” standalone=”yes”?>
<XMLProducts>

<xs:schema id=”XMLProducts” xmlns=””
xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns:msdata=”urn:schemas-microsoft-com:xml-msdata”>

<xs:element name=”XMLProducts” msdata:IsDataSet=”true”>
<xs:complexType>

<xs:choice maxOccurs=”unbounded”>
<xs:element name=”products”>

<xs:complexType>
<xs:sequence>

<xs:element name=”ProductID” type=”xs:int”
minOccurs=”0” />

<xs:element name=”ProductName” type=”xs:string”
minOccurs=”0” />

<xs:element name=”SupplierID” type=”xs:int”
minOccurs=”0” />

<xs:element name=”CategoryID” type=”xs:int”
minOccurs=”0” />

<xs:element name=”QuantityPerUnit” type=”xs:string”
minOccurs=”0” />

<xs:element name=”UnitPrice” type=”xs:decimal”
minOccurs=”0” />

<xs:element name=”UnitsInStock” type=”xs:short”
minOccurs=”0” />

<xs:element name=”UnitsOnOrder” type=”xs:short”
minOccurs=”0” />

<xs:element name=”ReorderLevel” type=”xs:short”
minOccurs=”0” />

<xs:element name=”Discontinued” type=”xs:boolean”
minOccurs=”0” />

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:choice>

</xs:complexType>
</xs:element>

</xs:schema>
<products>

<ProductID>1</ProductID>
<ProductName>Chai</ProductName>

816

Chapter 23

28 557599 Ch23.qxd 4/29/04 11:38 AM Page 816

<SupplierID>1</SupplierID>
<CategoryID>1</CategoryID>

<QuantityPerUnit>10 boxes x 20 bags</QuantityPerUnit>
<UnitPrice>18</UnitPrice>
<UnitsInStock>39</UnitsInStock>
<UnitsOnOrder>0</UnitsOnOrder>
<ReorderLevel>10</ReorderLevel>
<Discontinued>false</Discontinued>

</products>
</XMLProducts>

Only the first products element is shown. The actual XML file would contain all of the products in the
Products table of Northwind database.

Converting relational data
This looks simple enough for a single table, but what about relational data, such as multiple DataTables
and Relations in the DataSet? It all still works the same way. Let’s make the following changes to the
code that we’ve been using (this version can be found in ADOSample3):

private void button1_Click(object sender, System.EventArgs e)
{

//create a dataset
DataSet ds=new DataSet(“XMLProducts”);
//connect to the northwind database and
//select all of the rows from products table and from suppliers table
//make sure your connect string matches your server configuration
SqlConnection conn=new SqlConnection

(@”server=GLYNNJ_CS\NetSDK;uid=sa;pwd=;database=northwind”);
SqlDataAdapter daProd=new SqlDataAdapter(“SELECT * FROM products”,conn);
SqlDataAdapter daSup=new SqlDataAdapter(“SELECT * FROM suppliers”,conn);
//Fill DataSet from both SqlAdapters
daProd.Fill(ds,”products”);
daSup.Fill(ds,”suppliers”);
//Add the relation
ds.Relations.Add(ds.Tables[“suppliers”].Columns[“SupplierId”],

ds.Tables[“products”].Columns[“SupplierId”]);
//Write the XML to a file so we can look at it later
ds.WriteXml(“..\\..\\..\\SuppProd.xml”,XmlWriteMode.WriteSchema);
//load data into grid
dataGrid1.DataSource=ds;
dataGrid1.DataMember=”suppliers”;
//create the XmlDataDocument
doc=new XmlDataDocument(ds);
//Select the productname elements and load them in the grid
XmlNodeList nodeLst=doc.SelectNodes(“//ProductName”);
foreach(XmlNode nd in nodeLst)

listBox1.Items.Add(nd.InnerXml);
}

In this sample we are creating two DataTables in the XMLProducts DataSet: Products and
Suppliers. The relation is that Suppliers supply Products. We create a new relation on the column
SupplierId in both tables. This is what the DataSet looks like:

817

Manipulating XML

28 557599 Ch23.qxd 4/29/04 11:38 AM Page 817

Figure 23-10

By making the same WriteXml() method call that we did in the previous example, we will get the fol-
lowing XML file (SuppProd.xml):

<?xml version=”1.0” standalone=”yes”?>
<XMLProducts>

<xs:schema id=”XMLProducts” xmlns=””
xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns:msdata=”urn:schemas-microsoft-com:xml-msdata”>

<xs:element name=”XMLProducts” msdata:IsDataSet=”true”>
<xs:complexType>

<xs:choice maxOccurs=”unbounded”>
<xs:element name=”products”>

<xs:complexType>
<xs:sequence>

<xs:element name=”ProductID” type=”xs:int”
minOccurs=”0” />

<xs:element name=”ProductName” type=”xs:string”
minOccurs=”0” />

<xs:element name=”SupplierID” type=”xs:int”
minOccurs=”0” />

<xs:element name=”CategoryID” type=”xs:int”
minOccurs=”0” />

<xs:element name=”QuantityPerUnit” type=”xs:string”
minOccurs=”0” />

<xs:element name=”UnitPrice” type=”xs:decimal”
minOccurs=”0” />

<xs:element name=”UnitsInStock” type=”xs:short”
minOccurs=”0” />

<xs:element name=”UnitsOnOrder” type=”xs:short”
minOccurs=”0” />

<xs:element name=”ReorderLevel” type=”xs:short”
minOccurs=”0” />

<xs:element name=”Discontinued” type=”xs:boolean”
minOccurs=”0” />

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name=”suppliers”>

<xs:complexType>

818

Chapter 23

28 557599 Ch23.qxd 4/29/04 11:38 AM Page 818

<xs:sequence>
<xs:element name=”SupplierID” type=”xs:int”

minOccurs=”0” />
<xs:element name=”CompanyName” type=”xs:string”

minOccurs=”0” />
<xs:element name=”ContactName” type=”xs:string”

minOccurs=”0” />
<xs:element name=”ContactTitle” type=”xs:string”

minOccurs=”0” />
<xs:element name=”Address” type=”xs:string”

minOccurs=”0” />
<xs:element name=”City” type=”xs:string”

minOccurs=”0” />
<xs:element name=”Region” type=”xs:string”

minOccurs=”0” />
<xs:element name=”PostalCode” type=”xs:string”

minOccurs=”0” />
<xs:element name=”Country” type=”xs:string”

minOccurs=”0” />
<xs:element name=”Phone” type=”xs:string”

minOccurs=”0” />
<xs:element name=”Fax” type=”xs:string”

minOccurs=”0” />
<xs:element name=”HomePage” type=”xs:string”

minOccurs=”0” />
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:choice>
</xs:complexType>
<xs:unique name=”Constraint1”>

<xs:selector xpath=”.//suppliers” />
<xs:field xpath=”SupplierID” />

</xs:unique>
<xs:keyref name=”Relation1” refer=”Constraint1”>

<xs:selector xpath=”.//products” />
<xs:field xpath=”SupplierID” />

</xs:keyref>
</xs:element>

</xs:schema>
<products>

<ProductID>1</ProductID>
<ProductName>Chai</ProductName>
<SupplierID>1</SupplierID>
<CategoryID>1</CategoryID>
<QuantityPerUnit>10 boxes x 20 bags</QuantityPerUnit>
<UnitPrice>18</UnitPrice>
<UnitsInStock>39</UnitsInStock>
<UnitsOnOrder>0</UnitsOnOrder>
<ReorderLevel>10</ReorderLevel>
<Discontinued>false</Discontinued>

</products>
<suppliers>

<SupplierID>1</SupplierID>
<CompanyName>Exotic Liquids</CompanyName>

819

Manipulating XML

28 557599 Ch23.qxd 4/29/04 11:38 AM Page 819

<ContactName>Charlotte Cooper</ContactName>
<ContactTitle>Purchasing Manager</ContactTitle>
<Address>49 Gilbert St.</Address>
<City>London</City>
<PostalCode>EC1 4SD</PostalCode>
<Country>UK</Country>
<Phone>(171) 555-2222</Phone>

</suppliers>
</XMLProducts>

The schema includes both DataTables that were in the DataSet. In addition, the data includes all of the
data from both tables. For the sake of brevity, we only show the first suppliers and products records
here. As before, we could have saved just the schema or just the data by passing in the correct
XmlWriteMode parameter.

Converting XML to ADO.NET Data
Let’s say that you have an XML document that you would like to get into an ADO.NET DataSet. You
would want to do this so you could load the XML into a database, or perhaps bind the data to a .NET
data control such as DataGrid. This way you could actually use the XML document as your data store
and could eliminate the overhead of the database altogether. If your data is reasonably small in size, then
this is an attractive possibility. Here is some code to get you started (ADOSample5):

private void button1_Click(object sender, System.EventArgs e)
{

//create a new DataSet
DataSet ds=new DataSet(“XMLProducts”);
//read in the XML document to the Dataset
ds.ReadXml(“..\\..\\..\\prod.xml”);
//load data into grid
dataGrid1.DataSource=ds;
dataGrid1.DataMember=”products”;
//create the new XmlDataDocument
doc=new XmlDataDocument(ds);
//load the product names into the listbox
XmlNodeList nodeLst=doc.SelectNodes(“//ProductName”);
foreach(XmlNode nd in nodeLst)

listBox1.Items.Add(nd.InnerXml);
}

It is that easy. We instantiate a new DataSet object. Then we call the ReadXml() method, and you have
XML in a DataTable in your DataSet. As with the WriteXml() methods, ReadXml() has an
XmlReadMode parameter. ReadXml() has a couple more options in the XmlReadMode, as shown in the
following table.

There is also the ReadXmlSchema() method. This reads in a standalone schema and creates the
tables, columns, and relations. You would use this if your schema is not inline with your data.
ReadXmlSchema() has the same four overloads: string with file and path name, Stream-based object,
TextReader-based object and an XmlReader-based object.

820

Chapter 23

28 557599 Ch23.qxd 4/29/04 11:38 AM Page 820

Value Description

Auto Sets the XmlReadMode to the most appropriate setting. If data is in DiffGram
format, DiffGram is selected. If a schema has already been read, or an inline
schema is detected, then ReadSchema is selected. If no schema has been
assigned to the DataSet, and none is detected inline, then IgnoreSchema is
selected.

DiffGram Reads in the DiffGram and applies the changes to the DataSet. DiffGrams are
described later in the chapter.

Fragment Reads documents that contain XDR schema fragments, such as the type created
by SQL Server.

IgnoreSchema Ignores any inline schema that may be found. Reads data into the current
DataSet schema. If data does not match DataSet schema it is discarded.

InferSchema Ignores any inline schema. Creates the schema based on data in the XML docu-
ment. If a schema exists in the DataSet, that schema is used, and extended with
additional columns and tables if needed. An exception is thrown if a column
exists, but is of a different data type.

ReadSchema Reads the inline schema and loads the data. Will not overwrite a schema in the
DataSet, but will throw an exception if a table in the inline schema already
exists in the DataSet.

To show that the data tables are getting created properly, let’s load the XML document that contains the
Products and Suppliers tables that we used in an earlier example. This time, however, let’s load the
list box with the DataTable names and the DataColumn names and data types. We can look at this and
compare it to the original Northwind database to see that all is well. Here is the code for this example
(ADOSample5):

private void button1_Click(object sender, System.EventArgs e)
{

//create the DataSet
DataSet ds=new DataSet(“XMLProducts”);
//read in the XML document
ds.ReadXml(“..\\..\\..\\SuppProd.xml”);
//load data into grid
dataGrid1.DataSource=ds;
dataGrid1.DataMember=”products”;
//load the listbox with table, column and datatype info
foreach(DataTable dt in ds.Tables)
{

listBox1.Items.Add(dt.TableName);
foreach(DataColumn col in dt.Columns)
{

listBox1.Items.Add(
‘\t’ + col.ColumnName + “ - “ + col.DataType.FullName);

}
}

}

821

Manipulating XML

28 557599 Ch23.qxd 4/29/04 11:38 AM Page 821

Note the addition of the two foreach loops. The first loop gets the table name from each table in the
Tables collection of the DataSet. Inside the inner foreach loop we get the name and data type of each
column in the DataTable. We load this data into the list box, allowing us to display it. Figure 23-11
shows the output.

Figure 23-11

Looking at the list box you can check that the data tables were created with the columns all having the
correct names and data types.

Something else you might want to note is that since the previous two examples didn’t transfer any data
to or from a database, no SqlDataAdapter or SqlConnection was defined. This shows the real flexibil-
ity of both the System.Xml namespace and ADO.NET: you can look at the same data in multiple for-
mats. If you need to do a transform and show the data in HTML format, or if you need to bind the data
to a grid, you can take the same data, and with just a method call, have it in the required format.

Reading and Writing a DiffGram
A DiffGram is an XML document that contains the before and after data of an edit session. This can
include any combination of data changes, additions, and deletions. A DiffGram can be used as an audit
trail or for a commit/rollback process. Most DBMS systems today have this built in, but if you happen to
be working with a DBMS that does not have these features or if XML is your data store and you do not
have a DBMS, you can implement commit or rollback features yourself.

822

Chapter 23

28 557599 Ch23.qxd 4/29/04 11:38 AM Page 822

Let’s see some code that shows how a DiffGram is created and how a DataSet can be created from a
DiffGram (this code can be found in the ADOSample6 folder).

The beginning part of this code should look familiar. We define and set up a new DataSet, ds, a new
SqlConnection, conn, and a new SqlDataAdapter, da. We connect to the database, select all of the
rows from the Products table, create a new DataTable named products, and load the data from the
database into the DataSet:

private void button1_Click(object sender, System.EventArgs e)
{

//new DataSet
DataSet ds=new DataSet(“XMLProducts”);
//Make connection and load products rows
SqlConnection conn=new SqlConnection

(@”server=GLYNNJ_CS\NetSDK;uid=sa;pwd=;database=northwind”);
SqlDataAdapter da=new SqlDataAdapter(“SELECT * FROM products”,conn);
//fill the DataSet
da.Fill(ds,”products”);
//edit first row
ds.Tables[“products”].Rows[0][“ProductName”]=”NewProdName”;

In this next code block we do two things. First, we modify the ProductName column in the first row to
NewProdName. Second, we create a new row in the DataTable, set the column values, and finally add
the new data row to the DataTable.

//add new row
DataRow dr=ds.Tables[“products”].NewRow();;
dr[“ProductId”]=100;
dr[“CategoryId”]=2;
dr[“Discontinued”]=false;
dr[“ProductName”]=”This is the new product”;
dr[“QuantityPerUnit”]=12;
dr[“ReorderLevel”]=1;
dr[“SupplierId”]=12;
dr[“UnitPrice”]=23;
dr[“UnitsInStock”]=5;
dr[“UnitsOnOrder”]=0;
ds.Tables[“products”].Rows.Add(dr);

The next block is the interesting part of the code. First, we write out the schema with
WriteXmlSchema(). This is important because you cannot read back in a DiffGram without the
schema. WriteXml() with the XmlWriteMode.DiffGram parameter passed to it actually creates the
DiffGram. The next line accepts the changes that we made. It is important that the DiffGram is created
before calling AcceptChanges(), otherwise there would not appear to be any modifications to the data.

//Write the Schema
ds.WriteXmlSchema(“..\\..\\..\\diffgram.xsd”);
//generate the DiffGram
ds.WriteXml(“..\\..\\..\\diffgram.xml”,XmlWriteMode.DiffGram);
ds.AcceptChanges();
//load data into grid
dataGrid1.DataSource=ds;
dataGrid1.DataMember=”products”;

823

Manipulating XML

28 557599 Ch23.qxd 4/29/04 11:38 AM Page 823

//new XmlDataDocument
doc=new XmlDataDocument(ds);
//load the productnames in the list
XmlNodeList nodeLst=doc.SelectNodes(“//ProductName”);
foreach(XmlNode nd in nodeLst)

listBox1.Items.Add(nd.InnerXml);
}

In order to get the data back into a DataSet, we can do the following:

DataSet dsNew=new DataSet();
dsNew.ReadXmlSchema(“..\\..\\..\\diffgram.xsd”);
dsNew.XmlRead(“..\\..\\..\\diffgram.xml”,XmlReadMode.DiffGram);

Here we are creating a new DataSet, dsNew. The call to the ReadXmlSchema() method creates a new
DataTable based on the schema information. In this case it would be a clone of the products
DataTable. Now we can read in the DiffGram. The DiffGram does not contain schema information, so it
is important that the DataTable be created and ready before you call the ReadXml() method.

Here is a sample of what the DiffGram (diffgram.xml) looks like:

<?xml version=”1.0” standalone=”yes”?>
<diffgr:diffgram xmlns:msdata=”urn:schemas-microsoft-com:xml-msdata”

xmlns:diffgr=”urn:schemas-microsoft-com:xml-diffgram-v1”>
<XMLProducts>

<products diffgr:id=”products1” msdata:rowOrder=”0”
diffgr:hasChanges=”modified”>

<ProductID>1</ProductID>
<ProductName>NewProdName</ProductName>
<SupplierID>1</SupplierID>
<CategoryID>1</CategoryID>
<QuantityPerUnit>10 boxes x 20 bags</QuantityPerUnit>
<UnitPrice>18</UnitPrice>
<UnitsInStock>39</UnitsInStock>
<UnitsOnOrder>0</UnitsOnOrder>
<ReorderLevel>10</ReorderLevel>
<Discontinued>false</Discontinued>

</products>
...
<products diffgr:id=”products78” msdata:rowOrder=”77”

diffgr:hasChanges=”inserted”>
<ProductID>100</ProductID>
<ProductName>This is the new product</ProductName>
<SupplierID>12</SupplierID>
<CategoryID>2</CategoryID>
<QuantityPerUnit>12</QuantityPerUnit>
<UnitPrice>23</UnitPrice>
<UnitsInStock>5</UnitsInStock>
<UnitsOnOrder>0</UnitsOnOrder>
<ReorderLevel>1</ReorderLevel>
<Discontinued>false</Discontinued>

</products>
</XMLProducts>

824

Chapter 23

28 557599 Ch23.qxd 4/29/04 11:38 AM Page 824

<diffgr:before>
<products diffgr:id=”products1” msdata:rowOrder=”0”>

<ProductID>1</ProductID>
<ProductName>Chai</ProductName>
<SupplierID>1</SupplierID>
<CategoryID>1</CategoryID>
<QuantityPerUnit>10 boxes x 20 bags</QuantityPerUnit>
<UnitPrice>18</UnitPrice>
<UnitsInStock>39</UnitsInStock>
<UnitsOnOrder>0</UnitsOnOrder>
<ReorderLevel>10</ReorderLevel>
<Discontinued>false</Discontinued>

</products>
</diffgr:before>

</diffgr:diffgram>

Note that each DataTable row is repeated, and that there is a diffgr:id attribute for each <products>
element (we’ve only shown the first and last of the <products> elements in order to save space). diffgr
is the namespace prefix for urn:schemas-microsoft-com:xml-diffgram-v1. For rows that were
modified or inserted, ADO.NET adds a diffgr:hasChanges attribute. There’s also a <diffgr:before>
element after the <XMLProducts> element, which contains a <products> element indicating the previ-
ous contents of any modified rows. Obviously the inserted row didn’t have any previous contents, so
this doesn’t have an element in <diffgr:before>.

After the DiffGram has been read into the DataTable, it is in the state that it would be in after changes
were made to the data but before AcceptChanges() is called. At this point you can actually roll back
changes by calling the RejectChanges() method. By looking at the DataRow.Item property and pass-
ing in either DataRowVersion.Original or DataRowVersion.Current, we can see the before and
after values in the DataTable.

If you keep a series of DiffGrams it is important that you are able to reapply them in the proper order.
You probably would not want to try to roll back changes for more then a couple of iterations. You could,
however use the DiffGrams as a form of logging or for auditing purposes if the DBMS that is being used
does not offer these facilities.

Serializing Objects in XML
Serializing is the process of persisting an object to disk. Another part of your application, or even a sepa-
rate application, can deserialize the object and it will be in the same state it was in prior to serialization.
.NET Framework includes a couple of ways to do this.

In this section, we look at the System.Xml.Serialization namespace, which contains classes used to
serialize objects into XML documents or streams. This means that an object’s public properties and pub-
lic fields are converted into XML elements or attributes or both.

The most important class in the System.Xml.Serialization namespace is XmlSerializer. To serial-
ize an object, we first need to instantiate an XmlSerializer object, specifying the type of the object to
serialize. Then we need to instantiate a stream/writer object to write the file to a stream/document. The
final step is to call the Serialize() method on the XMLSerializer, passing it the stream/writer
object, and the object to serialize.

825

Manipulating XML

28 557599 Ch23.qxd 4/29/04 11:38 AM Page 825

Data that can be serialized can be primitive types, fields, arrays, and embedded XML in the form of
XmlElement and XmlAttribute objects.

To deserialize an object from an XML document, we reverse the process in the previous example. We cre-
ate a stream/reader and an XmlSerializer object, and then pass the stream/reader to the
Deserialize() method. This method returns the deserialized object, although it needs to be cast to the
correct type.

However, these should not be serious limitations; by carefully designing your classes, they should be
easily avoided. If you do need to be able to serialize public and private data as well as an object graph
containing many nested objects, then you will want to use the System.Runtime.Serialization
.Formatters.Binary namespace.

Some of the other tasks that you can accomplish with System.Xml.Serialization classes are:

❑ Determine if the data should be an attribute or element

❑ Specify the namespace

❑ Change the attribute or element name

The links between your object and the XML document are the custom C# attributes that annotate your
classes. These attributes are what are used to inform the serializer how to write out the data. There is a
tool, xsd.exe, that is included with.NET Framework that can help you create these attributes for you;
xsd.exe can do the following:

❑ Generate an XML schema from an XDR schema file

❑ Generate an XML schema from an XML file

❑ Generate DataSet classes from an XSD schema file

❑ Generate runtime classes that have the custom attributes for XmlSerialization

❑ Generate an XSD file from classes that you have already developed

❑ Limit which elements are created in code

❑ Determine which programming language the generated code should be in (C#, Visual Basic
.NET, or JScript .NET)

❑ Create schemas from types in compiled assemblies

You should refer to the Framework documentation for details of command-line options for xsd.exe.

Despite these capabilities, you don’t have to use xsd.exe to create the classes for serialization. The process
is quite simple. Let’s take a look at a simple application that serializes a class that reads in the Products
data we saved earlier in the chapter. This can be found in the SerialSample1 folder. At the beginning of
the example we have very simple code that creates a new Product object, pd, and fills it with some data:

The XML serializer cannot convert private data, only public data, and it cannot seri-
alize object graphs.

826

Chapter 23

28 557599 Ch23.qxd 4/29/04 11:38 AM Page 826

private void button1_Click(object sender, System.EventArgs e)
{

//new products object
Products pd=new Products();
//set some properties
pd.ProductID=200;
pd.CategoryID=100;
pd.Discontinued=false;
pd.ProductName=”Serialize Objects”;
pd.QuantityPerUnit=”6”;
pd.ReorderLevel=1;
pd.SupplierID=1;
pd.UnitPrice=1000;
pd.UnitsInStock=10;
pd.UnitsOnOrder=0;

Serialize() method of the XmlSerializer class actually performs the serialization, and it has six
overloads. One of the parameters required is a stream to write the data to. It can be a Stream,
TextWriter, or an XmlWriter parameter. In our example we create a TextWriter-based object, tr.
The next thing to do is to create the XmlSerializer-based object sr. The XmlSerializer needs to
know type information for the object that it is serializing, so we use the typeof keyword with the type
that is to be serialized. After the sr object is created, we call the Serialize() method, passing in the tr
(Stream-based object), and the object that you want serialized, in this case pd. Be sure to close the stream
when you are finished with it.

//new TextWriter and XmlSerializer
TextWriter tr=new StreamWriter(“..\\..\\..\\serialprod.xml”);
XmlSerializer sr=new XmlSerializer(typeof(Products));
//serialize object
sr.Serialize(tr,pd);
tr.Close();

}

Now let’s examine the Products class, the class that is to be serialized. The only differences between
this and any other class that you may write are the C# attributes that have been added. The
XmlRootAttribute and XmlElementAttribute classes in the attributes inherit from the
System.Attribute class. Don’t confuse these attributes with the attributes in an XML document. A C#
attribute is simply some declarative information that can be retrieved at runtime by the CLR (see
Chapter 6 for more details). In this case, the attributes describe how the object should be serialized:

//class that will be serialized.
//attributes determine how object is serialized
[System.Xml.Serialization.XmlRootAttribute(Namespace=””, IsNullable=false)]
public class Products
{

[System.Xml.Serialization.XmlElementAttribute(IsNullable=false)]
public int ProductID;
[System.Xml.Serialization.XmlElementAttribute(IsNullable=false)]
public string ProductName;
[System.Xml.Serialization.XmlElementAttribute()]
public int SupplierID;
[System.Xml.Serialization.XmlElementAttribute()]

827

Manipulating XML

28 557599 Ch23.qxd 4/29/04 11:38 AM Page 827

public int CategoryID;
[System.Xml.Serialization.XmlElementAttribute()]
public string QuantityPerUnit;
[System.Xml.Serialization.XmlElementAttribute()]
public System.Decimal UnitPrice;
[System.Xml.Serialization.XmlElementAttribute()]
public short UnitsInStock;
[System.Xml.Serialization.XmlElementAttribute()]
public short UnitsOnOrder;
[System.Xml.Serialization.XmlElementAttribute()]
public short ReorderLevel;
[System.Xml.Serialization.XmlElementAttribute()]
public bool Discontinued;

}

The XmlRootAttribute() invocation in the attribute above the Products class definition identifies
this class as a root element (in the XML file produced upon serialization). The attribute containing
XmlElementAttribute() identifies that the member below the attribute represents an XML element.

If we take a look at the XML document that is created during serialization, you will see that it looks like
any other XML document that we might have created, which is the point of the exercise. Let’s take a look
at the document:

<?xml version=”1.0” encoding=”utf-8”?>
<Products xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>
<ProductID>200</ProductID>
<ProductName>Serialize Objects</ProductName>
<SupplierID>1</SupplierID>
<CategoryID>100</CategoryID>
<QuantityPerUnit>6</QuantityPerUnit>
<UnitPrice>1000</UnitPrice>
<UnitsInStock>10</UnitsInStock>
<UnitsOnOrder>0</UnitsOnOrder>
<ReorderLevel>1</ReorderLevel>
<Discontinued>false</Discontinued>

</Products>

There is nothing out of the ordinary here. You could use this any way that you would use an XML docu-
ment. You could transform it and display it as HTML, load into a DataSet using ADO.NET, load an
XmlDocument with it, or, as you can see in the example, deserialize it and create an object in the same
state that pd was in prior to serializing it (which is exactly what we’re doing with our second button).

Next we add another button event handler to deserialize a new Products-based object newPd. This time
we use a FileStream object to read in the XML:

private void button2_Click(object sender, System.EventArgs e)
{

//create a reference to products type
Products newPd;
//new filestream to open serialized object
FileStream f=new FileStream(“..\\..\\..\\serialprod.xml”,FileMode.Open);

828

Chapter 23

28 557599 Ch23.qxd 4/29/04 11:38 AM Page 828

Once again, we create a new XmlSerializer, passing in the type information of Product. We can then
make the call to the Deserialize() method. Note that we still need to do an explicit cast when we cre-
ate the newPd object. At this point newPd is in exactly the same state as pd was:

//new serializer
XmlSerializer newSr=new XmlSerializer(typeof(Products));
//deserialize the object
newPd=(Products)newSr.Deserialize(f);
//load it in the list box.
listBox1.Items.Add(newPd.ProductName);
f.Close();

}

The example that we just looked at is very simple; let’s look at a more complex example using the
XmlSerializer class. We’ll make each field private, accessible only via get and set properties in the
Products class. We will also add a Discount attribute to the XML file, to demonstrate that attributes
can be serialized too.

This example can be found in the SerialSample2 folder; here’s what our new Products class looks like:

[System.Xml.Serialization.XmlRootAttribute()]
public class Products
{

private int prodId;
private string prodName;
private int suppId;
private int catId;
private string qtyPerUnit;
private Decimal unitPrice;
private short unitsInStock;
private short unitsOnOrder;
private short reorderLvl;
private bool discont;
private int disc;
//add the Discount attribute
[XmlAttributeAttribute(AttributeName=”Discount”)]
public int Discount
{

get {return disc;}
set {disc=value;}

}
[XmlElementAttribute()]
public int ProductID
{

get {return prodId;}
set {prodId=value;}

}
...
// properties for most of the fields are not shown for sake of brevity
...
[XmlElementAttribute()]
public bool Discontinued
{

829

Manipulating XML

28 557599 Ch23.qxd 4/29/04 11:38 AM Page 829

get {return discont;}
set {discont=value;}

}
}

You also need to make the following modifications to the button click event handlers:

private void button1_Click(object sender, System.EventArgs e)
{

//new products object
Products pd=new Products();
//set some properties
pd.ProductID=200;
pd.CategoryID=100;
pd.Discontinued=false;
pd.ProductName=”Serialize Objects”;
pd.QuantityPerUnit=”6”;
pd.ReorderLevel=1;
pd.SupplierID=1;
pd.UnitPrice=1000;
pd.UnitsInStock=10;
pd.UnitsOnOrder=0;
pd.Discount=2;
//new TextWriter and XmlSerializer
TextWriter tr=new StreamWriter(“..\\..\\..\\serialprod1.xml”);
XmlSerializer sr=new XmlSerializer(typeof(Products));
//serialize object
sr.Serialize(tr,pd);
tr.Close();

}
private void button2_Click(object sender, System.EventArgs e)
{

//create a reference to products type
Products newPd;
//new filestream to open serialized object
FileStream f=new FileStream(“..\\..\\..\\serialprod1.xml”,FileMode.Open);
//new serializer
XmlSerializer newSr=new XmlSerializer(typeof(Products));
//deserialize the object
newPd=(Products)newSr.Deserialize(f);
//load it in the list box.
listBox1.Items.Add(newPd.ProductName);
f.Close();

}

Running this code yields the same results as the earlier example—with one difference. The output (seri-
alprod1.xml) looks like this:

<?xml version=”1.0” encoding=”utf-8”?>
<Products xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
Discount=”2”>

<ProductID>200</ProductID>
<ProductName>Serialize Objects</ProductName>

830

Chapter 23

28 557599 Ch23.qxd 4/29/04 11:38 AM Page 830

<SupplierID>1</SupplierID>
<CategoryID>100</CategoryID>
<QuantityPerUnit>6</QuantityPerUnit>
<UnitPrice>1000</UnitPrice>
<UnitsInStock>10</UnitsInStock>
<UnitsOnOrder>0</UnitsOnOrder>
<ReorderLevel>1</ReorderLevel>
<Discontinued>false</Discontinued>

</Products>

Note that the Discount attribute on the Products element. So, now that you have property accessors
defined, you can add more complex validation code in the properties.

What about situations where we have derived classes, and possibly properties that return an array?
XmlSerializer has that covered as well. Let’s look at a slightly more complex example that deals with
these issues.

First we define three new classes, Product, BookProduct (derived from Product), and Inventory
(which contains both of the other classes):

public class Product
{

private int prodId;
private string prodName;
private int suppId;
public Product() {}
public int ProductID
{

get {return prodId;}
set {prodId=value;}

}
public string ProductName
{

get {return prodName;}
set {prodName=value;}

}
public int SupplierID
{

get {return suppId;}
set {suppId=value;}

}
}
public class BookProduct : Product
{

private string isbnNum;
public BookProduct() {}
public string ISBN
{

get {return isbnNum;}
set {isbnNum=value;}

}
}
public class Inventory
{

831

Manipulating XML

28 557599 Ch23.qxd 4/29/04 11:38 AM Page 831

private Product[] stuff;
public Inventory() {}
//need to have an attribute entry for each data type
[XmlArrayItem(“Prod”,typeof(Product)),
XmlArrayItem(“Book”,typeof(BookProduct))]
public Product[] InventoryItems
{

get {return stuff;}
set {stuff=value;}

}
}

The Inventory class is the one of interest to us here. If we are to serialize this class, we need to insert an
attribute containing XmlArrayItem constructors for each type that can be added to the array. You
should note that XmlArrayItem is the name of the .NET attribute represented by the
XmlArrayItemAttribute class.

The first parameter supplied to these constructors is what we would like the element name to be in the
XML document that is created during serialization. If we leave off the ElementName parameter, the ele-
ments will be given the same name as the object type (Product and BookProduct in this case). The sec-
ond parameter that must be specified is the type of the object.

There is also an XmlArrayAttribute class that you would use if the property were returning an array
of objects or primitive type. Since we are returning different types in the array, we use
XmlArrayItemAttribute, which allows the higher level of control.

In the button1_Click() event handler, we create a new Product object and a new BookProduct
object (newProd and newBook). We add data to the various properties of each object, and add the objects
to a Product array. We then create a new Inventory object and pass in the array as a parameter. We can
then serialize the Inventory object to recreate it at a later time:

private void button1_Click(object sender, System.EventArgs e)
{

//create new book and bookproducts objects
Product newProd=new Product();
BookProduct newBook=new BookProduct();
//set some properties
newProd.ProductID=100;
newProd.ProductName=”Product Thing”;
newProd.SupplierID=10;
newBook.ProductID=101;
newBook.ProductName=”How to Use Your New Product Thing”;
newBook.SupplierID=10;
newBook.ISBN=”123456789”;
//add the items to an array
Product[] addProd={newProd,newBook};
//new inventory object using the addProd array
Inventory inv=new Inventory();
inv.InventoryItems=addProd;
//serialize the Inventory object
TextWriter tr=new StreamWriter(“..\\..\\..\\order.xml”);
XmlSerializer sr=new XmlSerializer(typeof(Inventory));

832

Chapter 23

28 557599 Ch23.qxd 4/29/04 11:38 AM Page 832

sr.Serialize(tr,inv);
tr.Close();

}

This is what the XML document looks like (the code can be found in the SerialSample3 folder):

<?xml version=”1.0” encoding=”utf-8”?>
<Inventory xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>
<InventoryItems>

<Prod>
<ProductID>100</ProductID>
<ProductName>Product Thing</ProductName>
<SupplierID>10</SupplierID>

</Prod>
<Book>

<ProductID>101</ProductID>
<ProductName>How to Use Your New Product Thing</ProductName>
<SupplierID>10</SupplierID>
<ISBN>123456789</ISBN>

</Book>
</InventoryItems>

</Inventory>

The button2_Click() event handler implements deserialization of the Inventory object. Note that we
iterate through the array in the newly created newInv object to show that it is the same data:

private void button2_Click(object sender, System.EventArgs e)
{

Inventory newInv;
FileStream f=new FileStream(“..\\..\\..\\order.xml”,FileMode.Open);
XmlSerializer newSr=new XmlSerializer(typeof(Inventory));
newInv=(Inventory)newSr.Deserialize(f);
foreach(Product prod in newInv.InventoryItems)

listBox1.Items.Add(prod.ProductName);
f.Close();

}

Serialization without Source Code Access
Well this all works great, but what if you don’t have access to the source code for the types that are being
serialized? You can’t add the attribute if you don’t have the source. There is another way. You can use
the XmlAttributes class and the XmlAttributeOverrides class. Together these classes enable you to
accomplish exactly what we have just done, but without adding the attributes. Let’s look at an example
of how this works (the code is in the SerialSample4 folder).

For this example, imagine that the Inventory, Product, and the derived BookProduct classes are in a
separate DLL, and that we don’t have the source. The Product and BookProduct classes are the same
as in the previous example, but you should note that there are now no attributes added to the
Inventory class:

833

Manipulating XML

28 557599 Ch23.qxd 4/29/04 11:38 AM Page 833

public class Inventory
{

private Product[] stuff;
public Inventory() {}
public Product[] InventoryItems
{

get {return stuff;}
set {stuff=value;}

}
}

Next, we deal with the serialization in the button1_Click() event handler:

private void button1_Click(object sender, System.EventArgs e)
{

The first step in the serialization process is to create an XmlAttributes object, and an
XmlElementAttribute object for each data type that you will be overriding:

XmlAttributes attrs=new XmlAttributes();
attrs.XmlElements.Add(new XmlElementAttribute(“Book”,typeof(BookProduct)));
attrs.XmlElements.Add(new XmlElementAttribute(“Product”,typeof(Product)));

Here you can see that we are adding new XmlElementAttribute objects to the XmlElements collection
of the XmlAttributes class. The XmlAttributes class has properties that correspond to the attributes
that can be applied; XmlArray and XmlArrayItems, which we looked at in the previous example, are
just a few of these. We now have an XmlAttributes object with two XmlElementAttribute-based
objects added to the XmlElements collection.

The next thing we have to do is create an XmlAttributeOverrides object:

XmlAttributeOverrides attrOver=new XmlAttributeOverrides();
attrOver.Add(typeof(Inventory),”InventoryItems”,attrs);

The Add() method of this class has two overloads. The first one takes the type information of the object
to override and the XmlAttributes object that we created earlier. The other overload, which is the one
we are using, also takes a string value that is the member in the overridden object. In our case we want
to override the InventoryItems member in the Inventory class.

When we create the XmlSerializer object, we add the XmlAttributeOverrides object as a parame-
ter. Now the XmlSerializer knows which types we want to override and what we need to return for
those types.

//create the Product and Book objects
Product newProd=new Product();
BookProduct newBook=new BookProduct();
newProd.ProductID=100;
newProd.ProductName=”Product Thing”;
newProd.SupplierID=10;
newBook.ProductID=101;
newBook.ProductName=”How to Use Your New Product Thing”;
newBook.SupplierID=10;

834

Chapter 23

28 557599 Ch23.qxd 4/29/04 11:38 AM Page 834

newBook.ISBN=”123456789”;
Product[] addProd={newProd,newBook};

Inventory inv=new Inventory();
inv.InventoryItems=addProd;
TextWriter tr=new StreamWriter(“..\\..\\..\\inventory.xml”);
XmlSerializer sr=new XmlSerializer(typeof(Inventory),attrOver);
sr.Serialize(tr,inv);
tr.Close();

}

If we execute the Serialize() method we get this XML output:

<?xml version=”1.0” encoding=”utf-8”?>
<Inventory xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>
<Product>

<ProductID>100</ProductID>
<ProductName>Product Thing</ProductName>
<SupplierID>10</SupplierID>

</Product>
<Book>

<ProductID>101</ProductID>
<ProductName>How to Use Your New Product Thing</ProductName>
<SupplierID>10</SupplierID>
<ISBN>123456789</ISBN>

</Book>
</Inventory>

As you can see, we get the same XML as we did with the earlier example. In order to deserialize this
object and recreate the Inventory-based object that we started out with, we need to create all of the
same XmlAttributes, XmlElementAttribute, and XmlAttributeOverrides objects that we created
when we serialized the object. Once we do that we can read in the XML and recreate the Inventory
object just as we did before. Here is the code to deserialize the Inventory object:

private void button2_Click(object sender, System.EventArgs e)
{

//create the new XmlAttributes collection
XmlAttributes attrs=new XmlAttributes();
//add the type information to the elements collection
attrs.XmlElements.Add(new XmlElementAttribute(“Book”,typeof(BookProduct)));
attrs.XmlElements.Add(new XmlElementAttribute(“Product”,typeof(Product)));
XmlAttributeOverrides attrOver=new XmlAttributeOverrides();
//add to the Attributes collection
attrOver.Add(typeof(Inventory),”InventoryItems”,attrs);
//need a new Inventory object to deserialize to
Inventory newInv;
//deserialize and load data into the listbox from deserialized object
FileStream f=new FileStream(“..\\..\\..\\inventory.xml”,FileMode.Open);
XmlSerializer newSr=new XmlSerializer(typeof(Inventory),attrOver);
newInv=(Inventory)newSr.Deserialize(f);
if(newInv!=null)
{

835

Manipulating XML

28 557599 Ch23.qxd 4/29/04 11:38 AM Page 835

foreach(Product prod in newInv.InventoryItems)
listBox1.Items.Add(prod.ProductName);

}
f.Close();

}

Note that the first few lines of code are identical to the code we used to serialize the object.

The System.Xml.XmlSerialization namespace provides a very powerful tool set for serializing
objects to XML. By serializing and deserializing objects to XML instead of to binary format, you are
given the option of doing something else with this XML, greatly adding to the flexibility of your designs.

Summary
In this chapter we explored many of the corners of the System.Xml namespace of.NET Framework. We
looked at how to read and write XML documents using the very fast XmlReader- and XmlWriter-based
classes. We looked at how the DOM is implemented in .NET, and how to use the power of DOM. We
saw that XML and ADO.NET are indeed very closely related. A DataSet and an XML document are just
two different views of the same underlying architecture. And, of course, we visited XPath and XSL
Transforms.

Finally, we serialized objects to XML, and were able to bring them back with just a couple of method
calls.

XML will be an important part of your application development for years to come. .NET Framework has
made available a very rich and powerful tool set for working with XML. For more information on XML
and C#, with emphasis on XPath and XSLT, see Data-Centric .NET Programming with C# (Wrox Press,
ISBN 1-861005-92-x).

In the next chapter we look at how to handle files and the registry using C# classes.

836

Chapter 23

28 557599 Ch23.qxd 4/29/04 11:38 AM Page 836

Working with Active
Directory

A major (maybe the most important) feature that was introduced with Windows 2000 is Active
Directory. Active Directory is a directory service that provides a central, hierarchical store for user
information, network resources, services, and so on. It is also possible to extend the information in
this directory service to store custom data that is of interest for the enterprise.

For example, Microsoft Exchange Server 2000 and 2003 use Active Directory intensively to store
public folders and other items.

Before the release of Active Directory, Exchange Server used its own private store for its objects. It
was necessary for a system administrator to configure two user IDs for a single person: a user
account in the Windows NT domain so that a logon was possible, and a user in Exchange
Directory. This was necessary because additional information for users was needed (such as e-mail
addresses, phone numbers, and so on), and the user information for the NT domain was not exten-
sible to put the required information in there. Now the system administrator only needs to config-
ure a single user for a person in Active Directory; the information for a user object can be
extended so that it fits the requirements of Exchange Server. You can also extend this information.

User information is stored in Active Directory. Suppose information is extended with a skills list.
This way, it would easily be possible to track down a C# developer by searching for the required
C# skill.

In this chapter, we look at how we can use.NET Framework to access and manipulate the data in a
directory service using classes from the System.DirectoryServices namespace.

In this chapter we have used Windows Server 2003 with Active Directory configured. You can
also use Windows 2000 Server. The classes of the System.DirectoryServices namespace
can also be used for Novell Directory Services and Windows NT 4, with small modifications to
the code presented here.

29 557599 Ch24.qxd 4/29/04 11:40 AM Page 837

In this chapter we cover:

❑ The architecture of Active Directory, including features and basic concepts

❑ Some of the tools available for administration of Active Directory, and their benefit to
programming

❑ How to read and modify data in Active Directory

❑ Searching for objects in Active Directory

After discussing the architecture and how to program Active Directory we create a Windows application
where you can specify properties and a filter to search for user objects. As is the case with the other
chapters, you can download the code for the examples in this chapter from the Wrox Web site at
www.wrox.com.

The Architecture of Active Directory
Before starting to program Active Directory, you have to know how Active Directory works, what it is
used for, and what data can be stored there.

Features
The features of Active Directory can be summarized as follows:

❑ The data in Active Directory is grouped hierarchically. Objects can be stored inside other con-
tainer objects. Instead of having a single, large list of users, the users can be grouped inside
organizational units. An organizational unit can contain other organizational units, so you can
build a tree.

❑ Active Directory uses a multimaster replication. In Windows NT 4 domains the primary domain
controller (PDC) was the master. In Windows 2000 with Active Directory every domain controller
(DC) is a master. If the PDC in a Windows NT 4 domain is down, users cannot change their
passwords; the system administrator can only update users when the PDC is up and running.
With Active Directory, updates can be applied to any DC. This model is much more scalable,
because updates can be made to different servers concurrently. The disadvantage of this model
is a more complex replication. Replication issues will be discussed later in this chapter.

❑ The replication topology is flexible, to support replications across slow links in WANs. How often
data should be replicated is configurable by the domain administrators.

❑ Active Directory supports open standards. The Lightweight Directory Access Protocol(LDAP), is one
of the standards that can be used to access the data in Active Directory. LDAP is an Internet
standard that can be used to access a lot of different directory services. With LDAP a program-
ming interface, LDAP API, is also defined. The LDAP API can be used to access the Active
Directory with the C language. Microsoft’s preferred programming interface to directory ser-
vices is the Active Directory Service Interface (ADSI). This, of course, is not an open standard. In
contrast to the LDAP API, ADSI makes it possible to access all features of Active Directory.

838

Chapter 24

29 557599 Ch24.qxd 4/29/04 11:40 AM Page 838

Another standard that’s used within Active Directory is Kerberos, which is used for authentica-
tion. The Windows 2000 Kerberos service can also be used to authenticate UNIX clients.

❑ With Active Directory a fine-grained security is available. Every object stored in Active Directory
can have an associated access-control list that defines who can do what with that object.

The objects in the directory are strongly typed, which means that the type of an object is exactly defined;
no attributes that are not specified may be added to an object. In the Schema, the object types as well as
the parts of an object (attributes) are defined. Attributes can be mandatory or optional.

Active Directory Concepts
Before programming Active Directory, we need to begin with some basic terms and definitions.

Objects
Active Directory stores objects. An object refers to something concrete such as a user, a printer, or a net-
work share. Objects have mandatory and optional attributes that describe them. Some examples of the
attributes of a user object are the first name, last name, e-mail address, phone number, and so on.

Figure 24-1 shows a container object called Wrox Press that contains some other objects; two user
objects, a contact object, a printer object, and a user group object.

Figure 24-1

Schema
Every object is an instance of a class that is defined in the schema. The schema defines the types, and is
itself stored in objects in Active Directory. You have to differentiate between classSchema and
attributeSchema. The types of objects are defined in classSchema, as well as detailing what manda-
tory and optional attributes an object has. attributeSchema defines what an attribute looks like, and
what the allowed syntax for a specific attribute is.

You can define custom types and attributes, and add these to the schema. Be aware, however, that a new
schema type cannot be removed from Active Directory. You can mark it as inactive, so that new objects
cannot be created any more, but there can be existing objects of that type, so it’s not possible to remove
classes or attributes that are defined in the schema.

WileyWileyWiley

Sharon
Nash

Katie
Mohr

Contact Printer Users

839

Working with Active Directory

29 557599 Ch24.qxd 4/29/04 11:40 AM Page 839

The user group Administrator doesn’t have enough rights to create new schema entries; the group
Domain Enterprise Administrator is needed here.

Configuration
Besides objects and class definitions that are stored as objects, the configuration of Active Directory itself
is stored in Active Directory. The configuration of Active Directory stores the information about all sites,
such as the replication intervals, that is set up by the system administrator. Since the configuration itself
is stored in Active Directory, we can access the configuration information like all other objects in Active
Directory.

The Active Directory domain
A domain is a security boundary of a Windows network. In the Active Directory domain, the objects are
stored in a hierarchical order. Active Directory itself is made up of one or more domains. Figure 24-2
shows the hierarchical order of objects in a domain; the domain is represented by a triangle. Container
objects such as Users, Computers, and Books can store other objects. Each oval in the picture represents
an object, with the lines between the objects representing parent-child relationships. For example, Books
is the parent of .NET and Java, and Pro C#, Beg C#, and ASP.NET are child objects of the .NET object.

Figure 24-2

com

wrox

Users Books

.NET

Beg C#Pro C#

Java

ASP .NET

Computers

840

Chapter 24

29 557599 Ch24.qxd 4/29/04 11:40 AM Page 840

Domain controller
A single domain can have multiple domain controllers, each of which stores all of the objects in the
domain. There is no master server, and all DCs are treated equally; we have a multimaster model. The
objects are replicated across the servers inside the domain.

Site
A site is a location in the network that holds at least one DC. If we have multiple locations in the enter-
prise, which are connected with slow network links, we can use multiple sites for a single domain. For
backup or scalability reasons, each site can have one or more DCs running. Replication between servers
in a site can happen at shorter intervals due to the faster network connection. Replication is configured
to occur at larger time intervals between servers across sites, depending on the speed of the network. Of
course, the domain administrator can configure this.

Domain tree
Multiple domains can be connected by trust relationships. These domains share a common schema, a com-
mon configuration, and a global catalog (more on global catalogs shortly). A common schema and a com-
mon configuration mean that this data is replicated across domains. Domain trees share the same class
and attribute schema. The objects themselves are not replicated across domains.

Domains connected in such a way form a Domain Tree. Domains in a domain tree have a contiguous,
hierarchical namespace. This means that the domain name of the child domain is the name of that child
domain appended to the name of the parent domain. Between domains, trusts that use the Kerberos pro-
tocol are established.

For example, we have the root domain wrox.com, which is the parent domain of the child domains
india.wrox.com and uk.wrox.com. A trust is set up between the parent and the child domains, so that
accounts from one domain can be authenticated by another domain.

Forest
Multiple domain trees that are connected by using a common schema, a common configuration, and a
global catalog without a contiguous namespace, are called a forest. A forest is a set of domain trees. A
forest can be used if the company has a subcompany where a different domain name should be used.
Let’s say that wrox.com should be relatively independent of the domain wiley.com, but it should be
possible to have a common management, and be possible for users from wrox.com to access resources
from the wiley.com domain, and vice versa. With a forest we can have trusts between multiple domain
trees.

Global catalog
A search for an object can span multiple domains. If we look for a specific user object with some
attributes we have to search every domain. Starting with wrox.com, the search continues to
uk.wrox.com and india.wrox.com; across slow links such a search could take a while.

To make searches faster, all objects are copied to the global catalog (GC). The GC is replicated in every
domain of a forest. There’s at least one server in every domain holding a GC. For performance and scala-
bility reasons, we can have more than one GC server in a domain. Using a GC, a search through all the
objects can happen on a single server.

841

Working with Active Directory

29 557599 Ch24.qxd 4/29/04 11:40 AM Page 841

The GC is a read-only cache of all the objects that can only be used for searches; the domain controllers
must be used to do updates.

Not all attributes of an object are stored in the GC. We can define whether or not an attribute should be
stored with an object. The decision whether to store an attribute in the GC depends on the frequency of
the attribute use in searches. A picture of a user isn’t useful in the GC, because you would never search
for a picture. Conversely, the phone number would be a useful addition to the store. You can also define
that an attribute should be indexed so that a query for it is faster.

Replication
As programmers we are unlikely to ever configure replication, but because it affects the data we store in
Active Directory, we have to know how it works. Active Directory uses a multimaster server architecture.
Updates happen to every domain controller in the domain. The replication latency defines how long it
takes until an update happens.

❑ The configurable change notification happens, by default, every 5 minutes inside a site if some
attributes change. The DC where a change occurred informs one server after the other with 30-
second intervals, so the fourth DC can get the change notification after 7 minutes. The default
change notification across sites is set to 180 minutes. Intra- and intersite replication can each be
configured to other values.

❑ If no changes occurred, the scheduled replication occurs every 60 minutes inside a site. This is to
ensure that a change notification wasn’t missed.

❑ For security-sensitive information such as account lockout immediate notification can occur.

With a replication, only the changes are copied to the DCs. With every change of an attribute a version
number (update sequence number or USN) and a time stamp are recorded. These are used to help
resolve conflicts if updates happened to the same attribute on different servers.

Let’s look at one example. The mobile phone attribute of the user John Doe has the USN number 47. This
value is already replicated to all DCs. One system administrator changes the phone number. The change
occurs on the server DC1; the new USN of this attribute on the server DC1 is now 48, whereas the other
DCs still have the USN 47. For someone still reading the attribute, the old value can be read until the
replication to all domain controllers has occurred.

Now the rare case can happen that another administrator changes the phone number attribute, and here
a different DC was selected because this administrator received a faster response from the server DC2.
The USN of this attribute on the server DC2 is also changed to 48.

At the notification intervals, notification happens because the USN for the attribute changed, and the
last time replication occurred was with a USN value 47. With the replication mechanism it is now
detected that the servers DC1 and DC2 both have a USN of 48 for the phone number attribute. What
server is the winner is not really important, but one server must win. To resolve this conflict the time
stamp of the change is used. Because the change happened later on DC2 the value stored in the DC2
domain controller gets replicated.

842

Chapter 24

29 557599 Ch24.qxd 4/29/04 11:40 AM Page 842

Characteristics of Active Directory Data
Active Directory doesn’t replace a relational database or the registry; so what kind of data would you
store in it?

❑ With Active Directory you get hierarchical data. You can have containers that store further con-
tainers, and also objects. Containers themselves are objects, too.

❑ The data should be used for read-mostly. Because of replication occurring at certain time-
intervals, we cannot be sure that we will read up-to-date data. You must be aware that in
applications the information you read is possibly not the current up-to-date information.

❑ Data should be of global interest to the enterprise; this is because adding a new data type to the
schema replicates to it all the servers in the enterprise. For data types that are only of interest to
a small number of users, the domain enterprise administrator normally wouldn’t install new
schema types.

❑ The data stored should be of reasonable size because of replication issues. If the data size is 100K,
it is fine to store this data in the directory if the data changes only once a week. However, if the
data changes once per hour, then the data of this size is too large. Always think about replicat-
ing the data to different servers: where the data gets transferred to, and at what intervals. If you
have larger data it’s possible to put a link into Active Directory and store the data itself in a dif-
ferent place.

To summarize, the data we store in Active Directory should be hierarchically organized, of reasonable
size, and important to the enterprise.

Schema
Active Directory objects are strongly typed. The schema defines the types of the objects, mandatory and
optional attributes, and the syntaxes and constraints of these attributes. In the schema it is necessary to
differentiate between class-schema and attribute-schema objects. A class is a collection of attributes. With
the classes, single inheritance is supported. As you can see in Figure 24-3, the user class derives from
the organizationalPerson class, organizationalPerson is a subclass of person, and the base class
is top. The classSchema that defines a class describes the attributes with the systemMayContain
attribute.

When reading objects, we have to be aware that the data is not necessarily current.
The currency of the data depends on replication latencies. When updating objects,
another user can still read some old values after the update. It’s also possible that
different updates can happen at the same time.

843

Working with Active Directory

29 557599 Ch24.qxd 4/29/04 11:40 AM Page 843

Figure 24-3

Figure 24-3 only shows a few of all the systemMayContain values. Using the ADSI Edit tool, you can
easily see all the values; we will look at this in the next section.

top

cn
displayName
distinguishedName
objectGUID
whenChanged
whenCreated
mayContain
mustContain

organizationPerson

title
street
postalAddress
mobile
manager
givenName
employeeID
department
company
assistant

user

userCertificate
userWorkstations
userSharedfolder
logonWorkstation
logonHours
lastLogon
homeDirectory
accountExpires

person

userPassword
telephoneNumber
sn
seeAlso

844

Chapter 24

29 557599 Ch24.qxd 4/29/04 11:40 AM Page 844

In the root class top you can see that every object can have common name (cn), displayName,
objectGUID, whenChanged, and whenCreated attributes. The person class derives from top. A per-
son object also has a userPassword and a telephoneNumber. OrganizationalPerson derives from
person. In addition to the attributes of person it has a manager, department, and company; and a
user has extra attributes needed to log on to a system.

Administration Tools for Active Directory
Looking into some of the Active Directory administration tools can help to give you an idea of Active
Directory, what data is in there, and what can be done programmatically.

The system administrator has a lot of tools to enter new data, update data, and configure Active
Directory:

❑ The Active Directory Users and Computers MMC snap-in is used to enter new users and
update user data.

❑ The Active Directory Sites and Services MMC snap-in is used to configure sites in a domain
and replication between these sites.

❑ The Active Directory Domains and Trusts MMC snap-in can be used to build up a trust rela-
tionship between domains in a tree.

❑ ADSI Edit is the editor of Active Directory, where every object can be viewed and edited.

Active Directory Users and Computers
The Active Directory Users and Computers snap-in is the tool that system administrators use to manage
users. Select Start ➪ Programs ➪ Administrative Tools➪Active Directory Users and Computers to start
this program (see Figure 24-4).

Figure 24-4

845

Working with Active Directory

29 557599 Ch24.qxd 4/29/04 11:40 AM Page 845

With this tool you can add new users, groups, contacts, organizational units, printers, shared folders, or
computers, and modify existing ones. Figure 24-5 shows the attributes that can be entered for a user
object: office, phone numbers, e-mail addresses, Web pages, organization information, addresses,
groups, and so on. This is much more information than was ever possible in an NT 4 domain.

Figure 24-5

Active Directory Users and Computers can also be used in big enterprises with millions of objects. It’s
not necessary to look through a list with a thousand objects, because we can select a custom filter so that
only some of the objects are displayed. We can also perform an LDAP query to search for the objects in
the enterprise. We explore these possibilities later in this chapter.

ADSI Edit
ADSI Edit is the editor of Active Directory. This tool is not installed automatically; on the Windows 2000
Server or Windows Server 2003 CD you can find a directory named Supporting Tools. When the sup-
porting tools are installed you can access ADSI Edit by selecting
Start➪Programs➪Windows 2000 Support Tools➪Tools➪ADSI Edit.

ADSI Edit offers greater control than the Active Directory Users and Computers tool (see Figure 24-6);
with ADSI Edit everything can be configured, and we can also look at the schema and the configuration.
This tool is not very intuitive to use, however, and it is very easy to enter wrong data.

By opening the Properties window of an object, we can view and change every attribute of an object in
Active Directory. With this tool you can see mandatory and optional attributes, with their types and val-
ues (see Figure 24-7).

846

Chapter 24

29 557599 Ch24.qxd 4/29/04 11:40 AM Page 846

Figure 24-6

Figure 24-7

Active Directory Service Interfaces (ADSI)
Active Directory Service Interfaces (ADSI) is a programmatic interface to directory services. ADSI defines
some COM interfaces that are implemented by ADSI providers. This means that the client can use differ-
ent directory services with the same programmatic interfaces. The .NET Framework classes in the
System.DirectoryServices namespace make use of ADSI.

847

Working with Active Directory

29 557599 Ch24.qxd 4/29/04 11:40 AM Page 847

Figure 24-8 shows some ADSI Providers (LDAP, WinNT, and NDS) that implement COM interfaces such
as IADs and IUnknown. The assembly System.DirectoryServices makes use of the ADSI providers.

Figure 24-8

Programming Active Directory
To develop programs for Active Directory, you have to import the System.DirectoryServices names-
pace and you have to reference the System.DirectoryServices assembly. With the classes in this
assembly you can query objects, view and update properties, search for objects, and move objects to
other container objects. In the following code segments we use a simple C# console application to
demonstrate the functionality of the classes in the System.DirectoryServices namespace.

In this section, we’ll cover:

❑ Classes in the System.DirectoryServices namespace

❑ The process of connecting to the Active Directory (binding)

Unknown

LOAD
Provider

IADs

IADs

IADs

Active
Directory

Unknown

WinNT
Provider

WinNTSystem_Directory
Services

Assembly

Unknown

NDS
Provider

Novell

848

Chapter 24

29 557599 Ch24.qxd 4/29/04 11:40 AM Page 848

❑ Getting directory entries and creating new objects and updating existing entries

❑ Searching Active Directory

Classes in System.DirectoryServices
The following table shows the major classes in the System.DirectoryServices namespace.

Class Description

DirectoryEntry This class is the main class of the System.DirectoryServices
namespace. An object of this class represents an object in the Active
Directory store. This class is used to bind to an object, and to view
and to update properties. The properties of the object are represented
in a PropertyCollection. Every item in the PropertyCollection
has a PropertyValueCollection.

DirectoryEntries DirectoryEntries is a collection of DirectoryEntry objects. The
Children property of a DirectoryEntry object returns a list of
objects in a DirectoryEntries collection.

DirectorySearcher This class is the main class used for searching for objects with specific
attributes. To define the search the SortOption class and the enu-
merations SearchScope, SortDirection, and ReferalChasin-
gOption can be used. The search results in a SearchResult or a
SearchResultCollection. You also get ResultPropertyCollec-
tion and ResultPropertyValueCollection objects.

Binding
To get the values of an object in Active Directory, you have to connect to the Active Directory service.
This connecting process is called binding. The binding path can look like this:

LDAP://dc01.athenaproject.com/OU=Development, DC=AthenaProject, DC=Com

With the binding process we can specify these items:

❑ The protocol specifies the provider to be used

❑ The server name of the domain controller

❑ The port number of the server process

❑ The distinguished name of the object; this identifies the object we want to access

❑ The username and password if a user that’s different to the account running the current process
is needed for accessing the Active Directory

❑ An authentication type can also be specified if encryption is needed

The following subsections discuss these options in more detail.

849

Working with Active Directory

29 557599 Ch24.qxd 4/29/04 11:40 AM Page 849

Protocol
The first part of a binding path specifies the ADSI provider. The provider is implemented as a COM
server; for identification a progID can be found in the registry directly under HKEY_CLASSES_ROOT.
The providers that are available with Windows XP are listed in the following table.

Provider Description

LDAP LDAP Server, such as the Exchange directory and Windows 2000 Server or
Windows Server 2003 Active Directory Server.

GC GC is used to access the global catalog in Active Directory. It can be used for
fast queries.

IIS With the ADSI provider for IIS it’s possible to create new Web sites and to
administer them in the IIS catalog.

WinNT To access the user database of old Windows NT 4 domains you can use the
ADSI provider for WinNT. The fact that NT 4 users only have a few attributes
remains unchanged. It is also possible to use this protocol to bind to a Win-
dows 2000 domain, but here you are also restricted to the attributes that are
available with NT 4.

NDS This progid is used to communicate with Novell Directory Services.

NWCOMPAT With NWCOMPAT you can access old Novell directories, such as Novell
Netware 3.x.

Server name
The server name follows the protocol in the binding path. The server name is optional if you are logged
on to an Active Directory domain. Without a server name serverless binding occurs; this means that
Windows Server 2003 tries to get the “best” domain controller in the domain that’s associated with the
user doing the bind. If there’s no server inside a site, the first domain controller that can be found will
be used.

A serverless binding might look like this: LDAP://OU=Sales, DC=AthenaProject, DC=Local.

Port number
After the server name you can specify the port number of the server process, by using the syntax :xxx.
The default port number for the LDAP server is port 389: LDAP://dc01.sentinel.net:389. The
Exchange server uses the same port number as the LDAP server. If the Exchange server is installed
on the same system—for example, as a domain controller of Active Directory—a different port can be
configured.

Distinguished name
The fourth part that we can specify in the path is the distinguished name (DN). The distinguished name is
a unique name that identifies the object we want to access. With Active Directory you can use LDAP
syntax that is based on X.500 to specify the name of the object.

850

Chapter 24

29 557599 Ch24.qxd 4/29/04 11:40 AM Page 850

This is an example of a distinguished name:

CN=Christian Nagel, OU=Consultants, DC=AthenaProject, DC=local

This distinguished name specifies the common name (CN) of Christian Nagel in the organizational
unit (OU) called Consultants in the domain component (DC) called AthenaProject of the domain
AthenaProject.local. The part that is specified to the right is the root object of the domain. The name
has to follow the hierarchy in the object tree.

The LDAP specification for the string representation of distinguished names can be found in RFC 2253 at
www.ietf.org/rfc/rfc2253.txt.

Relative distinguished name
A relative distinguished name (RDN) is used to reference objects within a container object. With an RDN
the specification of OU and DC is not needed, as a common name is enough. CN=Christian Nagel is the
relative distinguished name inside the organizational unit. A relative distinguished name can be used, if
you already have a reference to a container object and if you want to access child objects.

Default naming context
If a distinguished name is not specified in the path, the binding process will be made to the default nam-
ing context. We can read the default naming context with the help of rootDSE. LDAP 3.0 defines
rootDSE as the root of a directory tree on a directory server. For example:

LDAP://rootDSE

or:

LDAP://servername/rootDSE

By enumerating all properties of the rootDSE you can get the information about the
defaultNamingContext that will be used when no name is specified. schemaNamingContext and
configurationNamingContext specify the required names to be used to access the schema and the
configuration in the Active Directory store.

The following code is used to get all properties of rootDSE:

using (DirectoryEntry de = new DirectoryEntry())
{

de.Path = “LDAP://platinum/rootDSE”;
de.Username = @”platinum\christian”;
de.Password = “password”;

PropertyCollection props = de.Properties;
foreach (string prop in props.PropertyNames)
{

PropertyValueCollection values = props[prop];
foreach (string val in values)
{

Console.Write(prop + “: “);

851

Working with Active Directory

29 557599 Ch24.qxd 4/29/04 11:40 AM Page 851

Console.WriteLine(val);
}

}
}

This program shows the default naming context (defaultNamingContext DC=athenaproject,
DC=local), the context that can be used to access the schema (CN=Schema, CN=Configuration,
DC=athenaproject, DC=local), and the naming context of the configuration (CN=Configuration,
DC=athenaproject, DC=local), as shown in Figure 24-9.

Figure 24-9

Object identifier
Every object has a globally unique identifier (GUID). A GUID is a unique 128-bit number as you may
already know from COM development. We can bind to an object using the GUID. This way we always
get to the same object, regardless of whether the object was moved to a different container. The GUID is
generated at object creation and always remains the same.

You can get to a GUID string representation with DirectoryEntry.NativeGuid. This string represen-
tation can then be used to bind to the object.

This example shows the path name for a serverless binding to bind to a specific object represented by a
GUID:

LDAP://<GUID=14abbd652aae1a47abc60782dcfc78ea>

Object names in Windows NT domains
The WinNT provider doesn’t allow LDAP syntax in the name part of the binding string. With this provider
the object is specified using ObjectName, ClassName. Valid binding strings for a Windows NT domain are:

WinNT:
WinNT://DomainName
WinNT://DomainName/UserName, user
WinNT://DomainName/ServerName/MyGroup, group

The user and group postfixes specify that objects of type user or group are accessed.

852

Chapter 24

29 557599 Ch24.qxd 4/29/04 11:40 AM Page 852

User name
If a user other than the user of the current process must be used for accessing the directory (maybe this
user doesn’t have the required permissions to access Active Directory), explicit user credentials must be
specified for the binding process. With Active Directory there are multiple ways to specify the user
name.

Downlevel logon
With a downlevel logon the user name can be specified with the pre-Windows 2000 domain name:

domain\username

Distinguished name
The user can also be specified by a distinguished name of a user object, for example:

CN=Administrator, CN=Users, DC=athenaproject, DC=local

User Principal Name (UPN)
The user principal name (UPN) of an object is defined with the userPrincipalName attribute. The system
administrator specifies this with the logon information in the Account tab of the User properties with the
Active Directory Users and Computers tool. Note that this is not the e-mail address of the user.

This information also uniquely identifies a user, and can be used for a logon:

Nagel@athenaproject.local

Authentication
For secure encrypted authentication the authentication type can also be specified. The authentication can
be set with the AuthenticationType property of the DirectoryEntry class. The value that can be
assigned is one of the AuthenticationTypes enumeration values. Because the enumeration is marked
with the [Flags] attribute, multiple values can be specified. Some of the possible values are where the
data sent is encrypted, ReadonlyServer, where we specify that we need only read access, and Secure
for secure authentication.

Binding with the DirectoryEntry class
The System.DirectoryServices.DirectoryEntry class can be used to specify all the binding infor-
mation. We can use the default constructor and define the binding information with the properties Path,
Username, Password, and AuthenticationType, or pass all the information in the constructor:

DirectoryEntry de = new DirectoryEntry();
de.Path = “LDAP://platinum/DC=athenaproject, DC=local”;
de.Username = “nagel@athenaproject.local”;
de.Password = “password”;

// use the current user credentials
DirectoryEntry de2 = new DirectoryEntry(

“LDAP://DC=athenaproject, DC=local”);

853

Working with Active Directory

29 557599 Ch24.qxd 4/29/04 11:40 AM Page 853

Even if constructing the DirectoryEntry object is successful, this doesn’t mean that the binding was
a success. Binding will happen the first time a property is read to avoid unnecessary network traffic.
At the first access of the object, it can be seen if the object exists and if the specified user credentials are
correct.

Getting Directory Entries
Now that we know how to specify the binding attributes to an object in Active Directory, let’s read the
attributes of an object. In the following example, we read the properties of user objects.

The DirectoryEntry class has some properties to get information about the object: the Name, Guid, and
SchemaClassName properties. The first time a property of the DirectoryEntry object is accessed, the
binding occurs and the cache of the underlying ADSI object is filled. (We discuss this in more detail
shortly.) Additional properties are read from the cache, and communication with the server isn’t neces-
sary for data from the same object.

In the following example the user object with the common name Christian Nagel in the organiza-
tional unit Wrox Press is accessed:

using (DirectoryEntry de = new DirectoryEntry())
{

de.Path = “LDAP://platinum/CN=Christian Nagel, “ +
“OU=Wrox Press, DC=athenaproject, DC=local”;

Console.WriteLine(“Name: “ + de.Name);
Console.WriteLine(“GUID: “ + de.Guid);
Console.WriteLine(“Type: “ + de.SchemaClassName);
Console.WriteLine();

//...
}

An Active Directory object holds much more information, with the information available depending on
the type of the object; the Properties property returns a PropertyCollection. Each property is itself
a collection, because a single property can have multiple values, for example, the user object can have
multiple phone numbers. In this example, we go through the values with an inner foreach loop. The
collection that is returned from properties[name] is an object array. The attribute values can be
strings, numbers, or other types. Here just the ToString() method is used to display the values.

Console.WriteLine(“Properties: “);
PropertyCollection properties = de.Properties;
foreach (string name in properties.PropertyNames)
{

foreach (object o in properties[name])
{

Console.WriteLine(name + “: “ + o.ToString());
}

}

In the resulting output you can see all attributes of the user object Christian Nagel (see Figure 24-10).
otherTelephone is a multivalue property that has many phone numbers. Some of the property values

854

Chapter 24

29 557599 Ch24.qxd 4/29/04 11:40 AM Page 854

just display the type of the object, System.__ComObject; for example lastLogoff, lastLogon, and
nTSecurityDescriptor. To get the values of these attributes you have to use the ADSI COM interfaces
directly from the classes in the System.DirectoryServices namespace.

Chapter 28 explains how to work with COM objects and interfaces.

Figure 24-10

Access a property directly by name
With DirectoryEntry.Properties you can access all properties. If a property name is known you can
access the values directly:

foreach (string homePage in de.Properties[“wWWHomePage”])
Console.WriteLine(“Home page: “ + homePage);

Object Collections
Objects are stored hierarchically in the Active Directory. Container objects contain children. You can enu-
merate these child objects with the Children property of the class DirectoryEntry. In the other direc-
tion, you can get the container of an object with the Parent property.

A user object doesn’t have children, so we use an organizational unit in the following example (see
Figure 24-11). Non-container objects return an empty collection with the Children property. Let’s get all
user objects from the organizational unit Wrox Press in the domain athenaproject.local. The
Children property returns a DirectoryEntries collection that collects DirectoryEntry objects. We
iterate through all DirectoryEntry objects to display the name of the child objects:

using (DirectoryEntry de = new DirectoryEntry())
{

de.Path = “LDAP://platinum/OU=Wrox Press, “ +
“DC=athenaproject, DC=local”;

Console.WriteLine(“Children of “ + de.Name);

855

Working with Active Directory

29 557599 Ch24.qxd 4/29/04 11:40 AM Page 855

foreach (DirectoryEntry obj in de.Children)
{

Console.WriteLine(obj.Name);
}

}

Figure 24-11

In this example you’ve seen all the objects in the organizational unit: users, contacts, printers,
shares, and others. If you want to see only some object types you can use the SchemaFilter property
of the DirectoryEntries class. The SchemaFilter property returns a SchemaNameCollection. With
this SchemaNameCollection you can use the Add() method to define the object types you want to see.
Here we are just interested in seeing the user objects, so user is added to this collection:

using (DirectoryEntry de = new DirectoryEntry())
{

de.Path = “LDAP://platinum/OU=Wrox Press, “ +
“DC=athenaproject, DC=local”;

Console.WriteLine(“Children of “ + de.Name);
de.Children.SchemaFilter.Add(“user”);
foreach (DirectoryEntry obj in de.Children)
{

Console.WriteLine(obj.Name);
}

}

As a result you only see the user objects in the organizational unit in Figure 24-12.

Figure 24-12

856

Chapter 24

29 557599 Ch24.qxd 4/29/04 11:40 AM Page 856

Cache
To reduce the network transfers, ADSI uses a cache for the object properties. As we mentioned earlier,
the server isn’t accessed when a DirectoryEntry object is created; instead with the first read of a value
from the directory store all the properties are written into the cache, so that a round trip to the server
isn’t necessary when the next property is accessed.

Writing any changes to objects only changes the cached object; setting properties doesn’t generate net-
work traffic. You must use DirectoryEntry.CommitChanges() to flush the cache and to transfer any
changed data to the server. To get the newly written data from the directory store, you can use
DirectoryEntry.RefreshCache() to read the properties. Of course, if you change some properties
without calling CommitChanges() and do a RefreshCache(), all your changes will be lost, because we
read the values from the directory service again using RefreshCache().

It is possible to turn off this property cache by setting the DirectoryEntry.UsePropertyCache prop-
erty to false. However, unless you are debugging your code, it’s better not to turn off the cache because
of the extra round trips to the server that will be generated.

Creating New Objects
When you want to create new Active Directory objects—such as users, computers, printers, contacts, and
so on—you can do this programmatically with the DirectoryEntries class.

To add new objects to the directory you first have to bind to a container object, such as an organizational
unit, where new objects can be inserted—you cannot use objects that cannot contain other objects. The fol-
lowing example uses the container object with the distinguished name CN=Users, DC=athenaproject,
DC=local:

DirectoryEntry de = new DirectoryEntry();
de.Path = “LDAP://platinum/CN=Users, DC=athenaproject, DC=local”;

You can get to the DirectoryEntries object with the Children property of a DirectoryEntry:

DirectoryEntries users = de.Children;

The class DirectoryEntries offers methods to add, remove, and find objects in the collection. Here a
new user object is created. With the Add() method, the name of the object and a type name are
required. You can get to the type names directly using ADSI Edit.

DirectoryEntry user = users.Add(“CN=John Doe”, “user”);

The object now has the default property values. To assign specific property values you can add proper-
ties with the Add() method of the Properties property. Of course, all of the properties must exist in
the schema for the user object. If a specified property doesn’t exist you’ll get a COMException, “The
specified directory service attribute or value doesn’t exist”:

user.Properties[“company”].Add(“Some Company”);
user.Properties[“department”].Add(“Sales”);
user.Properties[“employeeID”].Add(“4711”);
user.Properties[“samAccountName”].Add(“JDoe”);

857

Working with Active Directory

29 557599 Ch24.qxd 4/29/04 11:40 AM Page 857

user.Properties[“userPrincipalName”].Add(“JDoe@athenaproject.local”);
user.Properties[“givenName”].Add(“John”);
user.Properties[“sn”].Add(“Doe”);
user.Properties[“userPassword”].Add(“someSecret”);

Finally, to write the data to Active Directory, you have to flush the cache:

user.CommitChanges();

Updating Directory Entries
Objects in the Active Directory service can be updated as easily as they can be read. After reading the
object, you can change the values. To remove all values of a single property, you can call the method
PropertyValueCollection.Clear(). You can add new values to a property with Add(). Remove()
and RemoveAt() remove specific values from a property collection.

You can change a value simply by setting it to the specified value. The following example uses an
indexer for PropertyValueCollection to set the mobile phone number to a new value. With the
indexer a value can only be changed if it exists. Therefore, you should always check with
DirectoryEntry.Properties.Contains() if the attribute is available:

using (DirectoryEntry de = new DirectoryEntry())
{

de.Path = “LDAP://platinum/CN=Christian Nagel, “ +
“OU=Wrox Press, DC=athenaproject, DC=local”;

if (de.Properties.Contains(“mobile”))
{

de.Properties[“mobile”][0] = “+43(664)3434343434”;
}
else
{

de.Properties[“mobile”].Add(“+43(664)3434343434”);
}

de.CommitChanges();
}

The else part in this example uses the method PropertyValueCollection.Add() to add a new prop-
erty for the mobile phone number, if it doesn’t exist already. If you used the Add() method with already
existing properties, the resulting effect would depend on the type of the property (single-value or multi-
value property). Using the Add() method with a single-value property that already exists, you get a
COMException: “A constraint violation occurred.” Using Add() with a multivalue property, however,
succeeds, and an additional value is added to the property.

The property mobile for a user object is defined as a single-value property, so additional mobile phone
numbers cannot be added. However a user can have more than one mobile phone number. For multiple
mobile phone numbers the property otherMobile is available. otherMobile is a multivalue property

858

Chapter 24

29 557599 Ch24.qxd 4/29/04 11:40 AM Page 858

that allows setting multiple phone numbers, and so calling Add() multiple times. Note that multivalue
properties are checked for uniqueness. In case the second phone number is added to the same user
object again, we get a COMException: “The specified directory service attribute or value already exists.”

Accessing Native ADSI Objects
Often it is a lot easier to call methods of predefined ADSI interfaces instead of searching for the names of
object properties. Some ADSI objects also support methods that cannot be used directly from the
DirectoryEntry class. One example of a practical use is the IADsServiceOperations interface that has
methods to start and stop Windows services. (For more details on Windows Services see Chapter 32.)

The classes of the System.DirectoryServices namespace use the underlying ADSI COM objects as
mentioned earlier. The DirectoryEntry class supports calling methods of the underlying objects
directly by using the Invoke() method.

The first parameter of Invoke() requires the method name that should be called in the ADSI object; the
params keyword of the second parameter allows a flexible number of additional arguments that can be
passed to the ADSI method:

public object Invoke(string methodName, params object[] args);

You can find the methods that can be called with the Invoke() method in the ADSI documentation.
Every object in the domain supports the methods of the IADs interface. The user object that we created
previously also supports the methods of the IADsUser interface.

In the following example, the method IADsUser.SetPassword()changes the password of the previ-
ously created user object:

using (DirectoryEntry de = new DirectoryEntry())
{

de.Path = “LDAP://platinum/CN=John Doe, “ +
“CN=Users, DC=athenaproject, DC=local”;

de.Invoke(“SetPassword”, “anotherSecret”);
de.CommitChanges();

}

Instead of using Invoke() it is also possible to use the underlying ADSI object directly. To use these
objects choose Project➪Add Reference to add a reference to the Active DS Type Library (see Figure
24-13). This creates a wrapper class where we can access these objects in the namespace ActiveDs.

Remember to call DirectoryEntry.CommitChanges() after creating or updating
new directory objects. Otherwise only the cache gets updated, and the changes are
not sent to the directory service.

859

Working with Active Directory

29 557599 Ch24.qxd 4/29/04 11:40 AM Page 859

Figure 24-13

The native object can be accessed with the NativeObject property of the DirectoryEntry class. In the
following example, the object de is a user object, so it can be cast to ActiveDs.IADsUser.
SetPassword() is a method that is documented in the IADsUser interface, so you can call it directly
instead of using the Invoke() method. By setting the AccountDisabled property of IADsUser to
false, you can enable the account. As in the previous examples the changes are written to the directory
service by calling CommitChanges() with the DirectoryEntry object:

ActiveDs.IADsUser user = (ActiveDs.IADsUser)de.NativeObject;
user.SetPassword(“someSecret”);
user.AccountDisabled = false;
de.CommitChanges();

Searching in Active Directory
Since Active Directory is a data store that is optimized for read-mostly access, you will generally be
searching it for values. To search in Active Directory, .NET Framework provides the
DirectorySearcher class.

You can only use DirectorySearcher with the LDAP provider; it doesn’t work with the other
providers such as NDS or IIS.

In the constructor of the DirectorySearcher class you can define four important parts for the search.
You can also use a default constructor and define the search options with properties.

860

Chapter 24

29 557599 Ch24.qxd 4/29/04 11:40 AM Page 860

SearchRoot
The search root specifies where the search should start. The default of SearchRoot is the root of the
domain you’re currently using. SearchRoot is specified with the Path of a DirectoryEntry object.

Filter
The filter defines the values where you want to get hits. The filter is a string that must be enclosed in
parentheses.

Relational operators such as <=, =, and >= are allowed in expressions. (objectClass=contact)
searches all objects of type contact; (lastName>=Nagel) searches all objects alphabetically where the
lastName property is equal to or larger than Nagel.

Expressions can be combined with the & and | prefix operators. For example, (&(objectClass=user)
(description=Auth*)) searches all objects of type user where the property description starts with the
string Auth. Because the & and | operators are at the beginning of the expressions, it’s possible to com-
bine more than two expressions with a single prefix operator.

The default filter is (objectClass=*) so all objects are valid.

The filter syntax is defined in RFC 2254, “The String Representation of LDAP Search Filters.” This
RFC can be found at www.ietf.org/rfc/rfc2254.txt.

PropertiesToLoad
With PropertiesToLoad you can define a StringCollection of all the properties that you are inter-
ested in. Objects can have a lot of properties, most of which will not be important for our search request.
We define the properties that should be loaded into the cache. The default properties that are returned if
nothing is specified are the path and the name of the object.

SearchScope
SearchScope is an enumeration that defines how deep the search should extend:

❑ SearchScope.Base only searches the attributes in the object where the search started, so at
most one object is found.

❑ With SearchScope.OneLevel the search continues in the child collection of the base object.
The base object itself is not searched for a hit.

❑ SearchScope.Subtree defines that the search should go down the complete tree.

The default value of the SearchScope property is SearchScope.Subtree.

Search Limits
A search for specific objects in a directory service can span multiple domains. To limit the search to the
number of objects or the time taken we have some additional properties to define, as shown in the fol-
lowing table.

861

Working with Active Directory

29 557599 Ch24.qxd 4/29/04 11:40 AM Page 861

Property Description

ClientTimeout The maximum time the client waits for the server to return a result.
If the server does not respond, no records are returned.

PageSize With a paged search the server returns a number of objects defined
with the PageSize instead of the complete result. This reduces the
time for the client to get a first answer and the memory needed. The
server sends a cookie to the client, which is sent back to the server
with the next search request, so that the search can continue at the
point where it finished.

ServerPageTimeLimit For paged searches this value defines the time a search should con-
tinue to return a number of objects that’s defined with the Page-
Size value. If the time is reached before the PageSize value, the
objects that were found up to that point are returned to the client.
The default value is –1, which means infinite.

ServerTimeLimit Defines the maximum time the server will search for objects. When
this time is reached all objects that are found up to this point are
returned to the client. The default is 120 seconds, and you cannot
set the search to a higher value.

ReferalChasing A search can cross multiple domains. If the root that’s specified
with SearchRoot is a parent domain or no root was specified, the
search can continue to child domains. With this property we can
specify if the search should continue on different servers.

ReferalChasingOption.None means that the search does not
continue on other servers.

The value ReferalChasingOption.Subordinate specifies that
the search should go on to child domains. When the search starts at
DC=Wrox, DC=COM the server can return a result set and the referral
to DC=France, DC=Wrox, DC=COM. The client can continue the
search in the subdomain.

ReferalChasingOption.External means that the server can
refer the client to an independent server that is not in the subdo-
main. This is the default option.

With ReferalChasingOption.All both external and subordinate
referrals are returned.

In our search example all user objects with a property description value of Author are searched in
the organizational unit Wrox Press.

First, bind to the organizational unit Wrox Press. This is where the search should start. Create a
DirectorySearcher object where the SearchRoot is set. The filter is defined as (&(objectClass=
user)(description=Auth*)), so that the search spans all objects of type user with a description of
Auth following by something else. The scope of the search should be a subtree, so that child organiza-
tional units within Wrox Press are searched, too:

862

Chapter 24

29 557599 Ch24.qxd 4/29/04 11:40 AM Page 862

using (DirectoryEntry de =
new DirectoryEntry(“LDAP://OU=Wrox Press, DC=athenaproject, DC=local”))

using (DirectorySearcher searcher = new DirectorySearcher())
{

searcher.SearchRoot = de;
searcher.Filter = “(&(objectClass=user)(description=Auth*))”;
searcher.SearchScope = SearchScope.Subtree;

The properties that should be in the result of the search are name, description, givenName, and
wWWHomePage:

searcher.PropertiesToLoad.Add(“name”);
searcher.PropertiesToLoad.Add(“description”);
searcher.PropertiesToLoad.Add(“givenName”);
searcher.PropertiesToLoad.Add(“wWWHomePage”);

You are ready to do the search. However, the result should also be sorted. DirectorySearcher has a
property Sort, where we can set a SortOption. The first argument in the constructor of the
SortOption class defines the property that will be used for a sort; the second argument defines the
direction of the sort. The SortDirection enumeration has values Ascending and Descending.

To start the search you can use the method FindOne() to find the first object, or FindAll(). FindOne()
returns a simple SearchResult, whereas FindAll() returns a SearchResultCollection. Here all
authors should be returned, so FindAll() is used here:

searcher.Sort = new SortOption(“givenName”, SortDirection.Ascending);

SearchResultCollection results = searcher.FindAll();

With a foreach loop every SearchResult in the SearchResultCollection is accessed. A
SearchResult represents a single object in the search cache. The Properties property returns a
ResultPropertyCollection, where we access all properties and values with the property name and
the indexer:

SearchResultCollection results = searcher.FindAll();

foreach (SearchResult result in results)
{

ResultPropertyCollection props = result.Properties;
foreach (string propName in props.PropertyNames)
{

Console.Write(propName + “: “);
Console.WriteLine(props[propName][0]);

}
Console.WriteLine();

}
}

If you would like to get to the complete object after a search that’s also possible: SearchResult has a
method GetDirectoryEntry() that returns the corresponding DirectoryEntry of the found object.

The resulting output shows the beginning of the list of all authors of Professional C# with the properties
that have been chosen (see Figure 24-14).

863

Working with Active Directory

29 557599 Ch24.qxd 4/29/04 11:40 AM Page 863

Figure 24-14

Searching for User Objects
In the final section of this chapter we will build a Windows Forms application called UserSearch. This
application is flexible in so far as a specific domain controller, username, and password to access the
Active Directory can be entered; otherwise the user of the running process is used. In this application we
access the schema of the Active Directory service to get the properties of a user object. The user can
enter a filter string to search all user objects of a domain. It’s also possible to set the properties of the
user objects that should be displayed.

User Interface
The user interface shows numbered steps to indicate how to use the application (see Figure 24-15):

1. In the first step Username, Password, and the Domain Controller can be entered. All this
information is optional. If no domain controller is entered the connection works with serverless
binding. If the user name is missing the security context of the current user is taken.

2. A button allows all the property names of the user object to be loaded dynamically in the
listBoxProperties list box.

3. After the property names are loaded, the properties that should be displayed can be selected.
The SelectionMode of the list box is set to MultiSimple.

4. The filter to limit the search can be entered. The default value that’s set in this dialog box
searches for all user objects: (objectClass=user).

5. Now the search can start.

Get the Schema Naming Context
This application has only two handler methods: one method for the button to load the properties, and
one to start the search in the domain. First, we read the properties of the user class dynamically from
the schema to display it in the user interface.

864

Chapter 24

29 557599 Ch24.qxd 4/29/04 11:40 AM Page 864

Figure 24-15

In the handler buttonLoadProperties_Click() method, SetLogonInformation() reads the user
name, password, and host name from the dialog box and stores them in members of the class. Next the
method SetNamingContext() sets the LDAP name of the schema and the LDAP name of the default
context. This schema LDAP name is used in the call to set the properties in the list box:
SetUserProperties():

private void buttonLoadProperties_Click(object sender, System.EventArgs e)
{

try
{

SetLogonInformation();
SetNamingContext();

SetUserProperties(schemaNamingContext);
}
catch (Exception ex)
{

MessageBox.Show(“Check your inputs! “ + ex.Message);
}

}
protected void SetLogonInformation()
{

username = (textBoxUsername.Text == “” ? null : textBoxUsername.Text);
password = (textBoxPassword.Text == “” ? null : textBoxPassword.Text);
hostname = textBoxHostname.Text;
if (hostname != “”) hostname += “/”;

}

865

Working with Active Directory

29 557599 Ch24.qxd 4/29/04 11:40 AM Page 865

In the helper method SetNamingContext(), we are using the root of the directory tree to get the prop-
erties of the server. We are only interested in the value of two properties: schemaNamingContext and
defaultNamingContext:

protected void SetNamingContext()
{

using (DirectoryEntry de = new DirectoryEntry())
{

string path = “LDAP://” + hostname + “rootDSE”;
de.Username = username;
de.Password = password;
de.Path = path;
schemaNamingContext = de.Properties[“schemaNamingContext”][0].ToString();
defaultNamingContext =

de.Properties[“defaultNamingContext”][0].ToString();
}

}

Get the Property Names of the User Class
We have the LDAP name to access the schema. We can use this to access the directory and read the prop-
erties. We are not only interested in the properties of the user class, but also of the base classes of user:
Organizational-Person, Person, and Top. In this program, the names of the base classes are hard-
coded. We could also read the base class dynamically with the subClassOf attribute.
GetSchemaProperties() returns a string array with all property names of the specific object type. All
the property names are collected in the StringCollection properties:

protected void SetUserProperties(string schemaNamingContext)
{

StringCollection properties = new StringCollection();
string[] data = GetSchemaProperties(schemaNamingContext, “User”);
properties.AddRange(GetSchemaProperties(schemaNamingContext,

“Organizational-Person”));
properties.AddRange(GetSchemaProperties(schemaNamingContext, “Person”));
properties.AddRange(GetSchemaProperties(schemaNamingContext, “Top”));
listBoxProperties.Items.Clear();
foreach (string s in properties)
{

listBoxProperties.Items.Add(s);
}

}

In GetSchemaProperties() we are accessing the Active Directory service again. This time rootDSE is
not used, rather the LDAP name to the schema that we discovered earlier. The property
systemMayContain holds a collection of all attributes that are allowed in the class objectType:

protected string[] GetSchemaProperties(string schemaNamingContext,
string objectType)

{
string[] data;
using (DirectoryEntry de = new DirectoryEntry())
{

de.Username = username;
de.Password = password;

866

Chapter 24

29 557599 Ch24.qxd 4/29/04 11:40 AM Page 866

de.Path = “LDAP://” + hostname + “CN=” + objectType + “,” +
schemaNamingContext;

DS.PropertyCollection properties = de.Properties;
DS.PropertyValueCollection values = properties[“systemMayContain”];

data = new String[values.Count];
values.CopyTo(data, 0);

}
return data;

}

Note the presence of DS.PropertyCollection in the above code; this is because in a Windows Forms
application, the PropertyCollection class of the System.DirectoryServices namespace has a
naming conflict with System.Data.PropertyCollection, and to avoid long names like System
.DirectoryServices.PropertyCollection, the namespace name can be shortened as follows:

using DS = System.DirectoryServices;

Step 2 in the application is completed. The listbox control has all the property names of the user objects.

Search for User Objects
The handler for the search button calls only the helper method FillResult():

private void buttonSearch_Click(object sender, System.EventArgs e)
{

try
{

FillResult();
}
catch (Exception ex)
{

MessageBox.Show(“Check your input: “ + ex.Message);
}

}

In FillResult() we are doing a normal search in the complete Active Directory Domain as we’ve seen
earlier. SearchScope is set to Subtree, the Filter to the string we get from a TextBox object, and the
properties that should be loaded into the cache are set by the values the user selected in the list box. The
method GetProperties() that is used to pass an array of properties to the method searcher.
PropertiesToLoad.AddRange() is a helper method that reads the selected properties from the list box
into an array. After setting the properties of the DirectorySearcher object, the properties are searched by
calling the SearchAll() method. The result of the search inside the SearchResultCollection is used
to generate summary information that is written to the text box textBoxResults.

protected void FillResult()
{

using (DirectoryEntry root = new DirectoryEntry())
{

root.Username = username;

867

Working with Active Directory

29 557599 Ch24.qxd 4/29/04 11:40 AM Page 867

root.Password = password;
root.Path = “LDAP://” + hostname + defaultNamingContext;

using (DirectorySearcher searcher = new DirectorySearcher())
{

searcher.SearchRoot = root;
searcher.SearchScope = SearchScope.Subtree;
searcher.Filter = textBoxFilter.Text;
searcher.PropertiesToLoad.AddRange(GetProperties());

SearchResultCollection results = searcher.FindAll();
StringBuilder summary = new StringBuilder();
foreach (SearchResult result in results)
{

foreach (string propName in
result.Properties.PropertyNames)
{

foreach (string s in result.Properties[propName])
{

summary.Append(“ “ + propName + “: “ + s + “\r\n”);
}

}
summary.Append(“\r\n”);

}
textBoxResults.Text = summary.ToString();

}
}

}

Starting the application we get a list of all objects where the filter is valid (see Figure 24-16).

Figure 24-16

868

Chapter 24

29 557599 Ch24.qxd 4/29/04 11:40 AM Page 868

Summary
In this chapter we’ve seen the architecture of Active Directory: the important concepts of domains, trees,
and forests. We can access information in the complete enterprise. When writing applications that access
Active Directory services, we have to be aware that the data we read might not be up-to-date because of
the replication latency.

The classes in the System.DirectoryServices namespaces give us easy ways to access Active
Directory services by wrapping to the ADSI providers. The DirectoryEntry class makes it possible to
read and write objects directly in the data store.

With the DirectorySearcher class we can do complex searches and define filters, timeouts, properties
to load, and a scope. Using the global catalog we can speed up the search for objects in the complete
enterprise, because it stores a read-only version of all objects in the forest.

869

Working with Active Directory

29 557599 Ch24.qxd 4/29/04 11:40 AM Page 869

29 557599 Ch24.qxd 4/29/04 11:40 AM Page 870

Part V: Web Programming

Chapter 25: ASP.NET Pages

Chapter 26: Web Services

Chapter 27: User Controls and Custom Controls

30 557559 PP05.qxd 4/29/04 11:40 AM Page 871

30 557559 PP05.qxd 4/29/04 11:40 AM Page 872

ASP.NET Pages

If you are new to the world of C# and .NET you might wonder why a chapter on ASP.NET has
been included in this book. It’s a whole new language, right? Well, not really. In fact, as you will
see, you can use C# to create ASP.NET pages.

ASP.NET is part of .NET Framework and is a technology that allows for the dynamic creation of
documents on a Web server when they are requested via HTTP. This mostly means HTML docu-
ments, although it is equally possible to create WML documents for consumption on WAP
browsers, or anything else that supports the MIME type.

In some ways ASP.NET is similar to many other technologies—such as PHP, ASP, or ColdFusion.
There is, however, one key difference: ASP.NET, as its name suggests, has been designed to be
fully integrated with the .NET Framework, part of which includes support for C#.

Perhaps you are familiar with Active Server Pages (ASP) technology, which enables you to create
dynamic content. If this is the case then you will probably know that programming in this technol-
ogy used scripting languages such as VBScript or JScript. The result was not always perfect, at
least not for those of us who are used to “proper,” compiled programming languages, and it cer-
tainly resulted in a loss of performance.

One major difference, related to the use of more advanced programming languages, is the provi-
sion of a complete server-side object model for use at runtime. ASP.NET provides access to all of
the controls on a page as objects, in a rich environment. On the server side we also have access to
other .NET classes, allowing for the integration of many useful services. Controls used on a page
expose a lot of functionality; in fact we can do almost as much as with Windows Forms classes,
which provides plenty of flexibility. For this reason, ASP.NET pages that generate HTML content
are often called Web Forms.

In this chapter we will take a more detailed look at ASP.NET, including how it works, what we can
do with it, and how C# fits in.

31 557599 Ch25.qxd 4/29/04 11:39 AM Page 873

ASP.NET Introduction
ASP.NET works with Internet Information Server (IIS) to deliver content in response to HTTP requests.
ASP.NET pages are found in .aspx files; Figure 25-1 illustrates the technology’s basic architecture.

Figure 25-1

During ASP.NET processing we have access to all .NET classes, custom components created in C# or
other languages, databases, and so on. In fact, we have as much power as we would have running a C#
application; using C# in ASP.NET is in effect running a C# application.

An ASP.NET file can contain any of the following:

❑ Processing instructions for the server

❑ Code in C#, Visual Basic .NET, JScript .NET, or any other language that the .NET Framework
supports

❑ Content in whatever form is appropriate for the generated resource, such as HTML

❑ Client-side script code

❑ Embedded ASP.NET server controls

HTTP Request for .ASPX
Resource

ASP.NET Generated
Resource in HTTP

IIS 5 Web Server

Result of .ASPX
Processing

OS .NET Framework

ASP.NET page in .ASPX
Resource

.ASPX resource
passed to ASP.NET

engine for processing
Backend Database

Other Resources

874

Chapter 25

31 557599 Ch25.qxd 4/29/04 11:39 AM Page 874

So, in fact we could have an ASP.NET file as simple as this:

Hello!

This would simply result in an HTML page being returned (as HTML is the default output of ASP.NET
pages) containing just this text.

As we will see later in this chapter, it is also possible to split certain portions of the code into other files,
which can provide a more logical structure.

State Management in ASP.NET
One of the key properties of ASP.NET pages is that they are effectively stateless. By default, no informa-
tion is stored on the server between user requests (although there are methods for doing this as we’ll see
later in this chapter). At first glance this seems a little strange, because state management is something
that seems essential for user-friendly interactive sessions. However, ASP.NET provides a work-around to
this problem, such that session management becomes almost transparent.

In short, information such as the state of controls on a Web Form (including data entered in text boxes or
selections from drop-down lists) is stored in a hidden viewstate field that is part of the page generated by
the server and passed to the user. Subsequent actions, such as triggering events that require server-side
processing like submitting form data, result in this information being sent back to the server, known as
postback. On the server this information is used to repopulate the page object model allowing us to oper-
ate on it as if the changes had been made locally.

We’ll see this in action shortly and point out the details.

ASP.NET Web Forms
As mentioned earlier, much of the functionality in ASP.NET is achieved using Web Forms. Before long
we’ll dive in and create a simple Web Form to give us a starting point to explore this technology. First,
however, we’d like to review some key points pertinent to Web Form design. It should be noted that
many ASP.NET developers simply use a text editor such as Notepad to create files. This enables us to
combine all code in one file. We achieve this by enclosing code in <script> elements, using two
attributes on the opening <script> tag:

<script language=”c#” runat=”server”>
// Server-side code goes here.

</script>

The runat=”server” attribute here is crucial, because it instructs the ASP.NET engine to execute this
code on the server rather than sending it to the client, thus giving us access to the rich environment
hinted at earlier. We can place our functions, event handlers, and so on, in server-side script blocks.

If we omit the runat=”server” attribute, we are effectively providing client-side code, which will fail if
it uses any of the server-side style coding we discuss in this chapter. However, there might be times
when we want to provide client-side code (indeed, ASP.NET generates some itself sometimes, depend-
ing on browser capabilities and what Web Form code is used). Unfortunately we can’t use C# here; to do

875

ASP.NET Pages

31 557599 Ch25.qxd 4/29/04 11:39 AM Page 875

so would require the .NET Framework to be installed on the client, which might not always be the case.
JScript is probably the next best option, because it is supported on the widest variety of client browsers.
To change the language we simply change the value of the language attribute as follows:

<script language=”jscript”>
// Client-side code goes here; we can also use “vbscript”.

</script>

It is equally possible to create ASP.NET files in Visual Studio .NET, which is great for us as we are
already familiar with this environment for C# programming. However, the default project setup for Web
applications in this environment has a slightly more complex structure than a single .aspx file. This isn’t
a problem for us though, and does make things a bit more logical (read: more programmer-like and less
Web developer-like). For this reason, we’ll use Visual Studio .NET throughout this chapter for our
ASP.NET programming (instead of Notepad).

The .aspx files can also include code in blocks enclosed by <% and %> tags. However, function definitions
and variable declarations can not go here. Instead we can insert code that is executed as soon as the
block is reached, which is useful when outputting simple HTML content. This behavior is similar to that
of old-style ASP pages, with one important difference: the code is compiled, not interpreted. This results
in far better performance.

Now it’s time for an example. Create a new project of type ASP.NET Web Application called
PCSWebApp1 as shown in Figure 25-2.

Figure 25-2

By default, Visual Studio .NET uses FrontPage extensions to set up a Web application at the required
location, which may be remote if your Web server is on a different machine. However, it also provides an
alternative (and slightly faster) method for doing this, using the file system over a LAN (which is of
course impossible if your remote Web server isn’t on the same LAN as your development server). If the
first method fails then Visual Studio .NET will try the second.

Regardless of which method is used, Visual Studio .NET keeps a local cache of all project files, and keeps
these in sync with the files on the Web server.

876

Chapter 25

31 557599 Ch25.qxd 4/29/04 11:39 AM Page 876

After a few moments Visual Studio .NET should have set up the following:

❑ PCSWebApp1, a new solution containing the C# Web Application PCSWebApp1

❑ AssemblyInfo.cs, the standard Visual Studio .NET file describing the assembly

❑ Global.asax, the application global information and events file (see later in this chapter)

❑ Web.config, the configuration information file for the application (see later in this chapter)

❑ WebForm1.aspx, the first ASP.NET page in the Web application

We’ll cover all of the generated files over the course of this and the next two chapters; for now concen-
trate on the meat of the application, which is the .aspx file that Visual Studio .NET has generated for us.

We can view .aspx files in design or code view (as well as the HTML view in the designer). This is the
same as for Windows Forms (as discussed in Part III). The initial view in Visual Studio .NET is the
design view, shown in Figure 25-3.

Figure 25-3

The text shown in this view by default isn’t text that we’ll see in our application, it’s just a note from
Visual Studio .NET to say what layout mode is in use. Here we are using the GridLayout mode, which
allows extra flexibility in control positioning, but we can change this to FlowLayout if we require a more
traditional HTML-type positioning scheme.

877

ASP.NET Pages

31 557599 Ch25.qxd 4/29/04 11:39 AM Page 877

If we select the HTML view from the buttons below the layout display we’ll see the code generated
inside the .aspx file:

<%@ Page language=”c#”
Codebehind=”WebForm1.aspx.cs”
AutoEventWireup=”false”
Inherits=”PCSWebApp1.WebForm1” %>

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0 Transitional//EN” >

<html>
<head>

<title>WebForm1</title>
<meta name=”GENERATOR” Content=”Microsoft Visual Studio .NET 7.1”>
<meta name=”CODE_LANGUAGE” Content=”C#”>
<meta name=vs_defaultClientScript content=”JavaScript”>
<meta name=vs_targetSchema

content=”http://schemas.microsoft.com/intellisense/ie5”>
</head>
<body MS_POSITIONING=”GridLayout”>

<form id=”Form1” method=”post” runat=”server”>

</form>

</body>
</html>

The <html> element here has been populated with a little metadata that doesn’t really concern us, and a
<form> element to contain ASP.NET code. The most important element here is the runat attribute. Just
as with the server-side code blocks we saw at the start of this section this is set to server, meaning that
the processing of the form will take place on the server. If we don’t include this reference, then no server-
side processing will be performed and the form won’t do anything. There can only be one server-side
<form> element in an ASP.NET page.

The other interesting thing about this code is the <%@ Page %> tag at the top. This tag defines page char-
acteristics that are important to us as C# Web application developers. There is a language attribute that
specifies that we will use C# throughout our page, as we saw earlier with <script> blocks (the default
for Web applications is Visual Basic .NET, although this can be changed using the Web.config file). The
next three attributes are necessary, because the code driving the page has been set up by Visual Studio
.NET to reside in a separate file, WebForm1.aspx.cs. This file, which we’ll look at shortly, contains a class
definition that is used as the base class for the Web Forms page. Now we start to see how ASP.NET ties
in with a rich object model! This base class is used in conjunction with code in this file to generate the
HTML output that reaches the user.

Note that not all .aspx files require this multi-layer model; you can use the base .NET Web Form class
as the base class for the page, which is the default. In this case the .aspx file would include all of our C#
code in <script> blocks as mentioned earlier.

Since we are providing a customized base class for the page we might also have customized events. To
ensure that the ASP.NET engine is aware of this we use the AutoEventWireup attribute, which signifies
whether the Page_Load() event handler (called on loading the page) is automatically wired up to the

878

Chapter 25

31 557599 Ch25.qxd 4/29/04 11:39 AM Page 878

OnPageLoad event. By setting this attribute to false we must provide our own code to do this if
required, but this gives us a bit more freedom in what we do.

Next we’ll look at the “code-behind” code generated for this file. To do this, right-click the WebForm1
.aspx file in the Solution Explorer and select View Code. This loads the code in WebForm1.aspx.cs into
the text editor. First, we see the default set of namespace references required for basic usage:

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Web;
using System.Web.SessionState;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;

Below these references we see a namespace declaration for our Web application, followed by the defini-
tion of WebForm1, the base class used for the .aspx page. This class inherits from System.Web.UI.Page,
the base class for Web Forms:

namespace PCSWebApp1
{

/// <summary>
/// Summary description for WebForm1.
/// </summary>
public class WebForm1 : System.Web.UI.Page
{

The rest of the code in this form performs various initialization tasks and includes the code required to
design Web Forms in Visual Studio .NET. No constructor is included (the .NET default one is used), but
there is an event handler called Page_Load() that we can use to add any code that is required when the
page is loaded:

private void Page_Load(object sender, System.EventArgs e)
{

// Put user code to initialize the page here
}

The rest of the code is enclosed in a #region block, so to view it we need to expand it:

#region Web Form Designer generated code
override protected void OnInit(EventArgs e)
{

//
// CODEGEN: This call is required by the ASP.NET Web Form Designer.
//
InitializeComponent();
base.OnInit(e);

}

/// <summary>
/// Required method for Designer support - do not modify

879

ASP.NET Pages

31 557599 Ch25.qxd 4/29/04 11:39 AM Page 879

/// the contents of this method with the code editor.
/// </summary>
private void InitializeComponent()
{

this.Load += new System.EventHandler(this.Page_Load);
}
#endregion

Here the OnInit() event handler inherited from System.Web.UI.Control is overridden. This event
handler is executed when the page initializes, and results in InitializeComponent() being called
before the base implementation of OnInit() is processed. InitializeComponent() simply wires up
the Page_Load() event handler to the Load event of the page, necessary as AutoEventWireup was set
to false.

Strictly speaking, this is more code than is required for a simple ASP.NET Web Form page, which can be
as simple as we saw right at the start of the chapter (albeit as a trivial example). However, the structure
created does lend itself to reusability and expansion using C# techniques, without causing a noticeable
amount of overhead, so we’ll run with it.

ASP.NET Server Controls
Our generated code doesn’t do very much as yet, so next we need to add some content. We can do this
in Visual Studio .NET using the Web Form designer, which supports drag-and-drop in just the same way
as the Windows Forms designer.

There are four types of control that we can add to our ASP.NET pages:

❑ HTML server controls—These controls mimic HTML elements, which will be familiar to HTML
developers.

❑ Web server controls—This is a new set of controls, some of which have the same functionality
as HTML controls. These controls have a common naming scheme for properties and other ele-
ments to ease development, and provide consistency with analogous Windows Forms controls.
There are also some completely new and very powerful controls as we will see later.

❑ Validation controls—This is a set of controls capable of performing validation of user input in a
simple way.

❑ Custom and user controls—These controls are defined by the developer, which can be created
in a number of ways as discussed in Chapter 27.

The next section provides a complete list of Web server and validation controls, along with usage notes.
HTML controls will not be covered in this chapter. These controls don’t do anything more than the Web
server controls, and the Web server controls provide a richer environment for developers more familiar
with programming than HTML design. Learning how to use the Web server controls provides enough
knowledge to use HTML server controls. For more information, check out Professional ASP.NET 1.1
(ISBN 0-7645-5890-0, Wiley).

Let’s add a couple of Web server controls to our project. All Web server and validation controls are used
in the following XML element-type form:

<asp:X runat=”server” attribute=”value”>Contents</asp:X>

880

Chapter 25

31 557599 Ch25.qxd 4/29/04 11:39 AM Page 880

X is the name of the ASP.NET server control, attribute=”value” is one or more attribute specifications, and
Contents specifies the control content, if any. Some controls allow properties to be set using attributes
and control element content, such as Label (used for simple text display), where Text can be specified
in either way. Other controls might use an element containment scheme to define their hierarchy, for
example Table (which defines a table) that can contain TableRow elements in order to specify table
rows declaratively.

Because the syntax for controls is based on XML (although the controls may be used embedded in non-
XML code such as HTML), it is an error to omit the closing tags and /> for empty elements, or overlap
controls.

Finally, we once again see the runat=”server” attribute on the Web server controls. It is just as essen-
tial here as it is elsewhere, and it is a common mistake to miss this attribute, resulting in Web Forms that
don’t function.

We’ll keep things simple for this first example. Change the HTML design view for WebForm1.aspx as
follows:

<%@ Page language=”c#”
Codebehind=”WebForm1.aspx.cs”
AutoEventWireup=”false”
Inherits=”PCSWebApp1.WebForm1” %>

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0 Transitional//EN” >

<html>
<head>

<title>WebForm1</title>
<meta name=”GENERATOR” Content=”Microsoft Visual Studio .NET 7.1”>
<meta name=”CODE_LANGUAGE” Content=”C#”>
<meta name=vs_defaultClientScript content=”JavaScript”>
<meta name=vs_targetSchema

content=”http://schemas.microsoft.com/intellisense/ie5”>
</head>
<body MS_POSITIONING=”GridLayout”>

<form id=”Form1” method=”post” runat=”server”>
<asp:Label Runat=”server” ID=”resultLabel”/>

<asp:Button Runat=”server” ID=”triggerButton” Text=”Click Me”/>

</form>

</body>
</html>

Here we have added two Web Form controls, a label and a button.

Note that as you do this, Visual Studio .NET IntelliSense predicts your code entry just like in the C#
code editor.

Going back to the design screen we can see that our controls have been added, and named using their ID
attributes. As with Windows Forms we have full access to properties, events, and so on through the
Properties window, and get instant feedback in code or design whenever we make changes.

881

ASP.NET Pages

31 557599 Ch25.qxd 4/29/04 11:39 AM Page 881

Next, have another look at WebForm1.aspx.cs. The following two members have been added to our
WebForm1 class:

protected System.Web.UI.WebControls.Button triggerButton;
protected System.Web.UI.WebControls.Label resultLabel;

Any server controls we add will automatically become part of the object model for our form that we are
building in this code-behind file. This is an instant bonus for Windows Forms developers—the similari-
ties are beginning to emerge!

To make this application do something, let’s add an event handler for clicking the button. Here we can
either enter a method name in the Properties window for the button or just double-click the button to get
the default event handler. If we double-click the button we’ll automatically add an event-handling
method as follows:

private void triggerButton_Click(object sender,
System.EventArgs e)

{
}

This is hooked up to the button by some code added to InitializeComponent():

private void InitializeComponent()
{

this.triggerButton.Click +=
new System.EventHandler(this.triggerButton_Click);

this.Load += new System.EventHandler(this.Page_Load);
}

Modify the code in triggerButton_Click() as follows:

protected void triggerButton_Click(object sender,
System.EventArgs e)

{
resultLabel.Text = “Button clicked!”;

}

Now we’re ready to make it go. Build the application from Visual Studio .NET in the normal way and all
the files will be compiled and/or placed on the Web server ready for use. To test the Web application we
can either run the application (which will give us full use of the Visual Studio .NET debugging facilities),
or just point a browser at http://localhost/PCSWebApp1/WebForm1.aspx. Either way you should
see the Click Me button on a Web page. Before pressing the button, take a quick look at the code received
by the browser using View➪Source (in IE). The <form> section should look like this:

<form name=”Form1” method=”post” action=”WebForm1.aspx”
id=”Form1”>

<input type=”hidden” name=”__VIEWSTATE”
value=”dDwtOTk1MjE0NDA4Ozs+” />

<input type=”submit” name=”triggerButton” value=”Click Me”

id=”triggerButton” />
</form>

882

Chapter 25

31 557599 Ch25.qxd 4/29/04 11:39 AM Page 882

The Web server controls have generated straight HTML, and <input> for <asp:Label> and
<asp:Button>, respectively. There is also a <input type=”hidden”> field with the name __VIEWSTATE.
This encapsulates the state of the form as mentioned earlier. This information is used when the form is
posted back to the server to recreate the user interface, keeping track of changes and so on. Note that
the <form> element has been configured for this; it will post data back to WebForm1.aspx (specified in
action) via an HTTP POST operation (specified in method). It has also been assigned the name Form1.

After clicking the button and seeing the text appear, check out the source HTML again (we added spac-
ing for clarity):

<form name=”Form1” method=”post” action=”WebForm1.aspx”
id=”Form1”>

<input type=”hidden” name=”__VIEWSTATE”
value=”dDwtOTk1MjE0NDA4O3Q8O2w8aTwxPjs+O2w8dDw7bDxpPDE

+Oz47bDx0PHA8cDxsPFRleHQ7PjtsPEJ1dHRvbiBjbGlja2
VkITs+Pjs+Ozs+Oz4+Oz4+Oz4=” />

Button clicked!

<input type=”submit” name=”triggerButton” value=”Click Me”

id=”triggerButton” />
</form>

This time the value of the view state contains more information, because the HTML result relies on more
than the default output from the ASP.NET page. In complex forms this can be a very long string indeed,
but we shouldn’t complain, as so much is done for us behind the scenes. We can almost forget about
state management, keeping field values between posts, and so on.

The control palette
In this section we’ll take a quick look at the available controls before we put more of them together into a
full, and more interesting, application. We’ll divide this section into Web server controls and validation
controls. Note that we refer to properties in the control descriptions—in all cases the corresponding
attribute for use in ASP.NET code is identically named. We haven’t attempted to provide a complete ref-
erence here, so we’ve omitted many properties and included only the most frequently used ones.

Web server controls
Almost all the Web server controls inherit from System.Web.UI.WebControls.WebControl, which in
turn inherits from System.Web.UI.Control. Those that don’t use this inheritance instead derive either
directly from Control or from a more specialized base class that derives (eventually) from Control. As
such the Web server controls have many common properties and events that we can use if required.
There are quite a few of these, so we won’t attempt to cover them all, just as with the properties and
events of the Web server controls themselves.

Many of the frequently used inherited properties are those that deal with display style. This can be con-
trolled simply, using properties such as ForeColor, BackColor, Font, and so on, but can also be con-
trolled using cascading style sheet (CSS) classes. This is achieved by setting the string property
CssClass to the name of a CSS class in a separate file. Other notable properties include Width and
Height to size a control, AccessKey and TabIndex to ease user interaction, and Enabled to set whether
the control’s functionality is activated in the Web Form.

We are likely to use the inherited Load event most often, to perform initialization on a control, and
PreRender, to perform last-minute modifications before HTML is output by the control.

883

ASP.NET Pages

31 557599 Ch25.qxd 4/29/04 11:39 AM Page 883

There are plenty more events and properties for us to use, and we’ll see many of these in more detail in
Chapter 27. The following table describes the Web server controls in detail.

Control Description

PlaceHolder This control doesn’t render any output, but can be handy for grouping other
controls together, or for adding controls programmatically to a given loca-
tion. Contained controls can be accessed using the Controls property.

Label Simple text display; use the Text property to set and programmatically
modify displayed text.

Literal Performs the same function as Label, but has no styling properties, just a
Text one.

Xml A more complicated text display control, used for displaying XML content,
which may be transformed using an XSLT style sheet. The XML content is set
using one of the Document, DocumentContent, or DocumentSource prop-
erties (depending on the format of the original XML), and the XSLT style
sheet (optional) using either Transform or TransformSource.

TextBox Provides a text box that users can edit. Use the Text property to access the
entered data, and the TextChanged event to act on selection changes on
postback. If automatic postback is required (as opposed to using a button)
set the AutoPostBack property to true.

DropDownList Allows the user to select one of a list of choices, either by choosing it directly
from a list or typing the first letter or two. Use the Items property to set the
item list (this is a ListItemCollection class containing ListItem objects)
and the SelectedItem and SelectedIndex properties to determine what
is selected. The SelectedIndexChanged event can be used to determine
whether the selection has changed, and this control also has an AutoPost-
Back property so that this selection change will trigger a postback operation.

ListBox Allows the user to make one or more selections from a list. Set Selection-
Mode to Multiple or Single to specify how many items can be selected at
once, and Rows to determine how many items to display. Other properties
and events as for DropDownList.

Image Displays an image. Use ImageUrl for the image reference, and Alternate-
Text to provide text if the image fails to load.

AdRotator Displays several images in succession, with a different one displayed after
each server round trip. Use the AdvertisementFile property to specify the
XML file describing the possible images and the AdCreated event to per-
form processing before each image is sent back. You can also use the Target
property to name a window to open when an image is clicked.

CheckBox Displays a box that can be checked or unchecked. The state is stored in the
Boolean property Checked, and the text associated with the check box in
Text. The AutoPostBack property can be used to initiate automatic post-
back and the CheckedChanged event to act on changes.

884

Chapter 25

31 557599 Ch25.qxd 4/29/04 11:39 AM Page 884

Control Description

CheckBoxList Creates a group of check boxes. Properties and events are identical to other
list controls, such as DropDownList.

RadioButton Displays a button that can be turned on or off. Generally these are grouped
such that only one in the group is active at any time. Use the GroupName
property to link RadioButton controls into a group. Other properties and
events are as per CheckBox.

RadioButtonList Creates a group of radio buttons where only one button in the group can be
selected at a time. Properties and events are as per other list controls.

Calendar Allows the user to select a date from a graphical calendar display. This con-
trol has many style-related properties, but essential functionality can be
achieved using the SelectedDate and VisibleDate properties (of type
System.DateTime) to get access to the date selected by the user and the
month to display (which will always contain VisibleDate). The key event
to hook up to is SelectionChanged. Postback from this control is auto-
matic.

Button Adds a standard button for the user to click. Use the Text property for text
on the button, and the Click event to respond to clicks (server postback is
automatic). You can also use the Command event to respond to clicks, which
gives access to additional CommandName and CommandArgument properties
on receipt.

LinkButton Is identical to Button, but displays button as a hyperlink.

ImageButton Displays an image that doubles as a clickable button. Properties and events
are inherited from Button and Image.

HyperLink Adds an HTML hyperlink. Set the destination with NavigateUrl and the
text to display with Text. You can also use ImageUrl to specify an image for
the link and Target to specify the browser window to use. This control has
no non-standard events, so use a LinkButton instead if additional process-
ing is required when the link is followed.

Table Specifies a table. Use this in conjunction with TableRow and TableCell at
design time or programmatically assign rows using the Rows property of
type TableRowCollection. You can also use this property for runtime
modifications. This control has several styling properties unique to tables, as
do TableRow and TableCell.

TableRow Specifies a row within a Table. The key property is Cells, which is a
TableCellCollection class containing TableCell objects.

TableCell Specifies an individual cell within a TableRow. Use Text to set the text to
display, Wrap to determine whether to wrap text, and RowSpan and
ColumnSpan to set how much of the table is covered by the cell.

Panel Adds a container for other controls. You can use HorizontalAlign and
Wrap to specify how the contents are arranged.

Table continued on following page

885

ASP.NET Pages

31 557599 Ch25.qxd 4/29/04 11:39 AM Page 885

Control Description

Repeater Used to output data from a data query. Allows greater flexibility when using
templates. We’ll look at this control in detail later in this chapter.

DataList Similar to the Repeater control, but provides more flexibility when it comes
to arranging data and formatting. Can automatically render a table, which
may be editable, for example. We’ll discuss this control later in this chapter.

DataGrid Similar to Repeater and DataList with a few extra facilities, such as sorting.

Validation controls
Validation controls provide a method of validating user input without (in most cases) writing any code
at all. Whenever postback is initiated each validation control checks the control it is validating and
changes its IsValid property accordingly. If this property is false then the user input for the validated
control has failed validation. The page containing all the controls also has an IsValid property—if any
of the validation controls has its version of this property set to false then this will be false also. We
can check this property from our server-side code and act on it.

Validation controls also have another function. Not only do they validate controls at runtime, they can
also output helpful hints to users. Simply setting the ErrorMessage property to the text you want
means users will see it when they attempt to post back invalid data.

The text stored in ErrorMessage may be output at the point where the validation control is located, or
at a separate point, along with the messages from all other validation controls on a page. This latter
behavior is achieved using the ValidationSummary control, which displays all error messages along
with additional text as required.

On browsers that support it, these controls even generate client-side JavaScript functions to streamline
their validation behavior. This means that in some cases postback won’t even occur, because the valida-
tion controls can prevent this under certain circumstances and output error messages without involving
the server.

All validation controls inherit from BaseValidator, and thus share several important properties.
Perhaps the most important is the ErrorMessage property discussed earlier, the ControlToValidate
property coming in a close second. This property specifies the programmatic ID of the control that is
being validated. Another important property is Display, which determines whether to place text at the
validation summary position (if set to none), or at the validator position. We also have the choice to
make space for the error message even when it’s not being displayed (set Display to Static) or to
dynamically allocate space when required, which might shift page contents around slightly (set
Display to Dynamic). The following table describes the validation controls.

Server control example
In this example we create the framework for a Web application, a meeting room booking tool. (As with
the other examples in this book, you can download the sample application and code from the Wrox Web
site at www.wrox.com.) At first we include only the front end and simple event processing; later we will
extend this example with ADO.NET and data binding to include server-side business logic.

886

Chapter 25

31 557599 Ch25.qxd 4/29/04 11:39 AM Page 886

Control Description

RequiredFieldValidator Used to check if the user has entered data in a control such as
TextBox.

CompareValidator Used to check that data entered fulfils simple requirements,
by use of an operator set using the Operator property and a
ValueToCompare property to validate against. Operator can
be Equal, GreaterThan, GreaterThanEqual, LessThan,
LessThanEqual, NotEqual, and DataTypeCheck.
DataTypeCheck simply compares the data type of ValueTo-
Compare with the data in the control to be validated. Value-
ToCompare is a string property, but is interpreted as different
data types based on its contents.

RangeValidator Validates that data in the control falls between Maximum-
Value and MinimumValue property values.

RegularExpressionValidator Validates the contents of a field based on a regular expression
stored in ValidationExpression. This can be useful for
known sequences such as zip codes, phone numbers, IP num-
bers, and so on.

CustomValidator Used to validate data in a control using a custom function.
ClientValidationFunction is used to specify a client-side
function used to validate a control (which means, unfortu-
nately, that we can’t use C#). This function should return a
Boolean value indicating whether validation was successful.
Alternatively, we can use the ServerValidate event to spec-
ify a server-side function to use for validation. This function
is a bool type event handler that receives a string containing
the data to validate instead of an EventArgs parameter.
Return true if validation succeeds, otherwise false.

ValidationSummary Displays validation errors for all validation controls that have
an ErrorMessage set. The display can be formatted by set-
ting the DisplayMode (BulletList, List, or SinglePara-
graph) and HeaderText properties. The display can be
disabled by setting ShowSummary to false, and displayed in
a pop-up message box by setting ShowMessageBox to true.

The Web Form we are going to create contains fields for user name, event name, meeting room, and
attendees, along with a calendar to select a date (we’re assuming for the purposes of this example that
we are dealing with all-day events). We will include validation controls for all fields except the calendar,
which we will validate on the server side, and provide a default date in case none has been entered.

For user interface (UI) testing we will also have a Label control on the form that we can use to display
submission results.

887

ASP.NET Pages

31 557599 Ch25.qxd 4/29/04 11:39 AM Page 887

For starters, create a new Web application project in Visual Studio .NET and call it PCSWebApp2. Next,
design the form, which is generated using the following code in WebForm1.aspx (with auto-generated
code not highlighted):

<%@ Page language=”c#”
Codebehind=”WebForm1.aspx.cs”
AutoEventWireup=”false”
Inherits=”PCSWebApp2.WebForm1” %>

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0 Transitional//EN” >

<html>
<head>

<title>WebForm1</title>
<meta name=”GENERATOR” Content=”Microsoft Visual Studio .NET 7.1”>
<meta name=”CODE_LANGUAGE” Content=”C#”>
<meta name=vs_defaultClientScript content=”JavaScript”>
<meta name=vs_targetSchema

content=”http://schemas.microsoft.com/intellisense/ie5”>
</head>
<body MS_POSITIONING=”GridLayout”>

<form id=”Form1” method=”post” runat=”server”>
<h1 align=”center”>

Enter details and set a day to initiate an event.
</h1>

After the title of the page (which is enclosed in HTML <h1> tags to get large, title-style text), the main
body of the form is enclosed in an HTML <table>. We could use a Web server control table, but this
introduces unnecessary complexity as we are using a table purely for formatting the display, not to be a
dynamic UI element (an important point to bear in mind when designing Web Forms—don’t add Web
server controls unnecessarily). The table is divided into three columns: the first column holds simple text
labels; the second column holds UI fields corresponding to the text labels (along with validation controls
for these); and the third column contains a calendar control for date selection, which spans four rows.
The fifth row contains a submission button spanning all columns, and the sixth row contains a
ValidationSummary control to display error messages when required (all the other validation controls
have Display=”None”, since they will use this summary for display). Beneath the table is a simple label
that we can use to display results for now, before we add database access later.

<table bordercolor=”#000000” cellspacing=”0” cellpadding=”8”
rules=”none” align=”center” bgcolor=”#fff99e” border=”2”
width=”540”>

<tr>
<td valign=”top”>Your Name:</td>
<td valign=”top”>

<asp:TextBox ID=”nameBox” Runat=”server” Width=”160px” />
<asp:RequiredFieldValidator ID=”validateName”

Runat=”server” ErrorMessage=”You must enter a name.”
ControlToValidate=”nameBox” Display=”None” />

</td>
<td valign=”middle” rowspan=”4”>

<asp:Calendar ID=”calendar” Runat=”server”
BackColor=”White” />

888

Chapter 25

31 557599 Ch25.qxd 4/29/04 11:39 AM Page 888

</td>
</tr>
<tr>

<td valign=”top”>Event Name:</td>
<td valign=”top”>

<asp:TextBox ID=”eventBox” Runat=”server” Width=”160px” />
<asp:RequiredFieldValidator ID=”validateEvent”

Runat=”server”
ErrorMessage=”You must enter an event name.”
ControlToValidate=”eventBox” Display=”None” />

</td>
</tr>
<tr>

Most of the ASP.NET code in this file is remarkably simple, and much can be learned simply by reading
through it. Of particular note in this code is the way in which list items are attached to the controls for
selecting a meeting room and multiple attendees for the event:

<td valign=”top”>Meeting Room:</td>
<td valign=”top”>

<asp:DropDownList ID=”roomList” Runat=”server”
Width=”160px”>

<asp:ListItem Value=”1”>The Happy Room</asp:ListItem>
<asp:ListItem Value=”2”>The Angry Room</asp:ListItem>
<asp:ListItem Value=”3”>The Depressing
Room</asp:ListItem>

<asp:ListItem Value=”4”>The Funked Out
Room</asp:ListItem>

</asp:DropDownList>
<asp:RequiredFieldValidator ID=”validateRoom”

Runat=”server” ErrorMessage=”You must select a room.”
ControlToValidate=”roomList” Display=”None” />

</td>
</tr>
<tr>

<td valign=”top”>Attendees:</td>
<td valign=”top”>

<asp:ListBox ID=”attendeeList” Runat=”server” Width=”160px”
SelectionMode=”Multiple” Rows=”6”>

<asp:ListItem Value=”1”>Bill Gates</asp:ListItem>
<asp:ListItem Value=”2”>Monica Lewinsky</asp:ListItem>
<asp:ListItem Value=”3”>Vincent Price</asp:ListItem>
<asp:ListItem Value=”4”>Vlad the Impaler</asp:ListItem>
<asp:ListItem Value=”5”>Iggy Pop</asp:ListItem>
<asp:ListItem Value=”6”>William
Shakespeare</asp:ListItem>

</asp:ListBox>

Here we are associating ListItem objects with the two Web server controls. These objects are not Web
server controls in their own right (they simply inherit from System.Object), which is why we don’t
need to use Runat=”server” on them. When the page is processed the <asp:ListItem> entries are
used to create ListItem objects, which are added to the Items collection of their parent list control. This
makes it easier for us to initialize lists than having to write code for this ourselves (we’d have to create a

889

ASP.NET Pages

31 557599 Ch25.qxd 4/29/04 11:39 AM Page 889

ListItemCollection object, add ListItem objects, and then pass the collection to the list control). Of
course, we can still do all of this programmatically if we want.

<asp:RequiredFieldValidator ID=”validateAttendees”
Runat=”server”
ErrorMessage=”You must have at least one attendee.”
ControlToValidate=”attendeeList” Display=”None” />

</td>
</tr>
<tr>

<td align=”center” colspan=”3”>
<asp:Button ID=”submitButton” Runat=”server” Width=”100%”

Text=”Submit meeting room request” />
</td>

</tr>
<tr>

<td align=”center” colspan=”3”>
<asp:ValidationSummary ID=”validationSummary”

Runat=”server”
HeaderText=”Before submitting your request:” />

</td>
</tr>

</table>

Results:
<asp:Label Runat=”server” ID=”resultLabel” Text=”None.” />

</form>
</body>

</html>

In Design view the form we have created looks like Figure 25-4. This is a fully functioning UI, which
maintains its own state between server requests, and validates user input. Considering the brevity of the
above code this is quite something. In fact, it leaves us with very little to do, at least for this example; we
just have to specify the button click event for the submission button.

Actually, that’s not quite true. So far we have no validation for the calendar control. All we have to do is
give it an initial value. We can do this in the Page_Load() event handler for our page in the code-
behind file:

private void Page_Load(object sender, System.EventArgs e)
{

if (!this.IsPostBack)
{

calendar.SelectedDate = System.DateTime.Now;
}

}

Here we just select today’s date as a starting point. Note that we first check to see if Page_Load() is
being called as the result of a postback operation by checking the IsPostBack property of the page. If a
postback is in progress this property will be true and we leave the selected date alone (we don’t want to
lose the user’s selection, after all).

890

Chapter 25

31 557599 Ch25.qxd 4/29/04 11:39 AM Page 890

Figure 25-4

To add the button click handler simply double-click the button and add the following code:

private void submitButton_Click(object sender,
System.EventArgs e)

{
if (this.IsValid)
{

resultLabel.Text = roomList.SelectedItem.Text +
“ has been booked on “ +
calendar.SelectedDate.ToLongDateString() +
“ by “ + nameBox.Text + “ for “ +
eventBox.Text + “ event. “;

foreach (ListItem attendee in attendeeList.Items)
{

if (attendee.Selected)
{

resultLabel.Text += attendee.Text + “, “;
}

}
resultLabel.Text += “ and “ + nameBox.Text +

“ will be attending.”;
}

}

Here we just set the resultLabel control Text property to a result string, which will then appear below
the main table. In IE the result of such a submission might look something like Figure 25-4, unless there
are errors, in which case the ValidationSummary will activate instead, as shown in Figure 25-5.

891

ASP.NET Pages

31 557599 Ch25.qxd 4/29/04 11:39 AM Page 891

Figure 25-5

ADO.NET and Data Binding
The Web Form application we created in the previous section is perfectly functional, but only contains
static data. In addition, the event booking process does not include persisting event data. In order to
solve both of these problems we can make use of ADO.NET to access data stored in a database, such that
we can store and retrieve event data along with the lists of rooms and attendees.

Data binding makes the process of retrieving data even easier. Controls such as list boxes (and some of
the more specialized controls we’ll look at a bit later) come enabled for this technique. They can be
bound to any object that exposes an IEnumerable, ICollection, or IListSource interface, which
includes DataTable objects.

In this section we will start by updating our event-booking application to be data-aware, and then move
on to take a look at some of the other results we can achieve with data binding, using some of the other
data-aware Web controls.

892

Chapter 25

31 557599 Ch25.qxd 4/29/04 11:39 AM Page 892

Updating the Event-Booking Application
To keep things separate from the last example, create a new Web application project called PCSWebApp3
and copy the code from the PCSWebApp2 application created earlier into the new application. Before we
start on our new code, let’s look at the database we will be accessing.

The database
For the purposes of this example we will use a Microsoft Access database called PCSWebApp3.mdb,
which is part of the downloadable code for this book. For an enterprise-scale application it would make
more sense to use a SQL Server database, but the techniques involved are practically identical and MS
Access makes life a bit easier for testing. We will point out the differences in code as they occur.

The database provided contains three tables:

❑ Attendees, which contains a list of possible event attendees

❑ Rooms, which contains a list of possible rooms for events

❑ Events, which contains a list of booked events

Attendees
The Attendees table contains the following columns:

Column Type Notes

ID AutoNumber, primary key Attendee identification number

Name Text, required, 50 chars Name of attendee

Email Text, optional, 50 chars E-mail address of attendee

The supplied database includes entries for 20 attendees, all with their own (fictional) e-mail addresses. It
is envisioned that in a more developed application e-mails could automatically be sent to attendees
when a booking is made, but this is left to the reader as an optional exercise using techniques found else-
where in this book.

Rooms
The Rooms table contains the following columns:

Column Type Notes

ID AutoNumber, primary key Room identification number

Room Text, required, 50 chars Name of room

20 records are supplied in the database.

893

ASP.NET Pages

31 557599 Ch25.qxd 4/29/04 11:39 AM Page 893

Events
The Events table contains the following columns:

Column Type Notes

ID AutoNumber, primary key Event identification number

Name Text, required, 255 chars Name of event

Room Number, required ID of room for event

AttendeeList Memo, required List of attendee names

EventDate Date/Time, required Date of event

A few events are supplied in the downloadable database.

Binding to the database
The two controls we’d like to bind to data are attendeeList and roomList. To do this we have to set
the DataSource properties of these controls to tables containing our data. Our code must load data into
these tables and perform this binding at runtime. Both of these controls also have DataTextField and
DataValueField properties that specify what columns to use for displaying list items and setting
value properties, respectively. In both cases we can set these properties at design time and they will be
used as soon as the DataSource property is set to populate the list items in the control.

Remove the existing entries from the ASP.NET code for these controls so that the declarations read as
follows:

...
<asp:DropDownList ID=”roomList” Runat=”server”

Width=”160px” DataTextField=”Room”
DataValueField=”ID”></asp:DropDownList>

...
<asp:ListBox ID=”attendeeList” Runat=”server” Width=”160px”

SelectionMode=”Multiple” Rows=”6”
DataTextField=”Name” DataValueField=”ID”></asp:ListBox>

...

The next task is to create a connection to the database. There are several ways to do this (as discussed in
Chapter 9). We’ll hand-code it to keep things simple. Since we are using an Access database the provider
type for this connection is the Microsoft Jet 4.0 OLE DB Provider, so we need to add a
System.Data.OleDb.OleDbConnection object to our form called oleDbConnection1:

public class WebForm1 : System.Web.UI.Page
{

...
protected System.Data.OleDb.OleDbConnection oleDbConnection1;

For a SQL Server connection we would add a SqlClient.SqlConnection object.

894

Chapter 25

31 557599 Ch25.qxd 4/29/04 11:39 AM Page 894

Next we add some code to InitializeComponent() to set the ConnectionString property of
oleDbConnection1 so it is all ready for us to use:

private void InitializeComponent()
{

this.oleDbConnection1 = new System.Data.OleDb.OleDbConnection();
...
this.oleDbConnection1.ConnectionString =

@”Provider=Microsoft.Jet.OLEDB.4.0;Password=””””;User ID=” +
@”Admin;Data Source=” +
@”C:\Inetpub\wwwroot\PCSWebApp3\PCSWebApp3.mdb”;

We want to perform our data binding in the Page_Load() event handler, so that the controls are fully
populated when we want to use them in other parts of our code. We will read data from the database
regardless of whether a postback operation is in progress (even though the list controls will persist their
contents via the viewstate) to ensure that we have access to all the data we might need, although we
don’t need to perform the data binding itself in a postback. This might seem slightly wasteful, but you
can practice later adding additional logic to the code to optimize this behavior. Here we are concentrat-
ing on how to get things working, without going into too much detail.

All of our code will be placed in-between calling the Open() and Close() methods of our connection
object:

private void Page_Load(object sender, System.EventArgs e)
{

oleDbConnection1.Open();
if (!this.IsPostBack)
{

calendar.SelectedDate = System.DateTime.Now;
}
oleDbConnection1.Close();

}

We’ll see why the calendar date setting is left inside this postback-checking code shortly.

For our data exchange we need to use several objects in which to store our data. We can declare these at
the class level so that we have access to them from other functions. We need a DataSet object to store
the database information, three OleDb.OleDbDataAdapter objects to execute queries on the dataset,
and a DataTable object to store our events for later access. Declare these as follows:

public class WebForm1 : System.Web.UI.Page
{

...
protected System.Data.DataSet ds;
protected System.Data.DataTable eventTable;
protected System.Data.OleDb.OleDbDataAdapter daAttendees;
protected System.Data.OleDb.OleDbDataAdapter daRooms;
protected System.Data.OleDb.OleDbDataAdapter daEvents;

SQL Server versions of all the OLE DB objects exist, and their usage is identical.

895

ASP.NET Pages

31 557599 Ch25.qxd 4/29/04 11:39 AM Page 895

Page_Load() now needs to create the DataSet object:

private void Page_Load(object sender, System.EventArgs e)
{

oleDbConnection1.Open();
ds = new DataSet();

Then we must assign the OleDbDataAdapter objects with queries and a link to the connection object:

ds = new DataSet();
daAttendees = new System.Data.OleDb.OleDbDataAdapter(

“SELECT * FROM Attendees”,
oleDbConnection1);

daRooms = new System.Data.OleDb.OleDbDataAdapter(
“SELECT * FROM Rooms”, oleDbConnection1);

daEvents = new System.Data.OleDb.OleDbDataAdapter(
“SELECT * FROM Events”, oleDbConnection1);

Next we execute the queries using calls to Fill():

daEvents = new System.Data.OleDb.OleDbDataAdapter(
“SELECT * FROM Events”, oleDbConnection1);

daAttendees.Fill(ds, “Attendees”);
daRooms.Fill(ds, “Rooms”);
daEvents.Fill(ds, “Events”);

Now we come to the data binding itself. As mentioned earlier, this simply involves setting the
DataSource property on our bound controls to the tables we want to bind to:

daEvents.Fill(ds, “Events”);
attendeeList.DataSource = ds.Tables[“Attendees”];
roomList.DataSource = ds.Tables[“Rooms”];

This sets the properties, but data binding itself won’t occur until we call the DataBind() method of the
form, which we’ll do shortly. Before we do this we’ll populate the DataTable object with the event table
data:

roomList.DataSource = ds.Tables[“Rooms”];
eventTable = ds.Tables[“Events”];

We will only data bind if a postback is not in progress; otherwise, we will simply be refreshing data
(which we’re assuming is static in the database for the duration of an event-booking request). Data bind-
ing in a postback would also wipe the selections in the roomList and attendeeList controls. We could
make a note of these before binding and then renew them, but it is simpler to call DataBind() in our
existing if statement (this is the reason that this statement is kept in the region of code where the data
connection is open):

eventTable = ds.Tables[“Events”];
if (!this.IsPostBack)
{

calendar.SelectedDate = System.DateTime.Now;
this.DataBind();

896

Chapter 25

31 557599 Ch25.qxd 4/29/04 11:39 AM Page 896

}
oleDbConnection1.Close();

}

Running the application now will result in the full attendee and room data being available from our data
bound controls.

Customizing the calendar control
Before we discuss adding events to the database let’s modify our calendar display. It would be nice to
display any day where a booking has previously been made in a different color, and prevent such days
from being selectable. This requires modifying the way we set dates in the calendar, and the way day
cells are displayed.

We’ll start with date selection. There are three places where we need to check for dates where events are
booked and modify the selection accordingly: when we set the initial date in Page_Load(), when the
user attempts to select a date from the calendar, and when an event is booked and we wish to set a new
date to prevent the user booking two events on the same day before selecting a new date. As this is
going to be a common feature we might as well create a private method to perform this calculation. This
method should accept a trial date as a parameter and return the date to use, which will either be the
same date as the trial date, or the next available day after the trial date.

Add this method, getFreeDate(), to the code-behind file:

private System.DateTime getFreeDate(System.DateTime trialDate)
{

if (eventTable.Rows.Count > 0)
{

System.DateTime testDate;
bool trialDateOK = false;
while (!trialDateOK)
{

trialDateOK = true;
foreach (System.Data.DataRow testRow in eventTable.Rows)
{

testDate = (System.DateTime)testRow[“EventDate”];
if (testDate.Date == trialDate.Date)
{

trialDateOK = false;
trialDate = trialDate.AddDays(1);

}
}

}
}
return trialDate;

}

Please note that in order for the code to run you might have to close any open con-
nections to the database, either in Access or in Server Explorer. To do this simply
right-click the data source in Server Explorer and choose Close.

897

ASP.NET Pages

31 557599 Ch25.qxd 4/29/04 11:39 AM Page 897

This simple code uses the eventTable object that we populated in Page_Load() to extract event data.
First we check for the trivial case where no events have been booked, in which case we can just confirm
the trial date by returning it. Next we iterate through the dates in the Event table comparing them with
the trial date. If we find a match we add one day to the trial date and perform another search.

Extracting the date from the DataTable is remarkably simple:

testDate = (System.DateTime)testRow[“EventDate”];

Casting the column data into System.DateTime works fine.

The first place we will use getFreeDate(), then, is back in Page_Load(). This simply means making a
minor modification to the code that sets the calendar SelectedDate property:

if (!this.IsPostBack)
{

System.DateTime trialDate = System.DateTime.Now;
calendar.SelectedDate = getFreeDate(trialDate);
this.DataBind();

}

Next we need to respond to date selection on the calendar. To do this we simply add an event handler
for the SelectionChanged event of the calendar, and force the date to be checked against existing
events. Double-click the calendar in the Designer and add this code:

private void calendar_SelectionChanged(object sender,
System.EventArgs e)

{
System.DateTime trialDate = calendar.SelectedDate;
calendar.SelectedDate = getFreeDate(trialDate);

}

The code here is identical to that in Page_Load().

The third place that we must perform this check is in response to the pressed booking button. We’ll come
back to this shortly, since we have several changes to make here.

Next we want to color the day cells of the calendar to signify existing events. To do this we add an event
handler for the DayRender event of the calendar object. This event is raised each time an individual day
is rendered, and gives us access to the cell object being displayed and the date of this cell through the
Cell and Date properties of the DayRenderEventArgs parameter we receive in the handler function.
We simply compare the date of the cell being rendered to the dates in our eventTable object, and color
the cell using the Cell.BackColor property if there is a match:

protected void calendar_DayRender(object sender,
System.Web.UI.WebControls.DayRenderEventArgs e)

{
if (eventTable.Rows.Count > 0)
{

System.DateTime testDate;
foreach (System.Data.DataRow testRow in eventTable.Rows)

898

Chapter 25

31 557599 Ch25.qxd 4/29/04 11:39 AM Page 898

{
testDate = (System.DateTime)testRow[“EventDate”];
if (testDate.Date == e.Day.Date)
{

e.Cell.BackColor = Color.Red;
}

}
}

}

Here we are using red, which will give us a display along the lines of Figure 25-6, where March 15, 27,
28, 29, and 30 all contain events, and the user has selected March 17.

Figure 25-6

With the addition of the date-selection logic it is now impossible to select a day that is shown in red; if
an attempt is made then a later date is selected instead. For example, selecting March 28 results in the
selection of March 31.

Adding events to the database
The submitButton_Click() event handler currently assembles a string from the event characteristics
and displays it in the resultLabel control. To add an event to the database we simply reformat the
string created into a SQL INSERT query and execute it.

Note that in order to write to an Access database, the “ASPNET” user (which is the account that
ASP.NET processes run under by default) must be explicitly given write permission to the file, which
we can do using Windows Explorer. In more advanced situations you might want to access resources
using other accounts, for example a domain account used to access a SQL Server instance elsewhere on
a network. The capability to do this (via impersonation, COM+ Services, or other means) exists in
ASP.NET, but is beyond the scope of this book.

Much of the following code will therefore look familiar:

protected void submitButton_Click(object sender, System.EventArgs e)
{

if (this.IsValid)
{

String attendees = “”;
foreach (ListItem attendee in attendeeList.Items)
{

899

ASP.NET Pages

31 557599 Ch25.qxd 4/29/04 11:39 AM Page 899

if (attendee.Selected)
{

attendees += attendee.Text + “ (“ + attendee.Value
+ “), “;

}
}
attendees += “ and “ + nameBox.Text;
String dateString =

calendar.SelectedDate.Date.Date.ToShortDateString();
String oleDbCommand = “INSERT INTO Events (Name, Room, “ +

“AttendeeList, EventDate) VALUES (‘“ +
eventBox.Text + “‘, ‘“ +
roomList.SelectedItem.Value + “‘, ‘“ +
attendees + “‘, ‘“ + dateString +
“‘)”;

After we have created our SQL query string, we can use it to build an OleDb.OleDbCommand object:

System.Data.OleDb.OleDbCommand insertCommand =
new System.Data.OleDb.OleDbCommand(oleDbCommand,

oleDbConnection1);

Next we reopen the connection that was closed in Page_Load() (again, this is perhaps not the most effi-
cient way of doing things, but it works fine for demonstration purposes), and execute the query:

oleDbConnection1.Open();
int queryResult = insertCommand.ExecuteNonQuery();

ExecuteNonQuery() returns an integer representing how many table rows were affected by the query.
If this is equal to 1 then we know that our insertion was successful. If so then we put a success message
in resultLabel, execute a new query to repopulate eventTable and our dataset with our new list of
events (we clear the dataset first, otherwise events will be duplicated), and change the calendar selection
to a new, free, date:

if (queryResult == 1)
{

resultLabel.Text = “Event Added.”;
daEvents = new System.Data.OleDb.OleDbDataAdapter(

“SELECT * FROM Events”, oleDbConnection1);
ds.Clear();
daEvents.Fill(ds, “Events”);
eventTable = ds.Tables[“Events”];
calendar.SelectedDate =

getFreeDate(calendar.SelectedDate.AddDays(1));
}

If ExecuteNonQuery() returns a number other than 1, we know that there has been a problem. For this
example we won’t worry too much about this, and simply display a failure notification in resultLabel:

else
{

resultLabel.Text = “Event not added due to DB access “
+ “problem.”;

}

900

Chapter 25

31 557599 Ch25.qxd 4/29/04 11:39 AM Page 900

Finally, we close the connection again and our data-aware version of the event booking application is
complete:

oleDbConnection1.Close();
}

}

Note that due to the syntax of the SQL INSERT query we must avoid using certain characters in the
event name, such as apostrophes (“‘“), because they will cause an error. It would be relatively easy to
enforce a custom validation rule that prevented the user from using such characters, or to perform some
type of character escaping before inserting data and after reading data, but the code for this is beyond
the scope of this chapter.

More on Data Binding
As mentioned earlier in this chapter, the available Server Controls have three controls that deal with data
display: DataGrid, Repeater, and DataList. These are all extremely useful when it comes to out-
putting data to a Web page, since they perform many tasks automatically that would otherwise require a
fair amount of coding.

For starters, let’s look at the easiest of these, DataGrid. Let’s add an event-detail display to the bottom
of the display of PCSWebApp3. This enables us to ignore database connections for now, since we have
already configured our application for this access.

Add the following code to the bottom of the WebForm1.aspx in the PCSWebApp3 project:

Results:
<asp:Label ID=resultLabel Runat=”server”

Text=”None.”></asp:label>

<asp:DataGrid Runat=”server” ID=”eventDetails1” />
</form>

</body>
</HTML>

Also, add the following to Page_Load() in WebForm1.aspx.cs:

attendeeList.DataSource = ds.Tables[“Attendees”];
roomList.DataSource = ds.Tables[“Rooms”];
eventTable = ds.Tables[“Events”];
eventDetails1.DataSource = eventTable;
if (!this.IsPostBack)
{

System.DateTime trialDate = System.DateTime.Now;
calendar.SelectedDate = getFreeDate(trialDate);
this.DataBind();

}
else
{

eventDetails1.DataBind();
}
oleDbConnection1.Close();

}

901

ASP.NET Pages

31 557599 Ch25.qxd 4/29/04 11:39 AM Page 901

Note that the event list may have changed between requests if another user has added an event, so we
need to call DataBind() on the DataGrid to reflect these changes. Remember that calling DataBind()
on the whole form will result in room and attendee selections being lost, so this is a fair compromise.

If you load the application in your Web browser you should see a list underneath the booking details
section containing the full list of events, as shown in Figure 25-7.

Figure 25-7

We can also make one further modification in submitButton_Click() to ensure that this data is
updated when new records are added:

if (queryResult == 1)
{

resultLabel.Text = “Event Added.”;
daEvents = new System.Data.OleDb.OleDbDataAdapter(

“SELECT * FROM Events”, oleDbConnection1);
ds.Clear();
daEvents.Fill(ds, “Events”);
eventTable = ds.Tables[“Events”];
calendar.SelectedDate =

getFreeDate(calendar.SelectedDate.AddDays(1));
eventDetails1.DataBind();

}

Note that we call DataBind() on DataGrid, not on this. This prevents all data-bound controls from
being refreshed, which is unnecessary. All data-bindable controls support this method, which is nor-
mally called by the form if we call the top-level (this) DataBind() method.

As you might expect, the DataGrid control contains many properties that we can use to format the dis-
played data in a more user-friendly way, but we’ll leave these for you to discover.

902

Chapter 25

31 557599 Ch25.qxd 4/29/04 11:39 AM Page 902

Data display with templates
The other two data display controls, Repeater and DataList, require you to use templates to format
data for display. Templates, in an ASP.NET sense, are parameterized sections of HTML that are used as
elements of output in certain controls. They enable us to customize exactly how data is output to the
browser, and can result in professional-looking displays without too much effort.

There are several templates available to customize various aspects of list behavior, but the one template
that is essential for both Repeater and DataList is <ItemTemplate>, which is used in the display of
each data item. We declare this template (and all the others) inside the control declaration, for example:

<asp:DataList Runat=”server” ... >
<ItemTemplate>

...
</ItemTemplate>

</asp:DataList>

Within template declarations we will normally want to output sections of HTML along with parameters
from the data that is bound to the control. There is a special syntax that we can use to output such
parameters:

<%# expression %>

The expression placeholder might be simply an expression binding the parameter to a page or control
property, but is more likely to consist of a DataBinder.Eval() expression. This function can be used to
output data from a table bound to a control simply by specifying the column, using the following syntax:

<%# DataBinder.Eval(Container.DataItem, “ColumnName”) %>

There is also an optional third parameter that allows us to format the data returned, which has identical
syntax to string formatting expressions used elsewhere. The following tables provide a list of available
templates and when they are used.

Template Description

<ItemTemplate> Used for list items.

<HeaderTemplate> Used for output before the list.

<FooterTemplate> Used for output after the list.

<SeparatorTemplate> Used between items in list.

<AlternatingItemTemplate> Used for alternate items; can aid visibility.

<SelectedItemTemplate> (DataList only) Used for selected items in the list.

<EditItemTemplate> (DataList only) Used for list items that are edited.

The easiest way to understand how to use these is by way of an example, and we can use our existing
data query in PCSWebApp3 to achieve this.

903

ASP.NET Pages

31 557599 Ch25.qxd 4/29/04 11:39 AM Page 903

Using templates
We’ll extend the table at the top of the page to contain a DataList displaying each of the events stored
in the database. We’ll make these events selectable such that details of any event can be displayed by
clicking on its name.

The changes to the code in WebForm1.aspx in the PCSWebApp3 project are shown in the shaded area:

<tr>
<td align=”center” colspan=”3”>

<asp:ValidationSummary ID=”validationSummary”
Runat=”server”
HeaderText=”Before submitting your request:” />

</td>
</tr>
<tr>

<td align=”left” colSpan=”3” width=”100%”>
<table cellspacing=”4”>

<tr>
<td width=”40%” bgcolor=”#ccffcc”>

<asp:DataList Runat=”server” ID=”eventDetails2”
OnSelectedIndexChanged=
“eventDetails2_SelectedIndexChanged”>
<ItemTemplate>

<asp:LinkButton Runat=”server”
CommandName=”Select” ForeColor=”#0000ff”
ID=”Linkbutton1” CausesValidation=”false”>
<%# DataBinder.Eval(Container.DataItem,

“Name”)%>
</asp:LinkButton>

</ItemTemplate>
<SelectedItemTemplate>

<%# DataBinder.Eval(Container.DataItem,

“Name”) %>

</SelectedItemTemplate>
</asp:DataList>

</td>
<td valign=”top”>

<asp:Label Runat=”server” ID=”edName”
Font-Name=”Arial” Font-Bold=”True”
Font-Italic=”True” Font-Size=”14”>
Select an event to view details.

</asp:Label>

<asp:Label Runat=”server” ID=”edDate” />

<asp:Label Runat=”server” ID=”edRoom” />

<asp:Label Runat=”server” ID=”edAttendees” />

</td>

904

Chapter 25

31 557599 Ch25.qxd 4/29/04 11:39 AM Page 904

</tr>
</table>

</td>
</tr>

</table>

Here we have added a new table row containing a table with a DataList control in one column and a
detail view in the other. The detail view is simply four labels for event properties, one of which contains
the text “Select an event to view details” when no event is selected (the situation when the form is first
loaded).

The DataList uses <ItemTemplate> and <SelectedItemTemplate> to display event details. To facili-
tate selection we raise a Select command from the event name link rendered in <ItemTemplate>,
which automatically changes the selection. We also use the OnSelectedIndexChanged event, triggered
when the Select command changes the selection, to populate the event detail labels. The event handler
we get when we double-click eventDetails2 in the Designer is shown in the following code. You’ll
need to change the protection level of the method from private to protected. (Note that we need to
DataBind() first to update the selection.)

protected void eventDetails2_SelectedIndexChanged(object sender,
System.EventArgs e)

{
eventDetails2.DataBind();
DataRow selectedEventRow =

eventTable.Rows[eventDetails2.SelectedIndex];
edName.Text = (string)selectedEventRow[“Name”];
edDate.Text = “Date: “ +
((DateTime)selectedEventRow[“EventDate”]).ToLongDateString();

edAttendees.Text = “Attendees: “ +
(string)selectedEventRow[“AttendeeList”];

DataRow selectedEventRoomRow =
ds.Tables[“Rooms”].Rows[(int)selectedEventRow[“Room”] - 1];

edRoom.Text = “Room: “ + selectedEventRoomRow[“Room”];
}

This uses data in ds and eventTable to populate the details.

As with the DataGrid control we used earlier, we need to set the data for eventDetails2 and bind in
Page_Load():

eventDetails1.DataSource = eventTable;
eventDetails2.DataSource = eventTable;
...

eventDetails1.DataBind();
eventDetails2.DataBind();

and re-bind in submitButton_Click():

eventDetails1.DataBind();
eventDetails2.DataBind();

905

ASP.NET Pages

31 557599 Ch25.qxd 4/29/04 11:39 AM Page 905

Now event details are available in the table, as shown in Figure 25-8.

Figure 25-8

There is much more that we can do with templates and data-bound controls in general, enough in fact to
fill a whole book. However, this should be enough to get you started with your experimentation.

Application Configuration
One thing that we alluded to throughout this chapter is the existence of a conceptual application con-
taining Web pages and configuration settings. This is an important concept to grasp, especially when
configuring your Web site for multiple concurrent users.

A few notes on terminology and application lifetime are necessary here. An application is defined as all
files in your project, and is configured by the Web.config file. An Application object is created when an
application is started for the first time, which will be when the first HTTP request arrives. Also at this
time the Application_Start event is triggered and a pool of HttpApplication instances is created.
Each incoming request receives one of these instances, which performs request processing. Note that this
means HttpApplication objects do not need to cope with concurrent access, unlike the global

906

Chapter 25

31 557599 Ch25.qxd 4/29/04 11:39 AM Page 906

Application object. When all HttpApplication instances finish their work the Application_End
event fires and the application terminates, destroying the Application object.

The event handlers for the events mentioned earlier (along with handlers for all other events discussed in
this chapter) must be defined in the Global.asax file, which contains blanks for you to fill in; for example:

protected void Application_Start(Object sender, EventArgs e)
{
}

When an individual user accesses the Web application a session is started. Similar to the application, this
involves the creation of a user-specific Session object, along with the triggering of a Session_Start
event. Within a session individual requests trigger Application_BeginRequest and Application_
EndRequest events. These can occur several times over the scope of a session as different resources
within the application are accessed. Individual sessions can be terminated manually, or will time out if
no further requests are received. Session termination triggers a Session_End event and the destruction
of the Session object.

Against the background of this process, there are several things we can do to streamline our application.
Consider our sample application in this chapter. Every time our .aspx page is accessed a recordset is
populated with the contents of PCSWebApp3.mdb. This recordset is only ever used for reading data, as
the method of inserting events into the database is different. In cases like this we could populate the
recordset in the Application_Start event handler and make it available to all users. The only time we
would need to refresh the recordset would be if an event were added. This will drastically improve per-
formance with multiple users, as in most requests no database access will be required.

Another technique we can use is to store session-level information for use by individual users across
requests. This might include user-specific information extracted from a data store when the user first
connects, and available until the user ceases to submit requests or logs out.

These techniques are beyond the scope of this book (and you might want to consult Professional ASP.NET
1.1 [ISBN 0-7645-5890-0] for details), but it helps to have a broad understanding of the processes. In the
next chapter, dealing with Web Services, we will see some of these techniques in action.

Summary
This chapter has provided an overview of Web application creation with ASP.NET. We have seen how
we can use C# in combination with Web server controls to provide a truly rich development environ-
ment. We have developed an event booking sample application to illustrate many of the techniques
available, such as the variety of server controls that exist, and data binding with ADO.NET.

In the next two chapters we will cover two more important Web topics: Web services and Custom
Controls. We will continue to develop our sample application, taking it in radically different directions
to illustrate the tools at our disposal.

907

ASP.NET Pages

31 557599 Ch25.qxd 4/29/04 11:39 AM Page 907

31 557599 Ch25.qxd 4/29/04 11:39 AM Page 908

Web Services

Web services are a new way of performing remote method calls over HTTP that can make use of
SOAP (Simple Object Access Protocol). In the past this issue has been fraught with difficulty, as any-
one who has any DCOM (Distributed COM) experience knows. The act of instantiating an object
on a remote server, calling a method, and obtaining the result was far from simple—and the neces-
sary configuration was even trickier.

SOAP simplifies matters immensely. This technology is an XML-based standard that details how
method calls may be made over HTTP in a reproducible manner. A remote SOAP server is capable
of understanding these calls and performing all the hard work for us, such as instantiating the
required object, making the call, and returning a SOAP-formatted response to the client.

.NET Framework makes it very easy for us to make use of all this. As with ASP.NET, we are able to
use the full array of C# and .NET techniques on the server, but (perhaps more importantly) the
simple consumption of Web services can be achieved from any platform with HTTP access to the
server. In other words, it is conceivable that Linux code could, for example, use .NET Web
Services, or even Internet-enabled fridges.

In addition, Web services can be completely described using WSDL (Web Service Description
Language), allowing dynamic discovery of Web services at runtime. WSDL provides descriptions of
all methods (along with the types required to call them) using XML with XML schemas. There are
a wide variety of types available to Web services, which range from simple primitive types to full
DataSet objects, such that full in-memory databases can be marshaled to a client, which can result
in a dramatic reduction in load on a database server.

In this chapter we will:

❑ Look at the syntax of SOAP and WSDL, then move on to see how they are used by Web
services.

❑ Discuss how to expose and consume Web services.

32 557599 Ch26.qxd 4/29/04 11:43 AM Page 909

❑ Work through a complete example building on the event-booking application from Chapter 25
to illustrate the use of Web services.

❑ Discuss how to exchange data using SOAP Headers.

SOAP
As mentioned above, one method used to exchange data with Web services is SOAP. This technology has
had a lot of press, especially since Microsoft decided to adopt it for use in the .NET Framework. Now,
though, the excitement seems to be dying down a bit as the SOAP specification is finalized. When you
think about it, finding out exactly how SOAP works is a bit like finding out about how HTTP works—
interesting, but not essential. Most of the time we never have to worry about the format of the exchanges
made with Web services; they just happen, we get the results we want, and everyone is happy.

For this reason we won’t go into a huge amount of depth in this section, but we will see some simple
SOAP requests and responses so you can get a feel for what is going on under the hood.

Let’s imagine that we want to call a method in a Web service with the following signature:

int DoSomething(string stringParam, int intParam)

The SOAP headers and body required for this are shown in the following code, with the address of the
Web service (more on this later) at the top:

POST /SomeLocation/myWebService.asmx HTTP/1.1
Host: karlivaio
Content-Type: text/xml; charset=utf-8
Content-Length: length
SOAPAction: “http://tempuri.org/DoSomething”
<?xml version=”1.0” encoding=”utf-8”?>
<soap:Envelope xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”>

<soap:Body>
<DoSomething xmlns=”http://tempuri.org/”>

<stringParam>string</stringParam>
<intParam>int</intParam>

</DoSomething>
</soap:Body>

</soap:Envelope>

The length parameter here specifies the total byte size of the content, and will vary depending on the
values sent in the string and int parameters.

The soap namespace referenced here defines various elements that we use to build our message. When
we send this over HTTP the actual data sent is slightly different (but related). For example, we could call
the above method using the simple GET method:

GET /PCSWebSrv1/Service1.asmx/DoSomething?stringParam=string&intParam=int HTTP/1.1
Host: hostname

910

Chapter 26

32 557599 Ch26.qxd 4/29/04 11:43 AM Page 910

The SOAP response of this method is as follows:

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: length
<?xml version=”1.0” encoding=”utf-8”?>
<soap:Envelope xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”>

<soap:Body>
<DoSomethingResponse xmlns=”http://tempuri.org/”>

<DoSomethingResult>int</DoSomethingResult>
</DoSomethingResponse>

</soap:Body>
</soap:Envelope>

where length varies depending on to the contents, in this case int.

The actual response over HTTP is simpler, as shown in this example:

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: length
<?xml version=”1.0”?>
<int xmlns=”http://tempuri.org/”>int</int>

This is a far simpler XML format.

As discussed at the start of this section, the beauty of all this is that we can ignore it completely. It is only
if we want to do something really odd that the exact syntax becomes important.

WSDL
WSDL completely describes Web services, the methods available, and the various ways of calling these
methods. The exact details of this process won’t really benefit us that much, but a general understanding
is useful.

WSDL is another fully XML-compliant syntax, and specifies Web services by the methods available, the
types used by these methods, the formats of request and response messages sent to and from methods
via various protocols (pure SOAP, HTTP GET, and so on), and various bindings between the above.

Perhaps the most important part of a WSDL file is the type-definition section. This section uses XML
schemas to describe the format for data exchange with the XML elements that can be used, and their
relationships.

For example, the Web service method used as an example in the last section:

int DoSomething(string stringParam, int intParam)

would have types declared for the request as follows:

911

Web Services

32 557599 Ch26.qxd 4/29/04 11:43 AM Page 911

<?xml version=”1.0” ?>
<definitions xmlns:http=”http://schemas.xmlsoap.org/wsdl/http/”

xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
xmlns:s=”http://www.w3.org/2001/XMLSchema”
...other namespaces...>

<types>
<s:schema elementFormDefault=”qualified”

targetNamespace=”http://tempuri.org/”>
<s:element name=”DoSomething”>

<s:complexType>
<s:sequence>

<s:element minOccurs=”0” maxOccurs=”1” name=”stringParam”
type=”s:string” />

<s:element minOccurs=”1” maxOccurs=”1” name=”intParam”
type=”s:int” />

</s:sequence>
</s:complexType>

</s:element>
<s:element name=”DoSomethingResponse”>

<s:complexType>
<s:sequence>

<s:element minOccurs=”1” maxOccurs=”1” name=”DoSomethingResult”
type=”s:int” />

</s:sequence>
</s:complexType>

</s:element>
<s:element name=”int” type=”s:int” />

</s:schema>
</types>
...other definitions...

</definitions>

These types are all that are required for the SOAP and HTTP requests and responses we saw earlier, and
are bound to these operations later in the file. All the types are specified using standard XML schema
syntax, for example:

<s:element name=”DoSomethingResponse”>
<s:complexType>

<s:sequence>
<s:element minOccurs=”1” maxOccurs=”1” name=”DoSomethingResult”

type=”s:int” />
</s:sequence>

</s:complexType>
</s:element>

This specifies that an element called DoSomethingResponse has a child element called DoSomething
Result that contains an integer. This integer must occur 0 or 1 times, meaning that it can be omitted.

If we have access to the WSDL for a Web service then we can use it. As we will see shortly, this isn’t that
difficult to do.

After this brief look at SOAP and WSDL it’s time to move on to discuss how we create and consume
Web services.

912

Chapter 26

32 557599 Ch26.qxd 4/29/04 11:43 AM Page 912

Web Services
Our discussion of Web services is divided into two subsections:

❑ “Exposing Web Services,” which concerns writing Web services and placing them on Web
servers.

❑ “Consuming Web Services,” which concerns using the services you design on a client.

Exposing Web Services
Web services are exposed by placing code either directly into .asmx files or by referencing Web service
classes from these files. As with ASP.NET pages, creating a Web service in Visual Studio .NET uses the
latter method, and we will too for demonstration purposes.

Create a Web service project and call it PCSWebSrv1 (see Figure 26-1). Creating a Web service project
generates a similar set of files as creating a Web application project. In fact, the only difference is that
instead of a file called WebForm1.aspx, a file called Service1.asmx is created.

Figure 26-1

The code in Service1.asmx isn’t directly accessible through Visual Studio .NET, but inspection with
Notepad reveals the following single line of code:

<%@ WebService Language=”c#” Codebehind=”Service1.asmx.cs”
Class=”PCSWebSrv1.Service1” %>

This references the code file that we can see in Visual Studio .NET, Service1.asmx.cs, accessible by right-
clicking on Service1.asmx in the Solution Explorer and selecting View Code. The following listing shows
the generated code, with comments removed for brevity:

913

Web Services

32 557599 Ch26.qxd 4/29/04 11:43 AM Page 913

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Diagnostics;
using System.Web;
using System.Web.Services;

namespace PCSWebSrv1
{

public class Service1 : System.Web.Services.WebService
{

public Service1()
{

InitializeComponent();
}
#region Component Designer generated code
private IContainer components = null;

private void InitializeComponent()
{
}

protected override void Dispose(bool disposing)
{

if (disposing && components != null)
{

components.Dispose();
}
base.Dispose(disposing);

}
#endregion

}
}

This code contains several standard namespace references, and defines the PCSWebSrv1 namespace.
The namespace contains the definition of the Web service class Service1 (which is referenced in
Service1.asmx), descended from System.Web.Services.WebService. It also contains similar code to
that found in the ASP.NET page code-behind file, which is discussed in Chapter 25. This code is required
in order to design Web services in Visual Studio .NET, part of which is a private member that will con-
tain any components that can be added to the Web service. In order for the Web service class to free
resources properly there is also a Dispose() method, which cleans up any components in this collec-
tion. It is now up to us to provide additional methods on this Web service class.

Adding a method accessible through the Web service simply requires defining the method as public
and giving it the WebMethod attribute. This attribute simply labels the methods we want to be accessible.
We’ll look at the types we can use for the return type and parameters shortly, but for now add the fol-
lowing method:

[WebMethod]
public String CanWeFixIt()
{

return “Yes we can!”;
}

914

Chapter 26

32 557599 Ch26.qxd 4/29/04 11:43 AM Page 914

Now compile the project.

To see whether everything works, point your Web browser at Service1.asmx (if you run the project you’ll
be taken directly to this page), as shown in Figure 26-2.

Figure 26-2

Most of the text shown in the browser concerns the fact that the Web service namespace is set to
http://tempuri.org/. This isn’t a problem during development, although (as the text says) it should
be changed later on. This can be done using the WebService attribute as shown. For now, though, we’ll
leave things as they are.

Clicking the method name gives us information about the SOAP request and response, as well as exam-
ples of how the request and response will look using the HTTP GET and HTTP POST methods. We can
also test the method by clicking the Invoke button. If the method requires simple parameters we can
enter these on this form as well. If we do this we will see the XML returned by the method call:

<?xml version=”1.0” encoding=”utf-8”?>
<string xmlns=”http://tempuri.org/”>Yes we can!</string>

915

Web Services

32 557599 Ch26.qxd 4/29/04 11:43 AM Page 915

This demonstrates that our method is working perfectly.

Following the Service Description link from the browser screen shown in Figure 26-2 allows us to view
the WSDL description of the Web service. The most important part is the description of the element
types for requests and responses:

<types>
<s:schema elementFormDefault=”qualified”

targetNamespace=”http://tempuri.org/”>
<s:element name=”CanWeFixIt”>

<s:complexType />
</s:element>
<s:element name=”CanWeFixItResponse”>

<s:complexType>
<s:sequence>

<s:element minOccurs=”0” maxOccurs=”1” name=”CanWeFixItResult”
type=”s:string” />

</s:sequence>
</s:complexType>

</s:element>
</s:schema>

</types>

The description also contains descriptions of the types required for requests and responses, as well as
various bindings for the service, making it quite a long file.

Types available for Web services
Web services can be used to exchange any of the following types:

String Char Byte

Boolean Int16 Int32

Int64 UInt16 UInt32

UInt64 Single Double

Guid Decimal DateTime

XmlQualifiedName Class struct

XmlNode DataSet enum

Arrays of all these types are also allowed. Note also that only public properties and fields of Class and
struct types are marshaled.

Consuming Web Services
Now that we know how to create Web services, we’ll look at how to use them. To do this we need to
generate a proxy class in our code that knows how to communicate with a given Web service. Any calls
from our code to the Web service will go through this proxy, which looks identical to the Web service,

916

Chapter 26

32 557599 Ch26.qxd 4/29/04 11:43 AM Page 916

giving our code the illusion that we have a local copy of it. In actual fact there is a lot of HTTP communi-
cation going on, but we are shielded from the details. There are two ways of doing this. We can either
use the WSDL.exe command line tool or the Add Web Reference menu option in Visual Studio .NET.

Using WSDL.exe from the command line generates a .cs file containing a proxy class, based on the
WSDL description of the Web service. We specify this using the URL of the Web service, for example:

WSDL http://localhost/PCSWebSrv1/Service1.asmx?WSDL

This generates a proxy class for the example from the last section in a file called Service1.cs. The class
will be named after the Web service, in this case Service1, and contain methods that call identically
named methods of the service. To use this class we simply add the .cs file generated to a project and use
code along the lines of:

Service1 myService = new Service1();
String result = myService.CanWeFixIt();

By default the class generated is placed in the root namespace, so no using statement is necessary, but
we can specify a different namespace to use with the /n:<namespace> command-line option of
WSDL.exe.

This technique works fine but can be annoying to continually redo if the service is being developed and
changing continuously. Of course, it could be executed in the build options for a project in order to auto-
matically update the generated proxy before each compile, but there is a better way.

We’ll illustrate this better way by creating a client for the example in the last section, in a new Web appli-
cation called PCSWebClient1. Create this project now and replace the existing form declaration in the
.aspx page generated with the following code:

<form method=”post” runat=”server”>
<asp:Label Runat=”server” ID=”resultLabel”/>

<asp:Button Runat=”server” ID=”triggerButton”

Text=”Invoke CanWeFixIt()”/>
</form>

We’ll bind the button-click event handler to the Web service shortly. First we must add a reference to the
Web service to our project. To do this, right-click on the new client project in the Solution Explorer and
select the Add Web Reference option. In the window that appears type in the URL of the Web service
Service1.asmx file, or use the Web services on the local machine link to find it automatically, as shown in
Figure 26-3.

From here we can add a reference with the Add Reference button. First, though, change the default entry
for Web reference name from localhost to myWebService. Pressing the Add Reference button now
adds myWebService to the Web References section of the project in Solution Explorer. When showing
hidden files in Solution Explorer, we can see that the files Reference.map, Reference.cs, Service1.disco,
and Service1.wsdl have been added to the project.

917

Web Services

32 557599 Ch26.qxd 4/29/04 11:43 AM Page 917

Figure 26-3

The Web Reference name, myWebService, is also the namespace we need to reference to use the proxy
class that has been created for us. Add the following using statement to our code in WebForm1.aspx.cs:

using PCSWebClient1.myWebService;

Now we can use the service in our class without fully qualifying its name.

Add an event handler to the button on the form (double-click the button) with the following code:

private void triggerButton_Click(object sender, System.EventArgs e)
{

Service1 myService = new Service1();
resultLabel.Text = myService.CanWeFixIt();

}
Running the application and clicking the button displays CanWeFixIt() in the browser window.

This Web service might change later, but with this method we can simply right-click on the Web refer-
ence folder in the Server Explorer and select Update Web Reference. This generates a new proxy class for
us to use.

Extending the Event-Booking Example
Now that we know the basics of creating and consuming Web services, let’s apply our knowledge to
extending the event-booking application from Chapter 25. Specifically, we extract the database access
aspects from the application and place them into a Web service. This Web service has two methods:

918

Chapter 26

32 557599 Ch26.qxd 4/29/04 11:43 AM Page 918

❑ GetData(), which returns a DataSet class containing all three tables in the PCSWebApp3.mdb
database.

❑ AddEvent(), which adds an event and returns an updated version of DataSet that includes the
change.

In addition, we’ll design the Web service with some of the load-reducing techniques from Chapter 25 in
mind. Specifically, we store DataSet at the application level in the Web service application. This means
that multiple requests for the data won’t require additional database requests. The data in this applica-
tion-level DataSet class will only be refreshed when new data is added to the database. This means that
changes made to the database by other means, such as manual editing, will not be reflected in DataSet.
Still, as long as we know that our Web service is the only application with direct access to the data we
have nothing to worry about.

The Event-Booking Web Service
Create a new Web service project in Visual Studio .NET and call it PCSWebSrv2. First we add to this pro-
ject some code in the Application_Start() handler in Global.asax.cs. We want to load all the data in
PCSWebApp3.mdb into a dataset and store it. This mostly involves code that we’ve already seen, since
getting the database into a DataSet is something we’ve already done. In fact, we can copy all the code
we need from WebForm1.aspx.cs in PCSWebApp3 from Chapter 25—including the database connection
string in InitializeComponent() (which we won’t show here because yours is likely to be different)—
with only a few modifications:

protected void Application_Start(Object sender, EventArgs e)
{

System.Data.DataSet ds;
System.Data.OleDb.OleDbConnection oleDbConnection1;
System.Data.OleDb.OleDbDataAdapter daAttendees;
System.Data.OleDb.OleDbDataAdapter daRooms;
System.Data.OleDb.OleDbDataAdapter daEvents;
oleDbConnection1 = new System.Data.OleDb.OleDbConnection();
oleDbConnection1.ConnectionString = @” ... “;
oleDbConnection1.Open();
ds = new DataSet();
daAttendees = new System.Data.OleDb.OleDbDataAdapter(

“SELECT * FROM Attendees”, oleDbConnection1);
daRooms = new System.Data.OleDb.OleDbDataAdapter(

“SELECT * FROM Rooms”, oleDbConnection1);
daEvents = new System.Data.OleDb.OleDbDataAdapter(

“SELECT * FROM Events”, oleDbConnection1);
daAttendees.Fill(ds, “Attendees”);
daRooms.Fill(ds, “Rooms”);
daEvents.Fill(ds, “Events”);
oleDbConnection1.Close();
Application[“ds”] = ds;

}

The important code to note here is in the last line. Application (and Session) objects have a collection
of name-value pairs that we can use to store data. Here we are creating a name in the Application
store called ds, which takes the serialized value of ds DataSet containing the Attendees, Rooms, and
Events tables from our database. This value will be accessible to all instances of the Web service at
any time.

919

Web Services

32 557599 Ch26.qxd 4/29/04 11:43 AM Page 919

In order for the previous code to work we also need to add a reference to the System.Data namespace
to Global.asax.cs:

...
using System.Data;

This technique is very useful for read-only data since multiple threads will be able to access it, reducing
the load on our database. Note, however, that the Events table is likely to change, and we’ll have to
update the application-level DataSet class when this happens. We’ll look at this shortly.

Next we must add the GetData() method to our service in Service1.asmx.cs:

[WebMethod]
public DataSet GetData()
{

return (DataSet) Application[“ds”];
}

This uses the same syntax as Application_Load() to access DataSet, which we simply cast to the cor-
rect type and return.

The AddEvent() method is slightly more complicated. Conceptually, we need to do the following:

❑ Accept event data from the client.

❑ Create a SQL INSERT statement using this data.

❑ Connect to the database and execute the SQL statement.

❑ Refresh the data in Application[“ds”] if the addition is successful.

❑ Return a success or failure notification to the client (we’ll leave it up to the client to refresh its
DataSet if required).

Starting from the top, we’ll accept all fields as strings:

[WebMethod]
public int AddEvent(String eventName, String eventRoom,

String eventAttendees, String eventDate)
{
}

Next we declare the objects we’ll need for database access, connect to the database, and execute our
query, all using similar code to that in PCSWebApp3 (remember, we need the connection string here, but
we won’t show it):

[WebMethod]
public int AddEvent(String eventName, String eventRoom,

String eventAttendees, String eventDate)
{

System.Data.OleDb.OleDbConnection oleDbConnection1;
System.Data.OleDb.OleDbDataAdapter daEvents;
DataSet ds;
oleDbConnection1 = new System.Data.OleDb.OleDbConnection();

920

Chapter 26

32 557599 Ch26.qxd 4/29/04 11:43 AM Page 920

oleDbConnection1.ConnectionString = @” ... “;
String oleDbCommand = “INSERT INTO Events (Name, Room, AttendeeList,” +

“ EventDate) VALUES (‘“ + eventName + “‘, ‘“ +
eventRoom + “‘, ‘“ + eventAttendees + “‘, ‘“ +
eventDate + “‘)”;

System.Data.OleDb.OleDbCommand insertCommand =
new System.Data.OleDb.OleDbCommand(oleDbCommand,

oleDbConnection1);
oleDbConnection1.Open();
int queryResult = insertCommand.ExecuteNonQuery();

}

We use queryResult to store the number of rows affected by the query as before. We can check this to
see whether it is 1 to gauge our success. If we are successful then we execute a new query on the
database to refresh the Events table in our DataSet. It is vital to lock the application data while we per-
form our updates, to ensure that no other threads can access Application[“ds”] while we update it.
We can do this using the Lock() and UnLock() methods of the Application object:

[WebMethod]
public int AddEvent(String eventName, String eventRoom,

String eventAttendees, String eventDate)
{

...
int queryResult = insertCommand.ExecuteNonQuery();
if (queryResult == 1)
{

daEvents = new System.Data.OleDb.OleDbDataAdapter(
“SELECT * FROM Events”, oleDbConnection1);

ds = (DataSet)Application[“ds”];
ds.Tables[“Events”].Clear();
daEvents.Fill(ds, “Events”);
Application.Lock();
Application[“ds”] = ds;
Application.UnLock();
oleDbConnection1.Close();

}
}

Finally, we return queryResult, allowing the client to know if the query was successful:

[WebMethod]
public int AddEvent(String eventName, String eventRoom,

String eventAttendees, String eventDate)
{

...
return queryResult;

}

And with that, we have completed our Web service. As before, we can test this service out simply by
pointing a Web browser at the .asmx file, so we can add records and look at the XML representation of
the DataSet returned by GetData() without writing any client code.

Before moving on it’s worth discussing the use of DataSet objects with Web Services. At first glance this
seems like a fantastic way of exchanging data, and indeed it is an extremely powerful technique.

921

Web Services

32 557599 Ch26.qxd 4/29/04 11:43 AM Page 921

However, the fact that the DataSet class is so versatile does have implications. If you examine the
WSDL generated for the GetData() method you’ll see the following:

<s:element name=”GetDataResponse”>
<s:complexType>

<s:sequence>
<s:element minOccurs=”0” maxOccurs=”1” name=”GetDataResult”>

<s:complexType>
<s:sequence>

<s:element ref=”s:schema” />
<s:any />

</s:sequence>
</s:complexType>

</s:element>
</s:sequence>

</s:complexType>
</s:element>

As you can see, this is very generic code, which allows the DataSet object passed to contain any data
specified with an inline schema. Unfortunately, this does mean that the WSDL is not completely describ-
ing the Web service. For .NET clients this isn’t a problem, and things progress as naturally as they did
when passing a simple string in our earlier example, the only difference being that we exchange a
DataSet object. However, non-.NET clients must have prior knowledge of the data that will be passed,
or some equivalent of a DataSet class in order to access the data.

A work-around to this requirement is to repackage the data into a different format, an array of structs,
for example. However, for our purposes using a DataSet object is not a problem, and greatly simplifies
other code.

The Event-Booking Client
The client we’ll use is a development of the PCSWebApp3 Web application from Chapter 25. We’ll call
this application PCSWebApp4, and use the code from PCSWebApp3 as a starting point.

We’ll make two major modifications to the project. Firstly, we’ll remove all direct database access from
this application and use the Web service instead. Secondly, we’ll introduce an application-level store of
the DataSet object returned from the Web service that is only updated when necessary, meaning that
even less of a load is placed on the database.

The first thing to do to our new Web application is to add a Web reference to the PCSWebSrv2/
Service1.asmx service. We can do this in the same way we discussed earlier in this chapter through
right-clicking on the project in Server Explorer, locating the .asmx file, calling the Web reference
eventDataService, and clicking Add Reference.

Next we add code to Global.asax.cs in much the same way as we did for our Web service. This code,
though, is a lot simpler. First we reference the Web service and the System.Data namespace:

...
using System.Data;
using PCSWebApp4.eventDataService;

922

Chapter 26

32 557599 Ch26.qxd 4/29/04 11:43 AM Page 922

Next we fill a DataSet object and place it into an application-level data store called ds:

protected void Application_Start(Object sender, EventArgs e)
{

Service1 dataService = new Service1();
DataSet ds = dataService.GetData();
Application[“ds”] = ds;

}

This DataSet object is now available to all instances of PCSWebApp4, meaning that multiple users can
read data without any calls to the Web service, or indeed to the database.

Next we must modify the WebForm1.aspx.cs file so we can use it. We start by removing the declarations
of oleDbConnection1, daAttendees, daRooms, and daEvents, since we won’t be accessing any
database. We can also remove the initialization code for oleDbConnection1, found in
InitializeComponent(). Next we must add a using statement for PCSWebApp4.eventDataService,
as we did for Global.asax.cs, and change Page_Load() as follows:

private void Page_Load(object sender, System.EventArgs e)
{

ds = (DataSet)Application[“ds”];
attendeeList.DataSource = ds.Tables[“Attendees”];
roomList.DataSource = ds.Tables[“Rooms”];
eventTable = ds.Tables[“Events”];
eventDetails1.DataSource = eventTable;
eventDetails2.DataSource = eventTable;
if (!this.IsPostBack)
{

System.DateTime trialDate = System.DateTime.Now;
calendar.SelectedDate = getFreeDate(trialDate);
this.DataBind();

}
else
{

eventDetails1.DataBind();
eventDetails2.DataBind();

}
}

Most of the code remains the same, all we need to do is to use Application[“ds”] instead of getting
the DataSet object ourselves.

We also must change submitButton_Click() to use the Web service AddData() method. Again, much
of the code remains unchanged:

private void submitButton_Click(object sender, System.EventArgs e)
{

if (this.IsValid)
{

String attendees = “”;
foreach (ListItem attendee in attendeeList.Items)
{

923

Web Services

32 557599 Ch26.qxd 4/29/04 11:43 AM Page 923

if (attendee.Selected)
{

attendees += attendee.Text + “ (“ + attendee.Value + “), “;
}

}
attendees += “ and “ + nameBox.Text;
String dateString =

calendar.SelectedDate.Date.Date.ToShortDateString();
Service1 dataService = new Service1();
int queryResult = dataService.AddEvent(eventBox.Text,

roomList.SelectedItem.Value,
attendees,
dateString);

if (queryResult == 1)
{

resultLabel.Text = “Event Added.”;
ds = dataService.GetData();
Application.Lock();
Application[“ds”] = ds;
Application.UnLock();
eventTable = ds.Tables[“Events”];
calendar.SelectedDate =

getFreeDate(calendar.SelectedDate.AddDays(1));
eventDetails1.DataSource = eventTable;
eventDetails1.DataBind();
eventDetails2.DataSource = eventTable;
eventDetails2.DataBind();

}
else
{

resultLabel.Text = “Event not added due to DB access problem.”;
}

}
}

In fact, all we’ve really done is simplify things a great deal. This is often the case when using well-
designed Web services—we can forget about much of the workings and instead concentrate on the user
experience.

There isn’t a huge amount to comment on in this code. Continuing to make use of queryResult is a
bonus, and locking the application is essential as already noted.

The PCSWebApp4 Web application should look and function exactly like PCSWebApp3, but perform
substantially better. We can also use the same Web service very easily for other applications—simply dis-
playing events on a page, for example, or even editing events, attendee names, and rooms if we add
some more methods. Doing this won’t break PCSWebApp4 since it will simply ignore any new methods
created.

Exchanging Data Using SOAP Headers
One final topic to look at in this chapter is using SOAP headers to exchange information, rather than
including information in method parameters. The reason for covering it is that it is a very nice system to

924

Chapter 26

32 557599 Ch26.qxd 4/29/04 11:43 AM Page 924

use for maintaining a user login. We won’t go into detail about setting up your server for SSL connec-
tions, or the various methods of authentication that can be configured using IIS, since these do not affect
the Web service code we need to get this behavior.

Let’s say we have a service that contains a simple authentication method with a signature as follows:

AuthenticationToken AuthenticateUser(string userName, string password);

Where AuthenticationToken is a type we define that can be used by the user in later method calls, for
example:

void DoSomething(AuthenticationToken token, OtherParamType param);

After logging in, the user has access to other methods using the token received from
AuthenticateUser(). This technique is typical of secure Web systems, although it can be implemented
in a far more complex way.

We can simplify this process further by using a SOAP header to exchange tokens (or any other data). We
can restrict methods so that they can only be called if a specified SOAP header is included in the method
call. This simplifies their structure as follows:

void DoSomething(OtherParamType param);

The advantage here is that, after we have set the header on the client, it persists. So after an initial bit of
setting up we can ignore authentication tokens in all further Web method calls.

To see this in action create a new Web service project called PCSWebSrv3, and add a new class called
AuthenticationToken.cs as follows:

using System;
using System.Web.Services.Protocols;

namespace PCSWebSrv3
{

public class AuthenticationToken : SoapHeader
{

public Guid InnerToken;
}

}

We’ll use a GUID to identify the token, a common procedure, since we can be sure that it is unique.

To declare that the Web service can have a custom SOAP header we simply add a public member to the
service class, of our new type:

public class Service1 : System.Web.Services.WebService
{

public AuthenticationToken AuthenticationTokenHeader;

We also need a using statement for System.Web.Services.Protocols in the Service1.asmx.cs file.
This namespace contains an attribute called SoapHeaderAttribute, which we can use to mark those
Web methods that require the extra SOAP header in order work.

925

Web Services

32 557599 Ch26.qxd 4/29/04 11:43 AM Page 925

However, before we add such a method, let’s add a very simple Login() method that clients can use to
obtain an authentication token:

[WebMethod]
public Guid Login(string userName, string password)
{

if ((userName == “Karli”) && (password == “Cheese”))
{

Guid currentUser = Guid.NewGuid();
Application[“currentUser”] = currentUser;
return currentUser;

}
else
{

Application[“currentUser”] = null;
return Guid.Empty;

}
}

If the correct username and password are used then a new Guid object is generated, stored in an applica-
tion-level variable, and returned to the user. If authentication fails then an empty Guid instance is
returned and stored at the application level.

Next we have a method that accepts the header, as specified by the SoapHeaderAttribute attribute:

[WebMethod]
[SoapHeaderAttribute(“AuthenticationTokenHeader”,

Direction = SoapHeaderDirection.In)]
public string DoSomething()
{

if (Application[“currentUser”] != null &&
AuthenticationTokenHeader != null &&
AuthenticationTokenHeader.InnerToken
== (Guid)Application[“currentUser”])

{
return “Authentication OK.”;

}
else
{

return “Authentication failed.”;
}

}

This returns one of two strings, depending on whether the AuthenticationTokenHeader header
exists, isn’t an empty Guid, and matches the one stored in Application[“currentUser”] (if this
Application variable exists).

In order to use the code as shown above we need to add the following using statement to
Service1.asmx.cs:

using System.Web.Services.Protocols;

This is the same using statement we added to AuthenticationToken.cs.

926

Chapter 26

32 557599 Ch26.qxd 4/29/04 11:43 AM Page 926

Next we must create a quick client to test this service. Create a new Web application called
PCSWebClient3, with the following simple code for the user interface:

<form id=”Form1” method=”post” runat=”server”>
User Name:
<asp:TextBox Runat=”server” ID=”userNameBox” />

Password:
<asp:TextBox Runat=”server” ID=”passwordBox” />

<asp:Button Runat=”server” ID=”loginButton” Text=”Log in” />

<asp:Label Runat=”server” ID=”tokenLabel” />

<asp:Button Runat=”server” ID=”invokeButton” Text=”Invoke DoSomething()” />

<asp:Label Runat=”server” ID=”resultLabel” />

</form>

Add the PCSWebSrv3 service as a Web reference with the name authenticateService, and add the
following using statement to WebForm1.aspx.cs:

using PCSWebClient3.authenticateService;

We use a protected member to store the Web reference proxy, and another to store a Boolean value indi-
cating whether the user is authenticated or not:

public class WebForm1 : System.Web.UI.Page
{

protected System.Web.UI.WebControls.TextBox userNameBox;
protected System.Web.UI.WebControls.TextBox passwordBox;
protected System.Web.UI.WebControls.Button loginButton;
protected System.Web.UI.WebControls.Label tokenLabel;
protected System.Web.UI.WebControls.Button invokeButton;
protected System.Web.UI.WebControls.Label resultLabel;
protected Service1 myService;
protected bool authenticated;

We initialize this member in Page_Load(). After we have a header to use with this Web service we’ll
store it in the ViewState collection of the form (a useful way to persist information between postbacks,
which works in a similar way to storing information at the application or session level). Page_Load()
looks to see if there is a stored header and assigns the header to the proxy accordingly (assigning the
header in this way is the only step we must take for the data to be sent as a SOAP header). This way any
event handlers that are being called (such as the one for the Web method–invoking button) don’t have to
assign a header—that step has already been taken:

private void Page_Load(object sender, System.EventArgs e)
{

myService = new Service1();
AuthenticationToken header = new AuthenticationToken();
if (ViewState[“AuthenticationTokenHeader”] != null)
{

header.InnerToken = (Guid)ViewState[“AuthenticationTokenHeader”];
}
else
{

header.InnerToken = Guid.Empty;
}
myService.AuthenticationTokenValue = header;

}

927

Web Services

32 557599 Ch26.qxd 4/29/04 11:43 AM Page 927

Next we add an event handler for the Log in button by double-clicking it in the Designer:

private void loginButton_Click(object sender, System.EventArgs e)
{

Guid authenticationTokenHeader = myService.Login(userNameBox.Text,
passwordBox.Text);

tokenLabel.Text = authenticationTokenHeader.ToString();
ViewState.Add(“AuthenticationTokenHeader”, authenticationTokenHeader);

}

This handler uses any data entered in the two text boxes to call Login(), displays the Guid returned,
and stores the Guid in the ViewState collection.

Finally, we have to add a handler in the same way for the Invoke DoSomething() button:

private void invokeButton_Click(object sender, System.EventArgs e)
{

resultLabel.Text = myService.DoSomething();
}

This handler simply outputs the text returned by DoSomething().

When we run this application we can press the Invoke DoSomething() button directly, since Page_
Load() has assigned the correct header (if we haven’t assigned a header then an exception will be
thrown, because we have specified that the header is required for this method). This results in a failure
message, returned from DoSomething(), as shown in Figure 26-4.

Figure 26-4

If we try to log in with any user name and password except “Karli” and “Cheese” we will get the same
result. If, on the other hand, we log in using these credentials and then call DoSomething() we get the
success message:

We can also see a string representation of the Guid used for validation.

928

Chapter 26

32 557599 Ch26.qxd 4/29/04 11:43 AM Page 928

Of course, applications that use this technique of exchanging data via SOAP headers are likely to be far
more complicated. They will need to store login tokens in a more sensible way than just one application-
level variable, perhaps in a database. For completeness we can also expire these tokens when a certain
amount of time has passed, and provide the option for users to log out, which would simply mean
removing the token. We could even validate the token against the IP address used by the user for further
security. The key points here though are that the username and password of the user are only sent once,
and that using a SOAP header simplifies later method calls.

Summary
In this chapter we have seen how to create and consume Web services using C# and the Visual Studio
.NET development platform. Doing this is perhaps surprisingly simple, but is instantly recognizable as
something that could prove to be incredibly useful. Already we are seeing many announcements about
new Web services, and I suspect that they will be everywhere before long.

It has also been pointed out that Web services may be accessed from any platform. This is due to the
SOAP protocol, which doesn’t limit us to .NET.

The main example developed in this chapter illustrates how we can create .NET-distributed applications
with ease. We have assumed here that you are using a single server to test things out, but there is no rea-
son why the Web service shouldn’t be completely separate from the client. It may even be on a separate
server from the database if an additional data tier is required.

The use of data caching throughout is another important technique to master for use in large-scale appli-
cations, which might have thousands of users connecting simultaneously. Naturally, using Microsoft
Access as a data source under such circumstances might not necessarily be the best idea!

Exchanging data via SOAP headers, introduced in the last example, is another useful technique that can
be worked into your applications. The example uses the exchange of a login token, but there is no reason
why more complex data shouldn’t be exchanged in this way. Perhaps this could be used for simple pass-
word protection of Web Services, without having to resort to imposing more complex security.

Finally, remember that Web service consumers don’t necessarily have to be Web applications. There is no
reason why we can’t use Web services from Windows Forms applications—which certainly seems like
an attractive option for a corporate intranet.

All in all, the potential of Web services certainly astounds me, and I hope you’re impressed too!

929

Web Services

32 557599 Ch26.qxd 4/29/04 11:43 AM Page 929

32 557599 Ch26.qxd 4/29/04 11:43 AM Page 930

User Controls and
Custom Controls

It has often been the case with Web development that the tools available, however powerful, don’t
quite match up with your requirements for a specific project. Perhaps a given control doesn’t quite
work as you’d like it to, or perhaps one section of code, intended for reuse on several pages, is too
complex in the hands of multiple developers. In cases such as these there is a strong argument for
building your own controls. Such controls can, at their simplest, wrap multiple existing controls
together, perhaps with additional properties specifying layout. They can also be completely unlike
any existing control. Using a control you have built yourself can be as simple as using any other
control in ASP.NET (if you have written them well), which can certainly ease Web site coding.

In the past it has been tricky to implement such custom-built controls, especially on large-scale
systems where complex registration procedures might be required in order to use them. Even on
simple systems, the coding required to create a custom control could become a very involved pro-
cess. The scripting capabilities of older Web languages also suffered by not giving the perfect
access to your cunningly crafted object models, and resulted in poor performance all around.

.NET Framework provides an ideal setting for the creation of custom controls, using simple pro-
gramming techniques. Every aspect of ASP.NET server controls is exposed for you to customize,
including such capabilities as templating, client-side scripting, and so on. However, there is no
need to write code for all of these eventualities; simpler controls can be a lot easier to create.

In addition, the dynamic discovery of assemblies that is inherent in a .NET system makes installa-
tion of Web applications on a new Web server as simple as copying the directory structure contain-
ing your code. To make use of the controls you have created you simply copy the assemblies
containing those controls along with the rest of the code. You can even place frequently used con-
trols in an assembly located in the global assembly cache (GAC) on the Web server, so that all Web
applications on the server have access to them.

33 557599 Ch27.qxd 4/29/04 11:43 AM Page 931

In this chapter we discuss two different kinds of controls:

❑ User controls (and how to convert existing ASP.NET pages into controls)

❑ Custom controls (and how to group the functionality of several controls, extending existing con-
trols, and creating new controls from scratch)

We’ll illustrate user controls by creating a simple control that displays a card suit (club, diamond, heart,
or spade), so that we can embed it in other ASP.NET pages with ease. In the case of custom controls,
we’ll create a straw poll control allowing the user to vote for a candidate in a list and see how the vote is
progressing.

User Controls
User controls are controls that you create using ASP.NET code, just as you would in standard ASP.NET
Web pages. The difference is that after you have created a user control you can reuse it in multiple
ASP.NET pages with a minimum of difficulty.

For example, let’s say that you have created a page that displays some information from a database, per-
haps information about an order. Instead of creating a fixed page that does this, it is possible to place the
relevant code into a user control, and then insert that control into as many different Web pages as you
want.

In addition, it is possible to define properties and methods for user controls. For example, you can spec-
ify a property for the background color for displaying your database table in a Web page, or a method to
re-run a database query to check for changes.

Let’s dive in and create a simple user control. As is the case with the other chapters, you can download
the code for the sample projects in this chapter from the Wrox Web site at www.wrox.com.

A Simple User Control
In Visual Studio .NET, create a new Web application called PCSUserCWebApp1. After the standard files
have been generated, select the Project➪Add New Item menu option, and add a Web User Control
called PCSUserC1.ascx as shown in Figure 27-1.

The files added to our project, with the extensions .ascx and .ascx.cs, work in a very similar way to the
.aspx files we’ve seen already. The .ascx file contains our ASP.NET code and looks very similar to a nor-
mal .aspx file. The .ascx.cs file is our code-behind file, which defines the user control, much in the same
way that forms are defined in .aspx.cs files.

932

Chapter 27

33 557599 Ch27.qxd 4/29/04 11:43 AM Page 932

Figure 27-1

.ascx files can be viewed in Design or HTML view just like .aspx files. Looking at the file in HTML view
reveals an important difference: there is no HTML code present, and in particular no <form> element.
This is because user controls are inserted inside ASP.NET forms in other files and so don’t need a
<form> tag of their own. The generated code is as follows:

<%@ Control Language=”c#” AutoEventWireup=”false”
Codebehind=”PCSUserC1.ascx.cs”
Inherits=”PCSUserCWebApp1.PCSUserC1”
TargetSchema=”http://schemas.microsoft.com/intellisense/ie5”%>

This is very similar to the <%@ Page %> directive generated in .aspx files, except that Control is specified
rather than Page, and a TargetSchema attribute is included. This attribute specifies what browser the
control is designed for (in this case Internet Explorer 5), which affects what items are available to add
from the Visual Studio .NET Toolbox.

Looking at the generated code in the .ascx.cs file reveals another important difference to ASP.NET pages:
the class generated inherits from System.Web.UI.UserControl. Again, this is because the control is
used inside a form; it isn’t a form itself.

Our simple control will be one that displays a graphic corresponding to one of the four standard suits in
cards (club, diamond, heart, spade). The graphics required for this are shipped as part of Visual Studio
.NET; you can find them in the directory C:\Program Files\Microsoft Visual Studio.NET 2003\Common7\
Graphics\bitmaps\assorted, with the filenames CLUB.BMP, DIAMOND.BMP, HEART.BMP, and
SPADE.BMP. Copy these files into your project’s directory so that you can use them in a moment.

933

User Controls and Custom Controls

33 557599 Ch27.qxd 4/29/04 11:43 AM Page 933

Let’s add some code to our new control. In the HTML view of PCSUserC1.ascx add the following:

<%@ Control Language=”c#” AutoEventWireup=”false”
Codebehind=”PCSUserC1.ascx.cs”
Inherits=”PCSUserCWebApp1.PCSUserC1”
TargetSchema=”http://schemas.microsoft.com/intellisense/ie5”%>

<table cellspacing=4>
<tr valign=”middle”>

<td>
<asp:Image Runat=”server” ID=”suitPic” ImageURL=”club.bmp”/>

</td>
<td>

<asp:Label Runat=”server” ID=”suitLabel”>Club</asp:Label>
</td>

</tr>
</table>

This defines a default state for our control, which is a picture of a club along with a label. Before we add
any additional functionality we’ll test this default by adding this control to our project Web page
WebForm1.aspx.

In order to use a custom control in an .aspx file, we first need to specify how we will refer to it, that is,
the name of the tag that will represent the control in our HTML. To do this we use the <%@ Register %>
directive at the top of the code as follows:

<%@ Register TagPrefix=”PCS” TagName=”UserC1” Src=”PCSUserC1.ascx” %>

The TagPrefix and TagName attributes specify the tag name to use (in the form <TagPrefix:
TagName>), and we use the Src attribute to point to the file containing our user control. Now we can use
our control by adding the following element:

<form id=”Form1” method=”post” runat=”server”>
<PCS:UserC1 Runat=”server” ID=”myUserControl”/>

</form>

User controls aren’t declared by default in the code behind our form, so we also need to add the follow-
ing declaration to WebForm1.aspx.cs:

public class WebForm1 : System.Web.UI.Page
{

protected PCSUserC1 myUserControl;
...

This is all we need to do to test our user control. Figure 27-2 shows the results of running this code.

As it stands this control groups two existing controls, an image and a label, in a table layout. As such it
falls into the category of a composite control.

934

Chapter 27

33 557599 Ch27.qxd 4/29/04 11:43 AM Page 934

Figure 27-2

To gain control over the displayed suit, we can use an attribute on the <PCS:UserC1> element.
Attributes on user control elements are automatically mapped to properties on user controls, so all we
have to do to make this work is add a property to the code behind our control, PCSUserC1.ascx.cs. We’ll
call this property Suit, and let it take any suit value. To make it easier for us to represent the state of the
control, we’ll define an enumeration to hold the four suit names, inside the PCSUserCWebApp1 names-
pace in the PCSUserC1.ascx.cs file:

namespace PCSUserCWebApp1
{

...
public enum suit
{

club, diamond, heart, spade
}
...

}

The PCSUserC1 class needs a member variable to hold the suit type, currentSuit:

public class PCSUserC1 : System.Web.UI.UserControl
{

protected System.Web.UI.WebControls.Image suitPic;
protected System.Web.UI.WebControls.Label suitLabel;
protected suit currentSuit;

And a property to access this member variable, Suit:

public suit Suit
{

get
{

return currentSuit;
}
set
{

currentSuit = value;
suitPic.ImageUrl = currentSuit.ToString() + “.bmp”;
suitLabel.Text = currentSuit.ToString();

}
}

935

User Controls and Custom Controls

33 557599 Ch27.qxd 4/29/04 11:43 AM Page 935

The set accessor here sets the URL of the image to one of the files we copied earlier, and the text dis-
played to the suit name.

Next we must add code to WebForm1.aspx so we can access this new property. We could simply specify
the suit using the property we have just added:

<PCS:UserC1 Runat=”server” id=”myUserControl” Suit=”diamond”/>

The ASP.NET processor is intelligent enough to get the correct enumeration item from the string pro-
vided. To make things a bit more interesting and interactive, though, we’ll use a radio button list to
select a suit:

<form id=”Form1” method=”post” runat=”server”>
<PCS:UserC1 Runat=”server” ID=”myUserControl”/>
<asp:RadioButtonList Runat=”server” ID=”suitList”

AutoPostBack=”True”>
<asp:ListItem Value=”club” Selected=”True”>Club</asp:ListItem>
<asp:ListItem Value=”diamond”>Diamond</asp:ListItem>
<asp:ListItem Value=”heart”>Heart</asp:ListItem>
<asp:ListItem Value=”spade”>Spade</asp:ListItem>

</asp:RadioButtonList>
</form>

We also need to add an event handler for the SelectedIndexChanged event of the list, which we can
do simply by double-clicking the radio button list control in Design view.

Note that we have set the AutoPostBack property of this list to True, as the suitList_
SelectedIndexChanged() event handler won’t be executed on the server unless a postback is in
operation, and this control doesn’t trigger a post back by default.

The suitList_SelectedIndexChanged() method requires the following code in WebForm1.aspx.cs:

protected void suitList_SelectedIndexChanged(object sender,
System.EventArgs e)

{
myUserControl.Suit = (suit)Enum.Parse(typeof(suit),

suitList.SelectedItem.Value);
}

We know that the Value attributes on the <ListItem> elements represent valid values for the suit enu-
meration we defined earlier, so we simply parse these as enumeration types and use them as values of
the Suit property of our user control. We cast the returned object type to suit using simple casing syn-
tax, as this can’t be achieved implicitly.

Now we can change the suit when we run our Web application (see Figure 27-3).

936

Chapter 27

33 557599 Ch27.qxd 4/29/04 11:43 AM Page 936

Figure 27-3

Next we’ll give our control some methods. Again, this is very simple; we just add methods to our
PCSUserC1 class:

public void Club()
{

Suit = suit.club;
}
public void Diamond()
{

Suit = suit.diamond;
}
public void Heart()
{

Suit = suit.heart;
}
public void Spade()
{

Suit = suit.spade;
}

These four methods—Club(), Diamond(), Heart(), and Spade()—change the suit displayed on the
screen to the respective suit clicked.

We’ll call these functions from four ImageButton controls in our .aspx page:

</asp:RadioButtonList>
<asp:ImageButton Runat=”server” ID=”clubButton”

ImageUrl=”CLUB.BMP”
OnClick=”clubButton_Click”/>

<asp:ImageButton Runat=”server” ID=”diamondButton”
ImageUrl=”DIAMOND.BMP”
OnClick=”diamondButton_Click”/>

937

User Controls and Custom Controls

33 557599 Ch27.qxd 4/29/04 11:43 AM Page 937

<asp:ImageButton Runat=”server” ID=”heartButton”
ImageUrl=”HEART.BMP”
OnClick=”heartButton_Click”/>

<asp:ImageButton Runat=”server” ID=”spadeButton”
ImageUrl=”SPADE.BMP”
OnClick=”spadeButton_Click”/>

</form>

We’ll use the following event handlers:

protected void clubButton_Click(object sender,
System.Web.UI.ImageClickEventArgs e)

{
myUserControl.Club();
suitList.SelectedIndex = 0;

}

protected void diamondButton_Click(object sender,
System.Web.UI.ImageClickEventArgs e)

{
myUserControl.Diamond();
suitList.SelectedIndex = 1;

}

protected void heartButton_Click(object sender,
System.Web.UI.ImageClickEventArgs e)

{
myUserControl.Heart();
suitList.SelectedIndex = 2;

}

protected void spadeButton_Click(object sender,
System.Web.UI.ImageClickEventArgs e)

{
myUserControl.Spade();
suitList.SelectedIndex = 3;

}

Now we have four new buttons we can use to change the suit, as shown in Figure 27-4.

Now that we’ve created our user control we can use it in any other Web page simply by using the <%@
Register %> directive and the two source code files (PCSUserC1.ascx and PCSUserC1.ascx.cs) we have
created for the control.

938

Chapter 27

33 557599 Ch27.qxd 4/29/04 11:43 AM Page 938

Figure 27-4

Custom Controls
Custom controls go a step beyond user controls in that they are entirely self-contained in C# assemblies,
requiring no separate ASP.NET code. This means that we don’t need to go through the process of assem-
bling a user interface (UI) in an .ascx file. Instead, we have complete control over what is written to the
output stream, that is, the exact HTML generated by our control.

In general, it will take longer to develop custom controls than user controls, because the syntax is more
complex and we often have to write significantly more code to get results. A user control may be as sim-
ple as a few other controls grouped together as we’ve seen, whereas a custom control can do just about
anything short of making you a cup of coffee.

To get the most customizable behavior for our custom controls we can derive a class from System.Web.
UI.WebControls.WebControl. If we do this then we are creating a full custom control. Alternatively,
we can extend the functionality of an existing control, creating a derived custom control. Finally, we can
group existing controls together, much like we did in the last section but with a more logical structure, to
create a composite custom control.

Whatever we create can be used in ASP.NET pages in pretty much the same way. All we need to do is to
place the generated assembly in a location where the Web application that will use it can find it, and reg-
ister the element names to use with the <%@ Register %> directive. For this location, you have we have
two options: we can either put the assembly in the bin directory of the Web application, or place it in the
GAC if we want all Web applications on the server to have access to it.

The <%@ Register %> directive takes a slightly different syntax for custom controls:

<%@ Register TagPrefix=”PCS” Namespace=”PCSCustomWebControls”
Assembly=”PCSCustomWebControls”%>

939

User Controls and Custom Controls

33 557599 Ch27.qxd 4/29/04 11:43 AM Page 939

We use the TagPrefix option in the same way as before, but we don’t use the TagName or Src attributes.
This is because the custom control assembly we use may contain several custom controls, and each of
these will be named by its class, so TagName is redundant. In addition, since we can use the dynamic dis-
covery capabilities of.NET Framework to find our assembly we simply have to name it and the names-
pace in it that contains our controls.

In the previous line of code, we are instruct the program to use an assembly called PCSCustomWeb
Controls.dll with controls in the PCSCustomWebControls namespace, and use the tag prefix PCS. If
we have a control called Control1 in this namespace we could use it with the ASP.NET code:

<PCS:Control1 Runat=”server” ID=”MyControl1”/>

With custom controls it is also possible to reproduce some of the control nesting behavior that exists in
list controls:

<asp:DropDownList ID=”roomList” Runat=”server” Width=”160px”>
<asp:ListItem Value=”1”>The Happy Room</asp:ListItem>
<asp:ListItem Value=”2”>The Angry Room</asp:ListItem>
<asp:ListItem Value=”3”>The Depressing Room</asp:ListItem>
<asp:ListItem Value=”4”>The Funked Out Room</asp:ListItem>

</asp:DropDownList>

We can create controls that should be interpreted as being children of other controls in a very similar
way to this. We’ll discuss how to do this later in this chapter.

Custom Control Project Configuration
Let’s start putting some of this theory into practice. We’ll use a single assembly to hold all of the example
custom controls in this chapter for simplicity, which we can create in Visual Studio .NET by choosing a
new project of type Web Control Library. We’ll call our library PCSCustomWebControls, as shown in
Figure 27-5.

Figure 27-5

940

Chapter 27

33 557599 Ch27.qxd 4/29/04 11:43 AM Page 940

Here I have created the project in C:\ProCSharp\CustomControls. There is no need for the project to be
created on the Web server as with Web applications, since it doesn’t need to be externally accessible in
the same way. Of course, we can create Web control libraries anywhere, as long as we remember to copy
the generated assembly somewhere where the Web application that uses it can find it!

One technique we can use to facilitate testing is to add a Web application project to the same solution.
We’ll call this application PCSCustomWebControlsTestApp. For now, this is the only application that
will use our custom control library, so to speed things up a little we can make the output assembly for
our library be created in the correct bin directory (this means that we don’t have to copy the file across
every time we recompile). We can do this through the property pages for the PCSCustomWebControls
project (see Figure 27-6).

Figure 27-6

Note that we have changed the Configuration dropdown to All Configurations, debug and release build
outputs will be placed in the same place. The Output Path has been changed to C:\Inetpub\wwwroot\
PCSCustomWebControlsTestApp\bin. To make debugging easier we can also change the Debug
Mode option on the Debugging property page to URL and the Start URL to, http://localhost/
PCSCustomWebControlsTestApp/WebForm1.aspx so we can just execute our project in debug mode
to see our results.

We can make sure that this is all working by testing the control that is supplied by default in the .cs file
of our custom control library, WebCustomControl1.cs. We just need to make the following changes to the
code in WebForm1.aspx, which simply references the newly created control library and embeds the
default control in this library into the page body:

941

User Controls and Custom Controls

33 557599 Ch27.qxd 4/29/04 11:43 AM Page 941

<%@ Page language=”c#” Codebehind=”WebForm1.aspx.cs” AutoEventWireup=”false”
Inherits=”PCSCustomWebControlsTestApp.WebForm1” %>

<%@ Register TagPrefix=”PCS” Namespace=”PCSCustomWebControls”
Assembly=”PCSCustomWebControls”%>

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0 Transitional//EN” >
<HTML>

<HEAD>
<title>WebForm1</title>
<meta name=”GENERATOR”content=”Microsoft Visual Studio 7.0” >
<meta name=”CODE_LANGUAGE”content=”C#” >
<meta name=”vs_defaultClientScript”content=”JavaScript” >
<meta name=”vs_targetSchema”

content=”http://schemas.microsoft.com/intellisense/ie5” >
</HEAD>
<body MS_POSITIONING=”GridLayout”>

<form id=”Form1” method=”post” runat=”server”>
<PCS:WebCustomControl1 ID=”testControl” Runat=”server”

Text=”Testing again...”/>
</form>

</body>
</html>

In fact, there is an even better way of doing this after the control library project has been compiled. The
Visual Studio .NET Toolbox has a tab called My User Controls that you can use to add your own controls
(or you can add your own tab). Right-click the tab to which you want to add your new control and
choose the Add/Remove Items menu option. Next, from the .NET Framework Components tab browse
to the PCSCustomWebControls.dll assembly, load it, and then choose controls from the list, as shown in
Figure 27-7.

Figure 27-7

942

Chapter 27

33 557599 Ch27.qxd 4/29/04 11:43 AM Page 942

Select WebCustomControl1 as shown in Figure 27-7 to display the new control in the Toolbox, ready for
adding to our form (see Figure 27-8).

Figure 27-8

The nice thing about this is that if we add the control from the Toolbox both a project reference to
PCSCustomWebControls and the <%@ Register %> directive are added automatically to the control.
The tag prefix for the control library is also assigned automatically (in our example: cc1). This is fine,
although doing this ourselves gives us greater flexibility that could improve code readability. In the rest
of the code in this chapter we’ll assume that the prefix PCS is used for controls from
PCSCustomWebControls.

Note that the prefix used for Toolbox items can be controlled in the code for the control, by adding the
following attribute to the code for the control:

[assembly: TagPrefix(“WebCustomControl1”, “PCS”)]

One thing that isn’t added for us is a using statement to our PCSCustomWebControlsTestApp names-
pace in WebForm1.aspx.cs. Rather than use fully qualified names for our controls we can add the using
statement ourselves:

using PCSCustomWebControls;

This will enable us to use our custom controls from the code behind the form without full name
qualification.

Now, as long as we have the PCSCustomWebControls library configured as our startup application we
can click the Debug button to see our results. Try changing the Text property of the newly added con-
trol to Testing again and run the application. The result is shown in Figure 27-9.

Figure 27-9

943

User Controls and Custom Controls

33 557599 Ch27.qxd 4/29/04 11:43 AM Page 943

Basic Custom Controls
As can be inferred from the results in the previous section, the sample control generated by default is
simply a version of the standard <asp:Label> control. The code generated in the .cs file for the project,
WebCustomControl1.cs, is as follows (omitting the standard and XML documentation comments):

using System;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.ComponentModel;

namespace PCSCustomWebControls
{

[DefaultProperty(“Text”),
ToolboxData(“<{0}:WebCustomControl1 runat=server></{0}:WebCustomControl1>”)]

public class WebCustomControl1 : System.Web.UI.WebControls.WebControl
{

private string text;

[Bindable(true), Category(“Appearance”), DefaultValue(“”)]
public string Text
{

get
{

return text;
}
set
{

text = value;
}

}

protected override void Render(HtmlTextWriter output)
{

output.Write(Text);
}

}
}

The single class defined here is the WebCustomControl1 class (note how the class name mapped
directly to an ASP.NET element in the simple example we saw before), which is derived from the
WebControl class as discussed earlier. Two attributes are provided for this class: DefaultProperty and
ToolboxData. The DefaultProperty attribute specifies what the default property for the control will
be if used in languages that support this functionality. The ToolboxData attribute specifies exactly what
HTML will be added to an .aspx page if this control is added using the Toolbox (as we discussed earlier,
once the project is compiled we can add the control to the toolbox by configuring the toolbox to use the
assembly created). Note that a {0} placeholder is used to specify where the tag prefix will be placed.

The class contains one property: Text. This is a very simple text property much like those we’ve seen
before. The only point to note here is the three attributes:

944

Chapter 27

33 557599 Ch27.qxd 4/29/04 11:43 AM Page 944

❑ Bindable, which specifies whether the property can be bound to data.

❑ Category, which specifies where the property will be displayed in the property pages.

❑ DefaultValue, which specifies the default value for the property.

Exposing properties in this way works in exactly the same way as it did for custom controls, and is defi-
nitely preferable to exposing public fields.

The remainder of the class consists of the Render() method. This is the single most important method
to implement when designing custom controls, as it is where we have access to the output stream to dis-
play our control content. There are only two cases where we don’t need to implement this method:

❑ When we are designing a control that has no visual representation (usually known as
a component).

❑ When we are deriving from an existing control and don’t need to change its display
characteristics.

Custom controls can also expose custom methods, raise custom events, and respond to child controls (if
any). In the remainder of this chapter, where we discuss how to:

❑ Create a derived control.

❑ Create a composite control.

❑ Create a more advanced control.

The final example is a straw poll control, capable of allowing the user to vote for one of several candi-
dates, and displaying voting progress graphically. Options are defined using nested child controls, in the
manner described earlier.

We’ll start with a simple derived control.

The RainbowLabel derived control
For this first example we’ll derive a control from a Label control and override its Render() method to
output multicolored text. To keep the code for the sample controls in this chapter separate, we’ll create
new source files as necessary, so for this control add a new .cs code file called RainbowLabel.cs to the
PCSCustomWebControls project and add the following code:

using System;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.ComponentModel;
using System.Drawing;

namespace PCSCustomWebControls
{

public class RainbowLabel : System.Web.UI.WebControls.Label
{

945

User Controls and Custom Controls

33 557599 Ch27.qxd 4/29/04 11:43 AM Page 945

private Color[] colors = new Color[] {Color.Red, Color.Orange,
Color.Yellow,
Color.GreenYellow,
Color.Blue, Color.Indigo,
Color.Violet};

protected override void Render(HtmlTextWriter output)
{

string text = Text;
for (int pos=0; pos < text.Length; pos++)
{

int rgb = colors[pos % colors.Length].ToArgb() & 0xFFFFFF;
output.Write(“”

+ text[pos] + “”);
}

}
}

}

This class derives from the existing Label control (System.Web.UI.WebControls.Label) and doesn’t
require any additional properties, because the inherited Text one will do fine. We have added a new pri-
vate field, colors[], which contains an array of colors that we’ll cycle through when we output text.

The main functionality of the control is in Render(), which we have overridden, because we want to
change the HTML output. Here we get the string to display from the Text property and display each
character in a color from the colors[] array.

To test this control we add it to the form in PCSCustomWebControlsTestApp:

<form method=”post” runat=”server” ID=”Form1”>
<PCS:RainbowLabel Runat=”server” Text=”Multicolored label!”

ID=”rainbowLabel1”/>
</form>

Figure 27-10

Maintaining state in custom controls
Each time a control is created on the server in response to a server request it is created from scratch. This
means that any simple field of the control will be reinitialized. In order for controls to maintain state
between requests they must use the ViewState maintained on the client, which means we need to write
controls with this in mind.

946

Chapter 27

33 557599 Ch27.qxd 4/29/04 11:43 AM Page 946

To illustrate this, we’ll add an additional capability to the RainbowLabel control. We’ll add a method
called Cycle() that cycles through the colors available, which will make use of a stored offset field to
determine which color should be used for the first letter in the string displayed. This field must use the
ViewState of the control in order to be persisted between requests.

We’ll show the code for both with and without ViewState storage cases to demonstrate how easy it is to
make an error that results in a non-persistent control.. First we’ll look at code that fails to make use of
the ViewState:

public class RainbowLabel : System.Web.UI.WebControls.Label
{

private Color[] colors = new Color[] {Color.Red, Color.Orange,
Color.Yellow,
Color.GreenYellow,
Color.Blue, Color.Indigo,
Color.Violet};

private int offset = 0;

protected override void Render(HtmlTextWriter output)
{

string text = Text;
for (int pos=0; pos < text.Length; pos++)
{

int rgb = colors[(pos + offset) % colors.Length].ToArgb()
& 0xFFFFFF;

output.Write(“”
+ text[pos] + “”);

}
}

public void Cycle()
{

offset = ++offset;
}

}

Here we initialize the offset field to zero, then allow the Cycle() method to increment it, using the %
operator to ensure that it wraps round to 0 if it reaches 7 (the number of colors in the colors array).

To test this we need a way of calling Cycle(), and the simplest way to do that is to add a button to
our form:

<form method=”post” runat=”server” ID=”Form1”>
<PCS:RainbowLabel Runat=”server” Text=”Multicolored label!”

ID=”rainbowLabel1”/>
<asp:Button Runat=”server” ID=”cycleButton”

Text=”Cycle colors”/>
</form>

Add an event handler by double-clicking on the button in design view and add the following code
(you’ll need to change the protection level to protected):

947

User Controls and Custom Controls

33 557599 Ch27.qxd 4/29/04 11:43 AM Page 947

protected void cycleButton_Click(object sender, System.EventArgs e)
{

this.rainbowLabel1.Cycle();
}

If you run this code you’ll find that the colors change the first time you click the button, but further
clicks will leave the colors as they are.

If this control persisted itself on the server between requests then it would work adequately, because the
offset field would maintain its state without us having to worry about it. However, this technique
wouldn’t make sense for a Web application, with thousands of users potentially using it at the same
time. Creating a separate instance for each user would be counterproductive.

In any case, the solution is quite simple. We have to use the ViewState property bag of our control to
store and retrieve data. We don’t have to worry about how this is serialized, recreated, or anything else.
We just put things in and take things out, safe in the knowledge that state will be maintained between
requests in the standard ASP.NET way.

To place the offset field into ViewState we simply use:

ViewState[“_offset”] = offset;

ViewState consists of name-value pairs, and here we are using one called _offset. We don’t have to
declare this anywhere; it will be created the first time this code is used.

Similarly, to retrieve state we use:

offset = (int)ViewState[“_offset”];

If we do this when nothing is stored in the ViewState under that name we will get a null value. Casting
a null value in this code will throw an exception, so we can either test for this or check whether the
object type retrieved from ViewState is null before we cast it, which is what we’ll do in our code.

In fact, we can update our code in a very simple way by replacing the existing offset member with a pri-
vate offset property that makes use of ViewState, with code as follows:

public class RainbowLabel : System.Web.UI.WebControls.Label
{

...
private int offset
{

get
{

object rawOffset = ViewState[“_offset”];
if (rawOffset != null)
{

return (int)rawOffset;
}
else
{

948

Chapter 27

33 557599 Ch27.qxd 4/29/04 11:43 AM Page 948

ViewState[“_offset”] = 0;
return 0;

}
}
set
{

ViewState[“_offset”] = value;
}

}
...
}

This time, the control allows the Cycle() method to work each time.

In general, we might see ViewState being used for simple public properties, for example:

public string Name
{

get
{

return (string)ViewState[“_name”];
}
set
{

ViewState[“_name”] = value;
}

}

One further point about using ViewState concerns child controls. If our control has children and is used
more than once on a page, then we have the problem that the children will share their ViewState by
default. In almost every case this isn’t the behavior we’d like to see, and luckily we have a simple solu-
tion. By implementing INamingContainer on the parent control we force child controls to use qualified
storage in ViewState, such that child controls will not share their ViewState with similar child controls
with a different parent.

Using this interface doesn’t require any property or method implementation, we just have to use it, as if
it were simply a marker for interpretation by the ASP.NET server, as discussed in the following sections.

Creating a Composite Custom Control
As a simple example of a composite custom control, we can combine the control from the previous sec-
tion with the cycle button we have in the test form.

We’ll call this composite control RainbowLabel2, and place it in a new file, RainbowLabel2.cs. This con-
trol needs to:

❑ Inherit from WebControl (not Label).

❑ Support INamingContainer.

❑ Possess two fields to hold its child controls.

949

User Controls and Custom Controls

33 557599 Ch27.qxd 4/29/04 11:43 AM Page 949

To fulfill these three requirements, we must modify the code obtained by generating a new class file:

using System;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.ComponentModel;

namespace PCSCustomWebControls
{

public class RainbowLabel2 : System.Web.UI.WebControls.WebControl,
INamingContainer

{
private RainbowLabel rainbowLabel = new RainbowLabel();
private Button cycleButton = new Button();
...

In order to configure a composite control we have to ensure that any child controls are added to the
Controls collection and properly initialized. We do this by overriding the CreateChildControls()
method and placing the required code there (here we should call the base CreateChildControls()
implementation, which won’t affect our class but may prevent unexpected surprises):

protected override void CreateChildControls()
{

cycleButton.Text = “Cycle colors.”;
cycleButton.Click += new System.EventHandler(cycleButton_Click);
Controls.Add(cycleButton);
Controls.Add(rainbowLabel);
base.CreateChildControls();

}

Here we just use the Add() method of Controls to get things set up correctly. We’ve also added an
event handler for the button so that we can make it cycle colors. The handler is the now familiar:

protected void cycleButton_Click(object sender, System.EventArgs e)
{

rainbowLabel.Cycle();
}

This call makes the label colors cycle.

To give users of our composite control access to the text in the rainbowLabel child we can add a prop-
erty that maps to the Text property of the child:

public string Text
{

get
{

return rainbowLabel.Text;
}
set
{

rainbowLabel.Text = value;
}

}

950

Chapter 27

33 557599 Ch27.qxd 4/29/04 11:43 AM Page 950

The last thing to do is to implement Render(). The base implementation of this method takes each con-
trol in the Controls collection of the class and tells it to render itself. Since Render() is a protected
method, it doesn’t call Render() for each of these controls; instead it calls the public method
RenderControl(). This has the same effect, because RenderControl() calls Render(), so we don’t
have to change any more code in the RainbowLabel class. To get more control over this rendering (for
example in composite controls that output HTML around that generated by child controls) we can call
this method ourselves:

protected override void Render(HtmlTextWriter output)
{

rainbowLabel.RenderControl(output);
cycleButton.RenderControl(output);

}

We just pass the HtmlTextWriter instance we receive to the RenderControl() method for a child, and
the HTML normally generated by that child will be rendered.

We can use this control in much the same way as RainbowLabel:

<form method=”post” runat=”server” ID=”Form1”>
<PCS:RainbowLabel2 Runat=”server”

Text=”Multicolored label composite”
ID=”rainbowLabel2”/>

</form>

This time a button to cycle the colors is included.

A Straw Poll Control
Next we’ll use and build on the techniques we’ve covered so far to make a more involved custom con-
trol. The end result of this will enable the following ASP.NET code to give us the result shown in Figure
27-11:

<form method=”post” runat=”server” ID=”Form1”>
<PCS:StrawPoll Runat=”server” ID=”strawPoll1”

PollStyle=”voteonly”
Title=”Who is your favorite James Bond?”>

<PCS:Candidate Name=”Sean Connery” Votes=”101”/>
<PCS:Candidate Name=”Roger Moore” Votes=”83”/>
<PCS:Candidate Name=”George Lazenby” Votes=”32”/>
<PCS:Candidate Name=”Timothy Dalton” Votes=”28”/>
<PCS:Candidate Name=”Pierce Brosnan” Votes=”95”/>

</PCS:StrawPoll>
</form>

951

User Controls and Custom Controls

33 557599 Ch27.qxd 4/29/04 11:43 AM Page 951

Figure 27-11

And when we click a vote button the display changes to a straw poll control, as shown in Figure 27-12.

Figure 27-12

Alternatively, we can view results and voting buttons at the same time, and allow multiple votes, mainly
for testing purposes.

The ASP.NET code sets the Name and Votes property for each Candidate. This is fine for this example,
although it is foreseeable that a more advanced version of this control might be data-bound to get these
results. However, we won’t cover this in this chapter, because that could get quite involved.

952

Chapter 27

33 557599 Ch27.qxd 4/29/04 11:43 AM Page 952

When the ASP.NET code is parsed, structures such as this one are interpreted in a consistent way: each
child element is interpreted in the way that we specify in a control builder class associated with the par-
ent control. This control builder, for which we’ll see the code shortly, handles anything nested inside the
control it is associated with, including literal text.

The two controls we need to create are Candidate to hold individual candidates, and StrawPoll,
which will contain and render the straw poll control. Both of these are placed in new source files:
Candidate.cs and StrawPoll.cs.

The Candidate Controls
To start with, we’ll create our Candidate controls, each of which will store a name and the number of
votes cast for that candidate. In addition, these controls will maintain a voting button, and handle any
clicks of this button.

For this project, we need:

❑ Code for the Name and Votes properties (stored in the ViewState).

❑ Initialization code in CreateChildControls().

❑ Code for our button click handler.

We’ll also include a utility method, Increment(), which will add a vote to the current vote count for the
Candidate instance. This utility method will be called by the button click handler.

We’ll also need to support INamingContainer, because we’ll have multiple instances of these controls
with their own children.

The code for the Candidate class goes in Candidate.cs, which we should add to our project along with
the standard namespace and using statements as per the RainbowLabel controls we saw earlier. The
code is as follows:

public class Candidate : System.Web.UI.WebControls.WebControl,
INamingContainer

{
public string Name
{

get
{

object rawName = ViewState[“_name”];
if (rawName != null)
{

return (string)rawName;
}
else
{

ViewState[“_name”] = “Candidate”;
return “Candidate”;

}
}
set
{

953

User Controls and Custom Controls

33 557599 Ch27.qxd 4/29/04 11:43 AM Page 953

ViewState[“_name”] = value;
}

}
public long Votes
{

get
{

object rawVotes = ViewState[“_votes”];
if (rawVotes != null)
{

return (long)rawVotes;
}
else
{

ViewState[“_votes”] = (long)0;
return 0;

}
}
set
{

ViewState[“_votes”] = value;
}

}
public void Increment()
{

Votes += 1;
}
public void Reset()
{

Votes = 0;
}
protected override void CreateChildControls()
{

Button btnVote = new Button();
btnVote.Text = “Vote”;
btnVote.Click += new System.EventHandler(btnVote_Click);
Controls.Add(btnVote);
base.CreateChildControls();

}
protected void btnVote_Click(object sender, System.EventArgs e)
{

Increment();
}

}

Note that Render() hasn’t been overridden here. This is because this control has a single child, the vot-
ing button, and no other information to display. So, we can just go with the default, which will simply be
a rendering of the button.

The StrawPoll Control Builder
Next we’ll discuss how we can translate the ASP.NET code for each option into a control that is a child of
our StrawPoll control. To do this we associate a control builder with the StrawPoll class (defined in

954

Chapter 27

33 557599 Ch27.qxd 4/29/04 11:43 AM Page 954

StrawPoll.cs), using the ControlBuilderAttribute attribute. We also need to specify that child con-
trols should not be parsed as properties of the StrawPoll class by setting the ParseChildren attribute
to false:

[ControlBuilderAttribute(typeof(StrawPollControlBuilder))]
[ParseChildren(false)]
public class StrawPoll : System.Web.UI.WebControls.WebControl,

INamingContainer
{
}

Here we are using a class called StrawPollControlBuilder, defined in StrawPollControlBuilder.cs, as
follows:

internal class StrawPollControlBuilder : ControlBuilder
{

public override Type GetChildControlType(string tagName,
IDictionary attribs)

{
if (tagName.ToLower().EndsWith(“candidate”))

return typeof(Candidate);
return null;

}

public override void AppendLiteralString(string s)
{

// Do nothing, to avoid embedded text being added to control
}

}

In this example we override the GetChildControlType() method of the base ControlBuilder class
to return the type of our Candidate class in response to a tag named <Candidate>. In fact, to make
sure things work smoothly in as many situations as possible, we just look for any tag name that ends
with the string “candidate”, with letters in upper- or lowercase.

We also override the AppendLiteralString() method so that any intervening text, including whites-
pace, is ignored and won’t cause us any problems.

After this is set up, and assuming we don’t place any other controls in StrawPoll, we will have all
Candidate controls contained in the Controls collection of StrawPoll. This collection won’t contain
any other controls.

Note that the control builder makes use of a collection of attributes. In order to support this we need to
add the following using statement to our namespace:

using System.Collections;

Straw Poll Style
Before we look at the StrawPoll class itself, there is one more design consideration. The straw poll
should be able to display itself in one of three forms:

955

User Controls and Custom Controls

33 557599 Ch27.qxd 4/29/04 11:43 AM Page 955

❑ Voting buttons only

❑ Results only

❑ Voting buttons and results

We can define an enumeration for this that we can use as a property of our StrawPoll control (putting
this in StrawPoll.cs is fine):

public enum pollStyle
{

voteonly,
valuesonly,
voteandvalues

}

As we discussed earlier, properties that are enumerations are easy to use—we can simply use the text
names as attribute values in ASP.NET.

The Straw Poll Control
Now we can start putting things together. First we define two properties, Title for the title to display
for the control, and PollStyle to hold the enumerated display type. Both of these properties use the
ViewState for persistence:

[ControlBuilderAttribute(typeof(StrawPollControlBuilder))]
[ParseChildren(false)]
public class StrawPoll : System.Web.UI.WebControls.WebControl,

INamingContainer
{

public string Title
{

get
{

object rawTitle = ViewState[“_title”];
if (rawTitle != null)
{

return (string)rawTitle;
}
else
{

ViewState[“_title”] = “Straw Poll”;
return “Straw Poll”;

}
}
set
{

ViewState[“_title”] = value;
}

}

public pollStyle PollStyle
{

get

956

Chapter 27

33 557599 Ch27.qxd 4/29/04 11:43 AM Page 956

{
object rawPollStyle = ViewState[“_pollStyle”];
if (rawPollStyle != null)
{

return (pollStyle)rawPollStyle;
}
else
{

ViewState[“_pollStyle”] = pollStyle.voteandvalues;
return pollStyle.voteandvalues;

}
}
set
{

ViewState[“_pollStyle”] = value;
}

}
}

The remainder of this class is taken up with the Render() method. This displays the entire straw poll
control along with any options, taking into account the poll style to use. We’ll display voting buttons by
calling the RenderControl() method of child Candidate controls, and display the votes cast graphi-
cally and numerically using the Votes properties of child Candidate controls to generate simple
HTML.

The code is as follows (commented for clarity):

protected override void Render(HtmlTextWriter output)
{

Candidate currentCandidate;
long iTotalVotes = 0;
long iPercentage = 0;
int iColumns = 2;
// Start table, display title
if (PollStyle == pollStyle.voteandvalues)
{

iColumns = 3;
}
output.Write(“<TABLE border=’1’ bordercolor=’black’”

+ “ bgcolor=’#DDDDBB’”
+ “ width=’90%’ cellpadding=’1’ cellspacing=’1’”
+ “ align=’center’>”);

output.Write(“<TR><TD colspan=’” + iColumns
+ “‘ align=’center’”

+ “ bgcolor=’#FFFFDD’>”);
output.Write(“” + Title + “</TD></TR>”);
if (Controls.Count == 0)
{

// Default text when no options contained
output.Write(“<TR><TD bgcolor=’#FFFFDD’>No options to”

+ “ display.</TR></TD>”);
}
else
{

957

User Controls and Custom Controls

33 557599 Ch27.qxd 4/29/04 11:43 AM Page 957

// Get total votes
for (int iLoop = 0; iLoop < Controls.Count; iLoop++)
{

// Get option
currentCandidate = (Candidate)Controls[iLoop];
// Sum votes cast
iTotalVotes += currentCandidate.Votes;

}
// Render each option
for (int iLoop = 0; iLoop < Controls.Count; iLoop++)
{

// Get option
currentCandidate = (Candidate)Controls[iLoop];
// Place option name in first column
output.Write(“<TR><TD bgcolor=’#FFFFDD’ width=’15%’> “

+ currentCandidate.Name + “ </TD>”);
// Add voting option to second column if required
if (PollStyle != pollStyle.valuesonly)
{

output.Write(“<TD width=’1%’ bgcolor=’#FFFFDD’>”
+ “.”);

currentCandidate.RenderControl(output);
output.Write(“.</TD>”);

}
// Place graph, value, and percentage in third
// column if required
if (PollStyle != pollStyle.voteonly)
{

if (iTotalVotes > 0)
{

iPercentage = (currentCandidate.Votes * 100) /
iTotalVotes;

}
else
{

iPercentage = 0;
}
output.Write(“<TD bgcolor=’#FFFFDD’>”

+ “<TABLE width=’100%’>”
+ “<TR><TD><TABLE border=’1’ bordercolor=’black’”

+ “ width=’100%’ cellpadding=’0’”
+ “ cellspacing=’0’>”);

output.Write(“<TR><TD bgcolor=’red’ width=’”
+ iPercentage
+ “%’>.</TD>”);

output.Write(“<TD bgcolor=’white’ width=’”
+ (100-iPercentage)
+ “%’>.”
+ “</TD></TR></TABLE></TD>”);

output.Write(“<TD width=’75’>”
+ currentCandidate.Votes + “ (“
+ iPercentage
+ “%)</TD></TR></TABLE></TD>”);

}
// End row

958

Chapter 27

33 557599 Ch27.qxd 4/29/04 11:43 AM Page 958

output.Write(“</TR>”);
}
// Show total votes cast if values displayed
if (PollStyle != pollStyle.voteonly)
{

output.Write(“<TR><TD bgcolor=’#FFFFDD’ colspan=’”
+ iColumns
+ “‘>Total votes cast: “ + iTotalVotes
+ “</TD></TR>”);

}
}
// Finish table
output.Write(“</TABLE>”);

}

There is one more thing we have to do. If the straw poll is displayed in voteonly mode then voting
should trigger a change of display to valuesonly mode. To do this we must modify in the voting but-
ton handler in our Candidate class:

protected void btnVote_Click(object sender, System.EventArgs e)
{

Increment();
StrawPoll parent = (StrawPoll)Parent;
if (parent.PollStyle == pollStyle.voteonly)
{

parent.PollStyle = pollStyle.valuesonly;
}

}

Now you are free to use the ASP.NET code shown at the start of this section to vote for your favorite
James Bond to your heart’s content!

Adding an event handler
It is often the case with custom controls that you want to raise custom events, and allow users of the con-
trol to act on them. This can be used to excellent effect, as is immediately apparent if you look at the
existing server controls that ASP.NET supplies. For example, the Calendar control is nothing more than
a well-formatted selection of hyperlinks. We could build something like that ourselves using the tech-
niques built up in the previous sections. However, it has the useful function that when you click a date
other than the selected one it raises a SelectionChanged event. We can act on this event, either ignor-
ing it if the selection is OK to change, or performing some processing, which we did in Chapter 26 when
we checked to see if the selected date was already booked. In a similar vein, it would be nice if our straw
poll control had a Voted event, which will notify the form that a vote has been made, and supply it with
all the information needed to act on this.

To register a custom event we have to add the following code to a control:

public event EventHandler Voted;

protected void OnVoted(EventArgs e)
{

if (Voted != null)

959

User Controls and Custom Controls

33 557599 Ch27.qxd 4/29/04 11:43 AM Page 959

{
Voted(this, e);

}
}

Then, whenever we want to raise the event, we simply call OnVoted(), passing the event arguments.

Whenever we call OnVoted() an event is raised that the user of the control can act on. To do this the
user has to register an event handler for this event:

strawPoll1.Voted += new EventHandler(this.strawPoll1_Voted);

The user also has to provide the handler code, strawPoll1_Voted().

We’ll extend this slightly by having custom arguments for our event, in order to make the Candidate
that triggers the event available. We’ll call our custom argument object CandidateEventArgs, defined
in a new class, CandidateEventArgs.cs, as follows:

public class CandidateEventArgs : EventArgs
{

public Candidate OriginatingCandidate;
public CandidateEventArgs(Candidate originator)
{

OriginatingCandidate = originator;
}

}

We’ve simply added an additional public field to the existing EventArgs class. As we’ve changed the
arguments we’re using, we also need a specialized version of the EventHandler delegate that can be
declared in the PCSCustomWebControls namespace as follows:

public delegate void CandidateEventHandler(object sender,
CandidateEventArgs e);

We can use these examples in StrawPoll as follows:

public class StrawPoll : System.Web.UI.WebControls.WebControl,
INamingContainer

{
public event CandidateEventHandler Voted;

protected void OnVoted(CandidateEventArgs e)
{

if (Voted != null)
{

Voted(this, e);
}

}
...

We’ll also have a method to raise the event, called from child Candidate controls when voting buttons
are clicked:

960

Chapter 27

33 557599 Ch27.qxd 4/29/04 11:43 AM Page 960

internal void ChildVote(CandidateEventArgs e)
{

OnVoted(e);
}

We also have to modify the button click handler in Candidate to call this method, supplying it with the
correct parameters:

protected void btnVote_Click(object sender, System.EventArgs e)
{

Increment();
StrawPoll parent = (StrawPoll)Parent;
if (parent.PollStyle == pollStyle.voteonly)
{

parent.PollStyle = pollStyle.valuesonly;
}
CandidateEventArgs eCandidate = new CandidateEventArgs(this);
parent.ChildVote(eCandidate);

}

Now we’re ready to implement the handler on the page using the control. We simply have to specify it
in our ASP.NET page, adding a label to use in the handler:

<form id=Form1 method=post runat=”server”>
<PCS:StrawPoll Runat=”server” ID=strawPoll1 PollStyle=”voteonly”

Title=”Who is your favorite James Bond?”
Voted=”strawPoll1_Voted”>

<PCS:Option Name=”Sean Connery” Votes=”101”/>
<PCS:Option Name=”Roger Moore” Votes=”83”/>
<PCS:Option Name=”George Lazenby” Votes=”32”/>
<PCS:Option Name=”Timothy Dalton” Votes=”27”/>
<PCS:Option Name=”Pierce Brosnan” Votes=”95”/>

</PCS:StrawPoll>

<asp:Label Runat=”server” ID=”resultLabel” Text=”No vote cast.”/>

</form>

Then we add the event handler itself:

protected void strawPoll1_Voted(object sender, CandidateEventArgs e)
{

resultLabel.Text = “You voted for “
+ e.OriginatingCandidate.Name + “.”;

}

We also have to register this event handler in InitializeComponent() (we’ll need a using statement
for PCSCustomWebControls to do this):

this.strawPoll1.Voted +=
new PCSCustomWebControls.CandidateEventHandler(this.strawPoll1_Voted);

961

User Controls and Custom Controls

33 557599 Ch27.qxd 4/29/04 11:43 AM Page 961

Now when we vote we receive feedback on our vote, as shown in Figure 27-13.

Figure 27-13

Summary
In this chapter we have looked at the various ways we can create reusable ASP.NET server controls
using C#. We have discussed how to create simple user controls from existing ASP.NET pages, as well as
how to create custom controls from scratch.

There is a lot we can do with custom controls; unfortunately, we cannot possibly cover every detail in
this book. (For example, it would have been interesting to discuss data-binding, and how to create con-
trols with data-binding in mind.) However, with the information in this chapter you should be able to
start building (and experiment with) your own custom controls. For more details on this subject, check
out Professional ASP.NET 1.1 (ISBN: 0-7645-5890-0).

962

Chapter 27

33 557599 Ch27.qxd 4/29/04 11:43 AM Page 962

Part VI: Interop

Chapter 28: COM Interoperability

Chapter 29: Enterprise Services

34 557559 PP06.qxd 4/29/04 11:42 AM Page 963

34 557559 PP06.qxd 4/29/04 11:42 AM Page 964

COM Interoperability

If you had written Windows programs before learning .NET, usually there is not the time and
resources available to rewrite everything with .NET. Existing functional code will not be rewritten
just because a new technology is available. You might have thousands of lines of existing, running
code, which would mean too much effort to rewrite this code just to move it into the managed
environment.

The same applies to Microsoft. With the namespace System.DirectoryServices, Microsoft
hasn’t rewritten the COM objects accessing the hierarchical data store; the classes inside this
namespace are wrappers accessing the ADSI COM Objects instead. The same thing happens with
System.Data.OleDb where the OLE DB providers that are used by classes from this namespace
do have quiet complex COM interfaces.

The same issue may apply for your own solutions. If you have existing COM objects that should be
used from .NET applications, or the other way around if you want to write .NET components that
should be used in old COM clients, this chapter will be a starter for using COM interoperability.

In this chapter we are going to:

❑ Compare COM and .NET technologies

❑ Use COM objects from within .NET applications

❑ Use .NET components from within COM clients

As is the case with the other chapters, you can download the sample code for this chapter from the
Wrox Web site at www.wrox.com.

35 557599 Ch28.qxd 4/29/04 11:45 AM Page 965

.NET and COM
The major issues using COM interoperability with .NET are to know COM. Offering .NET components
for COM clients or using COM objects with .NET, that is all problems we had in the last year with COM
are [CKS1]coming back. So first we discuss how COM compares to .NET

If you already have a good grasp of COM technologies, this section may be a refresher to your COM
knowledge. Otherwise it introduces you to the concepts of COM that—now using .NET—we can be
happy not to deal with it anymore in our daily business. However, all the problems we had with COM
still apply when COM technology is integrated in .NET applications.

COM and .NET do have many similar concepts with very different solutions. Here we will discuss:

❑ Metadata

❑ Freeing memory

❑ Interfaces

❑ Method binding

❑ Data types

❑ Registration

❑ Threading

❑ Error handling

❑ Event handling

Metadata
With COM all information about the component is stored inside the type library. The type library
includes information such as names and ids of interfaces, methods, and arguments. With .NET all this
information can be found inside the assembly itself as we have seen in Chapters 10 and 13. The problem
we had with COM is that the type library is not extensible. With C++ IDL (interface definition language)
files have been used to describe the interfaces and methods. Some of the IDL modifiers cannot be found
inside the type library, because Visual Basic (and the Visual Basic team was responsible for the type
library) couldn’t use these IDL modifiers. With .NET this problem doesn’t exist because the .NET meta-
data is extensible using custom attributes.

As a result of this behavior, some COM components have a type library, and others don’t. Where no type
library is available, a C++ header file can be used that describes the interfaces and methods. With .NET it
is easier using COM components that do have a type library, but it is also possible to use COM compo-
nents without a type library. In that case it is necessary to redefine the COM interface by using C# code.

Freeing Memory
With .NET, memory is released by the garbage collector. This is completely different with COM. COM
relies on reference counts.

966

Chapter 28

35 557599 Ch28.qxd 4/29/04 11:45 AM Page 966

The interface IUnknown which is the interface that is required to be implement by every COM object,
offers three methods. Two of these methods are related to reference counts. The method AddRef() must
be called by the client, if another interface pointer is needed; this method increments the reference count.
The method Release() decrements the reference count, and if the resulting reference count is 0, the
object destroys itself to free memory.

Interfaces
Interfaces are the heart of COM to differ between a contract that is used between the client and the
object, and the implementation. The interface (the contract) defines the methods that are offered by the
component, and that can be used by the client. With .NET interfaces play an important part, too.

COM distinguishes between three interface types: custom, dispatch, and dual interfaces.

Custom interfaces
Custom interfaces derive from the interface IUnknown. A custom interface defines the order of the meth-
ods in a virtual table (vtable), so that the client can access the methods of the interface directly. This also
means that the client needs to know the vtable during development time, as binding to the methods
happen by using memory addresses. As a conclusion, custom interfaces cannot be used by scripting
clients. Figure 28-1 shows the vtable of the custom interface IMath that offers the methods Add() and
Sub() in addition to the methods of the IUnknown interface.

Figure 28-1

Dispatch interfaces
Because a scripting client (and earlier Visual Basic clients) doesn’t support custom interfaces, a different
interface type is needed. With dispatch interfaces, the interface that is available for the client is always
the IDispatch interface. IDispatch derives from IUnknown and offers four methods in addition to the
IUnknown methods. The two most important methods are GetIDsOfNames() and Invoke(). As shown
in Figure 28-2, with a dispatch interface two tables are needed. The first one maps the method or prop-
erty name to a dispatch id; the second one maps the dispatch-id to the implementation of the method or
property.

QueryInterface

AddRef

Release

Add

Sub

967

COM Interoperability

35 557599 Ch28.qxd 4/29/04 11:45 AM Page 967

Figure 28-2

When the client invokes a method in the component, at first it calls the method GetIDsOfNames() pass-
ing the name of the method it wants to call. GetIDsOfNames() makes a lookup into the name-to-id table
to return the dispatch id. This id is used by the client to call the method Invoke().

Usually, the two tables for the IDispatch interface are stored inside the type library, but this is not a
requirement, and some components have the tables on other places.

Dual interfaces
As you can imagine, dispatch interfaces are a lot slower compared to custom interfaces. On the other
hand, custom interfaces cannot be used by scripting clients. A dual interface can solve this dilemma. As
can be seen in Figure 28-3, a dual interface derives from IDispatch, but offers the additional methods of
the interface directly in the vtable. Scripting clients can use the IDispatch interface to invoke the meth-
ods, while clients aware of the vtable can call the methods directly.

Figure 28-3

Casting and QueryInterface
If a .NET class implements multiple interfaces, casts can be done to get one interface or another. With
COM, the interface IUnknown offers a similar mechanism with the method QueryInterface(). As dis-
cussed in the previous section, the interface IUnknown is the base interface of every interface, so
QueryInterface() is available anyway.

QueryInterface

AddRef

Release

GetTypeInfoCount

GetIDsOfNames

Invoke

Add

Sub

"Add"

"Sub"

47

48

47 pAdd

48 pSub

QueryInterface

AddRef

Release

GetTypeInfoCount

GetIDsOfNames

Invoke

"Add"

"Sub"

47

48

47 pAdd

48 pSub

968

Chapter 28

35 557599 Ch28.qxd 4/29/04 11:45 AM Page 968

Method Binding
How a client maps to a method is defined with the terms early and late binding. Late binding means
that the method to invoke is looked for during runtime. .NET uses the System.Reflection namespace
to make this possible (see Chapter 10).

COM uses the IDispatch interface that has been discussed earlier for late binding. Late binding is pos-
sible with dispatch and dual interfaces.

With COM early binding has two different options. One way of early binding that is also known as
vtable binding is using the vtable directly—this is possible with custom and dual interfaces. The second
option of early binding is also known as id binding. Here the dispatch id is stored inside the client code,
so during runtime only a call to Invoke() is necessary. GetIdsOfNames() is done during design time.
With such clients it is important to remember that the dispatch id must not be changed.

Data Types
For dual and dispatch interfaces the data types that can be used with COM are restricted to a list of
automation-compatible data types. The Invoke() method of the IDispatch interface accepts an array
of VARIANT data types. The VARIANT is a union of many different data types such as BYTE, SHORT, LONG,
FLOAT, DOUBLE, BSTR, IUnknown*, IDispatch*... VARIANTs have been easy to use from Visual Basic,
but it was complex to use them from C++. With .NET we have the Object class instead of VARIANTs.

With custom interfaces, all data types that are available with C++, can be used with COM. However, this
also restricts the clients that can use this component to certain programming languages.

Registration
.NET distinguishes between private and shared assemblies as discussed in Chapter 13. With COM, all
components are globally available by a registry configuration.

All COM objects do have a unique identifier that consists of a 128-bit number, and that is also known as
class id (CLSID). Creating a COM object, the COM API call CoCreateInstance() just looks into the
registry to find the CLSID and the path to the DLL or EXE to load the DLL or launch the EXE and instan-
tiate the component.

Because such a 128-bit number cannot be easily remembered, many COM objects also do have a prog id.
The prog id is an easy-to-remember name such as Excel.Application that just maps to the CLSID.

Besides the CLSID, COM objects also do have a unique identifier for each interface (IID), and for the
type library (typelib id).

Later in this chapter we will discuss information in the registry with more detail.

Threading
COM uses apartment models to relieve the programmer from threading issues. However, this also adds
some more complexity. Different apartment types have been added with different releases of the operat-
ing system. We have to discuss the single-threaded apartment and the multi-threaded apartment.

969

COM Interoperability

35 557599 Ch28.qxd 4/29/04 11:45 AM Page 969

Single-threaded apartment
The single-threaded apartment (STA) was introduced with Windows NT 3.51. With an STA only one
thread (the thread that created the instance) is allowed to access the component. However, it is legal hav-
ing multiple STAs inside one process (see Figure 28-4).

Figure 28-4

With STAs there’s no need to protect instance variables from multiple thread access, as this protection is
done by a COM facility, and only one thread accesses the component.

A COM object that is not programmed with thread safety, it marks the requirements for a STA in the reg-
istry with the registry key ThreadingModel set to Apartment.

Multi-threaded apartment
Windows NT 4.0 introduced the concept of a multi-threaded apartment (MTA). With an MTA, multiple
threads can access the component simultaneously. Figure 28-5 shows a process with one MTA and
two STAs.

Process

STA1

STA2

970

Chapter 28

35 557599 Ch28.qxd 4/29/04 11:45 AM Page 970

Figure 28-5

A COM object programmed with thread-safety in mind marks the requirement for an MTA in the reg-
istry with the key ThreadingModel set to Free. The value Both is used for thread-safe COM objects
that don’t mind about the apartment type.

Visual Basic 6.0 didn’t offer support for multi-threaded apartments.

Error Handling
With .NET, errors are generated by throwing exceptions. With the older technology COM, errors are
defined by returning HRESULT values with the methods. A HRESULT value of S_OK means that the
method was successful.

If a more detailed error message is offered by the COM component, the COM component implements
the interface ISupportErrorInfo where not only an error message, but also a link to a help file, and the
source of the error, and returns an error information object with the method return. Objects that imple-
ment ISupportErrorInfo are automatically mapped to more detailed error information with an excep-
tion in .NET.

Process

MTA STA1

STA2

971

COM Interoperability

35 557599 Ch28.qxd 4/29/04 11:45 AM Page 971

Event Handling
.NET offers an event-handling mechanism with the C# keywords event and delegate (see Chapter 6).
In Chapter 16 we discuss that the same mechanism is also available with .NET Remoting.

Figure 28-6 shows the COM event-handling architecture. With COM events, the component has to
implement the interface IConnectionPointContainer, and one more connection point objects (CPO)
that implement the interface IConnectionPoint. The component also defines an outgoing interface—
ICompletedEvents in Figure 28-6—that is invoked by the CPO. The client must implement this outgo-
ing interface in the sink object, that itself is a COM object. During runtime, the client queries the server
for the interface IConnectionPointContainer. With the help of this interface the client asks for a CPO
with the method FindConnectionPoint(), to get a pointer to IConnectionPoint returned. This inter-
face pointer is used by the client to call the Advise() method where a pointer to the sink object is
passed to the server. In turn, the component can invoke methods inside the sink object of the client.

Figure 28-6

Later in this chapter we discuss how the .NET events and the COM events can be mapped, so that COM
events can be handled by a .NET client and vice versa.

Marshaling
Data that is passed from .NET to the COM component and the other way around must be converted to
the corresponding representation. This mechanism is also known as marshaling. What happens here
depends on the data type of the data that is passed. Here we have to differentiate between blittable and
non-blittable data types.

Blittable data types have a common representation with both .NET and COM, and no conversion is
needed. Simple data types such as byte, short, int, long, and classes and arrays that only contain these
simple data types belong to the blittable data types. Arrays must be one-dimensional to be blittable.

lConnectionPointContainer

lConnectionPoint

lCompletedEvents

Client

Sink

Server

lConnectionPoint

lConnectionPointContainer

lConnectionPoint

lCompletedEvents

CPO

972

Chapter 28

35 557599 Ch28.qxd 4/29/04 11:45 AM Page 972

With non-blittable data types a conversion is needed. The following table lists some of the non-blittable
COM data types with their .NET-related data type. Non-blittable types do need more performance
because of the conversion.

COM Data Type .NET Data Type

SAFEARRAY Array

VARIANT Object

BSTR String

IUnknown*, IDispatch* Object

Using a COM Component from a .NET Client
To see how a .NET application can use a COM component we first have to create a COM component.
Creating COM components is not possible with C# or Visual Basic .NET; we need either Visual Basic 6 or
C++ (or any other language that supports COM). In this chapter we use the Active Template Library
(ATL) and C++.

Because this is not a COM book, we will not discuss all aspects of the code. We discuss only what we
need to build the sample.

Creating a COM Component
To create a COM component with ATL and C++, create a new ATL Project. You can find the ATL Project
Wizard within the Visual C++ Projects group when you select File | New | Project. Set the name to
COMServer. With the Application Settings, select Attributed and Dynamic Link Library, and press Finish.

Since Visual Studio .NET 2002, the ATL offers attributes that make it easier to build COM server.
These attributes have nothing in common with the .NET attributes; instead they are only used with
ATL. Instead of writing a separate IDL file and a C++ file defining the interface, only a C++ file is
needed that also has attributes that are required by COM.

The ATL Project Wizard just created the foundation for the server. A COM object is still needed. Add a
class in Solution Explorer, and select ATL Simple Object. With the dialog that starts up, enter COMDemo
in the field for the Short name. The other fields will be filled automatically, but change the interface
name to IWelcome (see Figure 28-7).

The COM component will offer two interfaces, so that you can see how QueryInterface() is mapped
from .NET, and just three simple methods, so that you can see how the interaction takes place. In the
Class View, select the interface IWelcome, and add the method Greeting() (see Figure 28-7), with
these parameters:

HRESULT Greeting([in] BSTR name, [out, retval] BSTR* message);

973

COM Interoperability

35 557599 Ch28.qxd 4/29/04 11:45 AM Page 973

Figure 28-7

Your wizard-generated code from the file COMDemo.h should look similar to the following code. The
unique identifiers (uuids) will differ. The interface IWelcome defines the methods Greeting(). The
brackets before the keyword __interface define some attributes for the interface. uuid defines the
interface id, and dual marks the type of the interface.

// COMDemo.h : Declaration of the CCOMDemo

#pragma once
#include “resource.h” // main symbols

// IWelcome
[

object,
uuid(“015ED275-3DE6-4716-A6FA-4EBC71E4A8EA”),
dual, helpstring(“IWelcome Interface”),
pointer_default(unique)

]
__interface IWelcome : IDispatch
{

[id(1), helpstring(“method Greeting”)] HRESULT Greeting([in] BSTR name, [out,
retval] BSTR* message);
};

The class CCOMDemo is also in the file COMDemo.h. The attribute uuid() in the header section of the
class defines the CLSID. The attributes vi_progid and progid name the prog id that will be written
into the registry.

974

Chapter 28

35 557599 Ch28.qxd 4/29/04 11:45 AM Page 974

// CCOMDemo

[
coclass,
threading(“apartment”),
vi_progid(“COMServer.COMDemo”),
progid(“COMServer.COMDemo.1”),
version(1.0),
uuid(“2388AAA8-AD72-4022-948D-555316F708E8”),
helpstring(“COMDemo Class”)

]
class ATL_NO_VTABLE CCOMDemo :
public IWelcome

{
public:

CCOMDemo()
{
}

DECLARE_PROTECT_FINAL_CONSTRUCT()

HRESULT FinalConstruct()
{

return S_OK;
}

void FinalRelease()
{
}

public:

STDMETHOD(Greeting)(BSTR name, BSTR* message);
};

Add the custom attribute with the same identifier and the name Wrox.ProCSharp.COMInterop.
Server.IWelcome to the header section of the IWelcome interface. Add the same attribute with a
corresponding name to the class CCOMDemo.

// IWelcome
[

object,
uuid(“015ED275-3DE6-4716-A6FA-4EBC71E4A8EA”),
dual, helpstring(“ICOMDemo Interface”),
pointer_default(unique),

With custom attributes it is possible to change the name of the class and interfaces
that are generated by a .NET wrapper class. You just have to add the attribute
custom with the identifier 0F21F359-AB84-41e8-9A78-36D110E6D2F9, and the
name how it should appear within .NET.

975

COM Interoperability

35 557599 Ch28.qxd 4/29/04 11:45 AM Page 975

custom(0F21F359-AB84-41e8-9A78-36D110E6D2F9,
“Wrox.ProCSharp.COMInterop.Server.IWelcome”)

]
__interface IWelcome : IDispatch
{

[id(1)] HRESULT Greeting([in] BSTR name, [out, retval] BSTR* message);
};

Now add a second interface to the file COMDemo.h. You can copy the header section of the IWelcome
interface to the header section of the new IMath interface, but be sure to change the unique identifier
that is defined with the uuid keyword. You can generate such an id with the utility guidgen. The inter-
face IMath offers the methods Add() and Sub().

// IMath
[

object,
uuid(“2158751B-896E-461d-9012-EF1680BE0628”),
dual,
helpstring(“IMath Interface”),
pointer_default(unique),
custom(0F21F359-AB84-41e8-9A78-36D110E6D2F9,

“Wrox.ProCSharp.COMInterop.Server.IMath”)
]
__interface IMath : IDispatch
{

[id(1)] HRESULT Add([in] LONG val1, [in] LONG val2, [out, retval] LONG* result);
[id(2)] HRESULT Sub([in] LONG val1, [in] LONG val2, [out, retval] LONG* result);

};

The class CCOMDemo must also be changed, so that it implements both interfaces IWelcome and IMath:

[
coclass,
threading(“apartment”),
vi_progid(“COMServer.COMDemo”),
progid(“COMServer.COMDemo.1”),
version(1.0),
custom(0F21F359-AB84-41e8-9A78-36D110E6D2F9,

“Wrox.ProCSharp.COMInterop.Server.COMDemo”),
uuid(“2388AAA8-AD72-4022-948D-555316F708E8”),
helpstring(“COMDemo Class”)

]
class ATL_NO_VTABLE CCOMDemo :

public IWelcome, public IMath
{

Now you can implement the three methods in the file COMDemo.cpp with the following code. The
CComBSTR is an ATL class that makes it easier to deal with BSTRs. In the Greeting() method just a wel-
come message is returned that adds the name passed in the first argument to the message that is
returned. The Add() method just does a simple addition of two values, while the Sub() method does a
subtraction, and returns the result.

976

Chapter 28

35 557599 Ch28.qxd 4/29/04 11:45 AM Page 976

STDMETHODIMP CCOMDemo::Greeting(BSTR name, BSTR* message)
{

CComBSTR tmp(“Welcome, “);
tmp.Append(name);
*message = tmp;
return S_OK;

}

STDMETHODIMP CCOMDemo::Add(LONG val1, LONG val2, LONG* result)
{

*result = val1 + val2;
return S_OK;

}

STDMETHODIMP CCOMDemo::Sub(LONG val1, LONG val2, LONG* result)
{

*result = val1 -- val2;
return S_OK;

}

Now you can build the component. The build process also configures the component in the registry.

Creating a Runtime Callable Wrapper
You can now use the COM component from within .NET. To make this possible, you must create a run-
time callable wrapper (RCW). Using the RCW the .NET client sees a .NET object instead of the COM
component, there is no need to deal with the COM characteristics as this is done by the wrapper. A RCW
hides IUnknown and IDispatch interfaces (see Figure 28-8) and deals itself with the reference counts of
the COM object.

Figure 28-8

.NET

Client

COM

Object

RCW

IMath

IDispatch

IUnknown

IWelcome

IMath

IWelcome

977

COM Interoperability

35 557599 Ch28.qxd 4/29/04 11:45 AM Page 977

The RCW can be created by using the command-line utility tlbimp, or by using Visual Studio .NET.
Starting the command

tlbimp COMServer.dll /out: Interop.COMServer.dll

creates the file Interop.COMServer.dll including a .NET assembly with the wrapper class. In this gener-
ated assembly we can find the namespace COMWrapper with the class CCOMDemoClass and the inter-
faces CCOMDemo, IMath, and IWelcome. The name of the namespace can be changed by using options of
the tlbimp utility. The option /namespace allows us to specify a different namespace, with /asmver-
sion the version number of the assembly can be defined.

Another important option of this command-line utility is /keyfile for assigning a strong name to the
generated assembly. Strong names are discussed in Chapter 13.

An RCW can also be created by using Visual Studio .NET. To create a simple sample application, create a
C# console project. In Solution Explorer, add a reference to the COM server by selecting the COM tab
and scroll down to the entry COMServer 1.0 Type Library (see Figure 28-9). Here all COM objects
are listed that are configured in the registry. Selecting a COM component from the list creates an assem-
bly with an RCW class.

Figure 28-9

After creating the wrapper class you can write the code for the application to instantiate and access the
component. Because of the custom attributes in the C++ file, the generated namespace of the RCW class
is Wrox.ProCSharp.COMInterop.Server. Add this namespace as well as the namespace System.
Runtime.InteropServices to the declarations. From the namespace System.Runtime.Interop
Services the Marshal class will be used to release the COM object.

978

Chapter 28

35 557599 Ch28.qxd 4/29/04 11:45 AM Page 978

using System;
using System.Runtime.InteropServices;
using Wrox.ProCSharp.COMInteorp.Server

namespace Wrox.ProCSharp.COMInterop.Client
{

class Class1
{

[STAThread]
static void Main(string[] args)
{

Now the COM component can be used similar to a .NET class. obj is a variable of type COMDemo.
COMDemo is a .NET interface that offers the methods of both the IWelcome and the IMath interfaces.
However, it is also possible to cast to a specific interface such as IWelcome. With a variable that is a
declared of type IWelcome, the method Greeting() can be called.

COMDemo obj = new COMDemoClass();
IWelcome welcome = (IWelcome)obj;
Console.WriteLine(obj.Greeting(“Christian”));

If the object—as in our case—offers multiple interfaces, a variable of the other interface can be declared,
and by using a simple assignment with the cast operator, the wrapper class does a QueryInterface()
with the COM object to return the second interface pointer. With the math variable the methods of the
IMath interface can be called.

IMath math;
. math = (IMath)obj;

int x = math.Add(4, 5);
Console.WriteLine(x);

If the COM object should be released before the garbage collector cleans up the object, the static method
Marshal.ReleaseComObject() invokes the Release() method of the component, so that the compo-
nent can destroy itself and free memory.

Marshal.ReleaseComObject(math);
}

}
}

As can be seen, with a runtime callable wrapper, a COM component can be used similar to a .NET
object.

A special case of a runtime callable wrapper is a primary interop assembly.

Primary interop assemblies
A primary interop assembly is an assembly that is already prepared by the vendor of the COM component.
This makes it easier to use the COM component. A primary interop assembly is a runtime-callable wrap-
per that might differ from an automatically generated RCW.

979

COM Interoperability

35 557599 Ch28.qxd 4/29/04 11:45 AM Page 979

You can find primary interop assemblies in the directory <program files>\Microsoft .NET\Primary
Interop Assemblies. A primary interop assembly already exists for the use of ADO from within .NET. If
you add a reference to the COM library Microsoft ActiveX Data Objects 2.7 Library, no wrapper class is
created because a primary interop assembly already exists; instead the primary interop assembly is
referenced.

Threading Issues
As discussed earlier in this chapter, a COM components marks the apartment (STA or MTA) it wants to
live in, based on whether it is implemented thread-safe or not. However, the thread has to join an apart-
ment. You have already seen the attribute [STAThread] that is applied to the Main() method by Visual
Studio .NET with every Windows or console application. This attribute means that the thread joins an
STA. The opposite is the attribute [MTAThread], which means the thread joins an MTA. Joining an MTA
is the default if no attribute is applied.

It is also possible to set the apartment state programmatically with the ApartmentState property of the
Thread class. The ApartmentState property allows you to set a value from the ApartmentState enu-
meration. ApartmentState has the possible values STA and MTA. (and Unknown if it wasn’t set). Be
aware that the apartment state of a thread can only be set once. If it is set for a second time, the second
setting is ignored.

Adding Connection Points
To see how COM events can be handled in a .NET application, at first the COM component must be
extended. Implementing a COM event in an ATL class using attributes looks very similar to the events in
.NET although the functionality is different.

First you have to add another interface to the header file COMDemo.h. The interface
_ICompletedEvents is implemented by the client, which is the .NET application, and called by the
component. In this example the method Completed() is called by the component when the calculation
is ready. Such an interface is also known as an outgoing interface. An outgoing interface must be either a
dispatch or a custom interface. Dispatch interfaces are supported by all clients. The custom attribute
with the id 0F21F359-AB84-41e8-9A78-36D110E6D2F9 defines the name of this interface that will be
created in the RCW.

// _ICompletedEvents
[

dispinterface,
uuid(“B2CBBCD3-2993-4148-8EF4-356EACFD834B”),
custom(0F21F359-AB84-41e8-9A78-36D110E6D2F9,

“Wrox.ProCSharp.COMInterop.Server.ICompletedEvents”),
helpstring(“_ICompletedEvents Interface”)

]

What happens if the thread chooses a different apartment from the apartments that
are supported by the component? The correct apartment for the COM component is
created automatically by the COM runtime. However, the performance decreases if
the apartment boundaries are crossed while calling the methods of a component.

980

Chapter 28

35 557599 Ch28.qxd 4/29/04 11:45 AM Page 980

__interface _ICompletedEvents
{
[id(1)] void Completed(void);

};

Apply the attribute event_source(“com”) to the class CCOMDemo to create a connection point object,
and add the __event keyword to the public section of this class as shown in the following code. This
keyword __event creates a helper class for all methods of the defined interface that fires events to the
client. The event is fired using the __raise keyword inside the method FireCompleted().

[
coclass,
threading(“apartment”),
vi_progid(“COMServer.COMDemo”),
progid(“COMServer.COMDemo.1”),
version(1.0),
custom(0F21F359-AB84-41e8-9A78-36D110E6D2F9,

“Wrox.ProCSharp.COMInterop.Server.COMDemo”),
uuid(“2388AAA8-AD72-4022-948D-555316F708E8”),
event_source(“com”),
helpstring(“COMDemo Class”)

]
class ATL_NO_VTABLE CCOMDemo :

public IWelcome, public IMath
{
public:

CCOMDemo()
{
}

__event __interface _ICompletedEvents;
void FireCompleted()
{

__raise Completed();
}

Finally, the method FireCompleted() can be called inside the methods Add() and Sub() in the file
COMDemo.cpp.

STDMETHODIMP CCOMDemo::Add(LONG val1, LONG val2, LONG* result)
{

*result = val1 + val2;
FireCompleted();
return S_OK;

}

STDMETHODIMP CCOMDemo::Sub(LONG val1, LONG val2, LONG* result)
{

*result = val1 - val2;
FireCompleted();
return S_OK;

}

981

COM Interoperability

35 557599 Ch28.qxd 4/29/04 11:45 AM Page 981

After rebuilding the COM DLL, you can change the .NET client to use these COM events.

static void Main(string[] args)
{

COMDemo obj = new COMDemoClass();

IWelcome welcome = (IWelcome)obj;
Console.WriteLine(welcome.Greeting(“Christian”));

obj.Completed +=
new ICompletedEvents_CompletedEventHandler(Completed);

IMath math = (IMath)welcome;
int result = math.Add(3, 5);
Console.WriteLine(result);

Marshal.ReleaseComObject(math);
}

private static void Completed()
{

Console.WriteLine(“Calculation completed”);
}

As you can see, the RCW offers automatic mapping from COM events to .NET events. COM events can
be used similar to .NET events in a .NET client.

Using ActiveX Controls in Windows Forms
ActiveX controls are COM objects with a user interface and many optional COM interfaces to deal with
the user interface and the interaction with the container. ActiveX controls can be used by many different
containers such as Internet Explorer, Word, Excel, applications written using Visual Basic 6, MFC
(Microsoft Foundation Classes), or ATL (Active Template Library). A Windows Forms application is
another container that can manage ActiveX controls. ActiveX controls can be used similar to Windows
Forms controls as we discuss shortly.

ActiveX Control Importer
Similar to runtime callable wrappers, you can also create a wrapper for ActiveX controls. A wrapper for
an ActiveX controls is created by using the command-line utility Windows Forms ActiveX Control Importer
aximp.exe. This utility creates a class that derives from the base class System.Windows.Forms.AxHost
that acts as a wrapper to use the ActiveX control.

You can enter this command to create a wrapper class from the Web Forms Control:

aximp c:\windows\system32\shdocvw.dll

Creating a Windows Forms application
To see ActiveX controls running inside a Windows Forms application, create a simple Windows Forms
application project. With this application we will build a simple Internet browser that uses the Web
Browser control that comes as part of the operating system.

982

Chapter 28

35 557599 Ch28.qxd 4/29/04 11:45 AM Page 982

Create a form as shown in Figure 28-10. The form should include a text box that is used to enter a URL
with the name textUrl, three buttons with the names buttonNavigate, buttonBack and
buttonForward to navigate Web pages, and a status bar with the name statusBar.

Figure 28-10

Using Visual Studio .NET, you can add ActiveX controls to the toolbar to use it in the same way as a
Windows Forms control. In the Customize Toolbox context menu, select the menu entry Add/Remove
Items..., and select the Microsoft Web Browser control in the category COM Components (see Figure 28-11).

Figure 28-11

983

COM Interoperability

35 557599 Ch28.qxd 4/29/04 11:45 AM Page 983

This way an icon will show up in the toolbox. Similar to other Windows controls, you can drag and drop
this icon to the Windows Forms designer to create (with the aximp utility) a wrapper assembly hosting
the ActiveX control. You can see the wrapper assemblies with the references in the project: AxSHDocVw
and SHDocVw. Now you can invoke methods of the control by using the generated variable axWeb
Browser1 as shown in the following code. Add a Click event handler to the button buttonNavigate
in order to navigate the browser to a Web page. The method Navigate() used for this purpose requires
a URL string with the first argument that we get by accessing the Text property of the text field
textUrl. The following four arguments are all optional with the Navigate() method. Because C#
doesn’t support optional arguments, you have to pass values. However, passing null values with the
noArg variable is good enough.

private void OnNavigate(object sender, System.EventArgs e)
{

object noArg = null;
axWebBrowser1.Navigate(textUrl.Text, ref noArg, ref noArg, ref noArg,

ref noArg);
}

With the Click event handler of the Back and Forward buttons, call the GoBack() and GoForward()
methods of the browser control:

private void OnBack(object sender, System.EventArgs e)
{

try
{

axWebBrowser1.GoBack();
}
catch
{
}

}

private void OnForward(object sender, System.EventArgs e)
{

try
{

axWebBrowser1.GoForward();
}
catch
{
}

}

The Web control also offers some events that can be used just like a .NET event. Add the event handler
OnStatusChange() to the event StatusTextChange to set the status that is returned by the control to
the status bar in the Windows Forms application.

private void OnStatusChange(object sender,
AxSHDocVw.DWebBrowserEvents2_StatusTextChangeEvent e)

{
statusBar.Text = e.text;

}

984

Chapter 28

35 557599 Ch28.qxd 4/29/04 11:45 AM Page 984

Now you have a simple browser that you can use to navigate to Web pages (see Figure 28-12).

Figure 28-12

Using COM Objects from within ASP.NET
COM objects can be used in a similar way we have seen before from within ASP.NET. However, there is
one important distinction. The ASP.NET runtime by default runs in a MTA. If the COM object is config-
ured with the threading model value Apartment (as all COM object that have been written with Visual
Basic 6), an exception is thrown. Because of performance and scalability reasons, it is best to avoid STA
objects within ASP.NET. If you really want to use an STA object with ASP.NET, you can set the
AspCompat attribute with the Page directive as shown in the following snippet. Be aware that the Web
site performance might suffer when you are using this option.

<%@ Page AspCompat=”true” Language=”C#” %>

Using a .NET Component from a COM Client
So far we have discussed how to access a COM component from a .NET client. Equally interesting is to
find a solution for accessing .NET components in an old COM client that is using Visual Basic 6, MFC,
or ATL.

985

COM Interoperability

35 557599 Ch28.qxd 4/29/04 11:45 AM Page 985

COM Callable Wrapper
If you want to access a COM component with a .NET client, you have to work with a RCW. To access a
.NET component from a COM client application, you must use a COM Callable Wrapper (CCW). Figure
28-13 shows a CCW that wraps a .NET class, and offers COM interfaces that a COM client expects to use.
The CCW offers interfaces such as IUnknown, IDispatch, ISupportErrorInfo, and others. It also
offers interfaces such as IConnectionPointContainer and IConnectionPoint for events. A COM
client gets what it expects from a COM object—although a .NET component is behind the scenes. The
wrapper deals with methods such as AddRef(), Release(), QueryInterface() from the IUnknown
interface, while in the .NET object we can count on the garbage collector without the need to deal with
reference counts.

Figure 28-13

Creating a .NET Component
In the following example, we built the same functionality that we built previously into a COM compo-
nent into a .NET class. Start by creating a C# class library, and name it DotNetComponent. Then add the
interfaces IWelcome and IMath, and the class NetComponent that implements these interfaces.

using System;

namespace Wrox.ProCSharp.COMInterop.Server
{

public interface IWelcome
{

string Greeting(string name);
}

public interface IMath
{

CCW
COM

Client

.NET
Object

IUnknown

IDispatch

IMath

IWelcome

IWelcome

IMath

986

Chapter 28

35 557599 Ch28.qxd 4/29/04 11:45 AM Page 986

int Add(int val1, int val2);
int Sub(int val1, int val2);

}

public class DotnetComponent : IWelcome, IMath
{

public DotnetComponent()
{
}

public string Greeting(string name)
{

return “Hello “ + name;
}

public int Add(int val1, int val2)
{

return val1 + val2;
}

public int Sub(int val1, int val2)
{

return val1 - val2;
}

}
}

After building the project, you can create a type library.

Creating a Type Library
A type library can be created by using the command-line utility tlbexp. The command

tlbexp DotnetComponent.dll

creates the type library DotnetComponent.tlb. You can view the type library with the utiltiy
OLE/COM Object Viewer. To access this utility in Visual Studio .NET select Tools➪OLE/COM Object
Viewer. Next, select File➪View TypeLib to open the type library. You can now view the interface defini-
tion shown in the following code. The unique ids will differ.

The name of the type library is created from the name of the assembly. The header of the type library
also defines the full name of the assembly in a custom attribute, and all the interfaces are forward
declared before they are defined.

// Generated .IDL file (by the OLE/COM Object Viewer)
//
// typelib filename: <could not determine filename>

[
uuid(0AA0953A-B2A0-32CB-A5AC-5DA0DF698EB8),
version(1.0),
custom(90883F05-3D28-11D2-8F17-00A0C9A6186D, DotNetComponent,

987

COM Interoperability

35 557599 Ch28.qxd 4/29/04 11:45 AM Page 987

Version=1.0.1321.19165, Culture=neutral, PublicKeyToken=null)
]
library DotnetComponent
{

// TLib : Common Language Runtime Library :
// {BED7F4EA-1A96-11D2-8F08-00A0C9A6186D}
importlib(“mscorlib.tlb”);
// TLib : OLE Automation : {00020430-0000-0000-C000-000000000046}
importlib(“stdole2.tlb”);

// Forward declare all types defined in this typelib
interface IWelcome;
interface IMath;
interface _DotnetComponent;

In the following generated code you can see that the interfaces IWelcome and IMath are defined as
COM dual interfaces. You can see all methods that have been declared in the C# code are here listed in
the type library definition. The parameters changed: the .NET types are mapped to COM types (such as
the String class to the BSTR type), and the signature is changed, so that a HRESULT is returned. Because
the interfaces are dual interfaces, dispatch ids are also generated.

[
odl,
uuid(F39A4143-F88D-321E-9A33-8208E256A2DF),
version(1.0),
dual,
oleautomation,
custom(0F21F359-AB84-41E8-9A78-36D110E6D2F9,

Wrox.ProCSharp.COMInterop.Server.IWelcome)
]
interface IWelcome : IDispatch {

[id(0x60020000)]
HRESULT Greeting([in] BSTR name, [out, retval] BSTR* pRetVal);

};

[
odl,
uuid(EF596F3F-B69B-3657-9D48-C906CBF12565),
version(1.0),
dual,
oleautomation,
custom(0F21F359-AB84-41E8-9A78-36D110E6D2F9,

Wrox.ProCSharp.COMInterop.Server.IMath)
]
interface IMath : IDispatch {

[id(0x60020000)] HRESULT Add([in] long val1, [in] long val2,
[out, retval] long* pRetVal);

[id(0x60020001)] HRESULT Sub([in] long val1, [in] long val2,
[out, retval] long* pRetVal);

};

988

Chapter 28

35 557599 Ch28.qxd 4/29/04 11:45 AM Page 988

The coclass section marks the COM object itself. The uuid in the header is the CLSID that is used to
instantiate the object. The class DotnetComponent supports the interfaces _DotnetComonent, _Object,
IWelcome, and IMath. _Object is defined in the file mscorlib.tlb that is included in an earlier code
section, and offers the methods of the base class Object. The default interface of the component is
_DotnetComponent that is defined after the coclass section as a dispatch interface. In the interface
declaration it is marked as dual, but because no methods are included, it is a dispatch interface. With
this interface it is possible to access all methods of the component using late binding.

[
uuid(5BCD9C26-D68D-38C2-92E3-DA0C1741A8CD),
version(1.0),
custom(0F21F359-AB84-41E8-9A78-36D110E6D2F9,

Wrox.ProCSharp.COMInterop.Server.DotnetComponent)
]
coclass DotnetComponent {

[default] interface _DotnetComponent;
interface _Object;
interface IWelcome;
interface IMath;

};

[
odl,
uuid(884C59C6-B3C2-3455-BB74-52753C409097),
hidden,
dual,
oleautomation,
custom(0F21F359-AB84-41E8-9A78-36D110E6D2F9,

Wrox.ProCSharp.COMInterop.Server.DotnetComponent)
]
interface _DotnetComponent : IDispatch {
};

};

There are quite a few defaults for generating the type library. However, often it is advantageous to
change some of the default .NET to COM mappings. This can be done with several attributes in the
System.Runtime.InteropServices namespaces.

COM Interop Attributes
Applying attributes from the namespace System.Runtime.InteropServices to classes, interfaces, or
methods allows us to change the implementation of the CCW.

989

COM Interoperability

35 557599 Ch28.qxd 4/29/04 11:45 AM Page 989

Attribute Description

Guid This attribute can be assigned to the assembly, interfaces, and classes.
Using the Guid as an assembly attribute defines the type-library id, apply-
ing it to interfaces defines the interface id (IID), and setting the attribute to
a class defines the class id (CLSID).

The unique ids needed to be defined with this attribute can be created with
the utility guidgen.

Automatically the CLSID and type-library ids are changed with every
build. If you don’t want to change it with every build, you can fix it by
using this attribute. The IID is only changed if the signature of the interface
changes, for example, a method is added or removed, or some parameters
changed. Because with COM the IID should change with every new ver-
sion of this interface, this is a very good default behavior, and usually
there’s no need to apply the IID with the Guid attribute. The only reason
when you want to apply a fixed IID for an interface is when the .NET inter-
face is an exact representation of an existing COM interface, and the COM
client already expects this identifier.

ProgId This attribute can be applied to a class to specify what name should be
used when the object is configured into the registry.

ComVisible This attribute enables you to hide classes, interfaces, delegates from COM
when set to false. This prevents a COM representation from being created.

InterfaceType This attribute, if set to a ComInterfaceType enumeration value, enables
you to modify the default dual interface type that is created for .NET inter-
faces. ComInterfaceType has the values InterfaceIsDual, Inter-
faceIsIDispatch, and InterfaceIsIUnknown. If you want to apply a
custom interface type to a .NET interface, set the attribute like this:
[InterfaceType(ComInterfaceType.InterfaceIsIUnkwnown)]

ClassInterface This attribute enables you to modify the default dispatch interface that is
created for a class. ClassInterface accepts an argument of a ClassIn-
terfaceType enumeration. The possible values are AutoDispatch, Auto-
Dual, and None. In the previous example we have seen that the default is
AutoDispatch, since a dispatch interface is created. If the class should
only be accessible by the defined interfaces, apply the attribute [ClassIn-
terface(ClassInterfaceType.None)] to the class.

DispId This attribute can be used with dual and dispatch interfaces to define the
dispid of methods and properties.

In COM allows specifying attributes to parameter types if the parameter
should be sent to the component [In], from the component to the client
[Out], or in both directions [In, Out].

Out

Optional Parameters of COM methods may be optional. Parameters that should be
optional can be marked with the Optional attribute.

990

Chapter 28

35 557599 Ch28.qxd 4/29/04 11:45 AM Page 990

Now you can change the C# code to specify a dual interface type for the IWelcome interface, a custom
interface type for the IMath interface, and with the class DotnetCompnent the attribute
ClassInterface with the argument ClassInterfaceType.None so that no separate COM interface
will be generated, a prog id and a guid:

[InterfaceType(ComInterfaceType.InterfaceIsDual)]
public interface IWelcome
{

[DispId(60040)] string Greeting(string name);
}

[InterfaceType(ComInterfaceType.InterfaceIsIUnknown)]
public interface IMath
{
int Add(int val1, int val2);
int Sub(int val1, int val2);

}

[ClassInterface(ClassInterfaceType.None)]
[ProgId(“Wrox.DotnetComponent”)]
[Guid(“77839717-40DD-4876-8297-35B98A8402C7”)]
public class DotnetComponent : IWelcome, IMath
{

public DotnetComponent()
{
}

Rebuilding the class library and the type library changes the interface definition. You can verify this with
OleView.exe. As you can see in the following IDL code, the interface IWelcome is still a dual interface,
while the IMath interface now is a custom interface that derives from IUnknown instead of IDispatch.
In the coclass section, the interface _DotnetComponent is removed, and now the IWelcome is the new
default interface, because it was the first interface in the inheritance list of the class DotnetComponent.

// Generated .IDL file (by the OLE/COM Object Viewer)
//
// typelib filename: <could not determine filename>

[
uuid(11E86506-EA54-3611-A55C-6830C48A554B),
version(1.0),
custom(90883F05-3D28-11D2-8F17-00A0C9A6186D, DotNetComponent,

Version=1.0.1321.28677, Culture=neutral, PublicKeyToken=null)
]
library DotnetComponent
{

// TLib : Common Language Runtime Library :
// {BED7F4EA-1A96-11D2-8F08-00A0C9A6186D}
importlib(“mscorlib.tlb”);
// TLib : OLE Automation : {00020430-0000-0000-C000-000000000046}
importlib(“stdole2.tlb”);

// Forward declare all types defined in this typelib
interface IWelcome;
interface IMath;

991

COM Interoperability

35 557599 Ch28.qxd 4/29/04 11:45 AM Page 991

[
odl,
uuid(F39A4143-F88D-321E-9A33-8208E256A2DF),
version(1.0),
dual,
oleautomation,
custom(0F21F359-AB84-41E8-9A78-36D110E6D2F9,

Wrox.ProCSharp.COMInterop.Server.IWelcome)
]
interface IWelcome : IDispatch {

[id(0x0000ea88)]
HRESULT Greeting([in] BSTR name, [out, retval] BSTR* pRetVal);

};

[
odl,
uuid(EF596F3F-B69B-3657-9D48-C906CBF12565),
version(1.0),
oleautomation,
custom(0F21F359-AB84-41E8-9A78-36D110E6D2F9,

Wrox.ProCSharp.COMInterop.Server.IMath)
]
interface IMath : IUnknown {

HRESULT _stdcall Add([in] long val1, [in] long val2,
[out, retval] long* pRetVal);

HRESULT _stdcall Sub([in] long val1, [in] long val2,
[out, retval] long* pRetVal);

};

[
uuid(77839717-40DD-4876-8297-35B98A8402C7),
version(1.0),
custom(0F21F359-AB84-41E8-9A78-36D110E6D2F9,

Wrox.ProCSharp.COMInterop.Server.DotnetComponent)
]
coclass DotnetComponent {

interface _Object;
[default] interface IWelcome;
interface IMath;

};
};

COM Registration
Before the .NET component can be used as a COM object, it is necessary to configure it in the registry.
Also, if you don’t want to copy the assembly into the same directory as the client application, it is neces-
sary to install the assembly in the global assembly cache. The global assembly cache was discussed in
Chapter 13.

For installing the assembly into the global assembly cache you have to create a key pair with the strong
name utility:

sn –k mykey.snk

992

Chapter 28

35 557599 Ch28.qxd 4/29/04 11:45 AM Page 992

Add the key file to the AssemblyKeyFile attribute in the file AssemblyInfo.cs:

[assembly: AssemblyKeyFile(“../../mykey.snk”)]

And register the assembly in the global assembly cache:

gacutil –i dotnetcomponent.dll

Now you can use the regasm utility to configure the component inside the registry. The option /tlb
extracts the type library, and also configures the type library in the registry.

regasm dotnetcomponent.dll /tlb

The information for the .NET component that is written to the registry is as follows. All COM configura-
tion is in the hive HKEY_CLASSES_ROOT (HKCR). Directly to this hive the key of the prog id (in the
case of this example, it is Wrox.DotnetComponent) is written, along with the CLSID.

The key HKCR\CLSID\{CLSID}\InProcServer32 has the following entries:

❑ mscoree.dll: mscoree.dll represents the CCW. This is a real COM object that is responsible for
hosting the .NET component. This COM object accesses the .NET component to offer COM
behavior for the client. The file mscoree.dll is loaded and instantiated from the client via the
normal COM instantiation mechanism.

❑ ThreadingModel=Both: This is an attribute of the mscoree.dll COM object. This component is
programmed in a way to offer support both for STA and MTA.

❑ Assembly=DotnetComponent, Version=1.0.1321.33886, Culture=neutral,
PublicKeyToken=5cd57c93b4d9c41a: The value of the Assembly stores the assembly full name
including the version number and the public key token, so that the assembly can be uniquely
identified. The assembly registered here will be loaded by mscoree.dll.

❑ Class=Wrox.ProCSharp.COMInterop.Server.DotnetComponent: The name of the class will
also be used by mscoree.dll. This is the class that will be instantiated.

❑ RuntimeVersion=v1.1.4322: The registry entry RuntimeVersion specifies the version of the .NET
runtime that will be used to host the .NET assembly.

In addition to the configurations shown here, all the interfaces and the type-library are configured with
their identifiers, too.

Creating a COM Client
Now it’s time to create a COM client. Start by creating a simple C++ Win32 Console Project, and name it
COMClient. You can leave the default options selected, and press Finish with the project wizard.

In the beginning of the file COMClient.cpp add a preprocessor command to include the <iostream>
header file and to import the type library that you created for the .NET component. The import state-
ment creates a “smart pointer” class that makes it easier dealing with COM objects. During a build pro-
cess, the import statement creates .tlh and .tli files that you can find in the debug directory of your
project, which includes the smart pointer class. Then add using namespace directives to open the

993

COM Interoperability

35 557599 Ch28.qxd 4/29/04 11:45 AM Page 993

namespace std that will be used for writing output messages to the console, and the namespace
DotnetComponent that is created inside the smart pointer class.

// COMClient.cpp : Defines the entry point for the console application.
//

#include “stdafx.h”
#include <iostream>
#import “../DotNetComponent/bin/debug/DotnetComponent.tlb”

using namespace std;
using namespace DotnetComponent;

In the _tmain() method, the first thing to do before any other COM call, is initialization of COM with
the API call CoInitialize(). CoIntialize() creates and enters an STA for the thread. The variable
spWelcome is of type IWelcomePtr that is a smart pointer. The smart pointer method
CreateInstance() accepts the prog id as an argument to create the COM object by using the COM API
CoCreateInstance(). The operator -> is overridden with the smart pointer, so that you can invoke the
methods of the COM object such as Greeting().

int _tmain(int argc, _TCHAR* argv[])
{

HRESULT hr;
hr = CoInitialize(NULL);

try
{

IWelcomePtr spWelcome;
hr = spWelcome.CreateInstance(“Wrox.DotnetComponent”); // CoCreateInstance()

cout << spWelcome->Greeting(“Bill”) << endl;

The second interface that is supported by our .NET component is IMath, and there is also a smart
pointer that wraps the COM interface: IMathPtr. You can directly assign one smart pointer to another
as in spMath = spWelcome; in the implementation of the smart pointer (the = operator is overridden),
a QueryInterface() is done. With the IMath interface you can call the Add() method.

IMathPtr spMath;
spMath = spWelcome; // QueryInterface()

long result = spMath->Add(4, 5);
cout << “result:” << result << endl;

}

In case a HRESULT error value is returned by the COM object (this is done by the CCW that returns HRE-
SULT errors if the .NET component generates exceptions), the smart pointer wraps the HRESULT errors,
and generates _com_error exceptions instead. Errors are handled in the catch block. At the end of the
program, the COM DLL’s are closed and unloaded using CoUninitialize().

catch (_com_error& e)
{

cout << e.ErrorMessage() << endl;

994

Chapter 28

35 557599 Ch28.qxd 4/29/04 11:45 AM Page 994

}

CoUninitialize();
return 0;

}

Now you can run the application, and you will get outputs from the Greeting() and the Add() meth-
ods to the console. You can also try to debug into the smart pointer class, where you can see the COM
API calls directly.

Adding Connection Points
Adding support for COM events to the .NET components requires some changes to the implementation
of your .NET class. Offering COM events is not a simple usage of the event and delegate keywords, it is
necessary to add some more COM interop attributes.

First you have to add an additional interface to the .NET project: IMathEvents. This interface is the
source or outgoing interface for the component, and will be implemented by the sink object in the client.
A source interface must be either a dispatch or a custom interface. Just a scripting client only supports
dispatch interfaces. Dispatch interfaces are usually preferred as source interfaces.

[InterfaceType(ComInterfaceType.InterfaceIsIDispatch)]
public interface IMathEvents
{

[DispId(46200)] void CalculationCompleted();
}

Next you have to add a delegate. The delegate must have the same signature and return type as the
method in the outgoing interface. If you have multiple methods in your source interface, for each that
differs with the arguments, you have to specify a separate delegate. Because the COM client does not
have to access this delegate directly, the delegate can be marked with the attribute
[ComVisible(false)].

[ComVisible(false)]
public delegate void CalculationCompletedDelegate();

With the class DotnetComponent, a source interface must be specified. This can be done with the
attribute [ComSourceInterfaces]. Add the attribute [ComSourceInterfaces], and specify the out-
going interface declared earlier. You can add more than one source interface with different constructors
of the attribute class; however, the only client language that supports more than one source interface is
C++. Visual Basic 6 clients only support one source interface.

[ClassInterface(ClassInterfaceType.None)]
[ProgId(“Wrox.DotnetComponent”)]
[Guid(“77839717-40DD-4876-8297-35B98A8402C7”)]

In case you get an exception that the component cannot be found, check if the same
version of the assembly that is configured in the registry, is installed in the global
assembly cache.

995

COM Interoperability

35 557599 Ch28.qxd 4/29/04 11:45 AM Page 995

[ComSourceInterfaces(typeof(IMathEvents))]
public class DotnetComponent : IWelcome, IMath
{

public DotnetComponent()
{
}

Inside the class DotnetComponent you have to declare an event for every method of the source inter-
face. The type of the method must be the name of the delegate, and the name of the event must be
exactly the name of the method inside the source interface. You can add the event calls to the Add() and
Sub() methods. This step is the normal .NET way to invoke events as discussed in Chapter 6.

public event CalculationCompletedDelegate CalculationCompleted;

public int Add(int val1, int val2)
{

int result = val1 + val2;
if (CalculationCompleted != null)

CalculationCompleted();
return result;

}

public int Sub(int val1, int val2)
{

int result = val1 - val2;
if (CalculationCompleted != null)

CalculationCompleted();
return result;

}
}

Creating a Client with a Sink Object
After you’ve build and registered the .NET assembly, and installed it into the global assembly cache, you
can build a client application by using the event sources. This time we will use Visual Basic 6 to write a
client that uses the events.

Start Visual Basic 6 and create a Standard EXE file. Select Project➪References, browse for the type library
of the .NET component, and add the type library. Next add a button to the form, and add the following
code. Using Visual Basic 6, the WithEvents keyword automatically creates a sink object implementing
the default source interface of the component. With this example, the source interface is IMathEvents.
The handler method that is invoked when the event is fired from the component, is obj_Calcuation
Completed(), which consists of the variable name of the object, and the name of the method that is
defined with the source interface. You can start the application, and you will see that the event gets fired.

The name of the event must be the same as the name of the method inside the source
interface. Otherwise, the events cannot be mapped for COM clients.

996

Chapter 28

35 557599 Ch28.qxd 4/29/04 11:45 AM Page 996

Dim WithEvents obj As DotnetComponent.DotnetComponent
Dim math As DotnetComponent.IMath

Private Sub Command1_Click()
Dim greeting As String
Set obj = New DotnetComponent.DotnetComponent
greeting = obj.greeting(“Bill”)
MsgBox (greeting)

Set math = obj
Dim result As Integer
result = math.Add(4, 5)
MsgBox (result)

End Sub

Private Sub obj_CalculationCompleted()
MsgBox “calculation ready”

End Sub

Running Windows Forms Controls in Internet Explorer
Windows Forms controls can be hosted in Internet Explorer as ActiveX controls. Because there are many
different ActiveX control containers, and all these containers do have different requirements on the
ActiveX controls. Hosting Windows Forms controls in any container is not supported by Microsoft.
Visual Studio .NET 2003 adds one more supported container with MFC applications. However, you have
to manually change the code to host ActiveX controls from an MFC application.

For hosting a Windows Forms control inside Internet Explorer, you have to copy the assembly file to
your Web server, and add some information about the control inside the HTML page. For the support of
Windows Forms controls, the syntax of the <object> tag has been extended. With the attribute
classid, you can add the assembly file and the name of the class separated by a # sign:
classid=”<assembly file>#class name”.

With the assembly file ControlDemo.dll and the class UserControl1 in the namespace
Wrox.ProCSharp.COMInterop, the syntax looks like this:

<object id=”myControl”
classid=”ControlDemo.dll#Wrox.ProCSharp.COMInterop.UserControl1”
height=”400” width=”400”>

</object>

As soon as a user opens the HTML page, the assembly is downloaded to the client system. The assembly
is stored in the download assembly cache, and every time the user accesses the page, the version num-
bers are rechecked. In case the version number didn’t change, the assembly will be used from the local
cache.

997

COM Interoperability

35 557599 Ch28.qxd 4/29/04 11:45 AM Page 997

Summary
In this chapter we have seen how the different generations of COM and .NET applications can interact.
Instead of rewriting applications and components, a COM component can be used from a .NET applica-
tion just like a .NET class. The tool that makes this possible is tlbimp, which creates a runtime callable
wrapper (RCW) that hides the COM object behind a .NET façade.

Likewise, tlbexp creates a type-library from a .NET component that is used by the COM callable wrap-
per (CCW). The CCW hides the .NET component behind a COM façade. Using .NET classes as COM
components makes it necessary to use some attributes from the namespace
System.Runtime.InteropServices, to define specific COM characteristics that are needed by the
COM client.

In the next chapter we look at Enterprise Services, where .NET components can be installed next to
COM components to use features such as automatic transactions, object pooling, and loosely coupled
events in distributed solutions.

As a requirement to use Windows Forms control in a Web page, the client must have
the .NET runtime installed, Internet Explorer 5.5 or higher must be used, and the
security setting must allow downloading assemblies. The default security setting
with .NET 1.1 doesn’t allow downloading assemblies from the Internet.

998

Chapter 28

35 557599 Ch28.qxd 4/29/04 11:45 AM Page 998

Enterprise Services

Enterprise Services is the name of the Microsoft application server technology that offers services for
distributed solutions. Enterprise Services is based on the COM+ technology that has already been in
use for many years. However, instead of wrapping .NET objects as COM objects so that they can
use these services, .NET offers extensions so that the .NET components can take direct advantage of
these services. With .NET you get easy access of the COM+ services for .NET components.

In this chapter you learn:

❑ When to use Enterprise Services

❑ What services you get with this technology

❑ How to create a serviced component to use Enterprise Services

❑ How to deploy COM+ applications

❑ How to use transactions with Enterprise Services

Overview
We’ll start with a short introduction to Enterprise Services and their benefits.

History
Enterprise Services can be traced back to Microsoft Transaction Server (MTS) that was released as
a Windows NT 4.0 option pack. MTS extended COM by offering services such as transactions for
COM objects. Because MTS extended COM in ways that were incompatible with COM,
workarounds such as special MTS API calls to invoke COM objects from within MTS applications
were necessary.

36 557599 Ch29.qxd 4/29/04 11:44 AM Page 999

One of the most important new features of Windows 2000 was the integration of MTS and COM in
COM+. With Windows 2000, COM+ base services are aware of the context that is needed by COM+ ser-
vices (previously MTS services) such as distributed transactions. COM+ also added some more services.

COM+ 1.5 is available with Windows XP and Windows Server 2003. COM+ 1.5 adds some more features
to increase scalability and availability, including application pooling and recycling, and configurable iso-
lation levels.

.NET Enterprise Services enables us to use COM+ services from within .NET components. Support is
offered for Windows 2000 and later. Running .NET components within COM+ applications, no COM
callable wrapper is used (see Chapter 28); instead it runs as a .NET component. When you install the
.NET runtime on an operating system, with the runtime some extensions are added to COM+ Services. If
two .NET components are installed with Enterprise Services, and component A is using component B,
COM marshaling is not used; instead the .NET components can invoke each other directly.

Where to Use Enterprise Services?
Business applications can be logically separated into presentation, business, and data service layers. The
presentation service layer is responsible for user interaction. Here the user can interact with the application
to enter and view data. Technologies used with this layer are Windows Forms and ASP.NET Web Forms.
The business service layer consists of business rules and data rules. The data service layer interacts with per-
sistent storage. Here we can use components that make use of ADO.NET. Enterprise Services fits both to
the business service layer as well as to the data service layer.

Figure 29-1 shows two typical application scenarios. Enterprise Services can be used directly from a rich
client that is using Windows Forms, or from a Web application that is running ASP.NET.

Figure 29-1

Enterprise Services is also a scalable technology. Using component load balancing it is possible to distribute
the load of the clients across different systems.

Thin Client
Internet Explorer

Web Server
ASP .NET

Database

Server
Enterprise Services

Server
Enterprise ServicesRich Client

Windows Forms

1000

Chapter 29

36 557599 Ch29.qxd 4/29/04 11:44 AM Page 1000

You can also use Enterprise Services on the client system, because this technology is included in
Windows XP.

Contexts
The base functionality behind the services offered by Enterprise Services is the context. The context
makes it possible that during a method call the method call can be intercepted, and some service func-
tionality can be carried out before the expected method call is invoked.

Contexts are discussed in Chapter 16 with .NET Remoting contexts. .NET Remoting contexts also play
an important role with Enterprise Services, because these contexts are used for intercepting .NET objects
configured with Enterprise Services. However, because COM components can be configured with
Enterprise Services in a similar way to .NET components, the COM+ context exists in conjunction with
the .NET Remoting context. This way a COM component and a .NET component can participate in the
same transaction.

Automatic Transactions
The most commonly used feature of Enterprise Services is automatic transactions. With automatic transac-
tions, there is no need to start and commit a transaction in the code. Instead, an attribute can be applied
to a class. Using the [Transaction] attribute with the options Required, Supported, RequiresNew,
NotSupported, you can mark a class with the requirements it has regarding transactions. If you mark
the class with the option Required, a transaction is created automatically when a method starts, and
committed to or aborted when the root component of the transaction is finished.

Such a declarative way to program is of particular advantage when developing a complex object model
and programming transactions manually. For example, suppose you have a Person object with multiple
Address and Document objects that are associated with the Person. Now you want to store the Person
object together with all associated objects in a single transaction. Doing transactions programmatically
would mean passing a transaction object to all the related objects, so that they can participate in the
same transaction. Using transactions declaratively, there is no need to pass the transaction object,
because this happens behind the scenes using the context.

Distributed Transactions
Enterprise Services not only offers automatic transactions, but the transactions can also be distributed
across multiple databases. Enterprise Services transactions are enlisted with the Distributed Transaction
Coordinator (DTC). The DTC supports databases that make use of the XA protocol, which is a two-phase
commit protocol, and is supported by SQL Server and Oracle. A single transaction can span writing data
to both a SQL Server and an Oracle database.

Distributed transactions are not only useful with databases, but a single transaction can also span writ-
ing data to a database, and writing data to a message queue. If one of these two actions fails, a rollback is
done with the other action.

1001

Enterprise Services

36 557599 Ch29.qxd 4/29/04 11:44 AM Page 1001

Object Pooling
Pooling is another feature offered by Enterprise Services. These services use a pool of threads to answer
requests from clients. Object pooling can be used for objects with a long initialization time. With object
pooling, objects are created in advance, so that clients don’t have to wait until the object is initialized.

Role-based Security
Using role-based security you can define roles declaratively, and define what methods or components can
be used from what roles. The system administrator assigns users or user groups to these roles. In the
program there is no need to deal with access control lists, instead roles that are simple strings can be
used.

Queued Components
Queued components is an abstraction layer to message queuing. Instead of sending messages to a message
queue, the client can invoke methods with a recorder that offers the same methods as a .NET class con-
figured in Enterprise Services. The recorder in turn creates messages that are transferred via a message
queue to the server application.

Queued components and message queuing is useful if the client application is running in a disconnected
environment (for example, on a laptop that not always has a connection to the server), or if the request
that is send to the server should be cached before it is forwarded to a different server (for example, to a
server of a partner company).

Loosely Coupled Events
Chapter 16 discussed how to use events with .NET Remoting. Chapter 28 discusses how to use events in
a COM environment. With both of these event mechanisms, the client and the server do have a tight con-
nection. This is different with loosely coupled events (LCE). With LCE the COM+ facility is inserted
between client and server (see Figure 29-2). The publisher registers the events it will offer with COM+ by
defining an event class. Instead of sending the events directly to the client, the publisher sends events to
the event class that is registered with the LCE service. The LCE service forwards the events to the sub-
scriber, which is the client application that registered a subscription for the event.

Figure 29-2

Subscriber

Subscriber

Loosely Coupled Event
Service

Publisher Event
Class

1002

Chapter 29

36 557599 Ch29.qxd 4/29/04 11:44 AM Page 1002

Creating a Simple COM+ Application
Creating a .NET class that can be configured with Enterprise Services, you have to reference the assem-
bly System.EnterpriseServices, and add the namespace System.EnterpriseServices to the using dec-
larations. The most important class to use is the class ServicedComponent.

The first example just shows the basic requirements to create a serviced component. Start with creating a
C# library application. All COM+ applications must be written as library application—regardless
whether they will run in their own process or in the process of the client. Name the library SimpleServer.
Reference the assembly System.EnterpriseServices, and add the declaration using
System.EnterpriseServices; to the assmblyinfo.cs and class1.cs files.

Class ServicedComponent
Every serviced component class must derive from the base class ServicedComponent.
ServicedComponent itself derives from the class ContextBoundObject, so an instance is bound to a
.NET Remoting context.

The class ServicedComponent has some protected methods that can be overridden:

Protected Method Description

Activate() The Activate() and Deactivate() methods are called if the object is
Deactivate() configured to use object pooling. When the object is taken from the pool,

the Activate() method is called. Before the object is put back into the
pool, Deactivate() is called.

CanBePooled() This is another method for object pooling. If the object is in an inconsistent
state, you can return false in your overridden implementation of
CanBePooled(). This way the object is not put back into the pool, but
destroyed instead. For the pool a new object will be created.

Construct() This method is called at instantiation time, where a construction string can
be passed to the object. The construction string can be modified by the sys-
tem administrator. Later in this chapter we use the construction string to
define the database connection string.

Application Attributes
Libraries that are configured with Enterprise Services need a strong name. For some Enterprise Services
features it is also necessary to install the assembly in the global assembly cache. Strong names and the
global assembly cache are discussed in Chapter 13.

Create a key pair to sign the assembly by using the strong name utility:

sn –k mykey.snk

1003

Enterprise Services

36 557599 Ch29.qxd 4/29/04 11:44 AM Page 1003

To the file assemblyinfo.cs add the attribute AssemblyKeyFile with the reference to the key file created.

[assembly: AssemblyKeyFile(“../../../mykey.snk”)]

Some Enterprise Services attributes are also needed. The attribute ApplicationName defines the name
of the application how it will be seen in the Component Services administrative tool. The value of the
Description attribute shows up as description within the application configuration tool.

ApplicationActivation allows defining if the application should be configured as a library applica-
tion or a server application, using the options ActivationOption.Library or
ActivationOption.Server. With a library application, the application is loaded inside the process of
the client. In that case the client might be the ASP.NET runtime. With a server application, a process for
the application is started. The name of the process is dllhost.exe. With the attribute
ApplicationAccessControl you can turn off security, so that every user is allowed to use the
component.

[assembly: ApplicationName(“Wrox EnterpriseDemo”)]
[assembly: Description(“Wrox Sample Application for Professional C#”)]
[assembly: ApplicationActivation(ActivationOption.Server)]
[assembly: ApplicationAccessControl(false)]

With the attribute ApplicationAccessControl, the default values have changed from .NET 1.0 to
.NET 1.1. Without setting the attribute, .NET 1.0 by default turns off security checking for the COM+
application. With .NET 1.1 by default security checking is turned on. So it is always best to set the
attribute.

Creating the Component
In the file class1.cs you can create your serviced component class. With serviced components it is best to
define interfaces that are used as the contract between the client and the component. This is not a strict
requirement, but some of the Enterprise Services features (such as setting role-based security on a
method or interface level) do require interfaces. Create the interface IGreeting with the method
Welcome().

using System;
using System.EnterpriseServices;

namespace Wrox.ProCSharp.EnterpriseServices
{

public interface IGreeting
{

string Welcome(string name);
}

The class SimpleComponent derives from the base class ServicedComponent and implements the
interface IGreeting. The class ServicedComponent acts as a base class of all serviced component
classes, and offers some methods for the activation and construction phases. Applying the attribute
[EventTrackingEnabled] to this class makes it possible to monitor the objects with the administrative
tool. By default monitoring is disabled, because using this feature reduces performance. The attribute
[Description] only specifies text that shows up in the admin tool.

1004

Chapter 29

36 557599 Ch29.qxd 4/29/04 11:44 AM Page 1004

[EventTrackingEnabled(true)]
[Description(“Simple Serviced Component Sample”)]
public class SimpleComponent : ServicedComponent, IGreeting
{

public SimpleComponent()
{
}

The method Welcome() only returns “Hello, “ with the name that is passed to the argument. To see
the component run in the administrative tool, Thread.Sleep() simulates some processing time.

public string Welcome(string name)
{

// simulate some processing time
System.Threading.Thread.Sleep(1000);
return “Hello, “ + name;

}
}

}

Other than applying some attributes and deriving the class from ServicedComponent there’s nothing
special to do with classes that should use Enterprises Services features. All that is left to do is building
and deploying a client application.

Deployment
Assemblies with serviced components must be configured with COM+. This configuration can be done
automatically or by registering the assembly manually.

Automatic Deployment
If a .NET client application that uses the serviced component is started, the COM+ application is config-
ured automatically. This is true for all classes that derive from the class ServicedComponent.
Application and class attributes such as [EventTrackingEnabled] define the characteristics of the
configuration.

However, with automatic deployment the client application must be a .NET application and needs
administrative rights. If the client application is ASP.NET, the ASP.NET runtime usually doesn’t have
administrative rights. So, automatic deployment is only useful during development time. However, here
it is an extremely advantageous feature. During development time it is not necessary to do manual
deployment after every build.

Manual Deployment
Deploying the assembly manually can be done with the command line utility .NET Services Installation
Tool regsvcs.exe. Starting the command

regsvcs SimpleServer.dll

1005

Enterprise Services

36 557599 Ch29.qxd 4/29/04 11:44 AM Page 1005

registers the assembly SimpleServer as a COM+ application and configures the included components
according to their attributes, and also creates a type library that can be used by COM clients accessing
the .NET component.

After you’ve configured the assembly, you can start the Component Services administrative tool by
selecting Administrative Tools➪Component Services from the Windows menu. In the left tree view of
this application you can select Component Services➪Computers➪My Computer➪COM+ Applications
to verify that the application was configured.

Component Services Admin Tool
After a successful configuration you can see Wrox EnterpriseDemo as an application name in the tree
view. This name was set by the attribute [ApplicationName]. Selecting the Action➪Properties opens
the dialog box shown in Figure 29-3. Both the name and the description have been configured by using
attributes. When you select the Activation tab, you can see that the application is configured as a server
application because this has been defined with the [ApplicationActivation] attribute, and selecting
the Security tab shows that the Enforce access checks for this application option is not selected because
the attribute [ApplicationAccessControl] was set to false.

Figure 29-3

1006

Chapter 29

36 557599 Ch29.qxd 4/29/04 11:44 AM Page 1006

There are some more options that can be set with this application:

❑ Security. With the security configuration, you can enable or disable access checks. If security is
enabled, you can set access checks to either the application level, or also the component, to the
interface, and to the method level. It is also possible to encrypt messages that are sent across the
network using packet privacy as an authentication level for calls. Of course, this also reduces
performance.

❑ Identity. With server applications you can use the Identity tab to configure the user account that
will be used for the process that hosts the application. By default this is the interactive user.
This setting is very useful while debugging the application, but cannot be used on a production
system if the application is running on a server, because nobody might be logged on. The con-
figuration can be changed for a specific user.

❑ Activation. The Activation tab allows configuring the application either as a library or as a
server application. Two new options with COM+ 1.5 are the option to run the application as a
Windows Service and to use SOAP to access the application. We discuss Windows Services in
Chapter 33. Selecting the option SOAP uses .NET Remoting configured within Internet
Information Server to access the component. .NET Remoting is discussed in Chapter 16.

❑ Queuing. The Queuing configuration is required for service components that make use of
Message Queuing.

❑ Advanced. With the Advanced tab you can specify whether the application should be shut
down after a certain period of client inactivity. You can also specify whether to lock a certain
configuration, so no one can change it accidentally.

❑ Dump. If the application crashes, you can specify where in the directory the dumps should be
stored. This is useful for components developed with C++.

❑ Pooling & Recycling. Pooling and recycling is a new option with COM+ 1.5. With this option
you can configure if the application should be restarted (recycled) depending on application
lifetime, memory needs, number of calls, and so on.

With the Component Services administrative tool you can also view and configure the component itself.
When opening child elements of the application, you can view the component
Wrox.ProCSharp.EnterpriseServices.SimpleComponent. Selecting Action ➪ Properties opens the
dialog box shown in Figure 29-4.

Using this dialog box, you can configure these options:

❑ Transactions. With the Transactions tab you can specify whether the component requires trans-
actions. We will use this feature in our next sample.

❑ Security. If security is enabled with the application, with this configuration you can define what
roles are allowed to use the component.

❑ Activation. The Activation configuration enables you to set object pooling and to assign a con-
struction string.

❑ Concurrency. If the component is not thread-safe, concurrency can be set to Required or Requires
New. This way the COM+ runtime only allows one thread at a time to access the component.

1007

Enterprise Services

36 557599 Ch29.qxd 4/29/04 11:44 AM Page 1007

Figure 29-4

Client Application
After building the serviced component library, you can create a client application. This can be as simple
as a C# console application. After you’ve created the project for the client, you have to reference both the
assembly from the serviced component, SimpleServer, as well as the assembly
System.EnterpriseServices. Then you can write the code to instantiate a new SimpleComponent
instance, and invoke the method Welcome(). In the following code calling the method Welcome() is
repeated for 10 times. The using statement helps to release the resources allocated with the instance
before the garbage collector takes action. With the using statement, the Dispose() method of the ser-
viced component is called with the end of the using statement.

using System;

namespace Wrox.ProCSharp.EnterpriseServices
{

class Class1
{

static void Main(string[] args)
{

using (SimpleComponent obj = new SimpleComponent())
{

for (int i = 0; i < 10; i++)
{

Console.WriteLine(obj.Welcome(“Sharon”));
}

1008

Chapter 29

36 557599 Ch29.qxd 4/29/04 11:44 AM Page 1008

}
}

}
}

If you start the client application before configuring the server, the server will be configured automati-
cally. The automatic configuration of the server is done with the values that you’ve specified using
attributes. For a test you can unregister the serviced component and start the client again. If the serviced
component is configured during the start of the client application, the startup needs more time.
Remember that this feature is only useful during development time.

While the application is running, you can monitor the serviced component with the Component Services
administrative tool. Selecting Components in the tree view, and choosing View➪Detail, you can view the
number of instantiated objects if the attribute [EventTrackingEnabled] is set.

As you’ve seen, creating serviced components is just a matter of deriving the class from the base class
ServicedCompoonent, and by setting some attributes to configure the application. Next you will see
how transactions can be used with serviced components.

Transactions
Automatic transactions is the mostly used feature of Enterprise Services. What are transactions? Think
about ordering a book from a Web site. The book order process removes the book you want to buy from
the stock and puts it in your order box, and the cost of your book is charged to your credit card. With
these two actions, either both actions should complete successfully, or none of these actions should hap-
pen. This is the role of a transaction.

ACID Properties
Transactions can be described by using ACID properties. ACID is the short form for atomicity,
consistency, isolation, and durability.

❑ Atomicity. Atomicity represents one unit of work. With a transaction either the complete unit of
work succeeds, or nothing is changed.

❑ Consistency. The state of the database must be a valid, consistent state after the transaction
committed.

❑ Isolation. Isolation means that transactions that happen concurrently are isolated from state that
is changed during a transaction. Transaction A can not see the changed state of transaction B
while the transaction is not completed.

❑ Durability. After the transaction is completed, it must be stored in a durable way. This means
that if the power goes down or the server crashes, the state must be recovered at reboot.

Transaction Attributes
Serviced components can be marked with the [Transaction] attribute to define if and how transac-
tions are required with the component.

1009

Enterprise Services

36 557599 Ch29.qxd 4/29/04 11:44 AM Page 1009

TransactionOption Value Description

Required Setting the [Transaction] attribute to Transaction
Option.Required means that the component runs inside
a transaction. If a transaction has been created already,
then the component will run in the same transaction. If no
transaction exists, a transaction will be created.

RequiresNew TransactionOption.RequiresNew always results in a
newly created transaction. The component never partici-
pates in the same transaction as the caller.

Supported With TransactionOption.Supported, the component
doesn’t need transactions itself. However, the transaction
will span the caller and the called component, if these
components require transactions.

NotSupported The option TransactionOption.NotSupported means
that the component never runs in a transaction, regard-
less whether the caller has a transaction.

Disabled TransactionOption.Disabled means that a possible
transaction of the current context is ignored.

Figure 29-5 shows multiple components with different transactional configurations. The client invokes
component A. Because component A is configured with Transaction Required and no transaction existed
previously, the new transaction 1 is created. Component A invokes component B which in turn invokes
component C. Because component B is configured with Transaction Supported, and the configuration of
component C is set to Transaction Required, all three components A, B, and C do use the same transaction
context. If component B were configured with the transaction setting NotSupported, component C would
get a new transaction. Component D is configured with the setting New Transaction Required, so a new
transaction is created when it is called by component A.

Transaction Results
A transaction can be influenced by setting the consistent and the done bit of the context. If the consistent
bit is set to true means that the component is happy with the outcome of the transaction. The transaction
can be committed if all components participating with the transaction are similar successful. If the con-
sistent bit is set to false, the component is not happy with the outcome of the transaction, and the trans-
action will be aborted when the root object that started the transaction is finished. If the done bit is set,
the object can be deactivated after the method call ended. A new instance will be created with the next
method call.

1010

Chapter 29

36 557599 Ch29.qxd 4/29/04 11:44 AM Page 1010

Figure 29-5

The consistent and done bits can be set using four methods of the ContextUtil class with the results
that you can see in the table below.

ContextUtil Method Consistent Bit Done Bit

SetComplete true true

SetAbort false true

EnableCommit true false

DisableCommit false false

With .NET it is also possible to set the consistent and done bit by applying the attribute
[AutoComplete] to the method instead of calling the ContextUtil methods. With this attribute the
method ContextUtil.SetComplete() will be called automatically if the method is successful. If the
method fails and an exception is thrown, with [AutoComplete], the method
ContextUtil.SetAbort() will be called.

Sample Application
With this sample application we simulate a simplified scenario that writes new orders to the Northwind
sample database. As shown in Figure 29-6, multiple components are used with the COM+ application.
The class OderControl is called from the client application to create new orders. OrderControl uses

D

ID

New TX
Required

A

IA

TX
required

Transaction 1

Transaction 2

B
IB IC

TX
Supported

C

TX
required

1011

Enterprise Services

36 557599 Ch29.qxd 4/29/04 11:44 AM Page 1011

the OrderData component. OrderData has the responsibility to create a new entry in the Order table of
the Northwind database. The OrderData component uses the OrderLineData component to write
Order Detail entries to the database. Both OrderData and OrderLineData must participate in the same
transaction.

Figure 29-6

Start by creating a C# Component library with the name NorthwindComponent. In the file assemblyinfo.cs
add the key file with the attribute [AssemblyKeyFile], and define the Enterprise Services application
attributes as shown in the following code:

[assembly: AssemblyKeyFile(“../../../mykey.snk”)]

[assembly: ApplicationName(“Wrox.NorthwindDemo”)]
[assembly: ApplicationActivation(ActivationOption.Library)]
[assembly: ApplicationAccessControl(false)]

Entity classes
Next add some entity classes that represent the columns in the Northwind database tables Order and
Order Details. The class Order has a static method Create() that creates and returns a new instance of
the class Order, and initializes this instance with the arguments passed to this methods. Also, the class
Order has some read-only properties to access the fields oderId, customerId, orderData,
shipAddress, shipCity, and shipCountry. OrderId is not known at creation time of the class Order,
but because the Order table in the Northwind database has an auto-increment attribute, OrderId is just
known after the order is written to the database. The method SetOrderId() is used to set the corre-
sponding id after the order has been written to the database. Because this method is called by a class
inside the same assembly, the access level of this method is set to internal. The method
AddOrderLine() adds order details to the order.

using System;
using System.Collections;

namespace Wrox.ProCSharp.EnterpriseServices
{

public class Order
{

lOrderLineDatalOrderData

OrderControl

Transaction
Supported

lOrderControl lOrderData lOrderLineData

OrderData OrderLineData

Transaction
Required

1012

Chapter 29

36 557599 Ch29.qxd 4/29/04 11:44 AM Page 1012

public static Order Create(string customerId, DateTime orderDate,
string shipAddress, string shipCity, string shipCountry)

{
Order o = new Order();
o.customerId = customerId;
o.orderDate = orderDate;
o.shipAddress = shipAddress;
o.shipCity = shipCity;
o.shipCountry = shipCountry;
return o;

}

public Order()
{
}

internal void SetOrderId(int orderId)
{

this.orderId = orderId;
}

public void AddOrderLine(OrderLine orderLine)
{

orderLines.Add(orderLine);
}

private int orderId;
private string customerId;
private DateTime orderDate;
private string shipAddress;
private string shipCity;
private string shipCountry;
private ArrayList orderLines = new ArrayList();

public int OrderId
{

get
{

return orderId;
}

}
public string CustomerId
{

get
{

return customerId;
}

}
public DateTime OrderDate
{

get
{

return orderDate;
}

}
public string ShipAddress

1013

Enterprise Services

36 557599 Ch29.qxd 4/29/04 11:44 AM Page 1013

{
get
{

return shipAddress;
}

}
public string ShipCity
{

get
{

return shipCity;
}

}
public string ShipCountry
{

get
{

return shipCountry;
}

}
public OrderLine[] OrderLines
{

get
{

OrderLine[] ol = new OrderLine[orderLines.Count];
orderLines.CopyTo(ol);
return ol;

}
}

}
}

The second entity class is OrderLine. OrderLine has a static Create() method similar to the one of the
Order class. Other than that, the class only has some properties for the fields productId, unitPrice,
and quantity.

using System;

namespace Wrox.ProCSharp.EnterpriseServices
{

[Serializable]
public class OrderLine
{

public static OrderLine Create(int productId, float unitPrice, int quantity)
{

OrderLine detail = new OrderLine();
detail.productId = productId;
detail.unitPrice = unitPrice;
detail.quantity = quantity;
return detail;

}
public OrderLine()
{
}

1014

Chapter 29

36 557599 Ch29.qxd 4/29/04 11:44 AM Page 1014

private int productId;
private float unitPrice;
private int quantity;

public int ProductId
{

get
{

return productId;
}
set
{

productId = value;
}

}
public float UnitPrice
{

get
{

return unitPrice;
}
set
{

unitPrice = value;
}

}
public int Quantity
{

get
{

return quantity;
}
set
{

quantity = value;
}

}
}

}

The OrderControl component
The class OrderControl represents a simple business services component. In this example just one
method, NewOrder(), is defined in the interface IOrderControl. The implementation of NewOrder()
does nothing more than instantiating a new instance of the data services component OrderData, and
calling the method Insert() to write an Order object to the database. In a more complex scenario, this
method could be extended to write a log entry to a database, or to invoke a queued component to send
the Order object to a message queue.

using System;
using System.EnterpriseServices;
using System.Data;
using System.Data.SqlClient;
using System.Collections;

1015

Enterprise Services

36 557599 Ch29.qxd 4/29/04 11:44 AM Page 1015

namespace Wrox.ProCSharp.EnterpriseServices
{

public interface IOrderControl
{

void NewOrder(Order order);
}

[Transaction(TransactionOption.Supported)]
[EventTrackingEnabled(true)]
public class OrderControl : ServicedComponent, IOrderControl
{

[AutoComplete()]
public void NewOrder(Order order)
{

OrderData data = new OrderData();
data.Insert(order);

}
}

}

The OrderData component
The OrderData class is responsible to write the values of Order objects to the database. The interface
IOrderUpdate defines the Insert() method. You can extend this interface to also support an
Update() method where an existing entry in the database gets updated.

using System;
using System.EnterpriseServices;
using System.Data;
using System.Data.SqlClient;

namespace Wrox.ProCSharp.EnterpriseServices
{

public interface IOrderUpdate
{

void Insert(Order order);
}

The class OrderData has the attribute [Transaction] with the value TransactionOption.Required
applied. This means that the component will run in a transaction in any case. Either a transaction is cre-
ated by the caller, and OrderData uses the same transaction, or a new transaction is created. Here a new
transaction will be created because the calling component OrderControl doesn’t have a transaction.

With serviced components you can only use default constructors. However, you can use the component
services administrative tool to configure a construction string that is send to a component (see Figure
29-7). Selecting the Activation tab of the component configuration enables you to change the construc-
tion string. The option Enable object construction is turned on when the attribute [Construction
Enabled] is set, as it is with the class OrderData. The Default property of the [ConstructionEnabled]
attribute defines the default connection string that is shown in the Activation settings after registration
of the assembly. Setting this attribute also requires to overload the method Construct() from the
base class ServicedComponent. This method is called by the COM+ runtime at object instantiation,
and the construction string is passed as an argument. The construction string is set to the variable
connectionString that is used later to connect to the database.

1016

Chapter 29

36 557599 Ch29.qxd 4/29/04 11:44 AM Page 1016

[Transaction(TransactionOption.Required)]
[EventTrackingEnabled(true)]
[ConstructionEnabled(true, Default=”server=localhost;

database=northwind;trusted_connection=true”)]
public class OrderData : ServicedComponent, IOrderUpdate
{

private string connectionString = null;

protected override void Construct(string s)
{

connectionString = s;
}

Figure 29-7

The method Insert() is at the heart of the component. Here we use ADO.NET to write the Order
object to the database. (ADO.NET is discussed in more detail in Chapter 22.) For this example, we create
a SqlConnection object where the connection string that was set with the Construct() method is
used to initialize the object.

The attribute [AutoComplete()] is applied to the method to get automatic transaction handling as dis-
cussed earlier.

[AutoComplete()]
public void Insert(Order order)
{

SqlConnection connection = new SqlConnection(connectionString);

1017

Enterprise Services

36 557599 Ch29.qxd 4/29/04 11:44 AM Page 1017

The method connection.CreateCommand() creates a SqlCommand object where the CommandText
property is set to an SQL INSERT statement to add a new record to the Orders table. The method
ExecuteNonQuery() executes the SQL statement.

try
{

SqlCommand command = connection.CreateCommand();
command.CommandText = “INSERT INTO Orders (CustomerId, OrderDate, “ +

“ShipAddress, ShipCity, ShipCountry)” +
“VALUES(@CustomerId, @OrderDate, @ShipAddress, @ShipCity, “ +
“@ShipCountry)”;

command.Parameters.Add(“@CustomerId”, order.CustomerId);
command.Parameters.Add(“@OrderDate”, order.OrderDate);
command.Parameters.Add(“@ShipAddress”, order.ShipAddress);
command.Parameters.Add(“@ShipCity”, order.ShipCity);
command.Parameters.Add(“@ShipCountry”, order.ShipCountry);

connection.Open();

command.ExecuteNonQuery();

Because OrderId is defined as an auto-increment value in the database, and this id is needed for writing
the Order Details to the database, OrderId is read by using @@IDENTITY. Then it is set to the Order
object by calling the method SetOrderId().

command.CommandText = “SELECT @@IDENTITY AS ‘Identity’”;
object identity = command.ExecuteScalar();
order.SetOrderId(Convert.ToInt32(identity));

After the order is written to the database, all order lines of the order are written using the
OrderLineData component.

OrderLineData updateOrderLine = new OrderLineData();
foreach (OrderLine orderLine in order.OrderLines)
{

updateOrderLine.Insert(order.OrderId, orderLine);
}

}

Finally, regardless whether the code in the try block was successful, or an exception occurred, the con-
nection is closed.

finally
{

connection.Close();
}

}
}

}

1018

Chapter 29

36 557599 Ch29.qxd 4/29/04 11:44 AM Page 1018

The OrderLineData component
The OrderLineData component is implemented similar to the OrderData component. You use the
attribute [ConstructionEnabled] to define the database connection string:

using System;
using System.EnterpriseServices;
using System.Data;
using System.Data.SqlClient;

namespace Wrox.ProCSharp.EnterpriseServices
{

public interface IOrderLineUpdate
{

void Insert(int orderId, OrderLine orderDetail);
}

[Transaction(TransactionOption.Required)]
[EventTrackingEnabled(true)]
[ConstructionEnabled(true, Default=”server=localhost;database=northwind;” +

“trusted_connection=true”)]
public class OrderLineData : ServicedComponent, IOrderLineUpdate
{

private string connectionString = null;

protected override void Construct(string s)
{

connectionString = s;
}

With the Insert() method of the OrderLineData class the [AutoComplete] attribute isn’t used to
demonstrate a different way to define the transaction outcome. It shows how to set the consistent and
done bit with the ContextUtil class instead. The method SetComplete() is called at the end of the
method, depending on whether inserting the data in the database was successful. In case there was an
error and an exception is thrown, the method SetAbort() sets the consistent bit to false instead, so
that the transaction is undone with all components participating in the transaction.

public void Insert(int orderId, OrderLine orderDetail)
{

SqlConnection connection = new SqlConnection(connectionString);
try
{

SqlCommand command = connection.CreateCommand();
command.CommandText = “INSERT INTO [Order Details] (OrderId, “ +

“ProductId, UnitPrice, Quantity)” +
“VALUES(@OrderId, @ProductId, @UnitPrice, @Quantity)”;

command.Parameters.Add(“@OrderId”, orderId);
command.Parameters.Add(“@ProductId”, orderDetail.ProductId);
command.Parameters.Add(“@UnitPrice”, orderDetail.UnitPrice);
command.Parameters.Add(“@Quantity”, orderDetail.Quantity);

connection.Open();

1019

Enterprise Services

36 557599 Ch29.qxd 4/29/04 11:44 AM Page 1019

command.ExecuteNonQuery();
}
catch (Exception ex)
{

ContextUtil.SetAbort();
throw;

}
finally
{

connection.Close();
}
ContextUtil.SetComplete();

}
}

}

Client application
Having built the component, you can create a client application. For testing purposes, a console applica-
tion serves the purpose. After referencing the assembly NorthwindComponent and the assembly
System.EnterpriseServices, you can create a new Order with the static method Order.Create().
order.AddOrderLine() adds an order line to the order. OrderLine.Create() accepts product ids,
the price, and quantity to create an order line. With a real application it would be useful to add a
Product class instead of using product ids, but for the purpose of our example, we only want to demon-
strate transactions in general.

Finally, the serviced component class OrderControl is created to invoke the method NewOrder().

Order order = Order.Create(“PICCO”, DateTime.Today, “Georg Pipps”,
“Salzburg”, “Austria”);

order.AddOrderLine(OrderLine.Create(16, 17.45F, 2));
order.AddOrderLine(OrderLine.Create(67, 14, 1));

OrderControl orderControl = new OrderControl();
orderControl.NewOrder(order);

You can try to write products that don’t exist to the OrderLine (using a product id that is not listed in the
table Products). In this case, the transaction will be aborted, and no data will be written to the database.

While a transaction is active you can see the transaction in the Component Services administrative tool
by selecting Distributed Transaction Coordinator in the tree view (see Figure 29-8).

Figure 29-8

1020

Chapter 29

36 557599 Ch29.qxd 4/29/04 11:44 AM Page 1020

Summary
In this chapter we have discussed the rich features that are offered by Enterprise Services, such as auto-
matic transactions, object pooling, queued components and loosely coupled events.

For creating serviced components, you have to reference the assembly System.EnterpriseServices. The
base class of all serviced components is ServicedComponent. With this class the context makes it possi-
ble to intercept method calls. You can use attributes to specify the interception that will be used. You’ve
also learned how to configure an application and its components using attributes, as well as how to
manage transactions and specify transactional requirements of components using the [Transaction]
attribute.

If you are debugging the serviced component while it is running inside a transaction
be aware that the default transaction timeout is 60 seconds for serviced components.
You can change the default for the complete system by selecting Options in the
properties of My Computer in the Component Services administrative tool, or on a
component-by-component level with the Transaction options of the component.

1021

Enterprise Services

36 557599 Ch29.qxd 4/29/04 11:44 AM Page 1021

36 557599 Ch29.qxd 4/29/04 11:44 AM Page 1022

Part VII: Windows Base
Services

Chapter 30: File and Registry Operations

Chapter 31: Accessing the Internet

Chapter 32: Windows Services

37 557559 PP07.qxd 4/29/04 11:45 AM Page 1023

37 557559 PP07.qxd 4/29/04 11:45 AM Page 1024

File and Registry Operations

In this chapter, we examine how to perform tasks involving reading from and writing to files and
the system registry in C#. In particular, we are going to cover:

❑ Exploring the directory structure, finding out what files and folders are present, and
checking their properties

❑ Moving, copying, and deleting files and folders

❑ Reading and writing text in files

❑ Reading and writing keys in the registry

Microsoft has provided very intuitive object models covering these areas, and during this chapter
we will show you how to use .NET base classes to perform the tasks mentioned above. In the case
of file system operations, the relevant classes are almost all found in the System.IO namespace,
while registry operations are dealt with by a classes in the Microsoft.Win32 namespace.

The .NET base classes also include a number of classes and interfaces in the
System.Runtime.Serialization namespace that are concerned with serialization—that is,
the process of converting data (for example, the contents of a document) into a stream of bytes for
storage. We won’t be focusing on these classes in this chapter; we will be focusing on the classes
that give you direct access to files.

Note that security is particularly important when modifying files or registry entries. The whole area
of security is covered separately in Chapter 14. In this chapter, however, we will simply assume that
you have sufficient access rights to run all the examples that modify files or registry entries, which
should be the case if you are running from an account with administrator privileges.

38 557599 Ch30.qxd 4/29/04 11:42 AM Page 1025

Managing the File System
The classes that are used to browse around the file system and perform operations, such as moving,
copying, and deleting files, are shown in Figure 30-1. The namespace of each class is shown in brackets
beneath the class name.

Figure 30-1

The following list explains the function of these classes:

❑ System.MarshalByRefObject—Base object class for .NET classes that are remotable; permits
marshaling of data between application domains.

❑ FileSystemInfo—Base class that represents any file system object.

❑ FileInfo and File—These classes represent a file on the file system.

❑ DirectoryInfo and Directory—These classes represent a folder on the file system.

❑ Path—This class contains static members that you can use to manipulate pathnames.

On Windows, the objects that contain files and are used to organize the file system are termed folders.
For example, in the path C:\My Documents\ReadMe.txt, ReadMe.txt is a file and My Documents is a
folder. Folder is a very Windows-specific term: On virtually every other operating system the term direc-
tory is used in place of folder, and in accordance with Microsoft’s goal to design .NET as a platform-
independent technology, the corresponding .NET base classes are called Directory and Directory
Info. However, due to the potential for confusion with LDAP directories (as discussed in Chapter 24),
and because this is a Windows book, we’ll stick to the term folder in this discussion.

Object
(System)

MarshalByRefObject
(System)

FileInfo
(System.I0)

DirectoryInfo
(System.I0)

FileSystemInfo
(System.I0)

Directory
(System.I0)

File
(System.I0)

Path
(System.I0)

1026

Chapter 30

38 557599 Ch30.qxd 4/29/04 11:42 AM Page 1026

.NET Classes That Represent Files and Folders
You will notice from the previous list that there are two classes used to represent a folder and two classes
for a file. Which one of these classes you use depends largely on how many times you need to access
that folder or file:

❑ Directory and File contain only static methods and are never instantiated. You use these
classes by supplying the path to the appropriate file system object whenever you call a member
method. If you only want to do one operation on a folder or file then using these classes is more
efficient, because it saves the overhead of instantiating a .NET class.

❑ DirectoryInfo and FileInfo implement roughly the same public methods as Directory
and File, as well as some public properties and constructors, but they are stateful and the
members of these classes are not static. You need to instantiate these classes before each instance
is associated with a particular folder or file. This means that these classes are more efficient if
you’re performing multiple operations using the same object, because they read in the authenti-
cation and other information for the appropriate file system object on construction, and then do
not need to read that information again, no matter how many methods and so on you call
against each object (class instance). In comparison, the corresponding stateless classes need to
check the details of the file or folder again with every method you call.

In this section, we will be mostly using the FileInfo and DirectoryInfo classes, but it so happens
that many (though not all) of the methods we call are also implemented by File and Directory
(although in those cases these methods require an extra parameter—the pathname of the file system
object, and a couple of the methods have slightly different names). For example:

FileInfo myFile = new FileInfo(@”C:\Program Files\My Program\ReadMe.txt”);
myFile.CopyTo(@”D:\Copies\ReadMe.txt”);

Has the same effect as:

File.Copy(@”C:\Program Files\My Program\ReadMe.txt”, @”D:\Copies\ReadMe.txt”);

The first code snippet above will take slightly longer to execute, because of the need to instantiate a
FileInfo object, myFile, but it leaves myFile ready for you to perform further actions on the same file.
By using the second example, there is no need to instantiate an object to copy the file.

You can instantiate a FileInfo or DirectoryInfo class by passing to the constructor a string contain-
ing the path to the corresponding file system. We’ve just illustrated the process for a file. For a folder the
code looks similar:

DirectoryInfo myFolder = new DirectoryInfo(@”C:\Program Files”);

If the path represents an object that does not exist, then an exception will not be thrown at construction,
but will instead be thrown the first time that you call a method that actually requires the corresponding
file system object to be there. You can find out whether the object exists and is of the appropriate type by
checking the Exists property, which is implemented by both of these classes:

FileInfo test = new FileInfo(@”C:\Windows”);
Console.WriteLine(test.Exists.ToString());

1027

File and Registry Operations

38 557599 Ch30.qxd 4/29/04 11:42 AM Page 1027

Note that for this property to return true, the corresponding file system object must be of the appropri-
ate type. In other words, if you instantiate a FileInfo object supplying the path of a folder, or you
instantiate a DirectoryInfo object, giving it the path of a file, Exists will have the value false. On
the other hand, most of the properties and methods of these objects will return a value if at all possible—
they won’t necessarily throw an exception just because the wrong type of object has been called, unless
they are asked to do something that really is impossible. For example, the above code snippet might first
display false (because C:\Windows is a folder). However it still displays the time the folder was cre-
ated, because a folder still has that information. But if we tried to open the folder as if it were a file,
using the FileInfo.Open() method, we’d get an exception.

After you have established whether the corresponding file system object exists, you can (if you are using
the FileInfo or DirectoryInfo class) find out information about it using of the properties in the fol-
lowing table.

Name Description

CreationTime Time file or folder was created

DirectoryName (FileInfo only) Full pathname of the containing folder

Parent (DirectoryInfo only) The parent directory of a specified subdirectory

Exists Whether file or folder exists

Extension Extension of the file; returns blank for folders

FullName Full pathname of the file or folder

LastAccessTime Time file or folder was last accessed

LastWriteTime Time file or folder was last modified

Name Name of the file or folder

Root (DirectoryInfo only) The root portion of the path

Length (FileInfo only) The size of the file in bytes

You can also perform actions on the file system object using the methods in the following table.

Name Purpose

Create() Creates a folder or empty file of the given name. For a FileInfo this
also returns a stream object to let you write to the file. (We cover
streams later in the chapter.)

Delete() Deletes the file or folder. For folders there is an option for the Delete
to be recursive.

MoveTo() Moves and/or renames the file or folder.

CopyTo() (FileInfo only) Copies the file. Note that there is no copy method
for folders. If copying complete directory trees you’ll need to individ-
ually copy each file and create new folders corresponding to the old
folders.

1028

Chapter 30

38 557599 Ch30.qxd 4/29/04 11:42 AM Page 1028

Name Purpose

GetDirectories() (DirectoryInfo only) Returns an array of DirectoryInfo objects
representing all folders contained in this folder.

GetFiles() (DirectoryInfo only) Returns an array of FileInfo objects repre-
senting all files contained in this folder.

GetFileSystemInfos() (DirectoryInfo only) Returns FileInfo and DirectoryInfo
objects representing all objects contained in this folder, as an array of
FileSystemInfo references.

Note that the above tables list the main properties and methods, and are not intended to be exhaustive.

In the above tables we’ve not listed most of the properties or methods that allow you to write to or read
the data in files. This is actually done using stream objects, which we’ll cover later in this chapter.
FileInfo also implements a number of methods Open(), OpenRead(), OpenText(),
OpenWrite(), Create(), and CreateText() that return stream objects for this purpose.

Interestingly, the creation time, last access time, and last write time are all writable:

// displays the creation time of a file, then changes it and displays it
// again
FileInfo test = new FileInfo(@”C:\My Documents\MyFile.txt”);
Console.WriteLine(test.Exists.ToString());
Console.WriteLine(test.CreationTime.ToString());
test.CreationTime = new DateTime(2001, 1, 1, 7, 30, 0);
Console.WriteLine(test.CreationTime.ToString());

Being able to manually modify these properties might seem strange at first, but it can be quite useful.
For example, if you have a program that effectively modifies a file by simply reading it in, then deleting
it and creating a new file with the new contents, then you’d probably want to modify the creation date to
match the original creation date of the old file.

The Path Class
The Path class is not a class that you would instantiate. Rather, it exposes some static methods that
make operations on path names easier. For example, suppose you want to display the full path name for
a file, ReadMe.txt in the folder C:\My Documents. You could find the path to the file using the following
code:

Console.WriteLine(Path.Combine(@”C:\My Documents”, “ReadMe.txt”));

Using the Path class is a lot easier than trying to fiddle about with separation symbols manually, espe-
cially because the Path class is aware of different formats for pathnames on different operating systems.
At the time of writing, Windows is the only operating system supported by .NET. However, if .NET
were later ported to Unix, Path would be able to cope with Unix paths, in which /, rather than \, is used
as a separator in pathnames. Path.Combine() is the method of this class that you are likely to use most
often, but Path also implements other methods that supply information about the path or the required
format for it.

1029

File and Registry Operations

38 557599 Ch30.qxd 4/29/04 11:42 AM Page 1029

In the following section we present an example that illustrates how to browse directories and view the
properties of files.

Example: A File Browser
In this section we’ll present a sample C# application called FileProperties that presents a simple user
interface that allows you to browse around the file system, and view the creation time, last access time,
last write time, and size of files. (You can download the sample code for this application from the Wrox
Web site at www.wrox.com.)

The FileProperties application works like this. You type in the name of a folder or file in the main text
box at the top of the window and click the Display button. If you type in the path to a folder, its contents
are listed in the list boxes. If you type in the path to a file, its details are displayed in the text boxes at the
bottom of the form and the contents of its parent folder are displayed in the list boxes. Figure 30-2 shows
the FileProperties sample application in action.

Figure 30-2

The user can very easily navigate around the file system by clicking any folder in the right-hand list box to
move down to that folder, or by clicking the Up button to move up to the parent folder. Figure 30-2 shows
the contents of the My Documents folder. The user can also select a file by clicking its name in the list box.
This displays the file’s properties in the text boxes at the bottom of the application (see Figure 30-3).

1030

Chapter 30

38 557599 Ch30.qxd 4/29/04 11:42 AM Page 1030

Figure 30-3

Note that if we’d wanted, we could also display the creation time, last access time, and last modification
time for folders using the DirectoryInfo property. We are going to display these properties only for a
selected file to keep things simple.

We create the project as a standard C# Windows application in Visual Studio .NET, and add the various
text boxes and the list box from the Windows Forms area of the toolbox. We’ve also renamed the controls
with the more intuitive names of textBoxInput, textBoxFolder, buttonDisplay, buttonUp,
listBoxFiles, listBoxFolders, textBoxFileName, textBoxCreationTime,
textBoxLastAccessTime, textBoxLastWriteTime, and textBoxFileSize.

Next, we need to indicate that we will be using the System.IO namespace:

using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;
using System.IO;

We need to do this for all the file system-related examples in this chapter, but we won’t explicitly show
this part of the code in the remaining examples. We then add a member field to the main form:

1031

File and Registry Operations

38 557599 Ch30.qxd 4/29/04 11:42 AM Page 1031

public class Form1 : System.Windows.Forms.Form
{

private string currentFolderPath;

currentFolderPath stores the path of the folder whose contents are displayed in the list boxes.

Next we need to add event handlers for the user-generated events. The possible user inputs are:

❑ User clicks the Display button. In this case we need to figure out whether what the user has
typed in the main text box is the path to a file or folder. If it’s a folder we list the files and sub-
folders of this folder in the list boxes. If it is a file, we still do this for the folder containing that
file, but we also display the file properties in the lower text boxes.

❑ User clicks on a file name in the Files list box. In this case we display the properties of this file
in the lower text boxes.

❑ User clicks on a folder name in the Folders list box. In this case we clear all the controls and
then display the contents of this subfolder in the list boxes.

❑ User clicks on the Up button. In this case we clear all the controls and then display the contents
of the parent currently selected folder.

Before we show the code for the event handlers, we’ll list the code for the methods that do all the work.
First, we need to clear the contents of all the controls. This method is fairly self-explanatory:

protected void ClearAllFields()
{

listBoxFolders.Items.Clear();
listBoxFiles.Items.Clear();
textBoxFolder.Text = “”;
textBoxFileName.Text = “”;
textBoxCreationTime.Text = “”;
textBoxLastAccessTime.Text = “”;
textBoxLastWriteTime.Text = “”;
textBoxFileSize.Text = “”;

}

Next we define a method, DisplayFileInfo(), that handles the process of displaying the information
for a given file in the text boxes. This method takes one parameter, the full pathname of the file as a
String, and it works by creating a FileInfo object based on this path:

protected void DisplayFileInfo(string fileFullName)
{

FileInfo theFile = new FileInfo(fileFullName);
if (!theFile.Exists)

throw new FileNotFoundException(“File not found: “ + fileFullName);
textBoxFileName.Text = theFile.Name;
textBoxCreationTime.Text = theFile.CreationTime.ToLongTimeString();
textBoxLastAccessTime.Text = theFile.LastAccessTime.ToLongDateString();
textBoxLastWriteTime.Text = theFile.LastWriteTime.ToLongDateString();
textBoxFileSize.Text = theFile.Length.ToString() + “ bytes”;

}

1032

Chapter 30

38 557599 Ch30.qxd 4/29/04 11:42 AM Page 1032

Note that we take the precaution of throwing an exception if there are any problems locating a file at the
specified location. The exception itself will be handled in the calling routine (one of the event handlers).
Finally, we define a method, DisplayFolderList(), which displays the contents of a given folder in
the two list boxes. The full pathname of the folder is passed in as a parameter to this method:

protected void DisplayFolderList(string folderFullName)
{

DirectoryInfo theFolder = new DirectoryInfo(folderFullName);
if (!theFolder.Exists)

throw new DirectoryNotFoundException(“Folder not found: “
+ folderFullName);

ClearAllFields();
textBoxFolder.Text = theFolder.FullName;
currentFolderPath = theFolder.FullName;

// list all subfolders in folder
foreach(DirectoryInfo nextFolder in theFolder.GetDirectories())

listBoxFolders.Items.Add(nextFolder.Name);

// list all files in folder
foreach(FileInfo nextFile in theFolder.GetFiles())

listBoxFiles.Items.Add(nextFile.Name);
}

Next we examine the event handlers. The event handler that manages the event that is triggered when
the user clicks the Display button is the most complex, since it needs to handle three different possibili-
ties for the text the user enters in the text box. For instance, it could be the path name of a folder, the path
name of a file, or neither of these:

protected void OnDisplayButtonClick(object sender, EventArgs e)
{

try
{

string folderPath = textBoxInput.Text;
DirectoryInfo theFolder = new DirectoryInfo(folderPath);
if (theFolder.Exists)
{

DisplayFolderList(theFolder.FullName);
return;

}
FileInfo theFile = new FileInfo(folderPath);
if (theFile.Exists)
{

DisplayFolderList(theFile.Directory.FullName);
int index = listBoxFiles.Items.IndexOf(theFile.Name);
listBoxFiles.SetSelected(index, true);
return;

}
throw new FileNotFoundException(“There is no file or folder with “

+ “this name: “ + textBoxInput.Text);
}
catch(Exception ex)

1033

File and Registry Operations

38 557599 Ch30.qxd 4/29/04 11:42 AM Page 1033

{
MessageBox.Show(ex.Message);

}
}

In the above code, we establish if the supplied text represents a folder or file by instantiating
DirectoryInfo and FileInfo instances and examining the Exists property of each object. If neither
exists, then we throw an exception. If it’s a folder, we call DisplayFolderList() to populate the list
boxes. If it’s a file, we need to populate the list boxes and sort out the text boxes that display the file
properties. We handle this case by first populating the list boxes. We then programmatically select the
appropriate file name in the Files list box. This has exactly the same effect as if the user had selected that
item—it raises the item-selected event. We can then simply exit the current event handler, knowing that
the selected item event handler will immediately be called to display the file properties.

The following code is the event handler that is called when an item in the Files list box is selected, either
by the user or, as indicated above, programmatically. It simply constructs the full path name of the
selected file, and passes this to the DisplayFileInfo() method that we presented earlier:

protected void OnListBoxFilesSelected(object sender, EventArgs e)
{

try
{

string selectedString = listBoxFiles.SelectedItem.ToString();
string fullFileName = Path.Combine(currentFolderPath, selectedString);
DisplayFileInfo(fullFileName);

}
catch(Exception ex)
{

MessageBox.Show(ex.Message);
}

}

The event handler for the selection of a folder in the Folders list box is implemented in a very similar
way, except that in this case we call DisplayFolderList() to update the contents of the list boxes:

protected void OnListBoxFoldersSelected(object sender, EventArgs e)
{

try
{

string selectedString = listBoxFolders.SelectedItem.ToString();
string fullPathName = Path.Combine(currentFolderPath, selectedString);
DisplayFolderList(fullPathName);

}
catch(Exception ex)
{

MessageBox.Show(ex.Message);
}

}

1034

Chapter 30

38 557599 Ch30.qxd 4/29/04 11:42 AM Page 1034

Finally, when the Up button is clicked, DisplayFolderList() must also be called, except that this time
we need to obtain the path of the parent of the folder currently being displayed. This is done with the
FileInfo.DirectoryName property, which returns the parent folder path:

protected void OnUpButtonClick(object sender, EventArgs e)
{

try
{

string folderPath = new FileInfo(currentFolderPath).DirectoryName;
DisplayFolderList(folderPath);

}
catch(Exception ex)
{

MessageBox.Show(ex.Message);
}

}

Moving, Copying, and Deleting Files
We have already mentioned that moving and deleting files or folders is done by the MoveTo() and
Delete() methods of the FileInfo and DirectoryInfo classes. The equivalent methods on the File
and Directory classes are Move() and Delete(). The FileInfo and File classes also implement the
methods CopyTo() and Copy(), respectively. However, no methods exist to copy complete folders—
you need to do that by copying each file in the folder.

Use of all these methods is quite intuitive—you can find detailed descriptions in the SDK documenta-
tion. In this section we are going to illustrate their use for the particular cases of calling the static
Move(), Copy(), and Delete() methods on the File class. To do this we will build on our previous
FileProperties example and call its iteration FilePropertiesAndMovement. This example will have the
extra feature that whenever the properties of a file are displayed, the application gives us the option of
deleting that file, or moving or copying the file to another location.

Example: FilePropertiesAndMovement
Figure 30-4 shows the user interface of our new sample application.

As you can see, FilePropertiesAndMovement is similar in appearance FileProperties, except for the
group of three buttons and a text box at the bottom of the window. These controls are only enabled when
the example is actually displaying the properties of a file; at all other times, they are disabled. We’ve also
squashed the existing controls up a bit to stop the main form from getting too big. When the properties
of a selected file are displayed, FilePropertiesAndMovement automatically places the full pathname of
that file in the bottom textbox for the user to edit. The user can then click any of the buttons to perform
the appropriate operation. When they do, a message box is displayed that confirms the action taken by
the user (see Figure 30-5).

1035

File and Registry Operations

38 557599 Ch30.qxd 4/29/04 11:42 AM Page 1035

Figure 30-4

Figure 30-5

When the user clicks the Yes button, the action will be initiated. There are some actions in the form that
the user can take that will then cause the display to be incorrect. For instance, if the user moves or
deletes a file, we obviously can not continue to display the contents of that file in the same location. Also
if we change the name of a file in the same folder, our display will also be out of date. In these cases,
FilePropertiesAndMovement resets its controls to display only the folder where the file resides after the
file operation.

To code this process, we need to add the relevant controls, as well as their event handlers to the code for
the FileProperties example. We have given the new controls the names buttonDelete, buttonCopyTo,
buttonMoveTo, and textBoxNewPath.

1036

Chapter 30

38 557599 Ch30.qxd 4/29/04 11:42 AM Page 1036

We’ll look first at the event handler that gets called when the user clicks the Delete button.

protected void OnDeleteButtonClick(object sender, EventArgs e)
{

try
{

string filePath = Path.Combine(currentFolderPath,
textBoxFileName.Text);

string query = “Really delete the file\n” + filePath + “?”;
if (MessageBox.Show(query,

“Delete File?”, MessageBoxButtons.YesNo) == DialogResult.Yes)
{

File.Delete(filePath);
DisplayFolderList(currentFolderPath);

}
}
catch(Exception ex)
{

MessageBox.Show(“Unable to delete file. The following exception”
+ “ occurred:\n” + ex.Message, “Failed”);

}
}

The code for this method is contained in a try block because of the obvious risk of an exception being
thrown if, for example, we don’t have permission to delete the file, or the file is moved by another pro-
cess after it has been displayed but before the user presses the Delete button. We construct the path of
the file to be deleted from the CurrentParentPath field, which contains the path of the parent folder,
and the text in the textBoxFileName text box, which contains the name of the file.

The methods to move and copy the file are structured in a very similar manner:

protected void OnMoveButtonClick(object sender, EventArgs e)
{

try
{

string filePath = Path.Combine(currentFolderPath,
textBoxFileName.Text);

string query = “Really move the file\n” + filePath + “\nto “
+ textBoxNewPath.Text + “?”;

if (MessageBox.Show(query,
“Move File?”, MessageBoxButtons.YesNo) == DialogResult.Yes)

{
File.Move(filePath, textBoxNewPath.Text);
DisplayFolderList(currentFolderPath);

}
}
catch(Exception ex)
{

MessageBox.Show(“Unable to move file. The following exception”
+ “ occurred:\n” + ex.Message, “Failed”);

}
}

protected void OnCopyButtonClick(object sender, EventArgs e)
{

1037

File and Registry Operations

38 557599 Ch30.qxd 4/29/04 11:42 AM Page 1037

try
{

string filePath = Path.Combine(currentFolderPath,
textBoxFileName.Text);

string query = “Really copy the file\n” + filePath + “\nto “
+ textBoxNewPath.Text + “?”;

if (MessageBox.Show(query,
“Copy File?”, MessageBoxButtons.YesNo) == DialogResult.Yes)

{
File.Copy(filePath, textBoxNewPath.Text);
DisplayFolderList(currentFolderPath);

}
}
catch(Exception ex)
{

MessageBox.Show(“Unable to copy file. The following exception”
+ “ occurred:\n” + ex.Message, “Failed”);

}
}

We’re not quite done yet. We also need to make sure the new buttons and text box are enabled and dis-
abled at the appropriate times. To enable them when we are displaying the contents of a file, we add the
following code to DisplayFileInfo():

protected void DisplayFileInfo(string fileFullName)
{

FileInfo theFile = new FileInfo(fileFullName);
if (!theFile.Exists)

throw new FileNotFoundException(“File not found: “ + fileFullName);

textBoxFileName.Text = theFile.Name;
textBoxCreationTime.Text = theFile.CreationTime.ToLongTimeString();
textBoxLastAccessTime.Text = theFile.LastAccessTime.ToLongDateString();
textBoxLastWriteTime.Text = theFile.LastWriteTime.ToLongDateString();
textBoxFileSize.Text = theFile.Length.ToString() + “ bytes”;

// enable move, copy, delete buttons
textBoxNewPath.Text = theFile.FullName;
textBoxNewPath.Enabled = true;
buttonCopyTo.Enabled = true;
buttonDelete.Enabled = true;
buttonMoveTo.Enabled = true;

}

We also need to make one change to DisplayFolderList:

protected void DisplayFolderList(string folderFullName)
{

DirectoryInfo theFolder = new DirectoryInfo(folderFullName);
if (!theFolder.Exists)

throw new DirectoryNotFoundException(“Folder not found: “ + folderFullName);

ClearAllFields();

1038

Chapter 30

38 557599 Ch30.qxd 4/29/04 11:42 AM Page 1038

DisableMoveFeatures();
textBoxFolder.Text = theFolder.FullName;
currentFolderPath = theFolder.FullName;

// list all subfolders in folder
foreach(DirectoryInfo nextFolder in theFolder.GetDirectories())

listBoxFolders.Items.Add(NextFolder.Name);

// list all files in folder
foreach(FileInfo nextFile in theFolder.GetFiles())

listBoxFiles.Items.Add(NextFile.Name);
}

DisableMoveFeatures is a small utility function that disables the new controls:

void DisableMoveFeatures()
{

textBoxNewPath.Text = “”;
textBoxNewPath.Enabled = false;
buttonCopyTo.Enabled = false;
buttonDelete.Enabled = false;
buttonMoveTo.Enabled = false;

}

We also need to add extra code to ClearAllFields() to clear the extra textbox:

protected void ClearAllFields()
{

listBoxFolders.Items.Clear();
listBoxFiles.Items.Clear();
textBoxFolder.Text = “”;
textBoxFileName.Text = “”;
textBoxCreationTime.Text = “”;
textBoxLastAccessTime.Text = “”;
textBoxLastWriteTime.Text = “”;
textBoxFileSize.Text = “”;
textBoxNewPath.Text = “”;

}

With that, the code is complete.

Reading and Writing to Files
Reading and writing to files is in principle very simple; however, it is not done through the
DirectoryInfo or FileInfo objects. Instead, it is done through a number of classes that represent a
generic concept called a stream.

1039

File and Registry Operations

38 557599 Ch30.qxd 4/29/04 11:42 AM Page 1039

Streams
The idea of a stream has been around for a very long time. A stream is an object used to transfer data.
The data can be transferred in one of two directions:

❑ If the data is being transferred from some outside source into your program, then we talk about
reading from the stream.

❑ If the data is being transferred from your program to some outside source, then we talk about
writing to the stream.

Very often, the outside source will be a file, but that is not necessarily the case. Other possibilities include:

❑ Reading or writing data on the network using some network protocol, where the intention is for
this data to be picked up by or sent from another computer

❑ Reading or writing to a named pipe

❑ Reading or writing to an area of memory

Of these examples, Microsoft has supplied a .NET base class for writing to or reading from memory,
System.IO.MemoryStream, while System.Net.Sockets.NetworkStream handles network data.
There are no base stream classes for writing to or reading from pipes, but there is a generic stream class,
System.IO.Stream, from which you would inherit if you wanted to write such a class. Stream does
not make any assumptions about the nature of the external data source.

The outside source might even be a variable within your own code. This might sound paradoxical, but
the technique of using streams to transmit data between variables can be a useful trick for converting
data between data types. The C language used something like this to convert between integer data types
and strings or to format strings using a function, sprintf.

The advantage of having a separate object for the transfer of data, rather than using the FileInfo or
DirectoryInfo classes to do this, is that by separating the concept of transferring data from the partic-
ular data source, it makes it easier to swap data sources. Stream objects themselves contain a lot of
generic code that concerns the movement of data between outside sources and variables in your code,
and by keeping this code separate from any concept of a particular data source, we make it easier for this
code to be reused (through inheritance) in different circumstances. For example, the StringReader and
StringWriter classes mentioned above are part of the same inheritance tree as two classes that we will
be using later on to read and write text files, StreamReader and StreamWriter. The classes will almost
certainly share a substantial amount of code behind the scenes.

Figure 30-6 illustrates the actual hierarchy of stream-related classes in the System.IO namespace.

As far as reading and writing files is concerned, the classes that concern us most are:

❑ FileStream—This class is intended for reading and writing binary data in a binary file.
However, you can also use it to read from or write to any file.

❑ StreamReader and StreamWriter—These classes are designed specifically for reading from
and writing to text files.

1040

Chapter 30

38 557599 Ch30.qxd 4/29/04 11:42 AM Page 1040

Figure 30-6

Although we won’t be using them in our examples, you might also find useful BinaryReader and
BinaryWriter. These classes do not actually implement streams themselves, but they are able to pro-
vide wrappers around other stream objects. BinaryReader and BinaryWriter provide extra format-
ting of binary data, which allows you to directly read or write the contents of C# variables to the relevant
stream. Think of the BinaryReader and BinaryWriter as sitting between the stream and your code,
providing extra formatting (see Figure 30-7).

Figure 30-7

The difference between using these classes and directly using the underlying stream objects is that a
basic stream works in bytes. For example, suppose as part of the process of saving some document you
want to write the contents of a variable of type long to a binary file. Each long occupies 8 bytes, and if
you used an ordinary binary stream you would have to explicitly write each of those 8 bytes of memory.
In C# code that would mean you’d have to perform some bitwise operations to extract each of those 8
bytes from the long value. Using a BinaryWriter instance, you can encapsulate the entire operation in
an overload of the BinaryWriter.Write() method that takes a long as a parameter, and which will

BinaryReader

BinaryWriter

underlying
Stream object

Data source
(file, network etc.)Your code

System.Object

BufferedStream StringReader StringWriter

MemoryStream StreamReader StreamWriter

FileStream

Stream TextReader TextWriter

System.MarshalByRefObject BinaryReader BinaryWriter

1041

File and Registry Operations

38 557599 Ch30.qxd 4/29/04 11:42 AM Page 1041

place those 8 bytes into the stream (and hence if the stream is directed to a file, in the file). A correspond-
ing BinaryReader.Read() method will extract 8 bytes from the stream and recover the value of the
long.

For more information on the BinaryReader and BinaryWriter classes refer to the SDK documentation.

Buffered streams
For performance reasons, when you read or write to a file, the output is buffered. This means that if your
program asks for the next 2 bytes of a file stream, and the stream passes the request on to Windows, then
Windows will not go through the trouble of connecting to the file system and then locating and reading
the file off the disk, just to get 2 bytes. Instead, Windows will retrieve a large block of the file in one go,
and store this block in an area of memory known as a buffer. Subsequent requests for data from the
stream will be satisfied from the buffer until the buffer runs out, at which point Windows grabs another
block of data from the file. Writing to files works in the same way. For files this is done automatically by
the operating system, but you might have to write a stream class to read from some other device that
isn’t buffered. If so, you can derive your class from BufferedStream, which implements a buffer itself.
(Note, however, that BufferedStream is not designed for the situation in which an application fre-
quently alternates between reading and writing data.)

Reading and Writing to Binary Files
Reading and writing to binary files is usually done using the FileStream class.

The FileStream class
A FileStream instance is used to read or write data to or from a file. In order to construct a
FileStream, you need four pieces of information:

❑ The file you want to access.

❑ The mode, which indicates how you want to open the file. For example, are you intending to
create a new file or open an existing file, and if opening an existing file, should any write opera-
tions be interpreted as overwriting the contents of the file or appending to the file?

❑ The access, indicating how you want access to file; for example, do you want to read or write to
the file or do both?

❑ The share access, which specifies whether you want exclusive access to the file, or are you will-
ing for other streams to be able to access this file simultaneously? If so, should other streams
have access to read the file, to write to it, or to do both?

The first of these pieces of information is usually represented by a string that contains the full pathname
of the file, and in this chapter we will only consider those constructors that require a string here. Besides
those constructors, however, there are some additional ones that take an old Windows-API-style
Windows handle to a file instead. The remaining three pieces of information are represented by three
.NET enumerations called FileMode, FileAccess, and FileShare. The values of these enumerations
are listed in the following table; they should be self-explanatory.

1042

Chapter 30

38 557599 Ch30.qxd 4/29/04 11:42 AM Page 1042

Enumeration Values

FileMode Append, Create, CreateNew, Open, OpenOrCreate, or Truncate

FileAccess Read, ReadWrite, or Write

FileShare Inheritable, None, Read, ReadWrite, or Write

Note that in the case of FileMode, exceptions can be thrown if you request a mode that is inconsistent
with the existing status of the file. Append, Open, and Truncate will throw an exception if the file does
not already exist, and CreateNew will throw an exception if it does. Create and OpenOrCreate will
cope with either scenario, but Create will delete any existing file to replace it with a new, initially
empty, one. The FileAccess and FileShare enumerations are bitwise flags, so values can be combined
with the C# bitwise OR operator, |.

There are a large number of constructors for the FileStream. The three simplest ones work as follows:

// creates file with read-write access and allows other streams read access
FileStream fs = new FileStream(@”C:\C# Projects\Project.doc”,

FileMode.Create);
// as above, but we only get write access to the file
FileStream fs2 = new FileStream(@”C:\C# Projects\Project2.doc”,

FileMode.Create, FileAccess.Write);
// as above but other streams don’t get access to the file while
// fs3 is open
FileStream fs3 = new FileStream(@”C:\C# Projects\Project3.doc”,

FileMode.Create, FileAccess.Write, FileShare.None);

As this code reveals, the overloads of these constructors have the effect of providing default values of
FileAccess.ReadWrite and FileShare.Read to the third and fourth parameters. It is also possible to
create a file stream from a FileInfo instance in various ways:

FileInfo myFile4 = new FileInfo(@”C:\C# Projects\Project4.doc”);
FileStream fs4 = myFile4.OpenRead();
FileInfo myFile5= new FileInfo(@”C:\C# Projects\Project5doc”);
FileStream fs5 = myFile5.OpenWrite();
FileInfo myFile6= new FileInfo(@”C:\C# Projects\Project6doc”);
FileStream fs6 = myFile6.Open(FileMode.Append, FileAccess.Write,

FileShare.None);
FileInfo myFile7 = new FileInfo(@”C:\C# Projects\Project7.doc”);
FileStream fs7 = myFile7.Create();

FileInfo.OpenRead() supplies a stream that gives you read-only access to an existing file, while
FileInfo.OpenWrite() gives you read-write access. FileInfo.Open() allows you to specify the
mode, access, and file share parameters explicitly.

Of course, after you’ve finished with a stream, you should close it:

fs.Close();

1043

File and Registry Operations

38 557599 Ch30.qxd 4/29/04 11:42 AM Page 1043

Closing the stream frees up the resources associated with it, and allows other applications to set up
streams to the same file. In between opening and closing the stream, you’ll want to read data from it
and/or write data to it. FileStream implements a number of methods to do this.

ReadByte() is the simplest way of reading data. It grabs one byte from the stream, and casts the result
to an int having a value between 0 and 255. If we have reached the end of the stream, it returns -1:

int NextByte = fs.ReadByte();

If you prefer to read a number of bytes at a time, you can call the Read() method, which reads a speci-
fied number of bytes into an array. Read() returns the number of bytes actually read—if this value is
zero then you know you’re at the end of the stream. Here’s an example where we read into a Byte array
ByteArray:

int nBytesRead = fs.Read(ByteArray, 0, nBytes);

The second parameter to Read() is an offset, which you can use to request that the Read operation starts
populating the array at some element other than the first, and the third parameter is the number of bytes
to read into the array.

If you want to write data to a file, then there are two parallel methods available, WriteByte() and
Write(). WriteByte() writes a single byte to the stream:

byte NextByte = 100;
fs.WriteByte(NextByte);

Write(), on the other hand, writes out an array of bytes. For instance, if we initialized the ByteArray
we mentioned before with some values, we could use the following code to write out the first nBytes of
the array:

fs.Write(ByteArray, 0, nBytes);

As with Read(), the second parameter allows you to start writing from some point other than the begin-
ning of the array. Both WriteByte() and Write() return void.

Besides these methods, FileStream implements various other methods and properties to do with book-
keeping tasks like determining how many bytes are in the stream, locking the stream, or flushing the
buffer. These other methods aren’t usually required for basic reading and writing, and if you need them,
full details are in the SDK documentation.

Example: BinaryFileReader
We’ll illustrate the use of the FileStream class by writing an example, BinaryFileReader, which reads in
and displays any file. Create the project in Visual Studio .NET as a Windows application. We’ve added
one menu item, which brings up a standard OpenFileDialog asking what file to read in, then displays
the file as binary code. As we are reading in binary files, we need to be able to display non-printable
characters. The way we will do this is by displaying each byte of the file individually, showing 16 bytes
on each line of a multi-line text box. If the byte represents a printable ASCII character we’ll display that
character, otherwise we’ll display the value of the byte in a hexadecimal format. In either case, we pad
out the displayed text with spaces so that each byte displayed occupies four columns so the bytes line up
nicely under each other.

1044

Chapter 30

38 557599 Ch30.qxd 4/29/04 11:42 AM Page 1044

Figure 30-8 shows what the BinaryFileReader application looks like when viewing a text file (since
BinaryFileReader can view any file, it’s quite possible to use it on text files as well as binary ones). In this
case, the application has read in a basic ASP.NET page (.aspx).

Figure 30-8

Clearly this format is more suited to looking at the values of individual bytes rather than displaying text!
Later in this chapter, we’ll develop an example that is specifically designed to read text files; then we
will be able to see what this file really says. On the other hand, the advantage of this example is that we
can look at the contents of any file.

For this example, we won’t demonstrate writing to files. That’s because we don’t want to get bogged
down in the complexities of trying to translate the contents of a text box like the one above into a binary
stream! We will demonstrate writing to files later on when we develop an example that can read or
write, but only to text files.

Let’s look at the code used to get these results. First, we need an extra using statement, since apart from
System.IO, this example is going to use the StringBuilder class from the System.Text namespace to
construct the strings in the textbox:

using System.IO;
using System.Text;

Next, we add a couple of fields to the main form class—one representing the file dialog, and a string that
gives the path of the file currently being viewed:

public class Form1 : System.Windows.Forms.Form
{

private OpenFileDialog chooseOpenFileDialog = new OpenFileDialog();
private string chosenFile;

1045

File and Registry Operations

38 557599 Ch30.qxd 4/29/04 11:42 AM Page 1045

We also need to add some standard Windows Forms code to deal with the handlers for the menu and
the file dialog:

public Form1()
{

InitializeComponent();
menuFileOpen.Click += new EventHandler(OnFileOpen);
chooseOpenFileDialog.FileOk += new

CancelEventHandler(OnOpenFileDialogOK);
}

void OnFileOpen(object Sender, EventArgs e)
{

chooseOpenFileDialog.ShowDialog();
}

void OnOpenFileDialogOK(object Sender, CancelEventArgs e)
{

chosenFile = chooseOpenFileDialog.FileName;
this.Text = Path.GetFileName(chosenFile);
DisplayFile();

}

As this code demonstrates, when the user clicks OK to select a file in the file dialog, we call the
DisplayFile() method, which does the work of reading in the selected file:

void DisplayFile()
{

int nCols = 16;
FileStream inStream = new FileStream(chosenFile, FileMode.Open,

FileAccess.Read);
long nBytesToRead = inStream.Length;
if (nBytesToRead > 65536/4)

nBytesToRead = 65536/4;

int nLines = (int)(nBytesToRead/nCols) + 1;
string [] lines = new string[nLines];
int nBytesRead = 0;

for (int i=0 ; i<nLines ; i++)
{

StringBuilder nextLine = new StringBuilder();
nextLine.Capacity = 4*nCols;

for (int j = 0 ; j<nCols ; j++)
{

int nextByte = inStream.ReadByte();
nBytesRead++;
if (nextByte < 0 || nBytesRead > 65536)

break;
char nextChar = (char)nextByte;
if (nextChar < 16)

nextLine.Append(“ x0” + string.Format(“{0,1:X}”,
(int)nextChar));

1046

Chapter 30

38 557599 Ch30.qxd 4/29/04 11:42 AM Page 1046

else if
(char.IsLetterOrDigit(nextChar) ||

char.IsPunctuation(nextChar))
nextLine.Append(“ “ + nextChar + “ “);

else
nextLine.Append(“ x” + string.Format(“{0,2:X}”,

(int)nextChar));
}
lines[i] = nextLine.ToString();

}
inStream.Close();
this.textBoxContents.Lines = lines;

}

There’s quite a lot going on in this method, so we’ll break it down. We instantiate a FileStream object
for the selected file, which specifies that we want to open an existing file for reading. We then work out
how many bytes there are to read in and how many lines should be displayed. The number of bytes will
normally be the number of bytes in the file. However, textboxes can only display a maximum of 65,536
characters and with our chosen display format, we are displaying 4 characters for every byte in the file,
so we will need to cap the number of bytes shown in the text box if the selected file is longer than
65,536/4 = 16,384 bytes.

If you want to display longer files in this sort of environment, you might want to look up the
RichTextBox class in the System.Windows.Forms namespace. RichTextBox is similar to a text
box, but has many more advanced formatting facilities and does not have a limit on how much text it
can display. We are using TextBox here to keep the example simple and focused on the process of read-
ing in files.

The bulk of the method is given over to two nested for loops that construct each line of text to be dis-
played. We use a StringBuilder class to construct each line for performance reasons: We are append-
ing suitable text for each byte to the string that represents each line 16 times. If on each occasion we
allocate a new string and take a copy of the half-constructed line, we are not only going to be spending a
lot of time allocating strings, but will be wasting a lot of memory on the heap. Notice that our definition
of printable characters is anything that is a letter, digit, or punctuation, as indicated by the relevant static
System.Char methods. We’ve excluded any character with a value less than 16 from the printable list,
however, which means we’ll trap the carriage return (13) and line feed (10) as binary characters (a multi-
line text box isn’t able to display these characters properly if they occur individually within a line).

Furthermore, using the Properties Window, we changed the Font property for the textbox to a fixed
width font. In this case, we chose Courier New 9pt regular, and also set the textbox to have vertical
and horizontal scroll bars.

Upon completion, we close the stream and set the contents of the text box to the array of strings that
we’ve built up.

Reading and Writing to Text Files
Theoretically, it’s perfectly possible to use the FileStream class to read in and display text files. We
have, after all, just demonstrated doing that. The format in which we displayed the NewFile.aspx file
above wasn’t particularly user-friendly, but that has nothing to do with any intrinsic problem with the
FileStream class, only with how we chose to display the results in the text box.

1047

File and Registry Operations

38 557599 Ch30.qxd 4/29/04 11:42 AM Page 1047

Having said that, if you know that a particular file contains text, you will usually find it more conve-
nient to read and write it using the StreamReader and StreamWriter classes. That’s because these
classes work at a slightly higher level and are specifically geared to reading and writing text. The meth-
ods that they implement are able to automatically detect where convenient points to stop reading text
are, based on the contents of the stream. In particular:

❑ These classes implement methods to read or write one line of text at a time,
StreamReader.ReadLine() and StreamWriter.WriteLine(). In the case of reading, this
means that the stream will automatically figure out for you where the next carriage return is,
and stop reading at that point. In the case of writing, it means that the stream will automatically
append the carriage return-line feed combination to the text that it writes out.

❑ By using the StreamReader and StreamWriter classes you don’t need to worry about the
encoding (the text format) used in the file. Possible encodings include ASCII (1 byte for each
character), or any or the Unicode-based formats, UNICODE, UTF7, and UTF8. Text files on
Windows 9x systems are always in ASCII, because Windows 9x doesn’t support Unicode, but
Windows NT, 2000, XP, and 2003 all do support Unicode, and so text files might theoretically
contain Unicode, UTF7, or UTF8 data instead of ASCII data. The convention is that if the file is
in ASCII format, it will simply contain the text. If it is in any Unicode format, this will be indi-
cated by the first two or three bytes of the file, which are set to particular combinations of values
to indicate the format used in the file.

These bytes are known as the byte code markers. When you open a file using any of the standard Windows
applications, such as Notepad or WordPad, you don’t need to worry about this because these applica-
tions are aware of the different encoding methods and will automatically read the file correctly. This is
also the case for the StreamReader class, which will correctly read in a file in any of these formats,
while the StreamWriter class is capable of formatting the text it writes out using whatever encoding
technique you request. On the other hand, if you wanted to read in and display a text file using the
FileStream class, you would have to handle all this yourself.

The StreamReader class
StreamReader is used to read text files. Constructing a StreamReader is in some ways easier than con-
structing a FileStream instance, because some of the FileStream options are not required when using
StreamReader. In particular, the mode and access types are not relevant to StreamReader, because the
only thing you can do with a StreamReader is read! Furthermore, there is no direct option to specify the
sharing permissions. However, there are a couple of new options:

❑ We need to specify what to do about the different encoding methods. We can instruct the
StreamReader to examine the byte code markers in the beginning of the file to determine the
encoding method, or we can simply tell the StreamReader to assume that the file uses a speci-
fied encoding method.

❑ Instead of supplying a file name to be read from, we can supply a reference to another stream.

This last option deserves a bit more discussion, because it illustrates another advantage of basing our
model for reading and writing data on the concept of streams. Because the StreamReader works at a
relatively high level, you might find it useful if you are in the situation in which you have another
stream that is there to read data from some other source, but you would like to use the facilities pro-
vided by StreamReader to process that other stream as if it contained text. You can do so by simply
passing the output from this stream to a StreamReader. In this way, StreamReader can be used to read

1048

Chapter 30

38 557599 Ch30.qxd 4/29/04 11:42 AM Page 1048

and process data from any data source—not only files. This is essentially the situation we discussed ear-
lier with regard to the BinaryReader class. However, in this book we will only use StreamReader to
connect directly to files.

The result of these possibilities is that StreamReader has a large number of constructors. Not only that,
but there are a couple of FileInfo methods that return StreamReader references too: OpenText() and
CreateText(). Here we will just illustrate some of the constructors.

The simplest constructor takes just a file name. This StreamReader will examine the byte order marks
to determine the encoding:

StreamReader sr = new StreamReader(@”C:\My Documents\ReadMe.txt”);

Alternatively, if you prefer to specify that UTF8 encoding should be assumed:

StreamReader sr = new StreamReader(@”C:\My Documents\ReadMe.txt”,
Encoding.UTF8);

We specify the encoding by using one of several properties on a class, System.Text.Encoding. This
class is an abstract base class, from which a number of classes are derived and which implements meth-
ods that actually perform the text encoding. Each property returns an instance of the appropriate class,
and the possible properties we can use here are:

❑ ASCII

❑ Unicode

❑ UTF7

❑ UTF8

❑ BigEndianUnicode

The following example demonstrates hooking up a StreamReader to a FileStream. The advantage of
this is that we can specify whether to create the file and the share permissions, which we cannot do if we
directly attach a StreamReader to the file:

FileStream fs = new FileStream(@”C:\My Documents\ReadMe.txt”,
FileMode.Open, FileAccess.Read, FileShare.None);

StreamReader sr = new StreamReader(fs);

For this example, we specify that the StreamReader will look for byte code markers to determine the
encoding method used, as it will do in the following examples, in which the StreamReader is obtained
from a FileInfo instance:

FileInfo myFile = new FileInfo(@”C:\My Documents\ReadMe.txt”);
StreamReader sr = myFile.OpenText();

Just as with a FileStream, you should always close a StreamReader after use. Failure to do so will
result in the file remaining locked to other processes (unless you used a FileStream to construct the
StreamReader and specified FileShare.ShareReadWrite):

sr.Close();

1049

File and Registry Operations

38 557599 Ch30.qxd 4/29/04 11:42 AM Page 1049

Now that we’ve gone to the trouble of instantiating a StreamReader, we can do something with it. As
with the FileStream, we’ll simply point out the various ways to read data, and leave the other, less
commonly used, StreamReader methods to the SDK documentation.

Possibly the easiest method to use is ReadLine(), which keeps reading until it gets to the end of a line.
It does not include the carriage return–line feed combination that marks the end of the line in the
returned string:

string nextLine = sr.ReadLine();

Alternatively, you can grab the entire remainder of the file (or strictly, the remainder of the stream) in
one string:

string restOfStream = sr.ReadToEnd();

You can read a single character:

int nextChar = sr.Read();

This overload of Read() casts the returned character to an int. This is so that it has the option of return-
ing a value of -1 if the end of the stream has been reached.

Finally, you can read a given number of characters into an array, with an offset:

// to read 100 characters in.

int nChars = 100;
char [] charArray = new char[nChars];
int nCharsRead = sr.Read(charArray, 0, nChars);

nCharsRead will be less than nChars if we have requested to read more characters than are left in the file.

The StreamWriter class
This works in basically the same way as the StreamReader, except that you can only use
StreamWriter to write to a file (or to another stream). Possibilities for constructing a StreamWriter
include:

StreamWriter sw = new StreamWriter(@”C:\My Documents\ReadMe.txt”);

The above code will use UTF8 Encoding, which is regarded by .NET as the default encoding method. If
you want, you can specify an alternative encoding:

StreamWriter sw = new StreamWriter(@”C:\My Documents\ReadMe.txt”, true,
Encoding.ASCII);

In this constructor, the second parameter is a Boolean that indicates whether the file should be opened
for appending. There is, oddly, no constructor that takes only a file name and an encoding class.

Of course, you may want to hook up StreamWriter to a file stream to give you more control over the
options for opening the file:

1050

Chapter 30

38 557599 Ch30.qxd 4/29/04 11:42 AM Page 1050

FileStream fs = new FileStream(@”C:\My Documents\ReadMe.txt”,
FileMode.CreateNew, FileAccess.Write, FileShare.Read);

StreamWriter sw = new StreamWriter(fs);

FileStream does not implement any methods that return a StreamWriter class.

Alternatively, if you want to create a new file and start writing data to it, you’ll find this sequence useful:

FileInfo myFile = new FileInfo(@”C:\My Documents\NewFile.txt”);
StreamWriter sw = myFile.CreateText();

Just as with all other stream classes it is important to close a StreamWriter class when you have fin-
ished with it:

sw.Close();

Writing to the stream is done using any of four overloads of StreamWriter.Write(). The simplest
writes out a string, and appends it with a carriage return-line feed combination:

string nextLine = “Groovy Line”;
sw.Write(nextLine);

It is also possible to write out a single character:

char nextChar = ‘a’;
sw.Write(nextChar);

An array of characters is also possible:

char [] charArray = new char[100];

// initialize these characters

sw.Write(charArray);

It is even possible to write out a portion of an array of characters:

int nCharsToWrite = 50;
int startAtLocation = 25;
char [] charArray = new char[100];

// initialize these characters

sw.Write(charArray, startAtLocation, nCharsToWrite);

Example: ReadWriteText
The ReadWriteText example displays the use of the StreamReader and StreamWriter classes. It is sim-
ilar to the earlier ReadBinaryFile example, but it assumes the file to be read in is a text file and displays it
as such. It is also capable of saving the file (with any modifications you’ve made to the text in the
textbox). It will save any file in Unicode format.

1051

File and Registry Operations

38 557599 Ch30.qxd 4/29/04 11:42 AM Page 1051

The screenshot in Figure 30-9 shows ReadWriteText displaying the same NewFile.aspx file that we used
earlier. This time, however, we are able to read the contents a bit more easily!

Figure 30-9

We won’t go over the details of adding the event handlers for the Open File dialog box, because they are
basically the same as with the earlier BinaryFileReader example. As with that example, opening a
new file causes the DisplayFile() method to be called. The only real difference between this example
and the previous one is the implementation of DisplayFile as well as that we now have the option to
save a file. This is represented by another menu option, Save. The handler for this option calls another
method we’ve added to the code, SaveFile(). (Note that the new file always overwrites the original
file; this example does not have an option to write to a different file.)

We’ll look at SaveFile() first, since that is the simplest function. We simply write each line of the text
box, in turn, to a StreamWriter stream, relying on the StreamReader.WriteLine() method to
append the trailing carriage return and line feed at the end of each line:

void SaveFile()
{

StreamWriter sw = new StreamWriter(chosenFile, false, Encoding.Unicode);

foreach (string line in textBoxContents.Lines)
sw.WriteLine(line);

sw.Close();
}

chosenFile is a string field of the main form, which contains the name of the file we have read in (just
as for the previous example). Notice that we specify Unicode encoding when we open the stream. If
we’d wanted to write files in some other format then we’d simply need to change the value of this
parameter. The second parameter to this constructor would be set to true if we wanted to append to a
file, but we don’t in this case. The encoding must be set at construction time for a StreamWriter. It is
subsequently available as a read-only property, Encoding.

1052

Chapter 30

38 557599 Ch30.qxd 4/29/04 11:42 AM Page 1052

Now we’ll examine how files are read in. The process of reading in is complicated by the fact that we
don’t know until we’ve read in the file how many lines it is going to contain (in other words, how many
(char)13(char)10 sequences are in the file) since char(13)char(10) is the carriage return-line feed
combination that occurs at the end of a line). We solve this problem by initially reading the file into an
instance of the StringCollection class, which is in the System.Collections.Specialized name-
space. This class is designed to hold a set of strings that can be dynamically expanded. It implements
two methods that we will be interested in: Add(), which adds a string to the collection, and CopyTo(),
which copies the string collection into a normal array (a System.Array instance). Each element of the
StringCollection object will hold one line of the file.

The DisplayFile() method calls another method, ReadFileIntoStringCollection(), which actu-
ally reads in the file. After doing this, we now know how many lines there are, so we are in a position to
copy the StringCollection into a normal, fixed-size array and feed this array into the text box. Since
only the references to the strings that are copied when we make the copy, not the strings themselves, the
process is reasonably efficient:

void DisplayFile()
{

StringCollection linesCollection = ReadFileIntoStringCollection();
string [] linesArray = new string[linesCollection.Count];
linesCollection.CopyTo(linesArray, 0);
this.textBoxContents.Lines = linesArray;

}

The second parameter of StringCollection.CopyTo() indicates the index within the destination
array of where we want the collection to start.

Now we will examine the ReadFileIntoStringCollection() method. We use a StreamReader to
read in each line. The main complication here is the need to count the characters read in to make sure we
don’t exceed the capacity of the text box:

StringCollection ReadFileIntoStringCollection()
{

const int MaxBytes = 65536;
StreamReader sr = new StreamReader(chosenFile);
StringCollection result = new StringCollection();
int nBytesRead = 0;
string nextLine;
while ((nextLine = sr.ReadLine()) != null)
{

nBytesRead += nextLine.Length;
if (nBytesRead > MaxBytes)

break;
result.Add(nextLine);

}
sr.Close();
return result;

}

That completes the code for this example.

1053

File and Registry Operations

38 557599 Ch30.qxd 4/29/04 11:42 AM Page 1053

If we run ReadWriteText, read in the NewFile.aspx file, and then save it, the file will be in Unicode format.
We wouldn’t be able to tell this from any of the usual Windows applications: Notepad, WordPad, and
even our own ReadWriteText example, will still read the file in and display it correctly under Windows
NT/2000/XP/2003, although because Windows 9x doesn’t support Unicode, applications like Notepad
won’t be able to understand the Unicode file on those platforms. (If you download the example from the
Wrox Press Web site at www.wrox.com, you can try this!) However, if we try to display the file again using
our earlier BinaryFileReader example, we can see the difference immediately, as shown in Figure 30-10.
The two initial bytes that indicate the file is in Unicode format are visible, and thereafter we see that every
character is represented by two bytes. This last fact is very obvious, because the high-order byte of every
character in this particular file is zero, so every second byte in this file now displays x00.

Figure 30-10

Reading and Writing to the Registry
In all versions of Windows since Windows 95, the registry has been the central repository for all configu-
ration information relating to Windows setup, user preferences, and installed software and devices.
Almost all commercial software these days uses the registry to store information about itself, and COM
components must place information about themselves in the registry in order to be called by clients.
.NET Framework and its accompanying concept of zero-impact installation has slightly reduced the sig-
nificance of the registry for applications in the sense that assemblies are entirely self-contained, so no
information about particular assemblies needs to be placed in the registry, even for shared assemblies. In
addition, .NET Framework has brought the concept of isolated storage, by which applications can store
information that is particular to each user in files, with.NET Framework taking care of making sure that
data is stored separately for each user registered on a machine. (Isolated storage is beyond the scope of
this book, but if you are interested, you can find the relevant .NET base classes in the
System.IO.IsolatedStorage namespace.)

The fact that applications can now be installed using the Windows Installer also frees developers from
some of the direct manipulation of the registry that used to be involved in installing applications.

1054

Chapter 30

38 557599 Ch30.qxd 4/29/04 11:42 AM Page 1054

However, despite this, the possibility exists that if you distribute any complete application, your applica-
tion will use the registry to store information about its configuration. For instance, if you want your
application to show up in the Add/Remove Programs dialog box in the Control Panel, then this will
involve appropriate registry entries. You may also need to use the registry for backward compatibility
with legacy code.

As you’d expect from a library as comprehensive as the .NET library, it includes classes that give you
access to the registry. There are two classes concerned with the registry, and both are in the
Microsoft.Win32 namespace. The classes are Registry and RegistryKey. Before we examine these
classes, we will briefly review the structure of the registry itself.

The Registry
The registry has a hierarchical structure much like that of the file system. The usual way to view or mod-
ify the contents of the registry is with one of two utilities: regedit or regedt32. Of these, regedit comes
with all versions of Windows, since Windows 95 as standard. regedt32 comes with Windows NT and
Windows 2000; it is less user-friendly than regedit, but allows access to security information that regedit
is unable to view. Windows Server 2003 has merged regedit and regedt32 into a single new editor simply
called regedit. For our discussion here, we’ll use regedit from Windows XP Professional, which you can
launch by typing in regedit at the Run dialog or command prompt.

Figure 30-11 shows what you get when you launch regedit for the first time.

Figure 30-11

regedit has a similar tree view/list view style user interface to Windows Explorer, which matches the
hierarchical structure of the registry itself. However, there are some key differences that we’ll discuss
shortly.

In a file system, the topmost level nodes can be thought of as being the partitions on your disks, C:\,
D:\, and so on. In the registry, the equivalent to a partition is the registry hive. It is not possible to change
the existing hives—they are fixed, and there are seven of them, although only five are actually visible
through regedit:

❑ HKEY_CLASSES_ROOT (HKCR) contains details of types of files on the system (.txt, .doc, and
so on), and which applications are able to open files of each type. It also contains registration
information for all COM components (this latter area is usually the largest single area of the reg-
istry, since Windows these days comes with a huge number of COM components).

1055

File and Registry Operations

38 557599 Ch30.qxd 4/29/04 11:42 AM Page 1055

❑ HKEY_CURRENT_USER (HKCU) contains details of user preferences for the user currently
logged on to the machine locally. These settings include desktop settings, environment vari-
ables, network and printer connections, and other settings that define the user operating envi-
ronment of the user.

❑ HKEY_LOCAL_MACHINE (HKLM) is a huge hive that contains details of all software and
hardware installed on the machine. These settings are not user-specific, but are for all users that
log onto the machine. This hive also includes the HKCR hive: HKCR is actually not really an
independent hive in its own right, but is simply a convenient mapping onto the registry key
HKLM/SOFTWARE/Classes.

❑ HKEY_USERS (HKUSR) contains details of user preferences for all users. As you might guess, it
also contains the HKCU hive, which is simply a mapping onto one of the keys in HKEY_USERS.

❑ HKEY_CURRENT_CONFIG (HKCF) contains details of hardware on the machine.

The remaining two keys contain information that is of a temporary nature, and which changes
frequently:

❑ HKEY_DYN_DATA is a general container for any volatile data that needs to be stored some-
where in the registry.

❑ HKEY_PERFORMANCE_DATA contains information concerning the performance of running
applications.

Within the hives is a tree structure of registry keys. Each key is in many ways analogous to a folder or file
on the file system. However, there is one very important difference. The file system distinguishes
between files (which are there to contain data), and folders (which are primarily there to contain other
files or folders), but in the registry there are only keys. A key may contain both data and other keys.

If a key contains data, then this will be presented as a series of values. Each value will have an associated
name, data type, and data. In addition, a key can have a default value, which is unnamed.

We can see this structure by using regedit to examine registry keys. Figure 30-12 shows the contents of
the key HKCU\Control Panel\Appearance, which contains the details of the chosen color scheme of the
currently logged in user. regedit shows which key is being examined by displaying it with an open
folder icon in the tree view.

Figure 30-12

1056

Chapter 30

38 557599 Ch30.qxd 4/29/04 11:42 AM Page 1056

The HKCU\Control Panel\Appearance key has three named values set, although the default value does
not contain any data. The column in the screenshot marked Type details the data type of each value.
Registry entries can be formatted as one of three data types:

❑ REG_SZ (which roughly corresponds to a .NET string instance; the matching is not exact
because the registry data types are not .NET data types)

❑ REG_DWORD (corresponds roughly to uint)

❑ REG_BINARY (array of bytes)

An application that stores data in the registry will do so by creating a number of registry keys, usually
under the key HKLM\Software\<CompanyName>. Note that it is not necessary for these keys to contain
any data. Sometimes the very fact of whether a key exists provides the data that an application needs.

The .NET Registry Classes
Access to the registry is available through two classes in the Microsoft.Win32 namespace, Registry
and RegistryKey. A RegistryKey instance represents a registry key. This class implements methods to
browse child keys, to create new keys, or to read or modify the values in the key. In other words, to do
everything you would normally want to do with a registry key (except set security levels for the key).
RegistryKey will be the class you use for almost all your work with the registry. Registry, by contrast,
is a class that you will never instantiate. Its role is simply to provide you with RegistryKey instances
that represent the top-level keys, the different hives, in order to enable you to navigate the registry.
Registry provides these instances through static properties, and there are seven of them, called respec-
tively ClassesRoot, CurrentConfig, CurrentUser, DynData, LocalMachine, PerformanceData,
and Users. It should be obvious which property corresponds to which hive.

So, for example, to obtain a RegistryKey instance that represents the HKLM key, you would write:

RegistryKey hklm = Registry.LocalMachine;

The process of obtaining a reference to a RegistryKey object is known as opening the key.

Although you might expect that the methods exposed by RegistryKey would be similar to those imple-
mented by DirectoryInfo, given that the registry has a similar hierarchical structure to the file system,
this actually isn’t the case. Often, the way that you access the registry is different from the way that you
would use files and folders, and RegistryKey implements methods that reflect this.

The most obvious difference is in how you open a registry key at a given location in the registry. The
Registry class does not have any public constructor that you can use, nor does it have any methods
that let you go directly to a key, given its name. Instead, you are expected to browse down to that key
from the top of the relevant hive. If you want to instantiate a RegistryKey object, the only way is to
start off with the appropriate static property of Registry, and work down from there. So, for example,
if you want to read some data in the HKLM/Software/Microsoft key, you’d get a reference to it like
this:

RegistryKey hklm = Registry.LocalMachine;
RegistryKey hkSoftware = hklm.OpenSubKey(“Software”);
RegistryKey hkMicrosoft = hkSoftware.OpenSubKey(“Microsoft”);

1057

File and Registry Operations

38 557599 Ch30.qxd 4/29/04 11:42 AM Page 1057

A registry key accessed in this way will give you read-only access. If you want to be able to write to the
key (that includes writing to its values or creating or deleting direct children of it), you need to use
another override to OpenSubKey, which takes a second parameter, of type bool, that indicates whether
you want read-write access to the key. So for example, if you want to be able to modify the Microsoft
key (and assuming you are a systems administrator with permission to do this) you would write this:

RegistryKey hklm = Registry.LocalMachine;
RegistryKey hkSoftware = hklm.OpenSubKey(“Software”);
RegistryKey hkMicrosoft = hkSoftware.OpenSubKey(“Microsoft”, true);

Incidentally, since this key contains information used by Microsoft’s applications, in most cases you
probably shouldn’t be modifying this particular key.

The OpenSubKey() method is the one you will call if you are expecting the key to be present. If the key
isn’t there, it will return a null reference. If you want to create a key, then you should use the
CreateSubKey() method (which automatically gives you read-write access to the key through the refer-
ence returned):

RegistryKey hklm = Registry.LocalMachine;
RegistryKey hkSoftware = hklm.OpenSubKey(“Software”);
RegistryKey hkMine = hkSoftware.CreateSubKey(“MyOwnSoftware”);

The way that CreateSubKey() works is quite interesting. It will create the key if it doesn’t already exist,
but if it does already exist, then it will quietly return a RegistryKey instance that represents the existing
key. The reason for the method behaving in this manner has to do with how you will normally use the
registry. The registry, on the whole, contains long-term data such as configuration information for
Windows and for various applications. It’s not very common, therefore, that you find yourself in a situa-
tion where you need to explicitly create a key.

What is much more common is that your application needs to make sure that some data is present in the
Registry—in other words create the relevant keys if they don’t already exist, but do nothing if they do.
CreateSubKey() fills that need perfectly. Unlike the situation with FileInfo.Open(), for example,
there is no chance with CreateSubKey() of accidentally removing any data. If deleting registry keys is
your intention, then you’ll need to call the RegistryKey.DeleteSubKey() method. This makes sense
given the importance of the registry to Windows. The last thing you want is to completely break Windows
accidentally by deleting a couple of important keys while you’re debugging your C# registry calls!

Once you’ve located the registry key you want to read or modify, you can use the SetValue() or
GetValue() methods to set or get at the data in it. Both of these methods take a string giving the name
of the value as a parameter, and SetValue() requires an additional object reference containing details of
the value. Since the parameter is defined as an object reference, it can actually be a reference to any class
you want. SetValue() will decide from the type of class actually supplied whether to set the value as a
REG_SZ, REG_DWORD, or REG_BINARY value. For example:

RegistryKey hkMine = HkSoftware.CreateSubKey(“MyOwnSoftware”);
hkMine.SetValue(“MyStringValue”, “Hello World”);
hkMine.SetValue(“MyIntValue”, 20);

This code will set the key to have two values: MyStringValue will be of type REG_SZ, while
MyIntValue will be of type REG_DWORD. These are the only two types we will consider here, and use in
the example that we present later.

1058

Chapter 30

38 557599 Ch30.qxd 4/29/04 11:42 AM Page 1058

RegistryKey.GetValue() works in much the same way. It is defined to return an object reference,
which means it is free to actually return a string reference if it detects the value is of type REG_SZ, and
an int if that value is of type REG_DWORD:

string stringValue = (string)hkMine.GetValue(“MyStringValue”);
int intValue = (int)hkMine.GetValue(“MyIntValue”);

Finally, after you’ve finished reading or modifying the data, close the key:

hkMine.Close();

RegistryKey implements a large number of methods and properties. The following tables list the most
useful properties.

Property Name Description

Name Name of the key (read-only)

SubKeyCount The number of children of this key

ValueCount How many values the key contains

The following table lists the most useful methods.

Method Name Purpose

Close() Closes the key

CreateSubKey() Creates a subkey of a given name (or opens it if it already exists)

DeleteSubKey() Deletes a given subkey

DeleteSubKeyTree() Recursively deletes a subkey and all its children

DeleteValue() Removes a named value from a key

GetSubKeyNames() Returns an array of strings containing the names of the subkeys

GetValue() Returns a named value

GetValueNames() Returns an array of strings containing the names of all the values
of the key

OpenSubKey() Returns a reference to a RegistryKey instance that represents a
given subkey

SetValue() Sets a named value

Example: SelfPlacingWindow
We will illustrate the use of the registry classes with an application, which we call SelfPlacingWindow.
This example is a simple C# Windows application that has almost no features. The only thing you can do

1059

File and Registry Operations

38 557599 Ch30.qxd 4/29/04 11:42 AM Page 1059

with it is click a button, which brings up a standard Windows color dialog box (represented by the
System.Windows.Forms.ColorDialog class), to let you choose a color, which will become the back-
ground color of the form.

Despite this lack of features, the self-placing window scores over just about every other application that
we have developed in this book in one important and very user-friendly way. If you drag the window
around the screen, change its size, or maximize or minimize it before you exit the application, it will
remember the new position, as well as the background color, so that the next time it is launched it can
automatically resume the way you chose last time. It remembers this information, because it writes it to
the registry whenever it shuts down. In this way, we get to demonstrate not only the .NET registry
classes themselves, but also a very typical use for them, which you’ll almost certainly want to replicate
in any serious commercial Windows Forms application you write.

The location in which SelfPlacingWindow stores its information in the registry is the key
HKLM\Software\WroxPress\SelfPlacingWindow. HKLM is the usual place for application configura-
tion information, but note that it is not user-specific. If you wanted to be more sophisticated in a real
application, you’d probably want to replicate the information inside the HK_Users hive as well, so that
each user can have his or her own profile.

It’s also worth noting that, if you are implementing this in a real .NET application, you may want to
consider using isolated storage instead of the Registry to store this information. On the other hand,
since isolated storage is only available in .NET, you’ll need to use the Registry if you need any interop-
erability with non-.NET apps.

The very first time that you run the example, it will look for this key and not find it (obviously).
Therefore it is forced to use a default size, color, and position that we set in the developer environment.
The example also features a list box in which it displays any information read in from the registry. On its
first run, it will look similar to Figure 30-13.

Figure 30-13

If we now modify the background color and resize SelfPlacingWindow or move it around on the screen
a bit before exiting, it will create the HKLM\Software\WroxPress\SelfPlacingWindow key and write its
new configuration information into it. We can examine the information using regedit. The details are
shown in Figure 30-14.

1060

Chapter 30

38 557599 Ch30.qxd 4/29/04 11:42 AM Page 1060

Figure 30-14

As this figure shows SelfPlacingWindow has placed a number of values in the registry key.

The values Red, Green, and Blue give the color components that make up the selected background color
(see Chapter 20). For now, just take it that any color display on the system can be completely described
by these three components, which are each represented by a number between 0 and 255 (or 0x00 and 0xff
in hexadecimal). The values given here make up a bright green color. There are also four more
REG_DWORD values, which represent the position and size of the window: X and Y are the coordinates
of top left of the window on the desktop—that is to say the numbers of pixels across from the top left of
the screen and the numbers of pixels down. Width and Height give the size of the window.
WindowsState is the only value for which we have used a string data type (REG_SZ), and it can contain
one of the strings Normal, Maximized, or Minimized, depending on the final state of the window when
we exited the application.

When we launch SelfPlacingWindow again, it will read this registry key, and automatically position
itself accordingly (see Figure 30-15).

Figure 30-15

1061

File and Registry Operations

38 557599 Ch30.qxd 4/29/04 11:42 AM Page 1061

This time when we exit SelfPlacingWindow, it will overwrite the previous registry settings with what-
ever new values are relevant at the time that we exit it. To code the example, we create the usual
Windows Forms project in Visual Studio .NET, and add the list box and button, using the developer
environment’s toolbox. We will change the names of these controls, respectively, to listBoxMessages
and buttonChooseColor. We also need to ensure that we use the Microsoft.Win32 namespace:

using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;
using Microsoft.Win32;

We need to add one field (chooseColorDialog) to the main Form1 class, which will represent the color
dialog box:

public class Form1 : System.Windows.Forms.Form
{

private System.Windows.Forms.ListBox listBoxMessages;
private System.Windows.Forms.Button buttonChooseColor;
private ColorDialog chooseColorDialog = new ColorDialog();

Quite a lot of action takes place in the Form1 constructor:

public Form1()
{

InitializeComponent();
buttonChooseColor.Click += new EventHandler(OnClickChooseColor);
try
{

if (ReadSettings() == false)
listBoxMessages.Items.Add(“No information in registry”);

else
listBoxMessages.Items.Add(“Information read in from registry”);
StartPosition = FormStartPosition.Manual;

}
catch (Exception e)
{

listBoxMessages.Items.Add(“A problem occurred reading in data
from registry:”);

listBoxMessages.Items.Add(e.Message);
}

}

In this constructor, we begin by setting up the event handler for when the user clicks the button. The
handler is a method called OnClickChooseColor, which we will cover shortly. Reading in the configu-
ration information is done using another method that we have to write, called ReadSettings().
ReadSettings() returns true if it finds the information in the registry, and false if it doesn’t (which it
should be since this is the first time we have run the application). We place this part of the constructor in
a try block, just in case any exceptions are generated while reading in the registry values (this might
happen if some user has come in and played around with the registry using regedit).

1062

Chapter 30

38 557599 Ch30.qxd 4/29/04 11:42 AM Page 1062

The StartPosition = FormStartPosition.Manual; statement tells the form to take its initial starting
position from the DeskTopLocation property instead of using the Windows default location (the
default behavior). Possible values are taken from the FormStartPosition enumeration.

SelfPlacingWindow is also one of the few applications in this book in which we have a serious use for
adding code to the Dispose() method. Remember that Dispose() is called whenever the application
terminates normally, so this is the ideal place from which to save the configuration information to the
registry. This is done using another method that we have to write, SaveSettings():

protected override void Dispose(bool disposing)
{

if(disposing)
{

if (components != null)
{

components.Dispose();
}

}
SaveSettings();
base.Dispose(disposing);

}

The SaveSettings() and ReadSettings() methods are the ones that contain the registry code we are
interested in, but before we examine them we have one more piece of housekeeping to do: to handle the
event of the user clicking that button. This involves displaying the color dialog and setting the back-
ground color to whatever color the user chose:

void OnClickChooseColor(object Sender, EventArgs e)
{

if(chooseColorDialog.ShowDialog() == DialogResult.OK)
BackColor = chooseColorDialog.Color;

}

Now let’s look at how we save the settings:

void SaveSettings()
{

RegistryKey softwareKey =
Registry.LocalMachine.OpenSubKey(“Software”, true);

RegistryKey wroxKey = softwareKey.CreateSubKey(“WroxPress”);
RegistryKey selfPlacingWindowKey =

wroxKey.CreateSubKey(“SelfPlacingWindow”);
selfPlacingWindowKey.SetValue(“BackColor”,

(object)BackColor.ToKnownColor());
selfPlacingWindowKey.SetValue(“Red”, (object)(int)BackColor.R);
selfPlacingWindowKey.SetValue(“Green”, (object)(int)BackColor.G);
selfPlacingWindowKey.SetValue(“Blue”, (object)(int)BackColor.B);
selfPlacingWindowKey.SetValue(“Width”, (object)Width);
selfPlacingWindowKey.SetValue(“Height”, (object)Height);
selfPlacingWindowKey.SetValue(“X”, (object)DesktopLocation.X);
selfPlacingWindowKey.SetValue(“Y”, (object)DesktopLocation.Y);
selfPlacingWindowKey.SetValue(“WindowState”,

(object)WindowState.ToString());
}

1063

File and Registry Operations

38 557599 Ch30.qxd 4/29/04 11:42 AM Page 1063

There’s quite a lot going on here. We start off by navigating through the registry to get to the
HKLM\Software\WroxPress\SelfPlacingWindow registry key using the technique we demonstrated
earlier, starting with the Registry.LocalMachine static property that represents the HKLM hive.

Then we use the RegistryKey.OpenSubKey() method, rather than RegistryKey.CreateSubKey() to
get to the HKLM/Software key. That’s because we can be very confident this key already exists; if it
doesn’t then there’s something very seriously wrong with our computer, as this key contains settings for
a lot of system software! We also indicate that we need write access to this key. That’s because if the
WroxPress key doesn’t already exist we will need to create it, which involves writing to the parent key.

The next key to navigate to is HKLM\Software\WroxPress—and here we are not certain whether the
key already exists, so we use CreateSubKey() to automatically create it if it doesn’t. Note that
CreateSubKey() automatically gives us write access to the key in question. Once we have reached
HKLM\Software\WroxPress\SelfPlacingWindow, it is simply a matter of calling the
RegistryKey.SetValue() method a number of times to either create or set the appropriate values.
There are, however, a couple of complications.

Firstly, you might notice that we are using a couple of classes that we’ve not encountered before. The
DeskTopLocation property of the Form class indicates the position of the top-left corner of the screen,
and is of type Point. (We discuss the Point in Chapter 20.) What we need to know here is that it con-
tains two int values, X and Y, which represent the horizontal and vertical position on the screen. We
also look up three member properties of the Form.BackColor property, which is an instance of the
Color class: R, G, and B: Color which represents a color, and these properties on it give the red, green,
and blue components that make up the color and are all of type byte. We also use the
Form.WindowState property, which contains an enumeration that gives the current state of the win-
dow: Minimized, Maximized, or Normal.

The other complication here is that we need to be a little careful about our casts: SetValue() takes two
parameters: a string that gives the name of the key and a System.Object instance, which contains the
value. SetValue() has a choice of format for storing the value—it can store it as REG_SZ,
REG_BINARY, or REG_DWORD—and it is actually pretty intelligent about making a sensible choice
depending on the data type that has been given. Hence for the WindowState, we pass it a string and
SetValue()determines that this should be translated to REG_SZ. Similarly, for the various positions
and dimensions we supply ints, which will be converted into REG_DWORD. However, the color compo-
nents are more complicated as we want these to be stored as REG_DWORD too because they are
numeric types. However, if SetValue() sees that the data is of type byte, it will store it as a string—as
REG_SZ in the Registry. In order to prevent this, we cast the color components to ints.

We’ve also explicitly cast all the values to the type object. We don’t really need to do this as the cast
from any other data type to object is implicit, but we are doing so in order to make it clear what’s
going on and remind ourselves that SetValue() is defined to take just an object reference as its second
parameter.

The ReadSettings() method is a little longer because for each value read in, we also need to interpret
it, display the value in the list box, and make the appropriate adjustments to the relevant property of the
main form. ReadSettings() looks like this:

bool ReadSettings()
{

RegistryKey softwareKey =

1064

Chapter 30

38 557599 Ch30.qxd 4/29/04 11:42 AM Page 1064

Registry.LocalMachine.OpenSubKey(“Software”);
RegistryKey wroxKey = softwareKey.OpenSubKey(“WroxPress”);
if (wroxKey == null)

return false;
RegistryKey selfPlacingWindowKey =

wroxKey.OpenSubKey(“SelfPlacingWindow”);
if (selfPlacingWindowKey == null)

return false;
else

listBoxMessages.Items.Add(“Successfully opened key “ +
selfPlacingWindowKey.ToString());

int redComponent = (int)selfPlacingWindowKey.GetValue(“Red”);
int greenComponent = (int)selfPlacingWindowKey.GetValue(“Green”);
int blueComponent = (int)selfPlacingWindowKey.GetValue(“Blue”);
this.BackColor = Color.FromArgb(redComponent, greenComponent,

blueComponent);
listBoxMessages.Items.Add(“Background color: “ + BackColor.Name);
int X = (int)selfPlacingWindowKey.GetValue(“X”);
int Y = (int)selfPlacingWindowKey.GetValue(“Y”);
this.DesktopLocation = new Point(X, Y);
listBoxMessages.Items.Add(“Desktop location: “ +

DesktopLocation.ToString());
this.Height = (int)selfPlacingWindowKey.GetValue(“Height”);
this.Width = (int)selfPlacingWindowKey.GetValue(“Width”);
listBoxMessages.Items.Add(“Size: “ + new

Size(Width,Height).ToString());
string initialWindowState =

(string)selfPlacingWindowKey.GetValue(“WindowState”);
listBoxMessages.Items.Add(“Window State: “ + initialWindowState);
this.WindowState = (FormWindowState)FormWindowState.Parse

(WindowState.GetType(), initialWindowState);
return true;

}

In ReadSettings() we first have to navigate to the HKLM/Software/WroxPress/SelfPlacingWindow
registry key. In this case, however, we are hoping to find the key there so that we can read it. If it’s not
there, then it’s probably the first time we have run the example. In this case, we just want to abort read-
ing the keys, and we certainly don’t want to create any keys. Now we use the
RegistryKey.OpenSubKey() method all the way down. If at any stage OpenSubkey() returns a null
reference then we know that the registry key isn’t there and we can simply return the value false back
to the calling code.

When it comes to actually reading the keys, we use the RegistryKey.GetValue() method, which is
defined as returning an object reference (which means this method can actually return an instance of lit-
erally any class it chooses). Like SetValue(), it will return a class of object appropriate to the type of
data it found in the key. Hence, we can usually assume that the REG_SZ keys will give us a string and the
other keys will give us an int. We also cast the return reference from SetValue() accordingly. If there is
an exception, say someone has fiddled with the registry and mangled the value types, then our cast will
cause an exception to be thrown—which will be caught by the handler in the Form1 constructor.

The rest of this code uses one more data type, the Size structure. This is similar to a Point structure,
but is used to represent sizes rather than coordinates. It has two member properties, Width and Height,
and we use the Size structure here simply as a convenient way of packaging up the size of the form for
displaying in the list box.

1065

File and Registry Operations

38 557599 Ch30.qxd 4/29/04 11:42 AM Page 1065

Summary
In this chapter, we have examined how to use the .NET base classes to access the file system and registry
from your C# code. We’ve seen that in both cases the base classes expose simple, but powerful, object
models that make it very simple to perform almost any kind of action in these areas. In the case of the
file system, these are copying files; moving, creating, and deleting files and folders; and reading and
writing both binary and text files; and in the case of the registry, these are creating, modifying, or read-
ing keys.

In this chapter we have assumed that you are running your code from an account that has sufficient
access rights to do whatever the code needs to do. Obviously, the question of security is an important
one, and it is discussed in Chapter 14.

1066

Chapter 30

38 557599 Ch30.qxd 4/29/04 11:42 AM Page 1066

Accessing the Internet

Chapters 25 through 27 discuss how you can use C# to write powerful, efficient, and dynamic Web
pages using ASP.NET and XML Web services. For the most part, the clients accessing ASP.NET pages
will be users running Internet Explorer or other Web browsers. However, you might want to add
Web-browsing features to your own application, or need your applications to programmatically
obtain information from a Web site. In this latter case, it is usually better for the site to implement a
Web service. However, if you are accessing public Internet sites you might not have any control over
how the site is implemented.

In this chapter, we will cover facilities provided through the .NET base classes for using various
network protocols, particularly HTTP and TCP, to access networks and the Internet as a client. In
particular, we will cover:

❑ Downloading files from the World Wide Web

❑ Using Internet Explorer as an ActiveX control

❑ Manipulating IP addresses and performing DNS lookups

❑ Socket programming with TCP, UDP, and socket classes

The two namespaces we are most interested in for networking are the System.Net and the
System.Net.Sockets namespaces. The System.Net namespace is generally concerned with
higher-level operations, for example, downloading and uploading files, and making Web requests
using HTTP and other protocols, while System.Net.Sockets contains classes to perform lower-
level operations. You will find these classes more useful when you want to work directly with
sockets or protocols such as TCP/IP. The methods in these classes closely mimic the Windows
socket (Winsock) API functions derived from the Berkeley sockets interface.

39 557599 Ch31.qxd 4/29/04 11:43 AM Page 1067

We are going to take a fairly practical approach in this chapter, mixing examples with a discussion of the
relevant theory and networking concepts as appropriate. This chapter is not a guide to computer net-
working, but an introduction to using.NET Framework for network communication.

We will start with the simplest case of sending a request to a server and storing the information sent
back in the response. (As is the case with the other chapters, you can download the sample code for this
chapter from the Wrox Web site at www.wrox.com.)

The WebClient Class
If you only want to request a file from a particular URI, then you will find that the easiest .NET class to
use is System.Net.WebClient. This class is an extremely high-level class designed to perform basic
operations with only one or two commands. .NET Framework currently supports URIs beginning with
http:, https:, and file: identifiers.

It is worth noting that the term URL (uniform resource locator) is no longer in use in new technical
specifications, and URI (uniform resource identifier) is now preferred. URI has roughly the same mean-
ing as URL, but is a bit more general since URI does not imply we are using one of the familiar proto-
cols, such as HTTP or FTP.

Downloading Files
There are two methods available for downloading a file using WebClient. The method we choose
depends on how we want to process the file contents. If we simply want to save the file to disk we use
the DownloadFile() method. This method takes two parameters: the URI of the file, and a location
(path and file name) to save the requested data.

WebClient Client = new WebClient();
Client.DownloadFile(“http://www.Wrox.com/index.asp”, “index.htm”);

More commonly, your application will want to process the data retrieved from the Web site. In order to
do this you use the OpenRead() method. OpenRead() returns a Stream reference you can then use to
retrieve the data into memory.

WebClient Client = new WebClient();
Stream strm = Client.OpenRead(“http://www.Wrox.com/default.asp”);

Basic Web Client Example
Our first example will demonstrate the WebClient.OpenRead() method. We will display the contents
of the downloaded page in a ListBox control. To begin, create a new project as a standard C# Windows
Application, add a ListBox called listBox1 with the docking property set to DockStyle.Fill. At the
beginning of the file, we will need to add the System.Net and System.IO namespaces references to our
list of using directives. We then make the following changes to the constructor of the main form

1068

Chapter 31

39 557599 Ch31.qxd 4/29/04 11:43 AM Page 1068

public Form1()
{

InitializeComponent();
System.Net.WebClient Client = new WebClient();
Stream strm = Client.OpenRead(“http://www.wrox.com”);
StreamReader sr = new StreamReader(strm);
string line;
while ((line=sr.ReadLine()) != null)
{

listBox1.Items.Add(line);
}

strm.Close();
}

In this example, we connect a StreamReader class from the System.IO namespace to the network
stream. This allows us to obtain data from the stream as text through the use of higher-level methods,
such as ReadLine(). This is an excellent example of the point made in Chapter 30 about the benefits of
abstracting data movement into the concept of a stream.

Figure 31-1 shows the results of running this sample code.

Figure 31-1

There is also an OpenWrite() method in the WebClient class. This method returns a writeable stream
for you to send data to a URI. You can also specify the method used to send the data to the host; the
default method is POST. The following code snippet assumes a writeable directory named accept on

1069

Accessing the Internet

39 557599 Ch31.qxd 4/29/04 11:43 AM Page 1069

the local machine. The code will create a file in the directory with the name newfile.txt and the contents
“Hello World”.

WebClient webClient = new WebClient();

Stream stream = webClient.OpenWrite(“http://localhost/accept/newfile.txt”, “PUT”);

StreamWriter streamWriter = new StreamWriter(stream);
streamWriter.WriteLine(“Hello World”);
streamWriter.Close();

Uploading Files
The WebClient class also features UploadFile() and UploadData() methods. UploadFile()
uploads a file to a specified location given the local file name, while UploadData() uploads binary data
supplied as an array of bytes to the specified URI (there is also a DownloadData() method for retrieving
an array of bytes from a URI).

WebClient client = new WebClient();
client.UploadFile(“http://www.ourwebsite.com/NewFile.htm”,

“C:\\WebSiteFiles\\NewFile.htm”);
byte[] image;
// code to initialise image so it contains all the binary data for
// some jpg file
client.UploadData(“http://www.ourwebsite.com/NewFile.jpg”, image);

WebRequest and WebResponse Classes
Although the WebClient class is very simple to use, it has very limited features. In particular, you can-
not use it to supply authentication credentials— particular problem with uploading data is that not
many sites will accept uploaded files without authentication! It is possible to add header information to
requests and to examine any headers in the response, but only in a very generic sense—there is no spe-
cific support for any one protocol. This is because WebClient is a very general-purpose class designed
to work with any protocol for sending a request and receiving a response (such as HTTP, or FTP). It can-
not handle any features specific to any one protocol, such as cookies, which are specific to HTTP. If you
want to take advantage of these features you need to use a family of classes based on two other classes
in the System.Net namespace: WebRequest and WebResponse.

We will start off by showing you how to download a web page using these classes. This is the same
example as before, but using WebRequest and WebResponse. In the process we will uncover the class
hierarchy involved, and then see how to take advantage of extra HTTP features supported by this
hierarchy.

The following code shows the modifications we need to make to the BasicWebClient sample to use the
WebRequest and WebResponse classes.

1070

Chapter 31

39 557599 Ch31.qxd 4/29/04 11:43 AM Page 1070

public Form1()
{

InitializeComponent();

WebRequest wrq = WebRequest.Create(“http://www.wrox.com”);
WebResponse wrs = wrq.GetResponse();
Stream strm = wrs.GetResponseStream();
StreamReader sr = new StreamReader(strm);
string line;
while ((line = sr.ReadLine()) != null)
{

listBox1.Items.Add(line);
}
strm.Close();

}

In the code we start by instantiating an object representing a Web request. We don’t do this using a con-
structor, but instead call the static method WebRequest.Create(). As we will explain in more detail
later in this chapter, the WebRequest class is part of a hierarchy of classes supporting different network
protocols. In order to receive a reference to the correct object for the request type, a factory mechanism is
in place. The WebRequest.Create() method will create the appropriate object for the given protocol.

The WebRequest class represents the request for information to send to a particular URI. The URI is
passed as a parameter to the Create() method. A WebResponse represents the data we retrieve from
the server. By calling the WebRequest.GetResponse() method, we actually send the request to the
Web server and create a WebResponse object to examine the return data. As with the WebClient object,
we can obtain a stream to represent the data, but in this case we use the
WebResponse.GetResponseStream()method.

Other WebRequest and WebResponse Features
In this section, we briefly discuss a couple of the other areas supported by WebRequest, WebResponse,
and other related classes.

HTTP header information
An important part of the HTTP protocol is the ability to send extensive header information with both
request and response streams. This information can include cookies, and the details of the particular
browser sending the request (the user agent). As you would expect,.NET Framework provides full support
for accessing the most significant data. The WebRequest and WebResponse classes provide some support
for reading the header information. However, two derived classes provide additional HTTP-specific
information: HttpWebRequest and HttpWebResponse. As we will explain in more detail later, creating a
WebRequest with an HTTP URI results in an HttpWebRequest object instance. Since HttpWebRequest is
derived from WebRequest, you can use the new instance whenever a WebRequest is required. In addition,
you can cast the instance to an HttpWebRequest reference and access properties specific to the HTTP pro-
tocol. Likewise, the GetResponse() method call will actually return an HttpWebResponse instance as a
WebResponse reference when dealing with HTTP. Again, you can perform a simple cast to access the
HTTP-specific features.

1071

Accessing the Internet

39 557599 Ch31.qxd 4/29/04 11:43 AM Page 1071

We can examine a couple of the header properties by adding the following code before the
GetResponse() method call.

WebRequest wrq = WebRequest.Create(“http://www.wrox.com”);
HttpWebRequest hwrq = (HttpWebRequest)wrq;

listBox1.Items.Add(“Request Timeout (ms) = “ + wrq.Timeout);
listBox1.Items.Add(“Request Keep Alive = “ + hwrq.KeepAlive);
listBox1.Items.Add(“Request AllowAutoRedirect = “ + hwrq.AllowAutoRedirect);

The Timeout property is specified in milliseconds, and the default value is 100,000. You can set the time-
out property to control how long the WebRequest object will wait on the response before throwing a
WebException. You can check the WebException.Status property to view the reason for an exception.
This enumeration includes status codes for timeouts, connection failures, protocol errors, and more.

The KeepAlive property is a specific extension to the HTTP protocol, so we access this property through
an HttpWebRequest reference. KeepAlive allows multiple requests to use the same connection, saving
time in closing and reopening connections on subsequent requests. The default value for this property is
true.

The AllowAutoRedirect property is also specific to the HttpWebRequest class. Use this property to
control if the Web request should automatically follow redirection responses from the Web server. Again,
the default value is true. If you want to allow only a limited number of redirections, set the
MaximumAutomaticRedirections property of the HttpWebRequest to the desired number.

While the request and response classes expose most of the important headers as properties, you can also
use the Headers property itself to view the entire collection of headers. Add the following code after the
GetResponse() method call to place all of the headers in the ListBox control:

WebRequest wrq = WebRequest.Create(“http://www.wrox.com”);
WebResponse wrs = wrq.GetResponse();
WebHeaderCollection whc = wrs.Headers;
for(int i = 0; i < whc.Count; i++)
{

listBox1.Items.Add(“Header “ + whc.GetKey(i) + “ : “ + whc[i]);
}

This example code produces the list of headers shown in Figure 31-2.

Figure 31-2

1072

Chapter 31

39 557599 Ch31.qxd 4/29/04 11:43 AM Page 1072

Authentication
A further property in the WebRequest class is the Credentials property. If you needed authentication
credentials to accompany our request, you could create an instance of the NetworkCredential class
(also from the System.Net namespace) with a username and password. You could place the following
code before the call to GetResponse().

NetworkCredential myCred = new NetworkCredential(“myusername”, “mypassword”);
wrq.Credentials = myCred;

Asynchronous page requests
An additional feature of the WebRequest class is the ability to request pages asynchronously. This
feature is significant since there can be quite a long delay between sending a request off to a host
and receiving the response. Methods such as WebClient.DownloadData() and WebRequest.
GetResponse() will not return until the response from the server is complete. You might not want
your application frozen due to a long period of inactivity, and in such scenarios it is better to use the
BeginGetResponse() and EndGetResponse() methods. BeginGetResponse() works asyn-
chronously and returns almost immediately. Under the covers, the runtime will asynchronously manage
a background thread to retrieve the response from the server. Instead of returning a WebResponse
object, BeginGetResponse() returns an object implementing the IAsyncResult interface. With this
interface you can poll or wait for the response to become available, and then invoke EndGetResponse()
to gather the results.

You can also pass a callback delegate into the BeginGetResponse() method. The target of a callback
delegate is a method returning void and accepting an IAsyncResult reference as a parameter. When
the worker thread is finished gathering the response, the runtime invokes the callback delegate to
inform you of the completed work. As shown in the following code, calling EndGetResponse() in the
callback method allows you to retrieve the WebResponse object.

public Form1()
{

InitializeComponent();

WebRequest wrq = WebRequest.Create(“http://www.wrox.com”);
wrq.BeginGetResponse(new AsyncCallback(OnResponse), wrq);

}

protected void OnResponse(IAsyncResult ar)
{

WebRequest wrq = (WebRequest)ar.AsyncState;
WebResponse wrs = wrq.EndGetResponse(ar);

// read the response ...
}

Notice that you can retrieve the original WebRequest object by passing the object as the second parame-
ter to BeginGetResponse(). The third parameter is an object reference known as the state parameter.
During the callback method you can retrieve the same state object using the AsyncState property of
IAsyncResult.

1073

Accessing the Internet

39 557599 Ch31.qxd 4/29/04 11:43 AM Page 1073

Displaying Output as an HTML Page
Our examples show how the .NET base classes make it very easy to download and process data from the
Internet. However, so far we have only displayed files as plain text. Quite often you will want to view an
HTML file in an Internet Explorer–style interface where the rendered HTML allows you to see what the
Web document actually looks like. Unfortunately, the .NET base classes don’t include any intrinsic sup-
port for a control with an Internet Explorer–style interface. You will need to either programmatically call
up Internet Explorer, or host the Web browser as an ActiveX control.

You can programmatically start an Internet Explorer process and navigate to a Web page using the
Process class in the System.Diagnostics namespace.

Process myProcess = new Process();
myProcess.StartInfo.FileName = “iexplore.exe”;
myProcess.StartInfo.Arguments = “http://www.wrox.com”;
myProcess.Start();

However, the previous code launches Internet Explorer as a separate window. Your application has no
connection to the new window and therefore cannot control the browser.

On the other hand, using the browser as an ActiveX control allows you to display and control the
browser as an integrated part of your application. The Web browser control is quite sophisticated, featur-
ing a large number of methods, properties, and events.

The easiest way to incorporate this control, using Visual Studio .NET, is to add the control to the toolbox
(see Figure 31-3). To do this, right-click on the toolbox in Visual Studio .NET and select Add/Remove
Items from the context menu to bring up the Customize Toolbox dialog box. Select the COM
Components tab, and check Microsoft Web Browser.

Figure 31-3

1074

Chapter 31

39 557599 Ch31.qxd 4/29/04 11:43 AM Page 1074

The Web Browser control now appears in the toolbox. You can drag and drop the control onto your
forms in the same manner as you drag and drop native .NET controls from the toolbox. Visual Studio
.NET automatically generates all the COM interoperability code required to host the Web Browser con-
trol in your application’s form. We will demonstrate this technique with another example,
DisplayWebPage, which will display a Web page retrieved from the Internet in a typical Windows form.

We create DisplayWebPage as a standard C# Windows Application, and drop the Web Browser ActiveX
control onto the form. By default, Visual Studio .NET names the control axWebBrowser1. We then add
the following code to the Form1 constructor:

public Form1()
{

// Required for Windows Form Designer support
InitializeComponent();
int zero = 0;
object oZero = zero;
string emptyString = “”;
object oEmptyString = emptyString;
axWebBrowser1.Navigate(“http://www.wrox.com”,

ref oZero,
ref oEmptyString,
ref oEmptyString,
ref oEmptyString);

}

In this code we use the Navigate() method of the WebBrowser control, which actually sends an HTTP
request and displays the output from a given URI. The first parameter to this method is a string contain-
ing the URI to navigate to. The second parameter accepts a number of flags to modify the navigation
behavior, for example, if the browser adds the new URI to the history list or not. The third parameter
contains the name of the target frame (if any) used to display the resource. The fourth parameter con-
tains POST data to send with the request, and the final parameter allows you to pass additional HTTP
header information. For our purposes, we can pass the default values for zero and the empty string into
the last four parameters. These parameters are defined as optional parameters, but C# does not support
optional parameters so we supply them explicitly. We also explicitly declare object references for these
variables to pass them by reference.

Calling Navigate() with the parameters shown above is the same as typing the URL into the Internet
Explorer address bar. This code is the only code we need to add to the DisplayWebPage project. If we
run the example we get the results shown in Figure 31-4.

The Web Request and Web Response Hierarchy
In this section we take a closer look at the underlying architecture of the WebRequest and WebResponse
classes.

Figure 31-5 illustrates the inheritance hierarchy of the classes involved.

1075

Accessing the Internet

39 557599 Ch31.qxd 4/29/04 11:43 AM Page 1075

Figure 31-4

Figure 31-5

System.Object

Third-Party Web
Request Classes

Third-Party Web
Response Classes

System.MarshalByRefObject

System.Net.WebRequest System.Net.WebResponse

System.Net.HttpWebResponseSystem.Net.HttpWebRequest

System.Net.FileWebResponseSystem.Net.FileWebRequest

1076

Chapter 31

39 557599 Ch31.qxd 4/29/04 11:43 AM Page 1076

The hierarchy contains more than just the two classes we have used in our code. We also should point
out that the WebRequest and WebResponse classes are both abstract and cannot be instantiated. These
base classes provide general functionality for dealing with Web requests and responses independent of
the protocol used for a given operation. Requests are made using a particular protocol (HTTP, FTP,
SMTP, and so on) and a derived class written for the given protocol will handle the request. Microsoft
refers to this scheme as pluggable protocols. Remember in the code we examined earlier, our variables
are defined as references to the base classes; however, WebRequest.Create() actually gives us an
HttpWebRequest object, and the GetResponse() method actually returns an HttpWebResponse object.
This factory-based mechanism hides many of the details from the client code, allowing support for a
wide variety of protocols from the same code base.

The fact that we need an object specifically capable of dealing with the HTTP protocol is clear from the
URI that we supply to WebRequest.Create(). WebRequest.Create() examines the protocol specifier
in the URI to instantiate and return an object of the appropriate class. This keeps your code free from
having to know anything about the derived classes or specific protocol used. When you need to access
specific features of a protocol, you might need the properties and methods of the derived class, in which
case you can cast your WebRequest or WebResponse reference to the derived class.

With this architecture we should be able to send requests using any of the common protocols. However,
Microsoft currently only provides derived classes to cover the HTTP, HTTPS, and FILE protocols. If you
want to utilize other protocols, for example, FTP or SMTP, then you will need to either fall back on the
Windows API, write your own classes, or wait for an independent software vendor to write some of the
suitable .NET classes. The .NET Framework version 2.0, when released, will then be able to work with FTP.

Utility Classes
In this section we cover a couple of utility classes to make Web programming easier when dealing with
URIs and IP addresses.

URIs
Uri and UriBuilder are two classes in the System (not System.Net) namespace, and they are both
intended to represent a URI. UriBuilder allows you to build a URI given the strings for the component
parts, while the Uri class allows you to parse, combine, and compare URIs.

For the Uri class, the constructor requires a completed URI string.

Uri MSPage = new
Uri(“http://www.Microsoft.com/SomeFolder/SomeFile.htm?Order=true”);

The class exposes a large number of read-only properties. A Uri object is not intended to be modified
once it has been constructed.

string Query = MSPage.Query; // Order=true;
string AbsolutePath = MSPage.AbsolutePath; // SomeFolder/SomeFile.htm
string Scheme = MSPage.Scheme; // http
int Port = MSPage.Port; // 80 (the default for http)
string Host = MSPage.Host; // www.Microsoft.com
bool IsDefaultPort = MSPage.IsDefaultPort; // true since 80 is default

1077

Accessing the Internet

39 557599 Ch31.qxd 4/29/04 11:43 AM Page 1077

URIBuilder, on the other hand, implements fewer properties; just enough to allow you to build up a
complete URI. These properties are read-write.

You can supply the components to build up a URI to the constructor:

Uri MSPage = new
UriBuilder(“http”, “www.Microsoft.com”, 80, “SomeFolder/SomeFile.htm”);

Or you can build the components by assigning values to the properties:

UriBuilder MSPage = new UriBuilder();
MSPage.Scheme =”http”;
MSPage.Host = “www.Microsoft.com”;
MSPage.Port = 80;
MSPage.Path = “SomeFolder/SomeFile.htm”;

Once you have completed initializing the UriBuilder, you can obtain the corresponding Uri object
with the Uri property:

Uri CompletedUri = MSPage.Uri;

The DisplayPage example
We will illustrate the use of UriBuilder along with creating an Internet Explorer process with an exam-
ple: DisplayPage. This example allows the user to type in the component parts of a URL (not URI), since
this is an HTTP request. The user can then click a button marked View Page and the application will dis-
play both the completed URL in a text box and the page using the Web browser ActiveX control. The
example is a standard C# Windows application (see Figure 31-6).

Figure 31-6

1078

Chapter 31

39 557599 Ch31.qxd 4/29/04 11:43 AM Page 1078

The textbox names are txtBoxServer, txtBoxPath, txtBoxPort, and txtBoxURI respectively. The
code to add to the example is entirely in the ViewPage button event handler:

private void ViewPage_Click (object sender, System.EventArgs e)
{

UriBuilder Address = new UriBuilder();
Address.Host = txtBoxServer.Text;
Address.Port = int.Parse(txtBoxPort.Text);
Address.Scheme = Uri.UriSchemeHttp;
Address.Path = txtBoxPath.Text;

Uri AddressUri = Address.Uri;

Process myProcess = new Process();
myProcess.StartInfo.FileName = “iexplore.exe”;
txtBoxURI.Text = AddressUri.ToString();
myProcess.StartInfo.Arguments = AddressUri.ToString();
myProcess.Start();

}

IP Addresses and DNS Names
On the Internet we identify servers as well as clients by IP address or host name (also referred to as a
DNS name). Generally speaking, the host name is the human-friendly name that you type in a Web
browser window, such as www.wrox.com or www.microsoft.com. An IP address, on the other hand, is
the identifier computers use to identify each other. IP addresses are the identifiers used to ensure Web
requests and responses reach the appropriate machines. It is even possible for a computer to have more
than one IP address.

For host names to work, we must first send a network request to translate the host name into an IP
address, a task carried out by one or more DNS servers.

A DNS server stores a table mapping host names to IP addresses for all the computers it knows about, as
well as the IP addresses of other DNS servers to look up the host names it does not know about. Your
local computer should always know about at least one DNS server. Network administrators configure
this information when a computer is set up.

Before sending out a request, your computer will first ask the DNS server to tell it the IP address corre-
sponding to the host name you have typed in. Once armed with the correct IP address, the computer can
address the request and send it over the network. All of this work normally happens behind the scenes
while the user is browsing the Web.

.NET Classes for IP Addresses
.NET Framework supplies a number of classes that are able to assist with the process of looking up IP
addresses and finding out information about host computers.

1079

Accessing the Internet

39 557599 Ch31.qxd 4/29/04 11:43 AM Page 1079

IPAddress
IPAddress represents an IP address. The address itself is available as the Address property, and may be
converted to a dotted decimal format with the ToString() method. IPAddress also implements a
static Parse() method, which effectively performs the reverse conversion of ToString()—converting
from a dotted decimal string to an IPAddress.

IPAddress ipAddress = IPAddress.Parse(“234.56.78.9”);
long address = ipAddress.Address;
string ipString = ipAddress.ToString();

In the previous example, the long integer address is assigned 156121322, and the string ipString is
assigned the text “234.56.78.9”.

IPAddress also provides a number of constant static fields to return special addresses. For example, the
Loopback address allows a machine to send messages to itself, while the Broadcast address allows
multicasting to the local network.

// The following line will set loopback to “127.0.0.1”.
// the loopback address indicates the local host.
string loopback = IPAddress.Loopback.ToString();

// The following line will set broadcast address to “255.255.255.255”.
// the broadcast address is used to send a message to all machines on
// the local network.
string broadcast = IPAddress.Broadcast.ToString();

IPHostEntry
The IPHostEntry class encapsulates information relating to a particular host computer. This class
makes the host name available via the HostName property (which returns a string), and the
AddressList property returns an array of IPAddress objects. We are going to use the IPHostEntry
class in the in next example: DNSLookupResolver.

Dns
The Dns class is able to communicate with your default DNS server in order to retrieve IP addresses. The
two important (static) methods are Resolve(), which uses the DNS server to obtain the details of a host
with a given host name, and GetHostByAddress(), which also returns details of the host, but this time
using the IP address. Both methods return an IPHostEntry object.

IPHostEntry wroxHost = Dns.Resolve(“www.wrox.com”);
IPHostEntry wroxHostCopy = Dns.GetHostByAddress(“168.215.86.81”);

In this code both IPHostEntry objects will contain details of the Wrox.com servers.

The Dns class differs from the IPAddress and IPHostEntry classes since it has the ability to actually
communicate with servers to obtain information. In contrast, IPAddress and IPHostEntry are more
along the lines of simple data structures with convenient properties to allow access to the underlying
data.

1080

Chapter 31

39 557599 Ch31.qxd 4/29/04 11:43 AM Page 1080

The DnsLookup example
We will illustrate the DNS and IP-related classes with an example that looks up DNS names: DnsLookup
(see Figure 31-7).

Figure 31-7

This sample application simply invites the user to type in a DNS name using the main text box. When
the user clicks the Resolve button, the sample uses the Dns.Resolve() method to retrieve an
IPHostEntry reference and display the host name and IP addresses. Note how the host name displayed
may be different from the name typed in. This can occur if one DNS name (www.microsoft.com) sim-
ply acts as a proxy for another DNS name (a562.cd.akamai.net).

The DnsLookup application is a standard C# Windows application. The controls are added as shown in
Figure 31-7, giving them the names txtBoxInput, btnResolve, txtBoxHostName, and listBoxIPs
respectively. Then we simply add the following method to the Form1 class as the event handler for the
buttonResolve click event.

void btnResolve_Click (object sender, EventArgs e)
{

try
{

IPHostEntry iphost = Dns.Resolve(txtBoxInput.Text);
foreach (IPAddress ip in iphost.AddressList)
{

string ipaddress = ip.AddressFamily.ToString();
listBoxIPs.Items.Add(ipaddress);
listBoxIPs.Items.Add(“ “ + ip.ToString());

}
txtBoxHostName.Text = iphost.HostName;

}
catch(Exception ex)
{

MessageBox.Show(“Unable to process the request because “ +

1081

Accessing the Internet

39 557599 Ch31.qxd 4/29/04 11:43 AM Page 1081

“the following problem occurred:\n” +
ex.Message, “Exception occurred”);

}
}

Notice that in this code we are careful to trap any exceptions. An exception might occur if the user types
in an invalid DNS name, or if the network is down.

After retrieving the IPHostEntry instance, we use the AddressList property to obtain an array contain-
ing the IP addresses, which we then iterate through with a foreach loop. For each entry we display the
IP address as an integer and as a string, using the IPAddress.AddressFamily.ToString() method.

Lower-Level Protocols
In this section we will briefly discuss some of the .NET classes used to communicate at a lower level.

Network communications work on several different levels. The classes we have covered in this chapter
so far work at the highest level: the level at which specific commands are processed. It is probably easi-
est to understand this concept if you think of file transfer using FTP. Although today’s GUI applications
hide many of the FTP details, it was not so long ago when we executed FTP from a command-line
prompt. In this environment we explicitly typed commands to send to the server for downloading,
uploading, and listing files.

FTP is not the only high-level protocol relying on textual commands. HTTP, SMTP, POP, and other proto-
cols are based on a similar type of behavior. Again, many of the modern graphical tools hide the trans-
mission of commands from the user, so you are generally not aware of them. For example, when you
type a URL into a Web browser, and the Web request goes off to a server, the browser is actually sending
a (plain text) GET command to the server, which fulfills a similar purpose as the FTP get command. It
can also send a POST command, which indicates that the browser has attached other data to the request.

However, these protocols are not sufficient by themselves to achieve communication between comput-
ers. Even if both the client and the server understand, for example, the HTTP protocol, it will still not be
possible for them to understand each other unless there is also agreement on exactly how to transmit the
characters: what binary format will be used, and getting down to the lowest level, what voltages will be
used to represent 0s and 1s in the binary data? Since there are so many items to configure and agree
upon, developers and hardware engineers in the networking field often refer to a protocol stack. When
you list all of the various protocols and mechanisms required for communication between two hosts,
you create a protocol stack with high-level protocols on the top and low-level protocols on the bottom.
This approach results in a modular and layered approach to achieving efficient communication.

Luckily, for most development work, we don’t need to go far down the stack or work with voltage
levels, but if you are writing code that requires efficient communication between computers, it’s not
unusual to write code that works directly at the level of sending binary data packets between computers.
This is the realm of protocols such as TCP, and Microsoft has supplied a number of classes that allow
you to conveniently work with binary data at this level.

1082

Chapter 31

39 557599 Ch31.qxd 4/29/04 11:43 AM Page 1082

Lower-Level Classes
The System.Net.Sockets namespace contains the relevant classes. These classes, for example, allow
you to directly send out TCP network requests or to listen to TCP network requests on a particular port.
The following table explains the main classes.

Class Purpose

Socket Low-level class that deals with managing connections. Classes such as WebRe-
quest, TcpClient, and UdpClient use this class internally.

NetworkStream Derived from Stream. Represents a stream of data from the network.

TcpClient Enables you to create and use TCP connections.

TcpListener Enables you to listen for incoming TCP connection requests.

UdpClient Enables you to create connections for UDP clients. (UDP is an alternative pro-
tocol to TCP, but is much less widely used, mostly on local networks.)

Using the TCP classes
The transmission control protocol (TCP) classes offer simple methods for connecting and sending data
between two endpoints. An endpoint is the combination of an IP address and a port number. Existing
protocols have well defined port numbers, for example, HTTP uses port 80, while SMTP uses port 25.
The Internet Assigned Number Authority, IANA, (http://www.iana.org/) assigns port numbers to
these well-known services. Unless you are implementing a well-known service, you will want to select a
port number above 1,024.

TCP traffic makes up the majority of traffic on the Internet today. TCP is often the protocol of choice
because it offers guaranteed delivery, error correction, and buffering. The TcpClient class encapsulates
a TCP connection and provides a number of properties to regulate the connection, including buffering,
buffer size, and timeouts. Reading and writing is accomplished by requesting a NetworkStream object
via the GetStream() method.

The TcpListener class listens for incoming TCP connections with the Start() method. When a con-
nection request arrives you can use the AcceptSocket() method to return a socket for communication
with the remote machine, or use the AcceptTcpClient() method to use a higher-level TcpClient
object for communication. The easiest way to demonstrate the TcpListener and TcpClient classes
working together is to work through an example.

The TcpSend and TcpReceive examples
To demonstrate how these classes work we need to build two applications. Figure 31-8 shows the first
application, TcpSend. This application opens a TCP connection to a server and sends the C# source code
for itself.

1083

Accessing the Internet

39 557599 Ch31.qxd 4/29/04 11:43 AM Page 1083

Figure 31-8

Once again we create a C# Windows application. The form consists of two text boxes (txtHost and
txtPort) for the host name and port, respectively, as well as a button (btnSend) to click and start a con-
nection. First, we ensure that we include the relevant namespaces:

using System.Net;
using System.Net.Sockets;
using System.IO;

The following code shows the event handler for the button’s click event:

private void btnSend_Click(object sender, System.EventArgs e)
{

TcpClient tcpClient = new TcpClient(txtHost.Text, Int32.Parse(txtPort.Text));
NetworkStream ns = tcpClient.GetStream();
FileStream fs = File.Open(“..\\..\\form1.cs”, FileMode.Open);

int data = fs.ReadByte();
while(data != -1)
{

ns.WriteByte((byte)data);
data = fs.ReadByte();

}

fs.Close();
ns.Close();
tcpClient.Close();

}

This example creates the TcpClient using a host name and a port number. Alternatively, if you have an
instance of the IPEndPoint class, you can pass the instance to the TcpClient constructor. After retriev-
ing an instance of the NetworkStream class we open the source code file and begin to read bytes. Like
many of the binary streams, we need to check for the end of the stream by comparing the return value of
the ReadByte() method to -1. After our loop has read all of the bytes and sent them along to the net-
work stream, we make sure to close all of the open files, connections, and streams.

On the other side of the connection, the TcpReceive application displays the received file after the trans-
mission is finished (see Figure 31-9).

1084

Chapter 31

39 557599 Ch31.qxd 4/29/04 11:43 AM Page 1084

Figure 31-9

The form consists of a single RichTextBox control, named txtDisplay. The TcpReceive application
uses a TcpListener to wait for the incoming connection. In order to avoid freezing the application
interface, we use a background thread to wait for and then read from the connection. Thus we need to
include the System.Threading namespace as well:

using System.Net;
using System.Net.Sockets;
using System.IO;
using System.Threading;

Inside the form’s constructor we spin up a background thread:

public Form1()
{

InitializeComponent();

Thread thread = new Thread(new ThreadStart(Listen));
thread.Start();

}

The remaining important code is this:

public void Listen()
{

TcpListener tcpListener = new TcpListener(2112);

1085

Accessing the Internet

39 557599 Ch31.qxd 4/29/04 11:43 AM Page 1085

tcpListener.Start();

TcpClient tcpClient = tcpListener.AcceptTcpClient();

NetworkStream ns = tcpClient.GetStream();
StreamReader sr = new StreamReader(ns);
string result = sr.ReadToEnd();
Invoke(new UpdateDisplayDelegate(UpdateDisplay),

new object[] {result});

tcpClient.Close();
tcpListener.Stop();

}

public void UpdateDisplay(string text)
{

txtDisplay.Text= text;
}

protected delegate void UpdateDisplayDelegate(string text);

The thread begins execution in the Listen() method and allows us to make the blocking call to
AcceptTcpClient() without halting the interface. Notice that we have hard-coded the port number
2112 into the application, so you will need to enter the same port number from the client application.

We use the TcpClient object returned by AccepTcpClient() to open a new stream for reading. Similar
to the earlier example, we create a StreamReader to convert the incoming network data into a string.
Before we close the client and stop the listener, we update the form’s text box. We do not want to access
the text box directly from our background thread, so we use the form’s Invoke() method with a dele-
gate, and pass the result string as the first element in an array of object parameters. Invoke() ensures
our call is correctly marshaled into the thread owning the control handles in the user interface.

TCP versus UDP
The other protocol to cover in this section is UDP (user datagram protocol). UDP is a simple protocol
with few features but also little overhead. Developers often use UDP in applications where the speed
and performance requirements outweigh the reliability needs, for example, video streaming. In contrast,
TCP offers a number of features to confirm the delivery of data. TCP provides error correction and re-
transmission in the case of lost or corrupted packets. Last, but hardly least, TCP buffers incoming and
outgoing data and also guarantees a sequence of packets scrambled in transmission are reassembled
before delivery to the application. Even with the extra overhead, TCP is the most widely used protocol
across the Internet because of the higher reliability.

The UDP class
As you might expect, the UdpClient class features a smaller and simpler interface compared to
TcpClient. This reflects the relatively simpler nature of the protocol in comparison to TCP. While
both TCP and UDP classes use a socket underneath the covers, the UdpClient client does not contain a
method to return a network stream for reading and writing. Instead, the member function Send()accepts
an array of bytes as a parameter, while the Receive() function returns an array of bytes. Also, since UDP

1086

Chapter 31

39 557599 Ch31.qxd 4/29/04 11:43 AM Page 1086

is a connectionless protocol, you can wait to specify the endpoint for the communication as a parameter to
the Send() and Receive() methods, instead of earlier in a constructor or Connect() method. You can
also change the endpoint on each subsequent send or receive.

The following code fragment uses the UdpClient class to send a message to an echo service. A server
with an echo service running accepts TCP or UDP connections on port 7. The echo service simply echoes
any data sent to the server back to the client. This service is useful for diagnostics and testing, although
many system administrators disable echo services for security reasons.

using System;
using System.Text;
using System.Net;
using System.Net.Sockets;

namespace Wrox.ProCSharp.InternetAccess.UdpExample
{

class Class1
{

[STAThread]
static void Main(string[] args)
{

UdpClient udpClient = new UdpClient();

string sendMsg = “Hello Echo Server”;
byte [] sendBytes = Encoding.ASCII.GetBytes(sendMsg);

udpClient.Send(sendBytes, sendBytes.Length, “SomeEchoServer.net”, 7);

IPEndPoint endPoint = new IPEndPoint(0,0);
byte [] rcvBytes = udpClient.Receive(ref endPoint);
string rcvMessage = Encoding.ASCII.GetString(rcvBytes,

0,
rcvBytes.Length);

// should print out “Hello Echo Server”
Console.WriteLine(rcvMessage);

}
}

}

We make heavy use of the Encoding.ASCII class to translate strings into arrays of byte and vice versa.
Also note that we pass an IPEndPoint by reference into the Receive() method. Since UDP is not a con-
nection-oriented protocol, each call to Receive() might pick up data from a different endpoint, so
Receive() populates this parameter with the IP address and port of the sending host.

Both UdpClient and TcpClient offer a layer of abstraction over the lowest of the low-level classes: the
Socket.

1087

Accessing the Internet

39 557599 Ch31.qxd 4/29/04 11:43 AM Page 1087

The Socket class
The Socket class offers the highest level of control in network programming. One of the easiest ways to
demonstrate the class is to rewrite the TcpReceive application with the Socket class. The updated
Listen() method is listed in this example:

public void Listen()
{

Socket listener = new Socket(AddressFamily.InterNetwork,
SocketType.Stream,
ProtocolType.Tcp);

listener.Bind(new IPEndPoint(IPAddress.Any, 2112));
listener.Listen(0);

Socket socket = listener.Accept();
Stream netStream = new NetworkStream(socket);
StreamReader reader = new StreamReader(netStream);

string result = reader.ReadToEnd();

Invoke(new UpdateDisplayDelegate(UpdateDisplay),
new object[] {result});

socket.Close();
listener.Close();

}

The Socket class requires a few more lines of code to complete the same task. For starters, the construc-
tor arguments need to specify an IP addressing scheme for a streaming socket with the TCP protocol.
These arguments are just one of the many combinations available to the Socket class, and the
TcpClient class configured these settings for you. We then bind the listener socket to a port and begin
to listen for incoming connections. When an incoming request arrives we can use the Accept() method
to create a new socket for handling the connection. We ultimately attach a StreamReader instance to the
socket to read the incoming data, in much the same fashion as before.

The Socket class also contains a number of methods for asynchronously accepting, connecting, sending,
and receiving. You can use these methods with callback delegates in the same way we used the asyn-
chronous page requests with the WebRequest class. If you really need to dig into the internals of the
socket, the GetSocketOption() and SetSocketOption() methods are available. These methods allow
you to see and configure options, including timeout, time-to-live, and other low-level options.

Summary
In this chapter we have reviewed the .NET Framework classes available in the System.Net namespace
for communication across networks. We have seen some of the .NET base classes that deal with opening
client connections on the network and Internet, and how to send requests to and receive responses from
servers; the most obvious use of this being to receive HTML pages. By taking advantage of COM inter-
operability in .NET, you can easily make use of Internet Explorer from your desktop applications.

1088

Chapter 31

39 557599 Ch31.qxd 4/29/04 11:43 AM Page 1088

As a rule of thumb, when programming with classes in the System.Net namespace, you should
always try to use the most generic class possible. For instance, using the TCPClient class instead of the
Socket class isolates your code from many of the lower-level socket details. Moving one step higher, the
WebRequest class allows you to take advantage of the pluggable protocol architecture of.NET Framework.
Your code will be ready to take advantage of new application-level protocols as Microsoft and other third-
party developers introduce new functionality.

Finally, we discussed the use of the asynchronous capabilities in the networking classes, which give a
Windows Forms application the professional touch of a responsive user interface.

1089

Accessing the Internet

39 557599 Ch31.qxd 4/29/04 11:43 AM Page 1089

39 557599 Ch31.qxd 4/29/04 11:43 AM Page 1090

Windows Services

Windows Services are programs that can be started automatically at boot-time without the need of
anyone to log on to the machine After reading this chapter you can modify the server processes we
discuss in Chapters 16 and 31 to be started automatically.

In this chapter we explore:

❑ The architecture of Windows Services; the functionality of a service program, service con-
trol program, and service configuration program.

❑ How to implement a Windows Service with the classes found in the System
.ServiceProcess namespace.

❑ Installation programs to configure the Windows Service in the registry.

❑ Writing a program to control the Windows Service using the ServiceController class.

❑ How to implement event handling.

❑ Adding event logging to other application types.

❑ Implementing performance monitoring for a Windows Service.

First, we’ll define what a Windows Service is. (You can download the code for this chapter from
the Wrox Web site at www.wrox.com.)

What Is a Windows Service?
Windows Services are applications that can be automatically started when the operating system
boots. They can run without having an interactive user logged on to the system. You can configure
a Windows Service to be run from a specially configured user account; or from the system user
account—a user account that has even more privileges than that of the system administrator.

40 557599 Ch32.qxd 4/29/04 11:45 AM Page 1091

Unless otherwise noted, when we are referring to a service, we are referring to a Windows Service.

Here are few examples of services:

❑ Simple TCP/IP Services is a service program that hosts some small TCP/IP servers: echo, day-
time, quote, and others

❑ World Wide Publishing Service is the service of the Internet Information Server (IIS)

❑ Event Log is a service to log messages to the event log system

❑ Microsoft Search is a service that creates indexes of data on the disk

You can use the Services administration tool, shown in Figure 32-1, to see all of the services on a system.
On a Windows 2000 Server this program can be accessed be selecting Start➪Programs➪Administrative
Tools➪Services; on Windows 2000 Professional and Windows XP the program is accessible through
Settings➪Control Panel➪Administrative Tools➪Services.

Figure 32-1

Windows Services don’t run on Windows 95, 98, or ME; the NT kernel is a require-
ment. Windows Services do run on Windows NT 4, Windows 2000, Windows XP,
and Windows Server 2003.

1092

Chapter 32

40 557599 Ch32.qxd 4/29/04 11:45 AM Page 1092

Windows Services Architecture
Three program types are necessary to operate a Windows Service:

❑ A service program

❑ A service control program

❑ A service configuration program

The service program itself provides the actual functionality we are looking for. With a service control pro-
gram, it’s possible to send control requests to a service, such as start, stop, pause, and continue. With a
service configuration program, a service can be installed; it’s copied to the file system, written into the
registry, and configured as a service. While .NET components can be installed simply with an xcopy
because they don’t need the use of the registry, installation for services does require registry configura-
tion. A service configuration program can also be used to change the configuration of that service at a
later point.

In the following subsections, we discuss these three ingredients of a Windows Service.

Service Program
Before looking at the .NET implementation of a service, let’s look at it from an independent point of
view and discover what the Windows architecture of services looks like, and what the inner functional-
ity of a service is.

The service program implements the functionality of the service. It needs three parts:

❑ A main function

❑ A service-main function

❑ A handler

Before we can discuss these parts, we must introduce the Service Control Manager (SCM) . The SCM plays
an important role for services, sending requests to our service to start and to stop it.

Service Control Manager
The SCM is the part of the operating system that communicates with the service. Figure 32-2 illustrates
how this communication works with a UML sequence diagram.

1093

Windows Services

40 557599 Ch32.qxd 4/29/04 11:45 AM Page 1093

Figure 32-2

Main function, service-main, and handlers
The main function of the service might register more than one service-main function. The service must
register a service-main function for each service it provides. A service program can provide a lot of ser-
vices in a single program; for example, <windows>\system32\services.exe is the service program that
includes Alerter, Application Management, Computer Browser, and DHCP Client, among others.

The SCM now calls the service-main function for each service that should be started. The service-main
function contains the actual functionality of the service. One important task of the service-main function
is to register a handler with the SCM.

The handler function is the third part of service program. The handler must respond to events from the
SCM. Services can be stopped, suspended, and resumed, and the handler must react to these events.

Once a handler has been registered with the SCM, the service control program can post requests to the
SCM to stop, suspend, and resume the service. The service control program is independent of the SCM
and the service itself. We get many service control programs with the operating system; one is the MMC
Services snap-in that we’ve seen earlier. You can also write our own service control program; a good
example of this is the SQL Server Service Manager shown in Figure 32-3.

At boot time, each process for which a service is set to start automatically is started,
and so the main function of this process gets called. The service has the responsibility
to register the service-main function for each of its services. The main function is the
entry point of the service program, and in here, the entry points for the service-main
functions must be registered with the SCM.

SCM

start service process

register service-mains

service-main

register handler

Service

1094

Chapter 32

40 557599 Ch32.qxd 4/29/04 11:45 AM Page 1094

Figure 32-3

Service Control Program
As the name suggests, with a service control program we can control the service. For stopping, suspend-
ing, and resuming the service, you can send control codes to the service, and the handler should react to
these events. It’s also possible to ask the service about the actual status, and to implement a custom han-
dler that responds to custom control codes.

Service Configuration Program
You can’t use xcopy installation with services, since services must be configured in the registry. You can
set the startup type to automatic, manual, or disabled. You have to configure the user of the service pro-
gram, and dependencies of the service—for example, the services that must be started before this one
can start. All these configurations are made within a service configuration program. The installation pro-
gram can use the service configuration program to configure the service, but this program can also be
used at a later time to change service configuration parameters.

System.ServiceProcess Namespace
In.NET Framework, you can find service classes in the System.ServiceProcess namespace that
implement the three parts of a service:

❑ You have to inherit from the ServiceBase class to implement a service. The ServiceBase class
is used to register the service and to answer start and stop requests.

❑ The ServiceController class is used to implement a service control program. With this class
you can send requests to services.

❑ The ServiceProcessInstaller and ServiceInstaller classes are, as their names suggest,
classes to install and configure service programs.

Now we are ready to create a new service.

1095

Windows Services

40 557599 Ch32.qxd 4/29/04 11:45 AM Page 1095

Creating a Windows Service
The service that we create will host a quote server. With every request that is made from a client the
quote server returns a random quote from a quote file. The first part of the solution uses three assem-
blies, one for the client and two for the server. Figure 32-4 shows an overview of the solution. The assem-
bly QuoteServer holds the actual functionality. The service reads the quote file in a memory cache, and
answers requests for quotes with the help of a socket server. The QuoteClient is a Windows Forms rich-
client application. This application creates a client socket to communicate with the QuoteServer. The
third assembly is the actual service. The QuoteService starts and stops the QuoteServer; the service con-
trols the server:

Figure 32-4

Before creating the service part of our program, we create a simple socket server in an extra C# class
library that will be used from our service process.

A Class Library Using Sockets
You could build any functionality in the service such as scanning for files to do a backup or a virus
check, or starting a .NET Remoting server, for example. However, all service programs share some simi-
larities. The program must be able to start (and to return to the caller), stop, and suspend. We will look
at such an implementation using a socket server.

Windows forms Application
and Socket client

Client Server

«assembly»
QuoteClient

communicates «assembly»
QuoteServer

«assembly»
QuoteService

Socket Server

Windows Service

1096

Chapter 32

40 557599 Ch32.qxd 4/29/04 11:45 AM Page 1096

With Windows 2000 or Windows XP, the Simple TCP/IP Services can be installed as part of the Windows
components. Part of the Simple TCP/IP Services is a “quote of the day,” or qotd, TCP/IP server. This
simple service listens to port 17 and answers every request with a random message from the file
<windir>\system32\drivers\etc\quotes. With the sample service a similar server will be built. The sam-
ple server returns a Unicode string, in contrast to the good old qotd server that returns an ASCII string.

First create a Class Library called QuoteServer and implement the code for the server. Let’s step
through the source code of our QuoteServer class in the file QuoteServer.cs:

using System;
using System.IO;
using System.Threading;
using System.Net;
using System.Net.Sockets;
using System.Text;
using System.Collections.Specialized;

namespace Wrox.ProCSharp.WinServices
{

public class QuoteServer
{

private TcpListener listener;
private int port;
private string filename;
private StringCollection quotes;
private Random random;
private Thread listenerThread;

The constructor QuoteServer() is overloaded, so that a file name and a port can be passed to the call.
The constructor where just the file name is passed uses the default port 7890 for the server. The default
constructor defines the default file name for the quotes as quotes.txt:

public QuoteServer() : this (“quotes.txt”)
{
}
public QuoteServer(string filename) : this(filename, 7890)
{
}
public QuoteServer(string filename, int port)
{

this.filename = filename;
this.port = port;

}

ReadQuotes() is a helper method that reads all the quotes from a file that was specified in the construc-
tor. All the quotes are added to the StringCollection quotes. In addition, we are creating an instance
of the Random class that will be used to return random quotes:

protected void ReadQuotes()
{

quotes = new StringCollection();
Stream stream = File.OpenRead(filename);

1097

Windows Services

40 557599 Ch32.qxd 4/29/04 11:45 AM Page 1097

StreamReader streamReader = new StreamReader(stream);
string quote;
while ((quote = streamReader.ReadLine()) != null)
{

quotes.Add(quote);
}
streamReader.Close();
stream.Close();
random = new Random();

}

Another helper method is GetRandomQuoteOfTheDay(). This method returns a random quote from the
StringCollection quotes:

protected string GetRandomQuoteOfTheDay()
{

int index = random.Next(0, quotes.Count);
return quotes[index];

}

In the Start() method, the complete file containing the quotes is read in the StringCollection
quotes by using the helper method ReadQuotes(). After this, a new thread is started, which immedi-
ately calls the Listener() method—similar to the TcpReceive example in Chapter 31.

Here a thread is used because the Start() method can not block and wait for a client; it must return
immediately to the caller (SCM). The SCM would assume the start failed if the method didn’t return to
the caller in a timely fashion (30 seconds):

public void Start()
{

ReadQuotes();
listenerThread = new Thread(

new ThreadStart(this.Listener));
listenerThread.Start();

}

The thread function Listener() creates a TcpListener instance. The AcceptSocket() method waits
for a client to connect. As soon as a client connects, AcceptSocket() returns with a socket associated
with the client. Next GetRandomQuoteOfTheDay() is called to send the returned random quote to the
client using socket.Send():

protected void Listener()
{

try
{

IPAddress ipAddress = Dns.Resolve(“localhost”).AddressList[0];
listener = new TcpListener(ipAddress, port);
listener.Start();
while (true)
{

1098

Chapter 32

40 557599 Ch32.qxd 4/29/04 11:45 AM Page 1098

Socket socket = listener.AcceptSocket();
string message = GetRandomQuoteOfTheDay();
UnicodeEncoding encoder = new UnicodeEncoding();
byte[] buffer = encoder.GetBytes(message);
socket.Send(buffer, buffer.Length, 0);
socket.Close();

}
}
catch (SocketException e)
{

Console.WriteLine(e.Message);
}

}

In addition to the Start() method, the following methods are needed to control the service: Stop(),
Suspend(), and Resume():

public void Stop()
{

listener.Stop();
}
public void Suspend()
{

listenerThread.Suspend();
}
public void Resume()
{

listenerThread.Resume();
}

Another method that will be publicly available is RefreshQuotes(). If the file containing the quotes
changes, then the fire is re-read with this method:

public void RefreshQuotes()
{

ReadQuotes();
}

}
}

Before building a service around the server, it is useful to build a test program that just creates an
instance of the QuoteServer and calls Start(). This way, you can test the functionality without the
need to handle service-specific issues. This test server must be started manually, and you can easily walk
through the code with a debugger.

The test program is a C# console application, TestQuoteServer. You have to reference the assembly of the
QuoteServer class. The file containing the quotes must be copied to the directory c:\ProCSharp\Services
(or you have to change the argument in the constructor to specify where you have copied the file). After
calling the constructor, the Start() method of the QuoteServer instance is called. Start() returns
immediately after having created a thread, so the console application keeps running until Return is
pressed:

1099

Windows Services

40 557599 Ch32.qxd 4/29/04 11:45 AM Page 1099

static void Main(string[] args)
{

QuoteServer qs = new QuoteServer(@”c:\ProCSharp\Services\quotes.txt”,
4567);

qs.Start();
Console.WriteLine(“Hit return to exit”);
Console.ReadLine();
qs.Stop();

}

Note that QuoteServer will be running on port 4567 on localhost using this program—you will have to
use these settings in the client later.

TcpClient Example
The client is a simple Windows application where you can enter the host name and the port number of
the server. This application uses the TcpClient class to connect to the running server, and receives the
returned message, displaying it in a multiline text box. There’s also a status bar at the bottom of the form
(see Figure 32-5).

Figure 32-5

You have to add the following using directives to our code:

using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;
using System.Net;
using System.Net.Sockets;
using System.Text;

1100

Chapter 32

40 557599 Ch32.qxd 4/29/04 11:45 AM Page 1100

The remainder of the code is automatically generated by the IDE, so we won’t go into detail here. The
major functionality of the client lies in the handler for the click event of the Get Quote button:

protected void buttonQuote_Click (object sender, System.EventArgs e)
{

statusBar.Text = “”;
string server = textHostname.Text;
try
{

int port = Convert.ToInt32(textPortNumber.Text);
}
catch (FormatException ex)
{

statusBar.Text = ex.Message;
return;

}
TcpClient client = new TcpClient();
try
{

client.Connect(textHostname.Text,
Convert.ToInt32(textPortNumber.Text));

NetworkStream stream = client.GetStream();
byte[] buffer = new Byte[1024];
int received = stream.Read(buffer, 0, 1024);
if (received <= 0)
{

statusBar.Text = “Read failed”;
return;

}
textQuote.Text = Encoding.Unicode.GetString(buffer);

}
catch (SocketException ex)
{

statusBar.Text = ex.Message;
}
finally
{

client.Close();
}

}

After starting the test server and this Windows application client, you can test the functionality. Figure
32-6 shows a successful run of this application.

Next we implement the service functionality in the server. The program is already running, so what
more do we need? Well, the server program should be automatically started at boot-time without any-
one logged on to the system, and we want to control it by using service control programs.

1101

Windows Services

40 557599 Ch32.qxd 4/29/04 11:45 AM Page 1101

Figure 32-6

Windows Service Project
Using the new project wizard for C# Windows Services, you can now start to create a Windows Service.
For the new service use the name QuoteService. Pay careful not to select a Web Service project (see
Figure 32-7).

Figure 32-7

After you press the OK button to create the Windows Service application, you will see the Designer sur-
face (just like with Windows Forms applications). However you can’t insert any Windows Forms com-
ponents, because the application can not directly display anything on the screen. The Designer surface
is used later in this chapter to add other components, such as performance counters and event logging.

Selecting the properties of this service opens up the Properties editor window (see Figure 32-8).

1102

Chapter 32

40 557599 Ch32.qxd 4/29/04 11:45 AM Page 1102

Figure 32-8

With the service properties, you can configure the following values:

❑ AutoLog specifies that events are automatically written to the event log for starting and stop-
ping the service.

❑ CanPauseAndContinue, CanShutdown, and CanStop specify pause, continue, shutdown, and
stop requests.

❑ ServiceName is the name of the service that’s written to the Registry and is used to control the
service.

❑ CanHandlePowerEvent is a very useful option for services running on a laptop. If this option is
enabled, the service can react to low power events, and change the behavior of the service
accordingly.

Changing these properties with the Properties editor sets the values of our ServiceBase-derived class
in the InitalizeComponent() method. You already know this method from Windows Forms applica-
tions. With services it’s used in a similar way.

A wizard generates the code, but change the file name to QuoteService.cs, the name of the namespace to
Wrox.ProCSharp.WinServices, and the class name to QuoteService. We discuss the code of the ser-
vice in detail shortly..

The default service name is WinService1, regardless of what the project is called.
You can install only one WinService1 service. If you get installation errors during
your testing process, you might already have installed one WinService1 service.
Therefore, make sure that you change the name of the service with the Properties
editor to a more suitable name at the beginning of the service development.

1103

Windows Services

40 557599 Ch32.qxd 4/29/04 11:45 AM Page 1103

The ServiceBase Class
The ServiceBase class is the base class for all .NET services. The class QuoteService derives from
ServiceBase; this class communicates with the SCM using an undocumented helper class, System
.ServiceProcess.NativeMethods, which is just a wrapper class to the Win32 API calls. The class is
private, so it can not be used in your code.

The sequence diagram in Figure 32-9 shows the interaction of the SCM, the class QuoteService, and the
classes from the System.ServiceProcess namespace. In the sequence diagram you can see the life-
lines of objects vertically and the communication going on in the horizontal direction. The communica-
tion is time-ordered from top to bottom.

Figure 32-9

The SCM starts the process of a service that should be started. At startup, the Main() method is called.
In the Main() method of the sample service the Run() method of the base class ServiceBase is called.
Run() registers the method ServiceMainCallback() using NativeMethods.StartServiceCtrl
Dispatcher() in the SCM and writes an entry to the event log.

Next, the SCM calls the registered method ServiceMainCallback() in the service program. Service
MainCallback() itself registers the handler in the SCM using NativeMethods.RegisterService
CtrlHandler[Ex]() and sets the status of the service in the SCM. Then the OnStart() method is
called. In OnStart() you have to implement the startup code. If OnStart() is successful, the string
“Service started successfully” is written to the event log.

ServiceCommandCallback()

SCM

on a stop request
for the service

Main()

Run()

ServiceMainCallback()

RegisterServiceCtrlHandler[Ex]()

StartServiceCtrlDispatcher()

OnStart()

OnStop()

ServiceCommandCallback()

quoteService : ServiceBase : NativeMethods

1104

Chapter 32

40 557599 Ch32.qxd 4/29/04 11:45 AM Page 1104

The handler is implemented in the ServiceCommandCallback() method. The SCM calls this method
when changes are requested from the service. The ServiceCommandCallback() method routes the
requests further to OnPause(), OnContinue(), OnStop(), OnCustomCommand(), and OnPowerEvent().

Main function
Let’s look into the application wizard–generated main function of the service process. In the main func-
tion, an array of ServiceBase classes, ServicesToRun is declared. One instance of the QuoteService
class is created and passed as the first element to the ServicesToRun array. If more than one service
should run inside this service process, it is necessary to add more instances of the specific service classes
to the array. This array is then passed to the static Run() method of the ServiceBase class. With the
Run() method of ServiceBase, we are giving the SCM references to the entry points of our services.
The main thread of our service process is now blocked and waits for the service to terminate.

Here’s the automatically generated code:

// The main entry point for the process
static void Main()
{

System.ServiceProcess.ServiceBase[] ServicesToRun;

// More than one user Service may run within the same process. To
// add another service to this process, change the following line
// to create a second service object. For example,
//
// ServicesToRun = New System.ServiceProcess.ServiceBase[]
// {
// new WinService1(), new MySecondUserService()
// };
//

ServicesToRun = new System.ServiceProcess.ServiceBase[]
{

new QuoteService()
};
System.ServiceProcess.ServiceBase.Run(ServicesToRun);

}

If there’s only a single service in the process the array can be removed; the Run() method accepts a sin-
gle object derived from the class ServiceBase, so the Main() method can be reduced to this:

System.ServiceProcess.ServiceBase.Run(new QuoteService());

If there is more than one service, like the Windows program Services.exe that includes multiple services,
and you need some shared initialization for the services, then this shared initialization must be done
before the Run() method, because the main thread is blocked until the service process is stopped, and
any following instructions would not be reached before the end of the service.

The initialization shouldn’t take longer than 30 seconds. If the initialization code were to take longer
than this, then the service control manager would assume that the service startup failed. You have to
take into account the slowest machines where this service should run within the 30-second limit. If the
initialization takes longer, we could start the initialization in a different thread so that the main thread
calls Run() in time. An event object can then be used to signal that the thread has completed its work.

1105

Windows Services

40 557599 Ch32.qxd 4/29/04 11:45 AM Page 1105

Service start
At service start the OnStart() method is called. In this method you can start the previously created
socket server. You must reference the QuoteServer assembly for the use of the QuoteService. The thread
calling OnStart() can not be blocked; this method must return to the caller, which is the
ServiceMainCallback() method of the ServiceBase class. The ServiceBase class registers the han-
dler and informs the SCM that the service started successfully after calling OnStart():

protected override void OnStart(string[] args)
{

quoteServer = new QuoteServer(@”c:\ProCSharp\Services\quotes.txt”,
5678);

quoteServer.Start();
}

The quoteServer variable is declared as a private member in the class:

namespace Wrox.ProCSharp.WinServices
{

public class QuoteService : System.ServiceProcess.ServiceBase
{

private System.ComponentModel.Container components = null;
private QuoteServer quoteServer;

Handler methods
When the service is stopped, the OnStop() method is called. You should stop the service functionality in
this method:

protected override void OnStop()
{

quoteServer.Stop();
}

In addition to OnStart() and OnStop(), you can override the following handlers in the service class:

❑ OnPause() is called when the service should be paused.

❑ OnContinue() is called when the service should return to normal operation after being paused.
To make it possible for the overridden methods OnPause() and OnContinue() to be called, the
CanPauseAndContinue property must be set to true.

❑ OnShutdown() is called when Windows is undergoing system shutdown. Normally, the behav-
ior of this method should be similar to the OnStop() implementation; if more time were needed
for a shutdown, you can request additional time. Similar to OnPause() and OnContinue(), a
property must be set to enable this behavior: CanShutdown must be set to true.

❑ OnCustomCommand() is a handler that can serve custom commands which are sent by a service
control program. The method signature of OnCustomCommand() has an int argument where
we get the custom command number. The value can be in the range from 128 to 256; values
below 128 are system-reserved values. In our service we are re-reading the quotes file with the
custom command 128:

1106

Chapter 32

40 557599 Ch32.qxd 4/29/04 11:45 AM Page 1106

protected override void OnPause()
{

quoteServer.Suspend();
}
protected override void OnContinue()
{

quoteServer.Resume();
}
protected override void OnShutdown()
{

OnStop();
}
public const int commandRefresh = 128;
protected override void OnCustomCommand(int command)
{

switch (command)
{

case commandRefresh:
quoteServer.RefreshQuotes();
break;

default:
break;

}
}

Threading and Services
With services, we have to deal with threads. As stated earlier, the SCM will assume that the service failed
if the initialization takes too long. To deal with this, you have to create a thread.

The OnStart() method in our service class must return in time. If you call a blocking method like
AcceptSocket() from the TcpListener class, you have to start a thread for doing this. With a net-
working server that deals with multiple clients, a thread pool is also very useful. AcceptSocket()
should receive the call and hand the processing off to another thread from the pool. This way, no one
waits for the execution of code and the system seems responsive.

Service Installation
A service must be configured in the registry. All services can be found in HKEY_LOCAL_MACHINE
\System\CurrentControlSet\Services. You can view the registry entries using regedit. The type of the
service, display name, path to the executable, startup configuration, and so on, are all found here. Fig-
ure 32-10 shows the registry configuration of the Alerter service.

1107

Windows Services

40 557599 Ch32.qxd 4/29/04 11:45 AM Page 1107

Figure 32-10

This configuration can be done by using the installer classes from the System.ServiceProcess names-
pace, as discussed in the following section..

Installation Program
You can add an installation program to the service by switching to the design view with Visual Studio
.NET and then selecting the Add Installer option from the context menu. With this option a new
ProjectInstaller class is created, and a ServiceInstaller and a ServiceProcessInstaller
instance are created.

Figure 32-11 shows the class diagram of the installer classes for services.

With this diagram in mind, let’s go through the sourcecode in the file ProjectInstaller.cs that was created
with the Add Installer option.

The Installer class
The class ProjectInstaller is derived from System.Configuration.Install.Installer. This is
the base class for all custom installers. With the Installer class, it’s possible to build transaction-based
installations. With a transaction-based installation, it’s possible to roll back to the previous state if the
installation fails, and any changes made by this installation up to that point will be undone. As you can
see in Figure 32-11, the Installer class has Install(), Commit(), Rollback(), and Uninstall()
methods, and they are called from installation programs.

1108

Chapter 32

40 557599 Ch32.qxd 4/29/04 11:45 AM Page 1108

Figure 32-11

The attribute [RunInstaller(true)] means that the class ProjectInstaller should be invoked
when installing an assembly. Custom action installers as well as installutil.exe (which will be used later)
check for this attribute:

using System;
using System.Collections;
using System.ComponentModel;
using System.Configuration.Install;

namespace Wrox.ProCSharp.WinServices
{
/// <summary>

/// Summary description for ProjectInstaller.
/// </summary>

[RunInstaller(true)]
public class ProjectInstaller : System.Configuration.Install.Installer
{

Installer

Install()
Uninstall()
Commit()
Rollback()

Service Installer

StartType
DisplayName
ServiceName
ServicesDependentOn

ServiceProcessInstaller

UserName
Password

ComponentInstaller

ProjectInstaller

1109

Windows Services

40 557599 Ch32.qxd 4/29/04 11:45 AM Page 1109

The ServiceProcessInstaller and ServiceInstaller classes
Similar to Windows Forms applications, InitializeComponent() is called inside the constructor of
the ProjectInstaller class. In InitializeComponent(), instances of the
ServiceProcessInstaller class and the ServiceInstaller class are created. Both of these classes
derive from the ComponentInstaller class, which itself derives from Installer.

Classes derived from ComponentInstaller can be used as part within an installation process.
Remember that a service process can include more than one service. The ServiceProcessInstaller
class is used for the configuration of the process that defines values for all services in this process, and the
ServiceInstaller class is for the configuration of the service, so one instance of ServiceInstaller is
required for each service. If there are three services inside the process, you have to add additional
ServiceInstaller objects—three ServiceInstaller instances are needed in that case.

private System.ServiceProcess.ServiceProcessInstaller
serviceProcessInstaller1;

private System.ServiceProcess.ServiceInstaller serviceInstaller1;

/// <summary>
/// Required designer variable.
/// </summary>
private System.ComponentModel.Container components = null;
public ProjectInstaller()
{

// This call is required by the Designer.
InitializeComponent();

// TODO: Add any initialization after the InitComponent call
}
/// <summary>
/// Required method for Designer support - do not modify
/// the contents of this method with the code editor.
/// </summary>
private void InitializeComponent()
{

this.serviceProcessInstaller1 =
new System.ServiceProcess.ServiceProcessInstaller();

this.serviceInstaller1 =
new System.ServiceProcess.ServiceInstaller();

//
// serviceProcessInstaller1
//
this.serviceProcessInstaller1.Password = null;
this.serviceProcessInstaller1.Username = null;
//
// serviceInstaller1
//
this.serviceInstaller1.ServiceName = “QuoteService”;
//
// ProjectInstaller

1110

Chapter 32

40 557599 Ch32.qxd 4/29/04 11:45 AM Page 1110

//
this.Installers.AddRange(

new System.Configuration.Install.Installer[]
{this.serviceProcessInstaller1,
this.serviceInstaller1});

}
}

}

ServiceProcessInstaller installs an executable that implements the class ServiceBase.
ServiceProcessInstaller has properties for the complete process. The following table explains the
properties shared by all the services inside the process.

Property Description

Username, Password Indicates the user account under which the service runs if the
Account property is set to ServiceAccount.User.

Account With this property we can specify the account type of the service.

HelpText HelpText is a read-only property that returns the help text for set-
ting the user name and password.

The process that is used to run the service can be specified with the Account property of the
ServiceProcessInstaller class using the ServiceAccount enumeration. The following table
explains the different values of the Account property.

Value Meaning

LocalSystem Setting this value specifies that the service uses a highly privileged user
account on the local system, but this account presents an anonymous user
to the network. Thus it doesn’t have rights on the network.

LocalService This account type presents the computer’s credentials to any remote server.

NetworkService Similar to LocalService, this value specifies that the computer’s credentials
are passed to remote servers, but unlike LocalService such a service acts as
a non-privileged user on the local system. As the name implies, this account
should be used only for services that need resources from the network.

User Setting the Account property to ServiceAccount.User means that we
can define the account that should be used from the service.

ServiceInstaller is the class needed for every service; it has the following properties for each service
inside a process: StartType, DisplayName, ServiceName, and ServicesDependedOn.

1111

Windows Services

40 557599 Ch32.qxd 4/29/04 11:45 AM Page 1111

Property Description

StartType The StartType property indicates if the service is manually or
automatically started. Possible values are ServiceStartMode.
Automatic, ServiceStartMode.Manual, ServiceStartMode.
Disabled. With ServiceStartMode.Disabled the service cannot
be started. This option is useful for services that shouldn’t be started
on a system. You might want to set the option to Disabled if for
example a required hardware controller is not available.

DisplayName DisplayName is the friendly name of the service that is displayed to
the user. This name is also used by management tools that control
and monitor the service.

ServiceName ServiceName is the name of the service. This value must be
identical to the ServiceName property of the ServiceBase class
in the service program. This name associates the configuration of the
ServiceInstaller to the required service program.

ServicesDependentOn Specifies an array of services that must be started before this service
can be started. When the service is started, all these dependent ser-
vices are started automatically, and then our service will start.

In the testing phases set StartType to Manual. This way, if you can’t stop the service (for example,
when it has a bug), then you still have the possibility to reboot the system. But if you have StartType
set to Automatic, the service would be started automatically with the reboot! You can change this con-
figuration at a later time when you’re sure that it works.

The ServiceInstallerDialog class
Another installer class in the System.ServiceProcess.Design namespace is the ServiceInstaller
Dialog. This class can be used if we want the System Administrator to enter the username and pass-
word during the installation.

If you set the Account property of the class ServiceProcessInstaller to ServiceAccount.User,
and the Username and Password properties to null, then you will see the Set Service Login dialog box
at installation time (see Figure 32-12). You can also cancel the installation at this point.

installutil
After adding the installer classes to the project you can use the installutil.exe utility to install and unin-
stall the service. This utility can be used to install any assembly that has an Installer class. The instal-
lutil.exe utility calls the method Install() of the class that derives from the Installer class for
installation, and Uninstall() for the deinstallation.

If you change the name of the service in the ServiceBase-derived class, also change
the ServiceName property in the ServiceInstaller object!

1112

Chapter 32

40 557599 Ch32.qxd 4/29/04 11:45 AM Page 1112

Figure 32-12

The command line inputs for the installation and deinstallation of our service are:

installutil quoteservice.exe

installutil /u quoteservice.exe

Client
After the service has been successfully installed, you can start the service manually from the Services
MMC (see next section for further details), and then you can start the client application. Figure 32-13
shows the client accessing the service.

Figure 32-13

Monitoring and Controlling the Service
To monitor and control services you can use the Services MMC snap-in that is part of the Computer
Management administration tool. With every Windows system you also get a command line utility,

If the installation fails be sure to check the installation log files InstallUtil.InstallLog
and <servicename>.InstallLog. Often you can find very useful information, such as
“The specified service already exists”.

1113

Windows Services

40 557599 Ch32.qxd 4/29/04 11:45 AM Page 1113

net.exe, which allows you to control services. Another command line utility is sc.exe. This utility has
much more functionality than net.exe, which is part of the Platform SDK. In this section we create a
small Windows application that makes use of the System.ServiceProcess.ServiceController
class to monitor and control services.

MMC Computer Management
Using the Services snap-in to the Microsoft Management Console (MMC), you can view the status of all
services (see Figure 32-14). It’s also possible to send control requests to services to stop, enable, or dis-
able them, as well as to change their configuration. The Services snap-in is a service control program as
well as a service configuration program.

Figure 32-14

If you double-click QuoteService, you’ll get the Properties dialog box shown in Figure 32-15. This dialog
box enables you to view the service name, the description, and the path to the executable, the startup
type, and the status. The service is currently started. The account for the service process can be changed
with the Log On tab in this dialog.

net.exe
The Services snap-in is easy to use, but the system administrator can not automate it, because it’s not
usable within an administrative script. To control services, you can use the command line utility net.exe:
net start shows all running services, net start servicename starts a service, net stop servicename sends a
stop request to the service. It’s also possible to pause and to continue a service with net pause and net
continue (only if the service allows it, of course).

Figure 32-16 shows the result of net start in the console window.

1114

Chapter 32

40 557599 Ch32.qxd 4/29/04 11:45 AM Page 1114

Figure 32-15

Figure 32-16

sc.exe
There’s a little known utility that’s delivered with Visual Studio .NET, but starting with Windows XP is
also part of the operating system: sc.exe.

sc.exe is a great tool to play with services. A lot more can be done with sc.exe compared to the net.exe
utility. With sc.exe, it’s possible to check the actual status of a service, or configure, remove, and add
services. This tool also faciliates the de-installation of the service, if it fails to function correctly.

1115

Windows Services

40 557599 Ch32.qxd 4/29/04 11:45 AM Page 1115

Figure 32-17

Visual Studio .NET Server Explorer
It is also possible to control services using the Server Explorer within Visual Studio .NET; Services is
below Servers and the name of your computer. By selecting a service and opening the context menu a
service can be started and stopped. This context menu can also be used to add a ServiceController
class to the project. If you want to control a specific service in your application, drag and drop a service
from the Server Explorer to the Designer: a ServiceController instance is added to the application.
The properties of this object are automatically set to access the selected service, and the assembly
System.ServiceProcess is referenced. You can use this instance to control a service in the same way as
you can with the application that will be developed in the next section.

ServiceController Class
In this section, we create a small Windows application that uses the ServiceController class to moni-
tor and control Windows Services.

Create a windows forms application with a user interface (see Figure 32-18). The user interface of this
application has a list box to show all services, four text boxes to display the display name, status, type,
and name of the service, and four buttons to send control events.

1116

Chapter 32

40 557599 Ch32.qxd 4/29/04 11:45 AM Page 1116

Figure 32-18

Because the class System.ServiceProcess.ServiceController is used, you must reference the
assembly System.ServiceProcess.

Create and implement the method RefreshServiceList() that lists all services in the list box with the
following code. This method is called within the constructor of the class ServiceControlForm. In the
implementation this method fills a ListBox control with the display names of all services. GetServices()
is a static method of the ServiceController class, and it returns a ServiceController array repre-
senting all Windows Services. The ServiceController class also has the static method GetDevices()
that returns a ServiceController array representing all device drivers.

The ListBox is filled by simply binding ServiceController.GetServices() to the ListBox.

private System.ServiceProcess.ServiceController[] services;

public ServiceControlForm()
{

//
// Required for Windows Form Designer support
//

InitializeComponent();
RefreshServiceList();

}
protected void RefreshServiceList()
{

services = ServiceController.GetServices();
listBoxServices.DisplayMember = “DisplayName”;
listBoxServices.DataSource = services;

}

Now, all Windows Services are displayed in the list box. Next, you must get the information about a
service that is displayed in the text boxes.

1117

Windows Services

40 557599 Ch32.qxd 4/29/04 11:45 AM Page 1117

Monitoring the service
Using the ServiceController class, you can get the information about each service. The following
tables shows the properties of the ServiceController class.

Property Description

CanPauseAndContinue If pause and continue requests can be sent to the service, true is
returned.

CanShutdown Returns true if the service has a handler for a system shutdown.

CanStop Returns true if the service is stoppable.

DependentServices Returns a collection of dependent services. If the service is stopped
all dependent services are stopped beforehand.

ServicesDependentOn Returns a collection of the services that this service depends on.

DisplayName Specifies the name that should be displayed for this service.

MachineName Specifies the name of the machine that the service runs on.

ServiceName Specifies the name of the service.

ServiceType Specifies the type of the service. The service can be run inside a
shared process where more than one service uses the same process
(Win32ShareProcess), or run in that way that there’s just one ser-
vice in a process (Win32OwnProcess). If the service can interact with
the desktop the type is InteractiveProcess.

Status Specifies the status of the service. The status can be running, stopped,
paused, or in some intermediate mode like start pending, stop pend-
ing, and so on. The status values are defined in the enumeration
ServiceControllerStatus.

In the sample application, the properties DisplayName, ServiceName, ServiceType, and Status are
used to display the service information. Also, CanPauseAndContinue and CanStop are used to enable
or disable the Pause, Continue, and Stop buttons.

The status and type of the service can not be set that easily, because a string should be displayed instead
of a number, which is what the ServiceController class returns. To get a string for the status and type
two helper functions are implemented: SetServiceStatus() and GetServiceTypeName().

The method GetServiceTypeName() returns a string that represents the type of the service. Depending
on the type that is passed with the ServiceType argument, a string is returned. The ServiceType you
get from the property ServiceController.ServiceType represents a set of flags that can be com-
bined by using the bitwise OR operator. The InteractiveProcess bit can be set together with
Win32OwnProcess and Win32ShareProcess. So at first it is checked if the InteractiveProcess bit is
set before continuing to check for the other values. With services the string returned will be “Win32
Service Process”, or “Win32 Shared Process”.

1118

Chapter 32

40 557599 Ch32.qxd 4/29/04 11:45 AM Page 1118

protected string GetServiceTypeName(ServiceType type)
{

string serviceType = “”;
if ((type & ServiceType.InteractiveProcess) != 0)
{

serviceType = “Interactive “;
type -= ServiceType.InteractiveProcess;

}
switch (type)
{

case ServiceType.Adapter:
serviceType += “Adapter”;
break;

case ServiceType.FileSystemDriver:
case ServiceType.KernelDriver:
case ServiceType.RecognizerDriver:

serviceType += “Driver”;
break;

case ServiceType.Win32OwnProcess:
serviceType += “Win32 Service Process”;
break;

case ServiceType.Win32ShareProcess:
serviceType += “Win32 Shared Process”;
break;

default:
serviceType += “unknown type “ + type.ToString();
break;

}
return serviceType;

}

The method SetServiceStatus() sets the current status of the service in the text box
textServiceStatus. Also, the start/stop/pause/continue buttons will be enabled or disabled depend-
ing on the status of the service.

protected void SetServiceStatus(ServiceController controller)
{

buttonStart.Enabled = true;
buttonStop.Enabled = true;
buttonPause.Enabled = true;
buttonContinue.Enabled = true;
if (!controller.CanPauseAndContinue)
{

buttonPause.Enabled = false;
buttonContinue.Enabled = false;

}
if (!controller.CanStop)
{

buttonStop.Enabled = false;
}
ServiceControllerStatus status = controller.Status;
switch (status)
{

case ServiceControllerStatus.ContinuePending:

1119

Windows Services

40 557599 Ch32.qxd 4/29/04 11:45 AM Page 1119

textServiceStatus.Text = “Continue Pending”;
buttonContinue.Enabled = false;
break;

case ServiceControllerStatus.Paused:
textServiceStatus.Text = “Paused”;
buttonPause.Enabled = false;
buttonStart.Enabled = false;
break;

case ServiceControllerStatus.PausePending:
textServiceStatus.Text = “Pause Pending”;
buttonPause.Enabled = false;
buttonStart.Enabled = false;
break;

case ServiceControllerStatus.StartPending:
textServiceStatus.Text = “Start Pending”;
buttonStart.Enabled = false;
break;

case ServiceControllerStatus.Running:
textServiceStatus.Text = “Running”;
buttonStart.Enabled = false;
buttonContinue.Enabled = false;
break;

case ServiceControllerStatus.Stopped:
textServiceStatus.Text = “Stopped”;
buttonStop.Enabled = false;
break;

case ServiceControllerStatus.StopPending:
textServiceStatus.Text = “Stop Pending”;
buttonStop.Enabled = false;
break;

default:
textServiceStatus.Text = “Unknown status”;
break;

}

OnSelectedIndexChanged() is the handler for the ListBox event SelectedIndexChanged. This han-
dler is called when the user selects a service in the ListBox event. In OnSelectedIndexChanged() the
display and the service name is set directly with properties of the ServiceController class. The ser-
vice type is set by calling the helper method GetServiceTypeName().

protected void OnSelectedIndexChanged (object sender,
System.EventArgs e)

{
ServiceController controller =

(ServiceController)listBoxServices.SelectedItem;
textDisplayName.Text = controller.DisplayName;
textServiceType.Text = GetServiceTypeName(controller.ServiceType);
textServiceName.Text = controller.ServiceName;
SetServiceStatus(controller);

}

1120

Chapter 32

40 557599 Ch32.qxd 4/29/04 11:45 AM Page 1120

Controlling the service
With the ServiceController class you can also send control requests to the service. The following
table explains the methods you can use.

Method Description

Start() Start() tells the SCM that the service should be started. In our service
program OnStart() is called.

Stop() Stop() calls OnStop() in our service program with the help of the
SCM if the property CanStop is true in the service class.

Pause() Pause() calls OnPause() if the property CanPauseAndContinue is
true.

Continue() Continue calls OnContinue() if the property CanPauseAndContinue
is true.

ExecuteCommand() With ExecuteCommand() it’s possible to send a custom command to the
service.

The following code controls the services. Because the code for starting, stopping, suspending, and paus-
ing is similar, only one handler is used for the four buttons:

protected void buttonCommand_Click(object sender, System.EventArgs e)
{

Cursor.Current = Cursors.WaitCursor;
ServiceController controller =

(ServiceController)listBoxServices.SelectedItem;
if (sender == this.buttonStart)
{

controller.Start();
controller.WaitForStatus(ServiceControllerStatus.Running);

}
else if (sender == this.buttonStop)
{

controller.Stop();
controller.WaitForStatus(ServiceControllerStatus.Stopped);

}
else if (sender == this.buttonPause)
{

controller.Pause();
controller.WaitForStatus(ServiceControllerStatus.Paused);

}
else if (sender == this.buttonContinue)
{

controller.Continue();
controller.WaitForStatus(ServiceControllerStatus.Running);

}
int index =listBoxServices.SelectedIndex;
RefreshServiceList();
listBoxServices.SelectedIndex = index;

1121

Windows Services

40 557599 Ch32.qxd 4/29/04 11:45 AM Page 1121

Cursor.Current = Cursors.Default;
}

protected void buttonExit_Click(object sender, System.EventArgs e)
{

Application.Exit();
}
protected void buttonRefresh_Click(object sender, System.EventArgs e)
{

RefreshServiceList();
}

As the action of controlling the services can take some time, the cursor is switched to the wait cursor in the
first statement. Then, a ServiceController method is called depending on the pressed button. With the
WaitForStatus() method, we are waiting to check that the service changes the status to the requested
value, but we only wait a maximum of 10 seconds. After this time, the information in the ListBox is
refreshed; and the same service as before is selected, and the new status of this service is displayed.

Figure 32-19 shows the completed, running application.

Figure 32-19

Troubleshooting
Troubleshooting services is different from troubleshooting normal applications. In this section, we cover
the following troubleshooting topics:

❑ The problems of interactive services

❑ Event logging

❑ Performance monitoring

The best way to begin building a service is to create an assembly with the functionality you want and a
test client, before the service is actually created. Here you can do normal debugging and error handling.

1122

Chapter 32

40 557599 Ch32.qxd 4/29/04 11:45 AM Page 1122

As soon as the application is running you can build a service by using this assembly. Of course, there
still might be problems with the service:

❑ Don’t display errors in a message box from the service (except for interactive services that are
running on the client system). Instead, use the event logging service to write errors to the event
log. Of course, you can display a message box to inform the user about errors in the client appli-
cation that uses the service.

❑ The service can’t be started from within a debugger, but a debugger can be attached to the run-
ning service process. Open the solution with the sourcecode of the service and set breakpoints.
From the Visual Studio .NET Debug menu select Processes and attach the running process of the
service.

❑ The Windows 2000 Performance Monitor can be used to monitor the activity of services. You
can add our own performance objects to the service. This can add some useful information for
debugging. For example, with the Quote service, you could set up an object to give the total
number of quotes returned, the time it takes to initialize, and so on.

Interactive Services
If an interactive service runs with a logged-on user it can be helpful to display message boxes to the user.
If the service should run on a server that is locked inside a computer room, the service should never dis-
play a message box. When you open a message box, to wait for some user input, the user input probably
won’t happen for some days as nobody is looking at the server in the computer room; but it can get even
worse than that: if the service isn’t configured as an interactive service, the message box opens up on a
different, hidden, window station. In this case, no one can answer that message box because it is hidden,
and the service is blocked.

In those cases where you really want to interact with the user, an interactive service can be configured.
Some examples of such interactive services are the Print Spooler that displays paper-out messages to the
user, and the NetMeeting Remote Desktop Sharing service.

To configure an interactive service, you must set the option Allow service to interact with desktop in
the Services configuration tool (see Figure 32-20). This changes the type of the service by adding the
SERVICE_INTERACTIVE_PROCESS flag to the type.

Event Logging
Services can report errors and other information by adding events to the event log. A service class
derived from ServiceBase automatically logs events when the AutoLog property is set to true. The
ServiceBase class checks this property and writes a log entry at start, stop, pause, and continue
requests.

Never open dialog boxes for services running on a server system. Nobody will
answer them.

1123

Windows Services

40 557599 Ch32.qxd 4/29/04 11:45 AM Page 1123

Figure 32-20

In this section, we explore:

❑ Error-logging architecture

❑ Classes for event logging from the System.Diagnostics namespace

❑ Adding event logging to services and to other application types

❑ Creating an event-log listener with the EnableRaisingEvents property of the EventLog class

Figure 32-21 shows an example of a log entry from a service.

For custom event logging, you can use classes from the System.Diagnostics namespace.

Event Logging architecture
By default, the event log is stored in three log files: Application, Security, and System. Looking at the reg-
istry configuration of the event log service, you’ll notice three entries under HKEY_LOCAL_MACHINE
\System\CurrentControlSet\Services\Eventlog with configurations pointing to the specific files. The
System log file is used from the system and device drivers. Applications and services write to the
Application log. The Security log is a read-only log for applications. The auditing feature of the operat-
ing system uses the Security log.

1124

Chapter 32

40 557599 Ch32.qxd 4/29/04 11:45 AM Page 1124

Figure 32-21

You can read these events by using the administrative tool Event Viewer. The Event Viewer can be started
directly from the Server Explorer of Visual Studio .NET by right-clicking on the Event Logs item, and select-
ing the Launch Event Viewer entry from the context menu. The Event Viewer is shown in Figure 32-22.

In the event log you can see this information:

❑ The type can be Information, Warning, or Error. Information is an infrequent successful opera-
tion, Warning a problem that’s not immediately significant, and Error a major problem.
Additional types are FailureAudit and SuccessAudit, but these types are only used for the
Security log.

❑ Date and Time show the time when the event occurred.

❑ The Source is the name of the software that logs the event. The source for the Application log is
configured in:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\
Eventlog\Application\[ApplicationName]

❑ Below this key the value EventMessageFile is configured to point to a resource DLL that holds
error messages.

❑ A Category can be defined so that event logs can be filtered when using the Event Viewer.
Categories can be defined by an event source.

❑ The Event identifier specifies a particular event message.

1125

Windows Services

40 557599 Ch32.qxd 4/29/04 11:45 AM Page 1125

Figure 32-22

Event Logging classes
The System.Diagnostics namespace has some classes for event logging:

❑ With the EventLog class you can read and write entries in the event log, and establish applica-
tions as event sources.

❑ The EventLogEntry class represents a single entry in the event log. With the
EventLogEntryCollection you can iterate through EventLogEntry items.

❑ The EventLogInstaller class is the installer for an EventLog component.
EventLogInstaller calls EventLog.CreateEventSource() to create an event source.

❑ With the help of the EventLogTraceListener traces can be written to the event log. This class
implements the abstract class TraceListener.

Adding event logging
If the AutoLog property of the ServiceBase class is set to true, event logging is automatically turned
on. The ServiceBase class logs an informational event at startup, stop, pause, and continue requests of
the service. In the ServiceInstaller class an EventLogInstaller instance is created so that an event
log source is configured. This event log source has the same name as the service. If you want to write
events you can use the WriteEntry() method of the EventLog class. The Source property was already
set in the ServiceBase class:

eventLog.WriteEntry(“event log message”);

1126

Chapter 32

40 557599 Ch32.qxd 4/29/04 11:45 AM Page 1126

This method logs an informational event. If warning or error events should be created, an overloaded
method of WriteEvent() can be used to specify the type:

eventLog.WriteEntry(“event log message”, EventLogEntryType.Warning);
eventLog.WriteEntry(“event log message”, EventLogEntryType.Error);

Adding event logging to other application types
With services the ServiceBase class automatically adds event-logging features. If you would like to use
event logging within other application types, it can easily be done by using Visual Studio .NET.

❑ Use the Toolbox to add an EventLog component to the Designer.

❑ Set the Log property of the EventLog component to Application and the Source property to a
name of your choice. This name is typically the name of the application that shows up in the
Event Viewer.

❑ Logs can now be written with the WriteEntry() method of the EventLog instance.

❑ An installer can be added from the Add Installer context menu item of the EventLog compo-
nent. This creates the ProjectInstaller class that configures the event source in the registry.

❑ The application can now be registered with the installutil command. installutil calls the
ProjectInstaller class and registers the event source.

If you do an xcopy-installation the last two steps are not really necessary. If the Source property of the
EventLog instance is set, this source is automatically registered when an event log is written the first
time. That’s really easy to do. However, for a real application you are better off adding the installer. With
installutil /u the event log configuration is unregistered. If the application is just deleted, this reg-
istry key remains unless EventLog.DeleteEventSource() is called.

Adding event logging to the QuoteServer
The library QuoteServer that is used from the QuoteService currently doesn’t have event logging
included. This can be changed easily. In order to use the Visual Studio .NET Designer to drag and drop
the EventLog component to the class, you have to add designer support to the class.

To add designer support to the class you have to derive the class from the base class System
.ComponentModel.Component, and invoke the method InitializeComponent() inside the
constructor of the class. The method InitializeComponent() that will be used from the Designer
to set the properties of the components will be added automatically as soon as the first component is
dropped onto the Designer surface, but you have to invoke this method yourself.

After you change the code of the QuoteServer class in the library QuoteServer with a derivation from the
base class System.ComponentModel.Component, you can switch Visual Studio .NET to the design view.

public class QuoteServer : System.ComponentModel.Component
{

//...

public QuoteServer() : this (“quotes.txt”)

1127

Windows Services

40 557599 Ch32.qxd 4/29/04 11:45 AM Page 1127

{
}

public QuoteServer(string filename) : this(filename, 7890)
{
}

public QuoteServer(string filename, int port)
{

this.filename = filename;
this.port = port;

InitializeComponent();
}

After this change you can drag and drop the EventLog component from the toolbox to the design view,
where an instance of the EventLog class is created. Change the Log property of the object to
Application, and the Source property to QuoteService.

Then you can change the implementation of the method Listener() in the class QuoteServer, so that
an event log entry is written in case an exception is generated:

protected void Listener()
{

try
{

IPAddress ipAddress = Dns.Resolve(“localhost”).AddressList[0];
listener = new TcpListener(ipAddress, port);
listener.Start();
while (true)
{

Socket socket = listener.AcceptSocket();
string message = GetRandomQuoteOfTheDay();
UnicodeEncoding encoder = new UnicodeEncoding();
byte[] buffer = encoder.GetBytes(message);
socket.Send(buffer, buffer.Length, 0);
socket.Close();

}
}
catch (SocketException e)
{

string message = “Quote Server failed in Listener: “
+ e.Message;

eventLog.WriteEntry(message, EventLogEntryType.Error);
}

}

Trace
It’s also possible that all your trace messages are redirected to the event log. You shouldn’t really do this,
because on a normal running system the event log gets overblown with trace messages, and the system
administrator could miss the really important logs, if this happens. Turning on trace messages to the
event log can be useful when testing features for problematic services. Tracing is possible with debug as
well as with release code.

1128

Chapter 32

40 557599 Ch32.qxd 4/29/04 11:45 AM Page 1128

To send trace messages to the event log you must create an EventLogTraceListener object and add it
to the listener’s list of the Trace class:

EventLogTraceListener listener = new EventLogTraceListener(eventLog1);
Trace.Listeners.Add(listener);

Now, all trace messages are sent to the event log:

Trace.WriteLine(“trace message”);

Creating an event log listener
Next we write an application that receives an event when a service encounters a problem. Create a sim-
ple Windows application that monitors the events of our Quote service. This Windows application con-
sists only of a list box and an Exit button as shown in Figure 32-23.

Figure 32-23

Add an EventLog component to the design view by dragging and dropping it from the Toolbox. Set
the Log property to Application, and the Source to the source of our service, QuoteService. The
EventLog class also has a property, EnableRaisingEvents. The default value is false; setting it to
true means that an event is generated each time this event occurs, and you can add an event handler for
the EntryWritten event of the EventLog class. Add a handler with the name OnEntryWritten() to
this event.

The OnEntryWritten() handler receives an EntryWrittenEventArgs object as argument, from which
you can get the complete information about an event. With the Entry property an EventLogEntry
object with information about the time, event source, type, category, and so on is returned.

protected void OnEntryWritten (object sender,
System.Diagnostics.EntryWrittenEventArgs e)

{
DateTime time = e.Entry.TimeGenerated;
string message = e.Entry.Message;
listBoxEvents.Items.Add(time + “ “ + message);

}

1129

Windows Services

40 557599 Ch32.qxd 4/29/04 11:45 AM Page 1129

The running application displays all events for the QuoteService as shown in Figure 32-24.

Figure 32-24

Performance Monitoring
Performance monitoring can be used to get information about the normal running of the service.
Performance monitoring is a great tool that helps us to understand the workload of the system, and
to observe changes and trends.

Microsoft Windows has a lot of performance objects, such as System, Memory, Objects, Process,
Processor, Thread, Cache, and so on. Each of these objects has many counts to monitor. For example,
with the Process object the user time, handle count, page faults, thread count, and so on, can be moni-
tored for all processes, or for specific process instances. Some applications, such as SQL Server, also add
application-specific objects.

For the quote service sample application it might be interesting to get information about the number of
client requests, the size of the data that is sent over the wire, and so on.

Performance monitoring classes
The System.Diagnostics namespace provides these classes for performance monitoring:

❑ PerformanceCounter can be used both to monitor counts and to write counts. New perfor-
mance categories can also be created with this class.

❑ PerformanceCounterCategory enables you to step through all existing categories as well as
create new ones. You can programmatically get all the counters of a category.

❑ PerformanceCounterInstaller is used for the installation of performance counters. The use
is similar to the EventLogInstaller we discussed previously.

Performance Counter Builder
You can create a new performance counter category by selecting the performance counters in the Server
Explorer and by selecting the menu entry Create New Category on the context menu. This launches the
Performance Counter Builder (see Figure 32-25).

1130

Chapter 32

40 557599 Ch32.qxd 4/29/04 11:45 AM Page 1130

Figure 32-25

Set name of the performance counter category to Quote Service. The following table shows all perfor-
mance counters of the quote service.

Name Description Type

of Bytes sent Total # of bytes sent to the client NumberOfItems32

of Bytes sent / sec # of bytes sent to the client in one second RateOfCountsPerSecond32

of Requests Total # of requests NumberOfItems32

of Requests / sec # of requests in one second RateOfCountsPerSecond32

The Performance Counter Builder writes the configuration to the performance database. This can also be
done dynamically by using the Create() method of the PerformanceCounterCategory class in the
System.Diagnostics namespace. An installer for other systems can easily be added later using Visual
Studio .NET.

Adding PerformanceCounter Components
Now you can add PerformanceCounter components from the Toolbox. Instead of using the components
from the toolbox category Components, you can directly drag and drop the previously created performance
counts from the Server explorer to the design view. This way the instances are configured automatically: the
CategoryName property is set to “Quote Service Count” for all objects, and the CounterName property is set

1131

Windows Services

40 557599 Ch32.qxd 4/29/04 11:45 AM Page 1131

to one of the values available in the selected category. Because with this application the performance counts
will not be read but written, you have to set the ReadOnly property to false.

Here is part of the code that is generated into InitalizeComponent() by adding the
PerformanceCounter components to the Designer and by setting the properties as indicated above:

private void InitializeComponent()
{

//...
// performanceCounterRequestsPerSec
//
this.performanceCounterRequestsPerSec.CategoryName =

“Quote Service Counts”;
this.performanceCounterRequestsPerSec.CounterName = “# of Requests / sec”;
this.performanceCounterRequestsPerSec.MachineName = “NAGELC”;
this.performanceCounterReqeustsPerSec.ReadOnly = false;
//
// performanceCounterBytesSentTotal
//
this.performanceCounterBytesSentTotal.CategoryName =

“Quote Service Counts”;
this.performanceCounterBytesSentTotal.CounterName = “# of Bytes sent”;
this.performanceCounterBytesSentTotal.MachineName = “NAGELC”;
this.performanceCounterBytesSentTotal.ReadOnly = false;
//
// performanceCounterBytesSentPerSec
//
this.performanceCounterBytesSentPerSec.CategoryName =

“Quote Service Counts”;
this.performanceCounterBytesSentPerSec.CounterName =

“# of Bytes sent / sec”;
this.performanceCounterBytesSentPerSec.MachineName = “NAGELC”;
this.performanceCounterBytesSentPerSec.ReadOnly = false;
//
// performanceCounterRequestsTotal
//
this.performanceCounterRequestsTotal.CategoryName =

“Quote Service Counts”;
this.performanceCounterRequestsTotal.CounterName = “# of Requests”;
this.performanceCounterRequestsTotal.MachineName = “NAGELC”;
this.performanceCoutnerRequestsTotal.ReadOnly = false;
//...

}

For the calculation of the performance values you have to add the fields requestsPerSec and
bytesPerSec to the class QuoteServer:

public class QuoteServer : System.ComponentModel.Component
{

private int requestsPerSec;
private int bytesPerSec;

1132

Chapter 32

40 557599 Ch32.qxd 4/29/04 11:45 AM Page 1132

The performance counts that show the total values are incremented directly in the Listener() method
(shown below) of the QuoteServer class. You can use PerformanceCounter.Increment() to count
the number of total requests, and IncrementBy() to count the number of bytes sent.

For the performance counts that show the value by seconds, just the two variables, requestsPerSec
and bytesPerSec, are updated in the Listener() method:

protected void Listener()
{

try
{

listener = new TCPListener(port);
listener.Start();
while (true)
{

Socket socket = listener.Accept();
string message = GetRandomQuoteOfTheDay();
UnicodeEncoding encoder = new UnicodeEncoding();
byte[] buffer = encoder.GetBytes(message);
socket.Send(buffer, buffer.Length, 0);
socket.Close();

performanceCounterRequestsTotal.Increment();
performanceCounterBytesSentTotal.IncrementBy(buffer.Length);

requestsPerSec++;
bytesPerSec += buffer.Length;

}
}
catch (Exception e)
{

string message = “Quote Server failed in Listener: “
+ e.Message;

eventLog.WriteEntry(message, EventLogEntryType.Error);
}

}

In order to show updated values every second, add a Timer component. Set the OnTimer() method to
the Elapsed event of this component. The OnTimer() method is called once per second, if you set the
Interval property to 1000. In the implementation of this method set the performance counts by using the
RawValue property of the PerformanceCounter class:

protected void OnTimer (object sender, System.Timers.ElapsedEventArgs e)
{

performanceCounterBytesSentPerSec.RawValue = bytesPerSec;
performanceCounterRequestsPerSec.RawValue = requestsPerSec;
bytesPerSec = 0;
requestsPerSec = 0;

}

perfmon.exe
Now you can monitor the service. You can start the Performance tool by selecting Administrative
Tools➪Performance. Pressing the + button in the toolbar, you can add performance counts. The Quote

1133

Windows Services

40 557599 Ch32.qxd 4/29/04 11:45 AM Page 1133

Service shows up as a performance object. All the counters that have been configured show up in the
counter list as shown in Figure 32-26.

Figure 32-26

After you’ve added the counters to the performance monitor, you can see the actual values of the service
over time (see Figure 32-27). Using this performance tool, you can also create log files to analyze the per-
formance at a later time.

Figure 32-27

1134

Chapter 32

40 557599 Ch32.qxd 4/29/04 11:45 AM Page 1134

Power Events
Starting with Windows 2000, services can also react to power changes. There’s support to hibernate the
system—the memory is written to disk, so a faster boot is possible. It’s also possible to suspend the sys-
tem in order to reduce the power consumption, but it can be awakened automatically when needed.

For all power events, the service can receive the control code SERVICE_CONTROL_POWEREVENT
with additional parameters. The reason for the event is passed through these parameters. The reason
could be low battery power, or the system is going to a suspended state, or a power status change.
Depending on the circumstance the service should slow down, suspend background threads, close net-
work connections, close files, and so on.

The classes in the System.ServiceProcess namespace have support for power events. In the same
way as you can configure a service so that it reacts to pause and continue events with the
CanPauseAndContinue property, you can also set a property for power management:
CanHandlePowerEvent. Windows 2000 services that handle power events are registered in the SCM
with the Win32 API method RegisterServiceCtrlHandlerEx().

If you set the property CanHandlePowerEvent to true the method OnPowerEvent() of the class
ServiceBase is called. You can override this method to receive power events, and to react with your
service implementation accordingly. The reason for the power event is passed in an argument of type
PowerBroadcastStatus. The possible values of this enumeration are listed in this table:

Value Description

BatteryLow The battery power is low. We should reduce the functionality of the ser-
vice to a minimum.

PowerStatusChange A switch from battery power to A/C happened, or the battery power
slips below a threshold, and so on.

QuerySuspend The system requests permissions to go into a suspended mode. We
could deny the permissions, or prepare to go into the suspended mode
by closing files, disconnecting network connections, and so on.

QuerySuspendFailed Change into the suspended mode was denied for the system. We can go
on with the functionality as before.

Suspend Nobody denied the request to go into the suspended mode. The system
will be suspended soon.

Summary
In this chapter, you have seen what Windows Services are and how you can create them with .NET
Framework. Applications can start automatically at boot-time with Windows Services, and you can use a
privileged system account as the user of the service.

1135

Windows Services

40 557599 Ch32.qxd 4/29/04 11:45 AM Page 1135

.NET Framework has great support for Windows Services. All the plumbing code that’s necessary for
building, controlling, and installing services is built into the .NET Framework classes in the System
.ServiceProcess namespace. By deriving a class from ServiceBase you can override methods that
are invoked when the service is paused, resumed, or stopped. For installation of services, the classes
ServiceProcessInstaller and ServiceInstaller deal with all registry configurations needed for
services.

Support technologies such as event logging and performance monitoring can easily be used with .NET
applications with classes in the System.Diagnostics namespace: EventLog and
PerformanceCounter.

1136

Chapter 32

40 557599 Ch32.qxd 4/29/04 11:45 AM Page 1136

Principles of Object-
Oriented Programming

In general, when learning a new programming language, you will spend a fair part of your effort
learning the syntax of that language: how to declare variables, how to control the flow of execu-
tion, and so on. However, in order to write quality code, you also need to understand the princi-
ples and methodologies behind the language. C# is a fully object-oriented language, so in order to
create well-designed C# code you need to get to grips with its object-oriented features, and that
means learning about object-oriented programming (OOP).

In OOP, we aim to write easily maintainable and reusable pieces of code that can perform collectively
very complex tasks. However, the whole structure of an object-oriented program is very different
from the structure of an equivalent program written in a procedural language. In this appendix, we
introduce the principles of object-oriented programming. Although we refer to some C# syntax (since
we’ll be presenting the examples in C#) throughout this appendix, the emphasis is on learning those
principles that apply to OOP in general, no matter which language you are using.

OOP is an extremely powerful methodology. Once you’ve familiarized yourself with writing your
code using OOP, you will probably wonder how you ever got by without it. You’ll find that, unlike
procedural languages, OOP gives your code an intuitive, “natural” structure. Even Visual Basic 6,
which implements a few object-oriented features, cannot keep up with true OOP.

We’ll start by discussing the nature of an object before moving on to examine the concept of inheri-
tance. Inheritance, which is at the heart of OOP, enables you to conveniently reuse the code for
classes. We’ll show you how to use inheritance in your programs both from a conceptual and C#
point of view.

557599 AppA_BC01.qxd 4/28/04 10:50 AM Page 1137

A Note for Visual Basic 6 Programmers
If you are a skilled Visual Basic 6 developer but do not have C++ or Java experience, then many of the
concepts in this chapter will strike you as “foreign.” Visual Basic does allow you to code something that
is often referred to as an object: the Visual Basic class module. Some texts even refer to this as involving
OOP, although this bears little resemblance to the original concepts of OOP. It is more accurate to say
that Visual Basic implements a few of the more basic features of OOP. A VB class module is essentially a
COM component but wrapped in a way that hides much of what it does. In particular it does not sup-
port inheritance of its methods in the same way that inheritance is used in C# and conventional OOP.

Because of its support for a different kind of inheritance (implementation inheritance), C# classes are
much more powerful than VB class modules and are often used very differently. If you want to write
good C# .NET applications and assemblies, you must read this appendix. Objects and inheritance are not
just new language features. In a well-designed object-oriented program, the whole architecture of the
program is often arranged around inheritance. Once you’re comfortable with the concept of OOP, you’ll
be structuring your programs in a completely different way from what you have done in Visual Basic—
and your programs will be easier for others to maintain as a result. However, if you already feel comfort-
able with manipulating objects in Visual Basic, but have not yet used inheritance, you might want to
skip ahead to the section on inheritance.

Note that whenever we refer to Visual Basic in this appendix, we are more specifically referring to
Visual Basic 6.

What Is an Object?
In everyday life, an object is anything that is identifiably a single material item. An object can be a car, a
house, a book, a document, or a paycheck. For our purposes, we’re going to extend that concept a bit
and think of an object as anything that is a single item that you might want to represent in a program.
We’ll therefore also include living “objects,” such as a person, an employee, or a customer, as well as
more abstract “objects,” such as a company, a database, or a country.

Thinking about objects in this way not only enables us to write code that models the real world; it also
enables us to break up a large program into smaller, more manageable units. The idea really comes from
the concept of a black box that you might have encountered in school science.

The idea of a black box is that there are a lot of objects in life that you are able to use but of which you
don’t understand the mechanism. Take for example a car radio. Most people don’t know exactly how a
car radio works; however, they do know what it does and how to operate it. Furthermore, they can take
out the radio, plug in a different one and it’ll do basically the same thing, even though the internal work-
ings of it might be completely different. Black boxes formalize the idea that there’s a difference between
what something does and how it works, and that two objects can do the same thing but work differently
on the inside.

Replacing one object with another does have some subtle effects. Car radios might have different knobs
and switches, and they might project different sound qualities, but the basic function is unchanged.
Another important point is that the basic user interface is unchanged—you plug one car stereo into
the slot in much the same way as you would another.

1138

Appendix A

557599 AppA_BC01.qxd 4/28/04 10:50 AM Page 1138

If you understand all that, then you basically understand OOP, because OOP is about applying these
same concepts to computer programming. If, in other areas of our lives, we use objects that have a well-
designed interface that we are familiar with, and we know how to use them, but don’t care how they
work, why not do the same thing in your programs? In other words, break each program into lots of
units and design each unit to perform a clearly specified role within the program. That’s basically what
an object is.

If you start thinking about your programs this way, you gain quite a few advantages. You’ll find it
becomes easier to design the programs. The architecture of the programs becomes more intuitive and
easier to understand because it more closely reflects whatever it is that the program is abstracting from
real life. It becomes easier for multiple developers to work together, since they can work on different
objects in the code; all they need to know is what an object can do and how to interface with it. They
don’t have to worry about the details of how the underlying code works.

Objects in Programming
Now that we’ve established what an object is conceptually (and in everyday life), we can discuss more
specifically how to apply these concepts to programming.

If you’ve programmed on Windows before, chances are you’re already familiar with objects. For exam-
ple, think about the various controls that you can place in Windows, including text boxes, list boxes,
buttons, and so on. Microsoft has written these controls for you, so that you don’t need to know, for
example, how a text box works internally. You just know that it does certain things. For example, you
can set its Text property to display text on screen, or you can set its Width property to have the text box
resize itself.

In programming, we need to distinguish between a class and an object. A class is the generic definition of
what an object is—a template. For example, a class could be “car radio”—the abstract idea of a car radio.
The class specifies what properties an object must have to qualify as a car radio.

Class Members
So far, we’ve emphasized that there are two sides to an object: what it does, which is usually publicly
known, and how it works, which is usually hidden. In programming, the “what it does” is normally rep-
resented in the first instance by methods, which are blocks of functionality that you can use. A method is
just C# parlance for a function. The “how it works” is represented both by methods and by any data
(variables) that the object stores. In Java and C++, this data is described as member variables, while in
Visual Basic this data would be represented by any module-level variables in the class module. In C# the
terminology is fields. In general, a class is defined by its fields and methods.

We’ll also use the term member by itself to denote anything that is part of a class, be it a field, method, or
any of the other items just mentioned that can be defined within a class.

1139

Principles of Object-Oriented Programming

557599 AppA_BC01.qxd 4/28/04 10:50 AM Page 1139

Defining a Class
The easiest way to understand how to code a class is by looking at an example. In the following sections,
we’re going to develop a simple class called Authenticator. We’ll assume we’re in the process of writ-
ing a large application, which at some point requires users to log in and supply a password.
Authenticator is the name of the class that will handle this aspect of the program. We won’t worry
about the rest of the application—we’ll just concentrate on writing this class. However, we will also
write a small piece of test harness code to verify that Authenticator works as intended.

Authenticator allows us to do two things: set a new password, and check whether a password is
valid. The C# code we need to define the class looks like this:

public class Authenticator
{

private string password = “”;

public bool IsPasswordCorrect(string tryPassword)
{

return (tryPassword == password) ? true : false;
}

public bool ChangePassword(string oldPassword, string newPassword)
{

if (oldPassword == password)
{

password = newPassword;
return true;

}
else

return false;
}

}

The keyword class in C# indicates that we are going to define a new class (type of object). The word
immediately following class is the name we’re going to use for this class. Then the actual definition of
the object—consisting of variables (fields) and methods—follows in braces. In this example, the defini-
tion consists of one field, password, and two methods, IsPasswordCorrect() and
ChangePassword().

Access Modifiers
The only field in Authenticator, password, stores the current password (initially an empty string
when an Authenticator object is created) and is marked by the keyword private. This means that it
is not visible outside the class, only to code that is part of the Authenticator class itself. Marking a
field or method as private effectively ensures that that field or method will be part of the internal
working of the class, as opposed to the external interface. The advantage of this is that if you decide to
change the internal working (perhaps you later decide not to store password as a string but to use some
other more specialized data type), you can just make the change without breaking the code outside the
Authenticator class definition—nothing from outside of this class can access this field.

1140

Appendix A

557599 AppA_BC01.qxd 4/28/04 10:50 AM Page 1140

Any code that uses the Authenticator class can only access the methods that have been marked with
the keyword public—in this case the IsPasswordCorrect() and ChangePassword() methods. Both
of these methods have been implemented in such a way that nothing will be done (other than returning
true or false) unless the calling code supplies the current correct password, as you’d expect for soft-
ware that implements security. The implementations of these functions access the password field, but
that’s fine because this code forms part of the Authenticator class itself. Notice that these public func-
tions simultaneously give us the interface to the external world (in other words, any other code that uses
the Authenticator class) and define what the Authenticator class does, as viewed by the rest of the
world.

private and public are not the only access modifiers available to define what code is allowed to
know about the existence of a member. Later in this appendix we’ll discuss protected, which makes
the member available to this class and certain related classes. C# also allows members to be declared as
internal and protected internal, which restrict access to other code within the same assembly.

Instantiating and Using Objects
The easiest way to understand how to use a class in our code is to think of the class as a new type of
variable. You’re used to the predefined variable types—such as int, float, double, and so on. By
defining the Authenticator class, we’ve effectively told the compiler that there’s a new type of vari-
able called an Authenticator. The class definition contains everything the compiler needs to know to
be able to process this variable type. Therefore, just as the compiler knows that a double contains a
floating-point number stored in a certain format (which enables you to add doubles, for example),
we’ve told the compiler that a variable of type Authenticator contains a string and allows you to call
the IsPasswordCorrect() and ChangePassword() methods.

Although we’ve described a class as a new type of variable, the more common terminology is data type,
or simply type.

Creating a user-defined variable (an object) is known as instantiation, because we create an instance of the
object. An instance is simply any particular occurrence of the object. So, if our Authenticator object is
another kind of variable, we should be able to use it just like any other variable— and we can, as demon-
strated in the following example.

Create the MainEntryPoint class, as shown in the following code sample, and place it in the
Wrox.ProCSharp.OOProg namespace along with the Authenticator class we created earlier:

using System;

namespace Wrox.ProCSharp.OOProg
{

class MainEntryPoint
{

static void Main()
{

Authenticator myAccess = new Authenticator();
bool done;
done = myAccess.ChangePassword(“”, “MyNewPassword”);

1141

Principles of Object-Oriented Programming

557599 AppA_BC01.qxd 4/28/04 10:50 AM Page 1141

if (done == true)
Console.WriteLine(“Password for myAccess changed”);

else
Console.WriteLine(“Failed to change password for myAccess”);

done = myAccess.ChangePassword(“”, “AnotherPassword”);
if (done == true)

Console.WriteLine(“Password for myAccess changed”);
else

Console.WriteLine(“Failed to change password for myAccess”);

if (myAccess.IsPasswordCorrect(“WhatPassword”))
Console.WriteLine(“Verified myAccess\’ password”);

else
Console.WriteLine(“Failed to verify myAccess\’ password”);

}
}

public class Authenticator
{

// implementation as shown earlier
}

}

The MainEntryPoint class is a class like Authenticator—it can have its own members (that is, its
own fields, methods, and so on). However, we’ve chosen to use this class solely as a container for the
program entry point, the Main() method. Doing it this way means that the Authenticator class can sit
as a class in its own right that can be used in other programs (either by cutting and pasting the code or
by compiling it separately into an assembly). MainEntryPoint only really exists as a class because of
the syntactical requirement of C# that even the program’s main entry point has to be defined within a
class, rather than being defined as an independent function.

Since all the action is happening in the Main() method, let’s take a closer look at it. The first line of
interest is:

Authenticator myAccess = new Authenticator();

Here we are declaring and instantiating a new Authenticator object instance. Don’t worry about =
new Authenticator() for now—it’s part of C# syntax, and is there because in C#, classes are always
accessed by reference. We could actually use the following line if we just wanted to declare a new
Authenticator object called myAccess:

Authenticator myAccess;

This declaration can hold a reference to an Authenticator object, without actually creating any object
(in much the same way that the line Dim obj As Object in Visual Basic doesn’t actually create any
object). The new operator in C# is what actually instantiates an Authenticator object.

1142

Appendix A

557599 AppA_BC01.qxd 4/28/04 10:50 AM Page 1142

Calling class methods is done using the period symbol (.) appended to the name of the variable:

done = myAccess.ChangePassword(“”, “MyNewPassword”);

Here we have called the ChangePassword() method on the myAccess instance and fed the return value
into the done Boolean variable. We can retrieve class fields in a similar way. Note, however, that we can-
not do this:

string myAccessPassword = myAccess.password;

This code will actually cause a compilation error, because the password field was marked as private,
so other code outside the Authenticator class cannot access it. If we changed the password field to be
public, then the previous line would compile and feed the value of password into the string variable.

You should note that if you are accessing member methods or fields from inside the same class, you can
simply give the name of the member directly.

Now that you understand how to instantiate objects, call class methods, and retrieve public fields, the
logic in the Main() method should be pretty clear. If we save this code as Authenticator.cs and then
compile and run it, we will get this:

Authenticator
Password for myAccess changed
Failed to change password for myAccess
Failed to verify myAccess’ password

There are a couple of points to note from the code. First, you’ll notice that so far we’re not doing any-
thing new compared to what we would do when coding a Visual Basic class module; nor do we do any-
thing that differs from the basic C# syntax that we cover in the first part of this book. All we wanted to
do here is make sure that you are clear about the concepts behind classes.

Second, the previous example uses the Authenticator class directly in other code within the same
source file. You’ll often want to write classes that are used by other projects that you or others work on.
In order to do this, you write the class in exactly the same way, but compile the code for the class into a
library, as explained in Chapter 13.

Using Static Members
You may have noticed in our example that the Main() method was declared as static. In this section
we are going to discuss what effect this static keyword has.

Creating static fields
It’s important to understand that by default each instance of a class (each object) has its own set of all the
fields you’ve defined in the class. For example, in the following snippet the instances karli and julian
each contain their own string called password:

Authenticator julian = new Authenticator();
Authenticator karli = new Authenticator();
karli.ChangePassword(“OldKarliPassword”, “NewKarliPassword”);
julian.ChangePassword(“OldJulianPassword”, “NewJulianPassword”);

1143

Principles of Object-Oriented Programming

557599 AppA_BC01.qxd 4/28/04 10:50 AM Page 1143

Changing the password in karli has no effect on the password in julian, and vice versa (unless the
two references happen to be pointing to the same address in memory, which is something we’ll come to
later). This situation resembles Figure A-1.

Figure A-1

There are some cases in which this might not be the behavior you want. For example, suppose we want
to define a minimum length for all passwords (and therefore for all of the password fields in all
instances) in our Authenticator class. We do not want each password to have its own minimum
length. Therefore, we really want the minimum length to be stored only once in memory, no matter how
many instances of Authenticator we create.

To indicate that a field should only be stored once, no matter how many instances of the class we create,
we place the keyword static in front of the field declaration in our code:

public class Authenticator
{

private static uint minPasswordLength = 6;

private string password = “”;

Storing a copy of minPasswordLength with each Authenticator instance not only wastes memory but
also causes problems if we want to be able to change its value! By declaring the field as static, we
ensure that it is only stored once, and this field is shared among all instances of the class. Note that in
this code snippet we also set an initial value. Fields declared with the static keyword are referred to as
static fields or static data, while fields that are not declared as static are referred to as instance fields or
instance data. Another way of looking at this is that an instance field belongs to an object, while a static
field belongs to the class.

If a field has been declared as static, then it exists when your program is running from the moment
that the particular module or assembly containing the definition of the class is loaded—that is as soon
as your code tries to use something from that assembly, so you can always guarantee a static variable is
there when you want to refer to it. This is independent of whether you actually create any instances of
that class. By contrast, instance fields only exist when there are variables of that class currently in
scope—one set of instance fields for each variable.

VB developers shouldn’t confuse static fields with static variables in Visual Basic,
which are variables whose values remain between invocations of a method.

karli

password

julian

password

1144

Appendix A

557599 AppA_BC01.qxd 4/28/04 10:50 AM Page 1144

In some ways static fields perform the same functions as global variables performed for older languages
such as C and FORTRAN.

You should note that the static keyword is independent of the accessibility of the member to which it
applies. A class member can be public static or private static.

Creating static methods
As we explained in our Authenticator example, by default a method such as ChangePassword() is
called against a particular instance, as indicated by the name of the variable in front of the period (.)
operator. That method then implicitly has access to all the members (fields, methods, and so on) of that
particular instance.

However, just as with fields, it is possible to declare methods as static, provided that they do not
attempt to access any instance data or other instance methods. For example, we might want to provide a
method to allow users to view the minimum password length:

public class Authenticator
{

private static uint minPasswordLength = 6;

public static uint GetMinPasswordLength()
{

return minPasswordLength;
}

...

You can download the code for Authenticator with this modification from the Wrox Press Web site
(www.wrox.com) as the Authenticator2 sample.

In our earlier Authenticator example, the Main() method of the MainEntryPoint class is declared as
static. This allows it to be invoked as the entry point to the program, despite the fact that no instance
of the MainEntryPoint class was ever created.

Accessing static members
The fact that static methods and fields are associated with a class rather than an object is reflected in how
you access them. Instead of specifying the name of a variable before the . operator, you specify the name
of the class, like this:

Console.WriteLine(Authenticator.GetMinPasswordLength());

Also notice that in the above code we access the Console.WriteLine() method by specifying the name
of the class, Console. That is because WriteLine() is a static method too—we don’t need to instantiate
a Console object to use WriteLine().

How instance and static methods are implemented in memory
We said earlier that each object stores its own copy of a class’s instance fields. This is, however, not the
case for methods. If each object had its own copy of the code for a method, it would waste a lot of mem-

1145

Principles of Object-Oriented Programming

557599 AppA_BC01.qxd 4/28/04 10:50 AM Page 1145

ory, since the code for the methods remains the same across all object instances. Therefore, instance
methods, just like static methods, are stored only once, and associated with the class as a whole. Later
on, we’ll discuss other types of class members (constructors, properties, and so on) that contain code
rather than data and follow the same logic.

Figure A-2 shows how instance and static methods are implemented in memory.

Figure A-2

If instance methods are only stored once, how is a method able to access the correct copy of each field?
In other words, how can the compiler generate code that accesses Karli’s password with the first method
call and Julian’s with the second in the following example?

karli.ChangePassword(“OldKarliPassword”, “NewKarliPassword”);
julian.ChangePassword(“OldJulianPassword”, “NewJulianPassword”);

The answer is that instance methods actually take an extra implicit parameter, which is a reference to
where in memory the relevant class instance is stored. You can almost think of this code example as the
user-friendly version that you have to write, because that’s how C# syntax works. However, what’s actu-
ally happening in your compiled code is this:

ChangePassword(karli, “OldKarliPassword”, “NewKarliPassword”);
ChangePassword(julian, “OldJulianPassword”, “NewJulianPassword”);

Declaring a method as static makes calling it slightly more efficient, because it will not be passed this
extra parameter. On the other hand, if a method is declared as static, but attempts to access any
instance data, the compiler will raise an error for the obvious reason that you can’t access instance data
unless you have the address of a class instance!

This means that in our Authenticator sample we could not declare ChangePassword() or
IsPasswordCorrect() as static, because both of these methods access the password field, which
is not static.

Interestingly, although the hidden parameter that comes with instance methods is never declared explic-
itly, you do actually have access to it in your code. You can get to it using the keyword this. We can
rewrite the code for the ChangePassword() method as follows:

Authenticator Class

Static Fields
minPasswordLength

All Methods
ChangePassword()
IsPasswordCorrect()

 karli instance

Instance Fields
password

 julian instance

Instance Fields
password

1146

Appendix A

557599 AppA_BC01.qxd 4/28/04 10:50 AM Page 1146

public bool ChangePassword(string oldPassword, string newPassword)
{

if (oldPassword == this.password)

{

this.password = newPassword;

return true;
}
else

return false;
}

Generally, you wouldn’t write your code like this unless you have to distinguish between variable
names. All we’ve achieved here is to make the method longer and slightly harder to read.

A Note About Reference Types
Before we leave the discussion of classes, we ought to point out one potential gotcha that can occur in C#
because C# regards all classes as reference types. This can have some unexpected effects when it comes
to comparing instances of classes for equality and setting instances of classes equal to each other. For
example, look at this code:

Authenticator User1;
Authenticator User2 = new Authenticator();
Authenticator User3 = new Authenticator();
User1 = User2;
User2.ChangePassword (“”, “Tardis”); // This sets password for User1 as well!
User3.ChangePassword (“”, “Tardis”);
if (User2 == User3)
{

// contents of this if block will NOT be executed even though
// objects referred to by User2 and User3 are contain identical values,
// because the variables refer to different objects

}
if (User2 == User1)
{

// any code here will be executed because User1 and User2 refer
// to the same memory

}

In this code we declare three variables of type Authenticator: User1, User2, and User3. However, we
only instantiate two objects of the Authenticator class, because we only use the new operator twice.
Then we set the variable User1 equal to User2. Unlike with a value type, this does not copy any of the
contents of User2. Rather, it means that User1 is set to refer to the same memory as User2 is referring
to. What that means is that any changes we make to User2 also affect User1, because they are not sepa-
rate objects; both variables refer to the same data. We can also say that they point to the same data, and
the actual data referred to is sometimes described as the referent. So when we set the password of User2
to Tardis, we are implicitly also setting the password of User1 to Tardis. This is very different from
how value types behave.

1147

Principles of Object-Oriented Programming

557599 AppA_BC01.qxd 4/28/04 10:50 AM Page 1147

The situation gets even less intuitive when we try to compare User2 and User3 in the next statement:

if (User2 == User3)

You might expect that this condition returns true, since User2 and User3 have both been set to the
same password, so both instances contain identical data. The comparison operator for reference types,
however, doesn’t compare the contents of the data by default—it simply tests to see whether the two ref-
erences are referring to the same address in memory. Because they are not, this test returns false, which
means anything inside this if block will not be executed. By contrast, comparing User2 with User1
returns true because these variables do point to the same address in memory.

Note that this behavior does not apply to strings, because the == operator has been overloaded for
strings. Comparing two strings with == always compares string content. (Any other behavior for
strings would be extremely confusing!)

Overloading Methods
To overload a method is to create several methods each with the same name, but each with a different sig-
nature. The reason why you might want to use overloading is best explained with an example. Consider
how in C# we write data to the command line, using the Console.WriteLine() method. For example,
if we want to display the value of an integer, we can write this:

int x = 10;
Console.WriteLine(x);

To display a string we can write:

string message = “Hello”;
Console.WriteLine(message);

Even though we are passing different data types to the same method, both of these examples compile.
This is because there are actually lots of Console.WriteLine() methods, but each has a different signa-
ture—one of them takes int as a parameter, while another one takes string, and so on. There is even a
two-parameter overload of the method that allows for formatted output and lets you write code like this:

string Message = “Hello”;

Console.WriteLine(“The message is {0}”, Message);

Obviously, Microsoft provides all of these Console.WriteLine() methods because it realizes that there
are many different data types of which you might want to display the value.

Method overloading is very useful, but there are some pitfalls to be aware of when using it. Suppose we
write:

short y = 10;
Console.WriteLine(y);

1148

Appendix A

557599 AppA_BC01.qxd 4/28/04 10:50 AM Page 1148

A quick look at the documentation reveals that no overload of WriteLine() takes short. So what will
the compiler do? In principle, it could generate code that converts short to int and call the int version
of Console.WriteLine(). Or it could convert short to long and call Console.WriteLine(long). It
could even convert short to string.

In this situation, each language will have a set of rules for what conversion will be the one that is actu-
ally performed (for C#, the conversion to int is the preferred one). However you can see the potential
for confusion. For this reason, if you define method overloads, you need to take care to do so in a way
that won’t cause any unpredictable results.

When to use overloading
Generally, you should consider overloading a method when you need a number of methods that take
different parameters, but conceptually do the same thing, as with Console.WriteLine() above. The
situations in which you will normally use overloading are explained in the following subsections.

Optional parameters
One common use of method overloads is to allow certain parameters to a method to be optional and to
have default values if the client code does not specify their values explicitly. For example, consider this
code:

public void DoSomething(int x, int y)
{

// do whatever
}

public void DoSomething(int x)
{

DoSomething(x, 10);
}

These overloads allow client code to call DoSomething(), supplying one required parameter and one
optional parameter. If the optional parameter isn’t supplied, we effectively assume the second int is 10.
Most modern compilers will also inline method calls in this situation so there is no performance loss.
This is certainly true of the .NET JIT compiler.

Some languages, including Visual Basic and C++, allow default parameters to be specified explicitly in
function declarations, with a syntax that looks like public void DoSomething(int X, int Y=10). C# does
not allow this; in C# you have to simulate default parameters by providing multiple overloads of meth-
ods as shown in the previous example.

Different input types
We have already discussed this very common reason for defining overloads in the
Console.WriteLine() example.

Different output types
This situation is far less common; however, occasionally you might have a method that calculates or
obtains some quantity, and depending on the circumstances, you might want this to be returned in more

1149

Principles of Object-Oriented Programming

557599 AppA_BC01.qxd 4/28/04 10:50 AM Page 1149

than one way. For example, in an airline company, you might have a class that represents aircraft timeta-
bles, and you might want to define a method that tells you where an aircraft should be at a particular
time. Depending on the situation, you might want the method to return either a string description of the
position (“over Atlantic Ocean en route to London”) or the latitude and longitude of the position.

You cannot distinguish overloads using the return type of a method. However, you can do so using out
parameters. So you could define these:

void GetAircraftLocation(DateTime Time, out string Location)
{
...
}

void GetAircraftLocation(DateTime Time, out float Latitude, out float Longitude)
{
...
}

Note, however, that in most cases using overloads to obtain different out parameters does not lead to
an architecturally neat design. In the above example, a better design would perhaps involve defining a
Location struct that contains the location string as well as the latitude and longitude and returning this
from the method call, hence avoiding the need for overloads.

Properties
Earlier we mentioned that a class is defined by its fields and methods. However, classes can also contain
other types of class members, including constructors, indexers, properties, delegates, and events. For the
most part these other items are used only in more advanced situations and are not essential to under-
standing the principles of object-oriented design. For that reason, we will only discuss properties, which
are extremely common and can significantly simplify the external user interface exposed by classes, in
this appendix. The other class members are introduced in Part I. Properties are in extremely common
use, however, and can significantly simplify the external user interface exposed by classes. For this rea-
son, we’ll discuss them here.

Visual Basic programmers will find that C# properties correspond almost exactly to properties in VB
class modules and are used in just the same way.

Properties exist for the situation in which you want to make a method call look like a field. You can see
what a property is by looking at the minPasswordLength field in our Authenticator class. Let’s
extend the class so that users can read and modify this field without having to use a
GetMinPasswordLength() method like the one we introduced earlier.

A property is a method or pair of methods that are exposed to the outside world as if they are fields. To
create a property for the minimum password length we modify the code for the Authenticator class as
follows:

public static uint MinPasswordLength
{

get
{

1150

Appendix A

557599 AppA_BC01.qxd 4/28/04 10:50 AM Page 1150

return minPasswordLength;
}
set
{

minPasswordLength = value;
}

}

As we can see from this, we define a property in much the same way as a field, except that after the
name of the property, we have a code block enclosed by curly braces. In the code block there may be two
methods called get and set. These are known as the get accessor and the set accessor. Note that although
no parameter is explicitly mentioned in the definition of the set accessor, there is an implicit parameter
passed in, and referred to by the name value. Also, the get accessor always returns the same data type
as the property was declared as (in this case uint).

Now, to retrieve the value of minPasswordLength, we use this syntax:

uint i = Authenticator.MinPasswordLength;

What will actually happen here is that MinPasswordLength property’s get accessor is called. In this
case, this method is implemented to simply return the value of the minPasswordLength field.

To set the MinPasswordLength field using the property, we use the following code:

Authenticator.MinPasswordLength = 7;

This code causes the MinPasswordLength’s set accessor to be called, which is implemented to assign
the required value (7) to the minPasswordLength field. We mentioned earlier that the set accessor has
an implicit parameter, called value.

Note that in this particular example, the property in question happens to be static. In general that is not
necessary. Just as for methods, you will normally declare properties as static only if they refer to static data.

Data encapsulation
You may wonder what the point of all the above code is. Wouldn’t it have been easier to make the
minPasswordLength field public, so that we could access it directly and not have to bother about any
properties? The answer is that fields represent the internal data of an object, so they are an integral part
of the functionality of an object. Now, in OOP, we aim to make it so that users of objects only need to
know what an object does, not how it does it. So making fields directly accessible to users defeats the
ideology behind OOP.

Ideology is all very well, but there must be practical reasons behind it. One reason is this: if we make
fields directly visible to external users, we lose control over what they do to the fields. They might modify
the fields in such a way as to break the intended functionality of the object (give the fields inappropriate
values, let’s say). However, if we use properties to control access to a field, this is not a problem because
we can add functionality to the property that checks for inappropriate values. Related to this, we can also
provide read-only properties by omitting the set accessor completely. The principle of hiding fields from
client code in this way is known as data encapsulation.

1151

Principles of Object-Oriented Programming

557599 AppA_BC01.qxd 4/28/04 10:50 AM Page 1151

You should only use properties to do something that appears only to set or retrieve a value; in all other
instances use methods. That means that the set accessor must only take one parameter and return a
void, while the get accessor cannot take any parameters. For example, it would not be possible to
rewrite the IsPasswordValid() method in the Authenticator class as a property. The parameter
types and return value for this method are not of the correct type.

Introducing Inheritance
One characteristic of objects in everyday life is that they tend to come in families of related things that
share aspects of their design. A sofa is just like an armchair, except that it can seat more than one person.
A CD-ROM does the same sort of thing as a cassette tape, but with extra direct-access facilities. Likewise,
many cars differ in body style and size, but internally their engines and other components are built in
much the same way, often using the same components.

This is an example of implementation inheritance, and the equivalent in OOP would be some classes
(EscortCar, OrionCar, and FiestaCar, perhaps?), which not only expose methods with the same
names, but actually the same methods, in the sense that when you call the methods you are running the
same code.

Let’s now extend this example. Say that I swapped my Escort for another Escort that has a diesel engine.
Both cars have exactly the same body shell (the user interface is the same) but under the hood, the
engines are different. That’s an example of interface inheritance, and the equivalent in computer program-
ming would be two classes (EscortCar and EscortDieselCar) that happen to expose methods that
have the same names, purposes, and signatures, but different implementations.

Java or C++ developers who are familiar with COM will recognize that implementation inheritance is
the kind of inheritance that is supported by Java/C++ and other traditional object-oriented languages,
while the more restricted interface inheritance was the only form of inheritance that was supported by
COM and COM objects. Visual Basic supports only interface inheritance through the Implements
keyword. The great thing about C# is it supports both types of inheritance.

As far as C# programming is concerned, we’re looking at the issue of how to define a new class, while
reusing features from an existing class. The benefits are twofold: First, inheritance provides a convenient
way to reuse existing, fully tested code in different contexts, thereby saving a lot of coding time; second,
inheritance can provide even more structure to your programs by giving a finer degree of granularity to
your classes.

At this point we’re going to move on to a new coding example, based on a cell phone company, that will
demonstrate how implementation inheritance works in a C# program. Inheritance of classes in C# is
always implementation inheritance.

Using Inheritance in C#
The example we’ll use to demonstrate inheritance is going to be of a fictitious cell phone company,
which we’ll call Mortimer Phones. We’re going to develop a class that represents a customer account and
is responsible for calculating that customer’s phone bill. This is a much longer, more complex example
than the Authenticator class, and as it develops we’ll quickly find that one simple class is not ade-
quate; instead, we will need a number of related classes, and inheritance is the solution to our challenge.

1152

Appendix A

557599 AppA_BC01.qxd 4/28/04 10:50 AM Page 1152

We’re going to write a class that works out the monthly bill for each customer of Mortimer Phones. The
class is called Customer, and each instance of this class represents one customer’s account. In terms of
public interface, the class contains two properties:

❑ Name represents the customer’s name (read-write).

❑ Balance represents the amount owed (read-only).

The class also has two methods:

❑ RecordPayment(), which is called to indicate that the customer has paid a certain amount of
their bill.

❑ RecordCall(), which is called when the customer has made a phone call. It works out the cost
of the call and adds it to that customer’s balance.

The RecordCall() method is potentially quite a complex function when applied to the real world, since
it would involve figuring out the type of call from the number called, then applying the appropriate rate,
and keeping a history of the calls. To keep things simple, we’ll assume there are just two types of calls:
calls to landlines, and calls to other cell phones, and that each of these are charged at a flat rate of 2 cents
a minute for landlines and 30 cents a minute for other cell phones. Our RecordCall method will simply
be passed the type of call as a parameter, and we won’t worry about keeping a call history.

With this simplification, we can look at the code for the project. The project is a console application, and
the first thing in it is an enumeration for the types of call:

namespace Wrox.ProCSharp.OOProg
{

using System;

public enum TypeOfCall
{

CallToCellPhone, CallToLandline
}

Now, let’s look at the definition of the Customer class:

public class Customer
{

private string name;
private decimal balance;

public string Name
{

get
{

return name;
}
set
{

name = value;
}

1153

Principles of Object-Oriented Programming

557599 AppA_BC01.qxd 4/28/04 10:50 AM Page 1153

}

public decimal Balance
{

get
{

return balance;
}

}

public void RecordPayment(decimal amountPaid)
{

balance -= amountPaid;
}

public void RecordCall(TypeOfCall callType, uint nMinutes)
{

switch (callType)
{

case TypeOfCall.CallToLandline:
balance += (0.02M * nMinutes);
break;

case TypeOfCall.CallToCellPhone:
balance += (0.30M * nMinutes);
break;

default:
break;

}
}

}

This code should be reasonably self-explanatory. Note that we hardcode the call charges of 2 cents per
minute (landline) and 30 cents per minute (pay-as-you-go charges for a cell phone) into the program. In
real life, they’d more likely to be read in from a relational database, or some file that allows the values to
be changed easily.

Now let’s add some code in the program’s Main() method that displays the amounts of bills currently
owed:

public class MainEntryPoint
{

public static void Main()
{

Customer arabel = new Customer();
arabel.Name = “Arabel Jones”;
Customer mrJones = new Customer();
mrJones.Name = “Ben Jones”;
arabel.RecordCall(TypeOfCall.CallToLandline, 20);
arabel.RecordCall(TypeOfCall.CallToCellPhone, 5);
mrJones.RecordCall(TypeOfCall.CallToLandline, 10);
Console.WriteLine(“{0,-20} owes ${1:F2}”, arabel.Name, arabel.Balance);
Console.WriteLine(“{0,-20} owes ${1:F2}”, mrJones.Name, mrJones.Balance);

}
}

}

1154

Appendix A

557599 AppA_BC01.qxd 4/28/04 10:50 AM Page 1154

Running this code gives the following results:

MortimerPhones
Arabel Jones owes $1.90
Ben Jones owes $0.20

Adding inheritance
Currently, the Mortimer Phones example is heavily simplified. In particular, it only has one call plan for
all customers, which is not even remotely realistic. Many people are registered under a call plan for
which they pay a fixed rate each month, but there are many other plans.

The way we’re working at the moment, if we try to take all of the different call plans into account, our
RecordCall() method is going to end up containing various nested switch statements and looks
something like this (assuming the CallPlan field is an enumeration):

public void RecordCall(TypeOfCall callType, uint nMinutes)
{

switch (callplan)
case CallPlan.CallPlan1:
{

switch (callType)
{
case TypeOfCall.CallToLandline:

// work out amount

case TypeOfCall.CallToCellPhone:

// work out amount
// other cases

// etc.

}
case CallPlan.CallPlan2:
{

switch (callType)
{

// etc.

}

That is not a satisfactory solution. Small switch statements are nice, but huge switch statements with
large numbers of options—and in particular embedded switch statements—make for code that is diffi-
cult to follow. It also means that whenever a new call plan is introduced the code for the method will
have to be changed. This could accidentally introduce new bugs into the parts of the code responsible
for processing existing call plans.

The problem has really to do with the way the code for the different call plans is mixed up in a switch
statement. If we could cleanly separate the code for the different call plans then the problem would be
solved. This is one of the issues that inheritance addresses.

1155

Principles of Object-Oriented Programming

557599 AppA_BC01.qxd 4/28/04 10:50 AM Page 1155

We want to separate the code for different types of customers. We’ll start by defining a new class that
represents customers on a new call plan. We’ll name this call plan Nevermore60. Nevermore60 is
designed for customers who use their cell phones a lot. Customers on this call plan pay a higher rate of
50 cents a minute for the first 60 minutes of calls to other cell phones, then a reduced rate of 20 cents a
minute for all additional calls, so if they make a large enough number of calls they save money com-
pared to the previous call plan.

We’ll save actually implementing the new payment calculations for a little while longer, and we’ll ini-
tially define Nevermore60Customer like this:

public class Nevermore60Customer : Customer
{

}

In other words, the class has no methods, no properties, nothing of its own. On the other hand,
it’s defined in a slightly different way from how we’ve defined any classes before. After the class
name is a colon, followed by the name of our earlier class, Customer. This tells the compiler that
Nevermore60Customer is derived from Customer. That means that every member in Customer also
exists in Nevermore60Customer. Alternatively, to use the correct terminology, each member of
Customer is inherited in Nevermore60Customer. Also, Nevermore60Customer is said to be a derived
class, while Customer is said to be the base class. You’ll also sometimes encounter derived classes referred
to as subclasses, and base classes as super-classes or parent classes.

Since we’ve not yet put anything else in the Nevermore60Customer class, it is effectively an exact copy
of the definition of the Customer class. We can create instances of and call methods against the
Nevermore60Customer class, just as we could with Customer. To see this, we’ll modify one of the cus-
tomers, Arabel, to be a Nevermore60Customer:

public static void Main()
{

Nevermore60Customer arabel = new Nevermore60Customer();

...
}

In this code, we’ve changed just one line, the declaration of Arabel, to make this customer a
Nevermore60Customer instance. All the method calls remain the same, and this code produces exactly
the same results as our earlier code. If you want to try this out, it’s the MortimerPhones2 code sample
(which is part of the sample download file, available at www.wrox.com).

By itself, having a copy of the definition of the Customer class might not look very useful. The power of
this comes from the fact we can now make some modifications or additions to Nevermore60Customer.
We can instruct the compiler, “Nevermore60Customer is almost the same as Customer, but with these
differences.” In particular, we’re going to modify the way that Nevermore60Customer works out the
charge for each phone call according to the new tariff.

1156

Appendix A

557599 AppA_BC01.qxd 4/28/04 10:50 AM Page 1156

The differences we can specify in principle are:

❑ We can add new members (of any type: fields, methods, properties, and so on) to the derived
class, where these members are not defined in the base class.

❑ We can replace the implementation of existing members, such as methods or properties, that are
already present in the base class.

For our example, we will replace, or override, the RecordCall() method in Customer with a new imple-
mentation of the RecordCall() method in Nevermore60Customer. Not only that, but whenever we
need to add a new call plan, we can simply create another new class derived from Customer, with a new
override of RecordCall(). In this way we can add code to cope with many different call plans, while
keeping the new code separate from all the existing code that is responsible for calculations using exist-
ing call plans.

Don’t confuse method overriding with method overloading. The similarity in these names is unfortu-
nate as they are completely different, unrelated, concepts. Method overloading has nothing to do with
inheritance or virtual methods.

So let’s modify the code for the Nevermore60Customer class, so that it implements the new call plan. To
do this we need not only to override the RecordCall() method, but also to add a new field that indi-
cates the number of high cost minutes that have been used:

public class Nevermore60Customer : Customer
{

private uint highCostMinutesUsed;
public override void RecordCall(TypeOfCall callType, uint nMinutes)
{

switch (callType)
{

case TypeOfCall.CallToLandline:
balance += (0.02M * nMinutes);
break;

case TypeOfCall.CallToCellPhone:
uint highCostMinutes, lowCostMinutes;
uint highCostMinutesToGo =

(highCostMinutesUsed < 60) ? 60 - highCostMinutesUsed : 0;
if (nMinutes > highCostMinutesToGo)
{

highCostMinutes = highCostMinutesToGo;
lowCostMinutes = nMinutes - highCostMinutes;

}
else
{

highCostMinutes = nMinutes;
lowCostMinutes = 0;

}
highCostMinutesUsed += highCostMinutes;
balance += (0.50M * highCostMinutes + 0.20M *

lowCostMinutes);
break;

1157

Principles of Object-Oriented Programming

557599 AppA_BC01.qxd 4/28/04 10:50 AM Page 1157

default:
break;

}
}

}

You should note that the new field we’ve added, highCostMinutesUsed, is only stored in instances of
Nevermore60Customer. It is not stored in instances of the base class, Customer. The base class itself is
never implicitly modified in any way by the existence of the derived class. This must always be the case,
because when you code the base class, you don’t necessarily know what other derived classes might be
added in the future—and you wouldn’t want your code to be broken when someone adds a derived class!

As you can see, the algorithm to compute the call cost in this case is more complex, though if you follow
through the logic you will see it does meet our definition for the Nevermore60 call plan. Notice that the
extra keyword override has been added to the definition of the RecordCall() method. This informs
the compiler that this method is actually an override of a method that is already present in the base class,
and we must include this keyword.

Before this code will compile, we need to make a couple of modifications to the base class, Customer, too:

public class Customer
{

private string name;

protected decimal balance;

// etc.

public virtual void RecordCall(TypeOfCall callType, uint nMinutes)

{
switch (callType)

The first change we’ve made is to the balance field. Previously it was defined with the private key-
word, meaning that no code outside the Customer class could access it directly. Unfortunately this
means that, even though Nevermore60Customer is derived from Customer, the code in the
Nevermore60Customer class cannot directly access this field (even though a balance field is still pre-
sent inside every Nevermore60Customer object). That would prevent Nevermore60Customer from
being able to modify the balance when it records calls made, and so prevent the code we presented for
the Nevermore60Customer.RecordCall() method from compiling.

The access modifier keyword protected solves this problem. It indicates that any class that is derived
from Customer, as well as Customer itself, should be allowed access to this member. The member is still
invisible, however, to code in any other class that is not derived from Customer. Essentially, we’re
assuming that, because of the close relationship between a class and its derived class, it’s fine for the
derived class to know a bit about the internal workings of the base class, at least as far as protected
members are concerned.

1158

Appendix A

557599 AppA_BC01.qxd 4/28/04 10:50 AM Page 1158

There is actually a controversial point here about good programming style. Many developers would
regard it as better practice to keep all fields private, and write a protected accessor method to allow
derived classes to modify the balance. In this case, allowing the balance field to be protected rather than
private prevents our example from becoming more complex than it already is.

The second change we’ve made is to the declaration of the RecordCall() method in the base class.
We’ve added the keyword virtual. This changes the manner in which the method is called when the
program is run, in a way that facilitates overriding it. C# will not allow derived classes to override a
method unless that method has been declared as virtual in the base class. We will be looking at virtual
methods and overriding later in this appendix.

Class Hierarchies and Class Design
In a procedural language, and even to some extent in a language like Visual Basic, the emphasis is very
much on breaking the program down into functions. Object orientation shifts the emphasis of program
design away from thinking about what functionality the program has to considering instead what
objects the program consists of.

Inheritance is also an extremely important feature of object-oriented programming, and a crucial stage in
the design of your program is deciding on class hierarchies—the relationship between your classes. In
general, as with our Mortimer Phones example, you will find that you have a number of specialized
objects that are particular types of more generic objects.

When you’re designing classes it’s normally easiest to use a diagram known as a class hierarchy diagram,
which illustrates the relationships between the various base and derived classes in your program.
Traditionally, class hierarchy diagrams are drawn with the base class at the top and arrows pointing
from derived classes to their immediate base classes. For example, the hierarchy of our Mortimer Phones
examples from MortimerPhones3 onward look like what is shown in Figure A-3.

Figure A-3

The above class hierarchy diagram emphasizes that inheritance can be direct or indirect. In our example,
Nevermore60Customer is directly derived from Customer, but indirectly derived from Object. Although
the examples in our discussion are tending to focus on direct derivation, all the principles apply equally
when a class indirectly derives from another class.

System.Object

Customer

NeverMore60Customer Classes representing customers
on other call plans

1159

Principles of Object-Oriented Programming

557599 AppA_BC01.qxd 4/28/04 10:50 AM Page 1159

Another example is one of the hierarchies from the .NET base classes. In Chapter 19, we see how to use
the base classes that encapsulate windows (or to give them their more modern .NET terminology,
forms). You may not have realized just how rich a hierarchy could be behind some of the controls that
you can place on windows (see Figure A-4).

Figure A-4

The Form class represents the generic window, while ScrollBar, StatusBar, Button, TextBox, and
RichTextBox represent the familiar corresponding controls. The rich hierarchy behind these classes
allows a fine-tuning of what implementations of which methods can be made common to a number of
different classes. Many of these classes will also implement certain interfaces, by which they can make
their nature as windows known to client code.

It’s also important to realize that class hierarchies are, like any other aspect of programming, an area
in which there may be many possible solutions, each having its advantages and disadvantages. For our
Mortimer Phones example, there may be other ways to design classes. One argument against our chosen
hierarchy is that customers often change their call plans—and do we really want to have to destroy a
customer object and instantiate a new one of a different class whenever that happens? Perhaps it would
be better to have just one customer class, which contains a reference to a call plan object, and have a class
hierarchy of call plans?

MarshallByRelObject

Control

RichControl

ScrollableControl

ContainedControl

Form TextBox RichTextBox

ScrollBar StatusBar ButtonBase

Button TextBoxBase

FormatControl

MarshallByRelComponent

1160

Appendix A

557599 AppA_BC01.qxd 4/28/04 10:50 AM Page 1160

A large application will not have just one hierarchy, but will typically implement a large number of hier-
archies that possibly stretches into hundreds of classes. That may sound daunting, but the alternative,
before object-oriented programming came into being, was to have literally thousands of functions mak-
ing up your program, with no way to group them into manageable units. Classes provide a very effec-
tive way of breaking your program into smaller sections. This not only facilitates maintenance but also
makes your program easier to understand because the classes represent the actual objects that your pro-
gram is representing in a very intuitive way.

It’s also important with your classes to think carefully about the separation between the public interface
that is presented to client code, and the private internal implementation. In general the more of a class
you are able to keep private, the more modular your program will become, in the sense that you can
make modifications or improvements to the internal implementation of one class and be certain that it
will not break or even have any effect on any other part of the program. That’s the reason that we’ve
emphasized that member fields in particular will almost invariably be private, unless they are either
constant or they form part of a struct whose main purpose is to group together a small number of fields.
We haven’t always kept to that rule rigidly in this appendix, but that’s largely so we can keep the sam-
ples as simple as possible.

The object class
One point that you might not realize from the code is that in our Mortimer Phones examples, Customer
is itself derived from another class, System.Object. This is a rule that is enforced by .NET and C#: All
.NET classes must ultimately derive from a base class called Object. In C# code, if you write a class and
do not specify a base class, the compiler will supply System.Object as the base class by default. This
means that all objects in the .NET Framework have certain methods inherited from the Object class,
including the ToString() and GetType() methods that are discussed in the beginning of the book. We
look at the Object class in more detail in Chapter 10.

Single and multiple inheritance
In C#, each derived class can only inherit from one base class (although we can create as many different
classes that are derived from the same base class as we want). The terminology to describe this is single
inheritance. Some other languages, including C++, allow you to write classes that have more than one
base class, which is known as multiple inheritance.

Polymorphism and Virtual Members
Let’s go back to our Mortimer Phones example. Earlier, we encountered this line of code:

Nevermore60Customer arabel = new Nevermore60Customer();

In fact, we could have instantiated the Nevermore60Customer object like this as well:

Customer arabel = new Nevermore60Customer();

Because Nevermore60Customer is derived from Customer, it’s actually perfectly legitimate for a reference
to a Customer to be set up to point to either a Customer or a Nevermore60Customer, or to an instance
of any other class that is derived directly or indirectly from Customer. Notice that all we’ve changed
here is the declaration of the reference variable. The actual object that gets instantiated with new is still
a Nevermore60Customer object. If for example, you try to call GetType() against it, it’ll tell you it’s a
Nevermore60Customer.

1161

Principles of Object-Oriented Programming

557599 AppA_BC01.qxd 4/28/04 10:50 AM Page 1161

Being able to point to derived classes with a base reference may look like just a syntactical convenience,
but it’s actually essential if we want to be able to use derived classes easily—and it’s an essential feature
of any language that wants to support OOP. We can understand why if we think about how a real cell
phone company will want to store the various Customer-derived classes. In our example we only have
two customers, so it is easy to define separate variables. In the real world, however, we have hundreds
of thousands of customers, and we might want to do something like read them from a database into an
array, then process them using the array, using code that looks like this:

Customer[] customers = new Customer[NCustomers];

// do something to initialize customers

foreach (Customer nextCustomer in customers)
{

Console.WriteLine(“{0,-20} owes ${1:F2}”, nextCustomer.Name,
nextCustomer.Balance);

}

If we use an array of Customer references, each element can point to any type of customer, no matter
what Customer-derived class is used to represent that customer. However, if variables could not store
references to derived types we’d have to have lots of arrays—an array of Customers, an array of
Nevermore60Customers, and another array for each type of class.

We’ve now ensured that we can mix different types of classes in one array, but this will now give the
compiler a new problem. Suppose we have a snippet of code like this:

Customer aCustomer;

// Initialize aCustomer to a particular tariff

aCustomer.RecordCall(TypeOfCall.CallToLandline, 20);

What the compiler can see is a Customer reference, and we are to call the RecordCall() method on it. The
trouble is that aCustomer might refer to a Customer instance, or it might refer to a Nevermore60Customer,
instance or it might refer to an instance of some other class derived from Customer. Each of these classes
might have its own implementation of RecordCall(). How will the compiler determine which method
should be called? There are two answers to this, depending on whether the method in the base class is
declared as virtual and the derived class method as an override:

❑ If the methods are not declared as virtual and override, respectively, then the compiler will
simply use the type that the reference was declared to be. In this case, since aCustomer is of
type Customer, it will arrange for the Customer.RecordCall() method to be called, no matter
what aCustomer is actually referring to.

❑ If the methods are declared as virtual and override, respectively, then the compiler will generate
code that checks what the aCustomer reference is actually pointing to at runtime. It then identi-
fies which class this instance belongs to and calls the appropriate RecordCall() override. This
determination of which overload should be called will need to be made separately each time the
statement is executed. For example, if the virtual method call occurs inside a foreach loop
that executes 100 times, then on each iteration through the loop the reference might be pointing
to a different instance and therefore to a different class of object.

1162

Appendix A

557599 AppA_BC01.qxd 4/28/04 10:50 AM Page 1162

In most cases, the second behavior is the one we want. If we have a reference, for example, to a
Nevermore60Customer, then it’s highly unlikely that we’d want to call any override of any method
other than the one that applies to Nevermore60Customer instances. In fact, you might wonder why
you’d ever want the compiler to use the first, non-virtual, approach, since it looks like that means in
many cases the “wrong” override will be called up. Why we don’t just make virtual methods the nor-
mal behavior, and say that every method is automatically virtual? This is, incidentally, the approach
taken by Java, which automatically makes all methods virtual. There are three good reasons, however,
for not doing this in C#:

❑ Performance. When a virtual method is called, a runtime determination has to be made to iden-
tify which override has to be called. For a non-virtual function, this information is available at
compile time. (The compiler can identify the relevant override from the type that the reference is
declared as!) This means that for a non-virtual function, the compiler can perform optimizations
such as inlining code to improve performance. Inlining virtual methods is not possible, which
will hurt performance. Another (minor) factor is that the determination of the method itself
gives a very small performance penalty. This penalty amounts to no more than an extra address
lookup in a table of virtual function addresses (called a vtable) and so is insignificant in most
cases but may be important in very tight and frequently executed loops.

❑ Design. It may be the case that when you design a class there are some methods that should not
be overridden. This actually happens a lot, especially with methods that should only be used
internally within the class by other methods or whose implementations reflect the internal class
design. When you design a class, you choose which features of its implementation you make
public, protected, or private. It’s unlikely that you’ll want methods that are primarily concerned
with the internal operation of the class to be overrideable, so you typically won’t declare these
methods as virtual.

❑ Versioning. Virtual methods can cause a particular problem connected with releasing new ver-
sions of base classes.

The ability of a variable to be used to reference objects of different types, and to automatically call the
appropriate version of the method of the object it references, is more formally known as polymorphism.
However, you should note that in order to make use of polymorphism, the method you are calling must
exist on the base class as well as the derived class. For example, suppose we add some other method,
such as a property called HighCostMinutesLeft, to Nevermore60Customer in order to allow users to
find out this piece of information. Then the following would be legal code:

Nevermore60Customer mrLeggit = new Nevermore60Customer();

// processing

int minutesLeft = mrLeggit.HighCostMinutesLeft;

The following, however, would not be legal code, because the HighCostMinutesLeft property doesn’t
exist in the Customer base class:

Customer mrLeggit = new Nevermore60Customer();

// processing

int minutesLeft = mrLeggit.HighCostMinutesLeft;

1163

Principles of Object-Oriented Programming

557599 AppA_BC01.qxd 4/28/04 10:50 AM Page 1163

We also ought to mention some other points about virtual members:

❑ It is not only methods that can be overridden or hidden. You can do the same thing with any
other class member that has an implementation, including properties.

❑ Fields cannot be declared as virtual or overridden. However, it is possible to hide a base ver-
sion of a field by declaring another field of the same name in a derived class. In that case, if you
wanted to access the base version from the derived class, you’d need to use the syntax
base.<field_name>. Actually, you probably wouldn’t do that anyway, because you’d have all
your fields declared as private.

❑ Static methods and so on cannot be declared as virtual, but they can be hidden in the same
way that instance methods and other methods can be. It wouldn’t make sense to declare a
static member as virtual; virtual means that the compiler looks up the instance of a class
when it calls that member, but static members are not associated with any class instance.

❑ Just because a method has been declared as virtual, that doesn’t mean that it has to be over-
ridden. In general, if the compiler encounters a call to a virtual method, it will look for the defi-
nition of the method first in the class concerned. If the method isn’t defined or overridden in
that class, it will call the base class version of the method. If the method isn’t derived there, it’ll
look in the next base class, and so on, so that the method executed will be the one closest in the
class hierarchy to the class concerned. (Note that this process occurs at compile time, when the
compiler is constructing the vtable for each class. There is no impact at runtime.)

Method Hiding
Even if a method has not been declared as virtual in a base class, it is still possible to provide another
method with the same signature in a derived class. The signature of a method is the set of all information
needed to describe how to call that method: its name, number of parameters, and parameter types.
However, the new method will not override the method in the base class. Rather, it is said to hide the
base class method. As we’ve implied earlier, what this means is that the compiler will always examine
the data type of the variable used to reference the instance when deciding which method to call. If a
method hides a method in a base class, then you should normally add the keyword new to its definition.
Not doing so does not constitute an error, but it will cause the compiler to give you a warning.

Realistically, method hiding is not something you’ll often want to do deliberately, but we’ll demonstrate
how it works by adding a new method called GetFunnyString() to our Customer class and hiding it
in Nevermore60Customer(). GetFunnyString() just displays some information about the class and is
defined like this:

public class Customer
{

public string GetFunnyString()
{

return “Plain ordinary customer. Kaark!”;
}

...

1164

Appendix A

557599 AppA_BC01.qxd 4/28/04 10:50 AM Page 1164

public class Nevermore60Customer : Customer
{

public new string GetFunnyString()
{

return “Nevermore60. Nevermore!”;
}

...

Nevermore60Customer’s version of this function will be the one called up, but only if called using a
variable that is declared as a reference to Nevermore60Customer (or some other class derived from
Nevermore60Customer). We can demonstrate this with this client code:

public static void Main()
{

Customer cust1;
Nevermore60Customer cust2;
cust1 = new Customer();
Console.WriteLine(“Customer referencing Customer: “

+ cust1.GetFunnyString());
cust1 = new Nevermore60Customer();
Console.WriteLine(“Customer referencing Nevermore60Customer: “

+ cust1.GetFunnyString());
cust2 = new Nevermore60Customer();
Console.WriteLine(“Nevermore60Customer referencing: “

+ cust2.GetFunnyString());
}

This code is downloadable as the MortimerPhones3Funny sample. Running the sample gives this
result:

MortimerPhones3Funny
Customer referencing Customer: Plain ordinary customer. Kaark!
Customer referencing Nevermore60Customer: Plain ordinary customer. Kaark!
Nevermore60Customer referencing: Nevermore60. Nevermore!

Abstract Functions and Base Classes
So far, every time we’ve defined a class we’ve actually created instances of that class, but that’s not
always the case. In many situations, you’ll define a very generic class from which you intend to derive
other, more specialized classes but don’t ever intend to actually use. C# provides the keyword abstract
for this purpose. If a class is declared as abstract it is not possible to instantiate it.

For example, suppose we have an abstract class MyBaseClass, declared like this:

abstract class MyBaseClass
{
...

1165

Principles of Object-Oriented Programming

557599 AppA_BC01.qxd 4/28/04 10:50 AM Page 1165

In this case the following statement will not compile:

MyBaseClass MyBaseRef = new MyBaseClass();

However, it’s perfectly legitimate to have MyBaseClass references, so long as they only point to derived
classes. For example, you can derive a new class from MyBaseClass:

class MyDerivedClass : MyBaseClass
{
...

In this case, the following is perfectly valid code:

MyBaseClass myBaseRef;
myBaseRef = new MyDerivedClass();

It’s also possible to define a method as abstract. This means that the method is treated as a virtual
method, and that you are not actually implementing the method in that class, on the assumption that it
will be overridden in all derived classes. If you declare a method as abstract you do not need to sup-
ply a method body:

abstract class MyBaseClass
{

public abstract int MyAbstractMethod(); // look no body!
...

If any method in a class is abstract, then that implies the class itself should be abstract, and the com-
piler will raise an error if the class is not so declared. Also, any non-abstract class that is derived from
this class must override the abstract method. These rules prevent you from ever actually instantiating
a class that doesn’t have implementations of all its methods.

At this stage, you’re probably wondering what the use of abstract methods and classes are for. They are
extremely useful for two reasons. One is that they often allow a better design of class hierarchy, in which
the hierarchy more closely reflects the situation you are trying to model. The other is that the use of
abstract classes can shift certain potential bugs from hard-to-locate runtime errors into easy-to-locate
compile-time errors. It’s a bit hard to see how that works in practice without looking at an example, so
let’s improve the program architecture of MortimerPhones by rearranging the class hierarchy.

Defining an abstract class
We’re not redesigning the Mortimer Phones sample just for the fun of it. There’s actually a bit of a design
flaw in the current class hierarchy. Our class Customer represents pay-as-you-go customers as the base
class for all the other customer types. We’re treating that kind of call plan as if it’s a special call plan from
which all the others are derived. That’s not really an accurate representation of the situation. In reality,
the pay-as-you-go call plan is just one of a range of call plans—there’s nothing special about it—and a
more carefully designed class hierarchy would reflect that. Therefore, in this section, we’re going to
rework the MortimerPhones sample to give it the class hierarchy shown in Figure A-5.

1166

Appendix A

557599 AppA_BC01.qxd 4/28/04 10:50 AM Page 1166

Figure A-5

Our old Customer class is gone. Our new abstract base class is GenericCustomer. GenericCustomer
implements all the stuff that is common to all types of customers, such as methods and properties that
have the same implementation for all customers and therefore are not virtual. This includes retrieving
the balance or the customer’s name, or recording a payment.

However, GenericCustomer does not provide any implementation of the RecordCall() method,
which works out the cost of a given call and adds it to the customer’s account. The implementation of
this method is different for each call plan, so we require that every derived class supplies its own version
of this method. Therefore, GenericCustomer’s RecordCall() method will be declared as abstract.

Having done that, we need to add a class that represents the pay-as-you-go customers. The
PayAsYouGoCustomer class does this job, supplying the override to RecordCall() that with our
previous hierarchy was defined in the base Customer class.

You may wonder whether it is really worth the effort in redesigning the sample class hierarchy in this
way. After all, the old hierarchy worked perfectly well, didn’t it? The reason for regarding the new
hierarchy as a better designed architecture is simple: it removes a possible subtle source of bugs.

In a real application, RecordCall() probably wouldn’t be the only virtual method that needed to be
implemented separately for each call plan. What happens if later on someone adds a new derived class,
representing a new call plan, but forgets to add the overrides of some of these methods? Well, with the
old class hierarchy, the compiler would have automatically substituted the corresponding method in the
base class. With that hierarchy, the base class represented pay-as-you-go customers, so we would have
ended up with subtle runtime bugs involving the wrong versions of methods being called. With our new
hierarchy, however, that won’t happen. Instead, we’ll get a compile-time error, with the compiler com-
plaining that the relevant abstract methods haven’t been overridden in the new class.

Anyway, on to the new code, and as you might have guessed by now, this is the MortimerPhones4 sam-
ple. With the new hierarchy, the code for GenericCustomer looks like this. Most of the code is the same

System.Object

Classes representing
customers on other

call plans

PayAsYouGoCustomer NeverMore60Customer

GenericCustomer
(Abstract Class)

1167

Principles of Object-Oriented Programming

557599 AppA_BC01.qxd 4/28/04 10:50 AM Page 1167

as for our old Customer class; in the following code we’ve highlighted the few lines that are different.
Note the abstract declaration for the RecordCall() method:

public abstract class GenericCustomer

{
...
public void RecordPayment(decimal amountPaid)
{

balance -= amountPaid;
}

public abstract void RecordCall(TypeOfCall callType, uint nMinutes);

}

Now for the implementation of the pay-as-you-go customers. Again, notice that most of the code is
taken directly from the former, obsolete Customer class. The only real difference is that RecordCall()
is now an override rather than a virtual method:

public class PayAsYouGoCustomer : GenericCustomer

{

public override void RecordCall(TypeOfCall callType, uint nMinutes)

{
// same implementation as for Customer

}
}

We won’t display the full code for Nevermore60Customer here as the RecordCall() override in this
class is long and completely identical to the earlier version of the example. The only change we need to
make to this class is to derive it from GenericCustomer instead of from the Customer class, which no
longer exists:

public class Nevermore60Customer : GenericCustomer

{
private uint highCostMinutesUsed;
public override void RecordCall(TypeOfCall callType, uint nMinutes)
{

// same implementation as for old Nevermore60Customer
}
...

To finish, we’ll add some new client code to demonstrate the operation of the new class hierarchy. This
time we’ve actually used an array to store the various customers, so this code shows how an array of ref-

1168

Appendix A

557599 AppA_BC01.qxd 4/28/04 10:50 AM Page 1168

erences to the abstract base class can be used to reference instances of the various derived classes, with
the appropriate overrides of the methods being called:

public static void Main()
{

GenericCustomer arabel = new Nevermore60Customer();
arabel.Name = “Arabel Jones”;
GenericCustomer mrJones = new PayAsYouGoCustomer();
mrJones.Name = “Ben Jones”;
GenericCustomer [] customers = new GenericCustomer[2];
customers[0] = arabel;
customers[0].RecordCall(TypeOfCall.CallToLandline, 20);
customers[0].RecordCall(TypeOfCall.CallToCellPhone, 5);
customers[1] = mrJones;
customers[1].RecordCall(TypeOfCall.CallToLandline, 10);
foreach (GenericCustomer nextCustomer in customers)
{

Console.WriteLine(“{0,-20} owes ${1:F2}”, nextCustomer.Name,
nextCustomer.Balance);

}

}

Running this code produces the correct results for the amounts owed:

MortimerPhones4
Arabel Jones owes $2.90
Ben Jones owes $0.20

Sealed Classes and Methods
In many ways you can think of a sealed class or method as the opposite of an abstract class or method.
Whereas declaring something as abstract means that it must be overridden or inherited from, declaring
it as sealed means that it cannot be. Not all object-oriented languages support this concept, but it can be
useful. In C# the syntax looks like this:

sealed class FinalClass
{
...

C# also supports declaring an individual override method as sealed, preventing any further overrides
of it.

The most likely situation when you’ll mark a class or method as sealed will be if it is very much inter-
nal to the operation of the library, class, or other classes that you are writing, so you are fairly sure that
any attempt to override some of its functionality causes problems. You might also mark a class or
method as sealed for commercial reasons, in order to prevent a third party from extending your

1169

Principles of Object-Oriented Programming

557599 AppA_BC01.qxd 4/28/04 10:50 AM Page 1169

classes in a manner that is contrary to the licensing agreements. In general, however, you should be care-
ful about marking a class or member as sealed, since by doing so you are severely restricting how it can
be used. Even if you don’t think it would be useful to inherit from a class or override a particular mem-
ber of it, it’s still possible that at some point in the future someone will encounter a situation you hadn’t
anticipated in which it is useful to do so.

Interfaces
Earlier in this appendix, we indicated that there are two types of inheritance: implementation inheri-
tance and interface inheritance. So far we’ve discussed implementation inheritance; in this section we
are going to look more closely at interface inheritance.

In general, an interface is a contract that says that a class must implement certain features (usually meth-
ods and properties), but which doesn’t specify any implementations of those methods and properties.
Therefore you don’t instantiate an interface; instead a class can declare that it implements one or more
interfaces. In C#, as in most languages that support interfaces, this essentially means that the class inher-
its from the interface.

To get an idea of how an interface looks in programming terms, we’ll show the syntax for the definition
of an interface that is defined in the .NET base classes, IEnumerator, from the System.Collections
namespace. IEnumerator looks like this:

interface IEnumerator
{

// Properties
object Current {get; }

// Methods
bool MoveNext();
void Reset();

}

As you can see, the IEnumerator interface has two methods and one property. This interface is impor-
tant in implementing collections and is designed to encapsulate the functionality of moving through the
items in a collection. MoveNext() moves to the next item, Reset() returns to the first item, while
Current retrieves a reference to the current item.

Beyond the lack of method implementations, the main point to note is the lack of any modifiers on the
members. Interface members are always public and cannot be declared as virtual or static.

So why have interfaces? Up to now we’ve treated classes as having certain members and not concerned
ourselves about grouping any members together—our classes have simply contained a list of various
miscellaneous methods, fields, properties, and so on. There are often situations in which we need to
know that the class implements certain features in order to be able to use a class in a certain way. An
example is provided by the foreach loop in C#. In principle, it is possible to use foreach to iterate
through a class instance, provided that that class is able to act as if it is a collection. How can the .NET
runtime tell whether a class instance represents a collection? It queries the instance to find out whether it
implements the System.Collections.IEnumerable interface. If it does, then the runtime uses the
methods on this interface to iterate through the members of the collection. If it doesn’t, then foreach
will raise an exception.

1170

Appendix A

557599 AppA_BC01.qxd 4/28/04 10:50 AM Page 1170

You might wonder why in this case we don’t just see if the class implements the required methods and
properties. The answer is that that wouldn’t be a very reliable way of checking. For example, you can
probably think of all sorts of different reasons why a class might happen to implement a method called
MoveNext() or Reset(), which don’t have anything to do with collections. If the class declares that it
implements the interfaces needed for collections, then you know that it really is a collection.

A second reason for using interfaces is for interoperability with COM. Before the advent of .NET, COM,
and its later versions DCOM and COM+, provided the main way that applications could communicate
with each other on the Windows platform, and the particular object model that COM used was heavily
dependent on interfaces. Indeed, it was through COM that the concept of an interface first became com-
monly known. We should stress, however, that C# interfaces are not the same as COM interfaces. COM
interfaces have very strict requirements, such as that they must use GUIDs as identifiers, which are not
necessarily present in C# interfaces. However, using attributes (a C# feature that we cover in the begin-
ning of the book), it is possible to dress up a C# interface so it acts like a COM interface, and hence pro-
vide compatibility with COM. We discuss COM interoperability in Chapter 28.

For more details on interfaces, see Chapter 4.

Construction and Disposal
For this final section of the appendix, we are going to leave inheritance behind, and look at another topic
that is important in OOP programming: creation and disposal of objects—or to use the usual terminol-
ogy, construction and destruction of objects. Say you have this code:

{
int x;
// more code

}

You will be aware that when x is created (comes into scope), memory gets allocated for it, and that when
it goes out of scope, that memory is reclaimed by the system. If you are familiar with C#, you’ll also be
aware that x is initialized with the value zero when the variable comes into scope. For integers, the lan-
guage defines what initializations happen automatically when an int gets created. But wouldn’t it be
nice if we could do the same for our own classes? Well, most modern OOP languages support the ability
to do this—and C# is no exception. This support happens through something called a constructor. A con-
structor is a special method called automatically whenever an object of a given class is created. You don’t
have to write a constructor for a class, but if you want some custom initialization to take place automati-
cally, you should place the relevant code in the constructor.

Similarly, OOP languages, including C#, support something called a destructor. A destructor is a method
called automatically whenever an object is destroyed (the variable goes out of scope). Reclaiming mem-
ory aside, destructors are particularly useful for classes that represent a connection to a database, or an
open file, or those that have methods to read from and write to the database/file. In that case, the
destructor can be used to make sure that you don’t leave any database connections or file handles hang-
ing open when the object goes out of scope.

That said, the facilities offered by the .NET Framework and the garbage collector mean that destructors
are not only used a lot less often in C# than they are in pre-.NET languages, but also that the syntax for

1171

Principles of Object-Oriented Programming

557599 AppA_BC01.qxd 4/28/04 10:50 AM Page 1171

defining them is more complex (indeed, destructors are almost the only thing that is more complex to
code in C# than in C++!). For that reason we won’t look any more closely at destructors in this appendix.
How to write destructors in C# is covered in Chapter 5. In this appendix we will concentrate on con-
structors, to give you an idea of how the concept works.

Visual Basic developers will note that there are some similarities between constructors and the
Initialize() and Form_Load() methods of VB class modules. Constructors, however, are far more
flexible and powerful.

Creating Constructors
When you see a constructor definition in C#, it looks much like a method definition, but the difference is
that you don’t usually call a constructor explicitly. It’s like a method that is always called on your behalf
whenever an instance of a class is created. In addition, because you never call the method explicitly, there
is no way you can get access to any return value, which means that constructors never return anything.
You can identify a constructor in a class definition because it always has the same name as the class itself.
For example, if you have a class named MyClass, a skeleton constructor will be defined as follows:

public class MyClass
{

public MyClass()
{
}
...

This constructor so far does nothing, because you haven’t added any code to it. Let’s add an integer field
MyField to the class and initialize it to 10:

public class MyClass
{

public MyClass()
{

myField = 10;

}

private int myField;

...

Notice that no return type is specified, not even void. The compiler recognizes the constructor from the
fact that it has the same name as the containing class. You should note that one implication of this is that
it is not possible to write a method that has the same name as the class it belongs to, because if you do
the compiler will interpret it as a constructor.

From the previous example, you might wonder if we’ve actually achieved anything new. After all, in
terms of C# syntax, we could have written:

public class MyClass

private int myField = 10;

1172

Appendix A

557599 AppA_BC01.qxd 4/28/04 10:50 AM Page 1172

This achieves the same effect—specifying how to initialize each object without explicitly indicating a
constructor. Indeed, we have already done something like this in all our Authenticator samples, in
which we specified that the password field should automatically be initialized to an empty string. The
answer is that here we are trying to introduce the concept of a constructor. The above code is really just
C# shorthand for specifying construction code implicitly—a shorthand that is specific to C#. Behind this
shorthand there is still a constructor at work. Besides, by writing a constructor explicitly, it means we
can write code to compute initial values at runtime—the shorthand requires values to be known at com-
pile time, as constants.

It’s not necessary to provide a constructor for your class—we haven’t supplied one for any of our exam-
ples so far. In general, if you don’t explicitly supply any constructor, the compiler will just make up a
default one for you behind the scenes. It’ll be a very basic constructor that just initializes all the member
fields to their normal default values (empty string for strings, zero for numeric data types, and false
for bools).

Initializing to default values is something that happens in C# because C# initializes all members of a
class. If you are coding in a different language, this behavior might differ. For example, by default C++
never initializes anything unless you explicitly indicate that’s what you want. So in C++, if you don’t
supply a constructor to a class, then its members won’t get initialized to anything (unless they have
constructors instead).

Passing parameters to constructors
Let’s go back to our Authenticator class. Say we wanted to modify the class so that we can specify the
initial password when we first instantiate the class. It is possible to do this by supplying a constructor
that takes parameters. In this regard, a constructor behaves like a method in that we can define whatever
parameters we want for it, and this is where constructors really score over Visual Basic’s Initialize or
Form_Load.

For the Authenticator, we’d probably add a constructor that takes an initial password as a parameter:

public class Authenticator
{

public Authenticator(string initialPassword)
{

password = initialPassword;
}

private string password = “”;
private static uint minPasswordLength = 6;
...

The advantage of using such a constructor is that it means an Authenticator object is guaranteed to be
initialized the instant it is created. It is, therefore, not possible for other code to access the object before it
has been initialized, as would be possible if we initialized it by calling a method after instantiating an
object.

Now, to instantiate the object we would use a line of code similar to the following:

Authenticator NewUser = new Authenticator(“MyPassword45”);

1173

Principles of Object-Oriented Programming

557599 AppA_BC01.qxd 4/28/04 10:50 AM Page 1173

Here we have created an instance with the password MyPassword45. You should note that the following
line will not compile any more:

Authenticator NewUser2 = new Authenticator();

This is because we do not supply any parameters to the constructor, and the constructor requires one
parameter. However, if we wanted to, we could simply create an overload for the constructor that didn’t
take any parameter arguments and simply set a default password in this constructor overload (this
would not be a very secure approach though!).

More uses of constructors
Although the only thing we’ve done with constructors is to initialize the values of fields, a constructor
does act as a normal method so you can place any instructions you want in it; for example, you might
perform some calculations to work out the initial values of the fields. If your class encapsulates access to
a file or database, the constructor might attempt to open the file. The only thing that you cannot do in a
constructor is return any value (such as indicating status) to the calling code.

Another novel use is to use a constructor to count how many instances of a class have been created while
the program is running. If we wanted to do that for the Authenticator class, we could create a static
field, nInstancesCreated, and amend the code for the constructor as follows:

public class Authenticator
{

private static uint nInstancesCreated = 0;

public Authenticator(string initialPassword)
{

++nInstancesCreated;

Password = initialPassword;
}

private string password = 10;
private static uint minPasswordLength = 6;
...

This example might not have many practical applications, but it demonstrates the kind of flexibility you
have by being able to specify your own constructors. Counting instances is something you’re unlikely to
want to do in release builds of code, but it’s something that you might want to do for debugging purposes.

Summary
The aim of this appendix has been to introduce you to the basic concepts of object-oriented design in C#,
including:

1174

Appendix A

557599 AppA_BC01.qxd 4/28/04 10:50 AM Page 1174

❑ Classes, objects, and instances

❑ Fields, methods, and properties

❑ Overloading

❑ Inheritance and class hierarchies

❑ Polymorphism

❑ Interfaces

Object-oriented programming methodology is strongly reflected in the design of the C# language, and of
Intermediate Language too which becomes apparent when you start using the .NET base classes.
Microsoft has done this because with our current understanding of programming techniques, it simply
is the most appropriate way of coding any large library or application.

1175

Principles of Object-Oriented Programming

557599 AppA_BC01.qxd 4/28/04 10:50 AM Page 1175

557599 AppA_BC01.qxd 4/28/04 10:50 AM Page 1176

C# for Visual
Basic 6 Developers

In this appendix we present a brief introduction to the C# language, specifically aimed at those
developers whose experience up until now has been mostly or entirely with Visual Basic 6.

Note that throughout this appendix, references to Visual Basic indicate Visual Basic 6. On those
few occasions when we mention Visual Basic .NET, we will explicitly name it as such.

C# and Visual Basic are very different languages, both in their syntactical style and in the funda-
mental concepts that they are based on. This means that Visual Basic developers will find they
have quite a steep learning curve to climb in order to become familiar with C#, even at a basic
level. The aim of this appendix is to make that learning curve easier by providing a tutorial to C#.
This tutorial presumes knowledge of Visual Basic, and focuses on the main conceptual differences
between the two languages. Our approach in this appendix will be to compare Visual Basic solu-
tions with C# solutions programmatically.

This does mean that our coverage of the C# language will be restricted to a basic level. We are not
going to cover the more advanced features of the language (which is covered in Part I of this
book). The emphasis is on showing you the different methodologies involved in writing code
using the C# language.

Differences Between C# and Visual Basic
Beyond the obvious syntactical differences between these two languages, there are really two key
concepts with which you have to familiarize yourself in order to progress from Visual Basic to C#:

557599 AppB_BC02.qxd 4/28/04 10:49 AM Page 1177

1. The concept of the complete flow of execution of a program from start to finish: Visual Basic
hides this aspect of programs from you, so that the only elements of a Visual Basic program you
code are the event handlers and any methods in class modules. C# makes the complete program
available to you as source code. The reason for this has to do with the fact that C# can be seen,
philosophically, as next-generation C++. The roots of C++ go back to the 1960s and predate win-
dowed user interfaces and sophisticated operating systems. C++ evolved as a low-level, close-
to-the-machine, all-purpose language. To write GUI applications with C++ meant that you had
to invoke the system calls to create and interact with the windowed forms. C# has been
designed to build on this tradition while simplifying and modernizing C++, to combine the
low-level performance benefits of C++ with the ease of coding in Visual Basic. Visual Basic, on
the other hand, is designed specifically for rapid application development of Windows GUI
applications. For this reason, in Visual Basic all the GUI boilerplate code is hidden, and all the
Visual Basic programmer implements are the event handlers. In C# on the other hand, this boil-
erplate code is exposed as part of your source code.

2. Classes and inheritance: C# is a genuine object-oriented language, unlike Visual Basic, requiring
all code to be a part of a class. It also includes extensive support for implementation inheritance.
Indeed, most well-designed C# programs will be very much designed around this form of
inheritance, which is completely absent in Visual Basic.

The bulk of this appendix is devoted to developing two sample applications. The first example is a
simple form, written in both Visual Basic and C#, that asks the user for a number and displays the
square root and sign of the number. By comparing the Visual Basic and C# versions of the sample in
some detail, you will learn basic C# syntax and also understand the concepts behind the flow of execu-
tion of a program.

Next we present a Visual Basic class module that stores information about employees and its C# equiva-
lent. This example demonstrates the real power of C# by showing you the shortcomings of Visual Basic.

We then complete the appendix with a short tour of some of the remaining differences between Visual
Basic and C#.

Before we start, however, we need to clarify a couple of concepts: classes, compilation, and the .NET
base classes.

Classes
Throughout this appendix we use C# classes quite extensively. C# classes represent precisely defined
objects (see Chapter 3 and Appendix A). However, for our purposes, we are better off thinking of them
as the C# equivalent to Visual Basic class modules, because they are quite similar entities: Like a Visual
Basic class module, a C# class implements properties and methods, and contains member variables. Like
a Visual Basic class module, you can create objects of a given C# class (class instances) using the operator
new. Beyond these similarities, however, there are many differences. For example, a Visual Basic class
module is really a COM class. C# classes, by contrast, are always integrated into .NET Framework. C#
classes are also more lightweight than their Visual Basic or COM counterparts, in the sense that they are
designed for performance and give a smaller performance hit when instantiated. However, for the most
part these differences will not affect our discussion of the C# language here.

1178

Appendix B

557599 AppB_BC02.qxd 4/28/04 10:49 AM Page 1178

Compilation
As you know, computers never directly execute code in any high-level language, whether it is Visual
Basic, C++, C, or any other language. Instead, all source code is first translated into native executable
code, a process usually known as compilation. When you are debugging, Visual Basic offers the option of
just running the code (meaning that each line of Visual Basic code is interpreted as the computer executes
that line), or of doing a full compile (meaning that the entire program is first translated into executable
code, and then execution starts). Performing a full compile first means that any syntax errors are discov-
ered by the compiler before the program starts running. It also yields much higher performance when
running and is therefore the only option permitted in C#.

In C#, compilation is done in two stages. First code is complied into the Microsoft intermediate language
(IL), a process commonly referred to as compilation. Then the code is converted into native executable
code at run time. This is not the same as interpreting. Entire portions of code are converted from IL to
assembly language at a time and the resultant native executable is then stored so it doesn’t need to be
recompiled the next time that portion of code is executed. Combined with various optimizations,
Microsoft believes that this will ultimately lead to code that is actually faster to execute than with the
previous system of compiling direct from source code to native executable. Although the existence of IL
is something that you need to bear in mind, it won’t affect our discussion in this appendix, because it
doesn’t really affect C# language syntax.

The .NET Base Classes
Visual Basic has a large number of associated functions, such as the conversion functions CInt, CStr,
and so on, the file system functions, date-time functions, and many more. Visual Basic also relies on the
presence of ActiveX controls to provide the standard controls that you put on your form, such as list-
boxes, buttons, textboxes, and so on.

C# also relies on extensive support for these sorts of areas. However, in the case of C#, this support comes
from a very large set of classes known as the .NET base classes. These classes provide support for almost
every aspect of Windows development. There are classes that represent all the standard controls, classes
that perform conversions, classes that perform date-time and file system access, classes that access the
Internet, and many more. We won’t go into the .NET base class library in detail here, but we will fre-
quently refer to it. Indeed, C# is so well integrated with the .NET base classes, many C# keywords just
provide wrappers around particular base classes. In particular, all the basic C# data types that are used
to represent integers, floating-point numbers, strings, and so on are actually base classes.

In this respect, there is a marked distinction between Visual Basic and C#; the Visual Basic system func-
tions are specific to Visual Basic, whereas the respective functionality of C# is provided by the .NET base
classes, which are accessible to any .NET-aware language.

Conventions
In this appendix we frequently compare code in C# and Visual Basic. In order to make it easier to iden-
tify code in these two languages, we present C# code in this format:

// C# code that we have already seen
// C# code that we want to draw attention to or which is new

1179

C# for Visual Basic 6 Developers

557599 AppB_BC02.qxd 4/28/04 10:49 AM Page 1179

However, all Visual Basic code will be presented in this format:

‘ Visual Basic code is presented with a white background

Example: The Square Root Form
In this section, we are going to examine a simple application called SquareRoot, which we have devel-
oped in both Visual Basic and C#. The application is a simple dialog box that asks the user to type in a
number, and then, when the user clicks a button, displays the sign and square root of that number. If the
number is negative, the square root needs to be displayed as a complex number, which means taking the
square root of the number and adding ‘i’ after it. Figure B-1 shows the C# version of this example. The
Visual Basic version is pretty much identical in appearance except that it has a standard Visual Basic icon
in place of the .NET windows forms icon in the top-left corner.

Figure B-1

SquareRoot Visual Basic Version
To get this application working in Visual Basic, we simply need to add an event handler for the event of
clicking the button. We have given the button the name cmdShowResults, and the TextBox controls
have the intuitive names of txtNumber, txtSign, and txtResult. With these names, the event handler
for the button looks like this:

Option Explicit
Private Sub cmdShowResults_Click()

Dim sngNumberInput As Single
sngNumberInput = CSng(Me.txtNumber.Text)
If (sngNumberInput < 0) Then

Me.txtSign.Text = “Negative”
Me.txtResult.Text = CStr(Sqr(-sngNumberInput)) & “ i”

ElseIf (sngNumberInput = 0) Then
txtSign.Text = “Zero”
txtResult.Text = “0”

Else
Me.txtSign.Text = “Positive”

1180

Appendix B

557599 AppB_BC02.qxd 4/28/04 10:49 AM Page 1180

Me.txtResult.Text = CStr(Sqr(sngNumberInput))
End If

End Sub

That is all the Visual Basic code that we need to write.

SquareRoot C# Version
In C# we also need to write an event handler for the event of the button being clicked. We have kept the
same names for the button and the textboxes, but in C# the code looks like this:

// Event handler for user clicking Show Results button.
// Displays square root and sign of number
private void OnClickShowResults(object sender, System.EventArgs e)
{

float NumberInput = float.Parse(this.txtNumber.Text);
if (NumberInput < 0)
{

this.txtSign.Text = “Negative”;
this.txtResult.Text = Math.Sqrt(-NumberInput).ToString() + “ i”;

}
else if (NumberInput == 0)
{

txtSign.Text = “Zero”;
txtResult.Text = “0”;

}
else
{

this.txtSign.Text = “Positive”;
this.txtResult.Text = Math.Sqrt(NumberInput).ToString ();

}
}

Comparing these two code samples, you can see the similarity in the code structure, and even without
any knowledge of C#, you can probably get some idea of what is going on. It is also evident that there
are a huge number of differences in the syntax between the two languages. Over the next couple of
pages, we are going to compare these samples to see what we can learn about C# syntax in the process.
In the process, we will also uncover some of the differences between the basic methodologies of C# and
Visual Basic.

Basic Syntax
In this section we examine the two SquareRoot programs to see what they teach us about C# syntax.

C# requires all variables to be declared
If we start with the first line of Visual Basic code, we encounter the Option Explicit declaration. This
statement has no equivalent in C#. The reason is that in C# variables must always be declared before
they are used. It’s as if C# always runs with Option Explicit turned on and doesn’t allow you to

1181

C# for Visual Basic 6 Developers

557599 AppB_BC02.qxd 4/28/04 10:49 AM Page 1181

switch it off. Hence there’s no need to declare Option Explicit. The point of this restriction is that C#
has been very carefully designed to make it difficult for you to accidentally introduce bugs into your
code. Standard advice in Visual Basic is always to use Option Explicit because it prevents hard-to-
find bugs caused by misspelled variable names. Generally, you will find that C# doesn’t allow you to do
things that have a high risk of causing bugs.

Comments
Since commenting code is always important, the next thing we do in both samples (or the first thing in
the C# sample!) is add a comment:

// Event handler for user clicking Show Results button.
// Displays square root and sign of number
private void OnClickShowResults(object sender, System.EventArgs e)
{

In Visual Basic we use an apostrophe to denote the start of a comment, and the comment lasts until the
end of the line. Our C# comments in the code work the same way, except they start with two forward
slashes: //. Just as for Visual Basic comments, we can use an entire line for a comment, or append a com-
ment to the end of a line:

// This code works out the results

int Result = 10*Input; // get result

However, C# is more flexible in its comments, because it allows two other ways of indicating comments,
each has a slightly different effect. A comment may be also be delimited by the sequences /* and */. In
other words, if the compiler sees an opening /* sequence, it assumes all the following text is a comment
until it sees a closing */ sequence. This allows you to have long, multiple-line comments:

/* this text is a really long
long
long
long
comment */

Short comments within a line are very useful if you just want to temporarily swap something in a line
while you are debugging:

X = /*20*/ 15;

The third option is very similar to the first option. However, now we use three forward slashes:

/// <summary>
/// Event handler for user clicking Show Results button.
/// Displays square root and sign of number
/// </summary>
/// <param name=”sender”></param>
/// <param name=”e”></param>
private void OnClickShowResults(object sender, System.EventArgs e)

1182

Appendix B

557599 AppB_BC02.qxd 4/28/04 10:49 AM Page 1182

If you use three forward slashes instead of two, the comment still lasts until the end of that line.
However, this comment now has an additional effect: The C# compiler is actually capable of using com-
ments that start with three slashes to automatically generate documentation for your source code as a
separate XML file. That’s why the comment text in the previous example appears to have a fairly formal
structure—it is ready to be placed into an XML file. We won’t go into the details of this process here (it’s
covered in Chapter 2). We will, however, say that this means that commenting each method of your code
allows you to have complete documentation automatically generated and updated when you modify
your code. The compiler even checks that the documentation matches the method signatures.

Statement separation and grouping
The most visible difference between the above C# and Visual Basic codes is the presence of semicolons
and curly braces in the C# code. Although this can make C# code look daunting, the principle is actually
very simple. Visual Basic uses carriage returns to indicate the ends of statements, whereas C# uses semi-
colons for the same purpose. In fact, the C# compiler completely ignores all excess whitespace, including
carriage returns. These features of C# syntax can combine to give you a lot of freedom in laying out your
code. For example, the following snippet (reformatted from part of the above sample) is also perfectly
valid C# code:

this.txtSign.Text =

“Negative”; this.txtResult.Text = Math.Sqrt
(-NumberInput) + “ i”;

Obviously, if you want other people to be able to read your code, you will opt for the first coding style,
and Visual Studio .NET will automatically lay out your code in that style.

The braces are used to group statements together into what are known as block statements (or compound
statements). This is a concept that doesn’t exist in Visual Basic. In C#, you can group any statements by
placing braces around them. The group is now regarded as one single block statement and can be used
anywhere in C# where a single statement is expected.

Block statements are used a lot in C#. For example, in the C# code above there is no explicit indication of
the end of the OnClickShowResults() method (C# has methods, written in text with the () appended,
whereas Visual Basic has functions and subs). Visual Basic needs an End Sub statement at the end of any
sub because a sub can contain as many statements as you want, so a specific marker is the only way that
Visual Basic knows where you intend the sub to end. C# works differently. In C# a method is formed
from exactly one compound statement. Because of this, the method ends with the closing curly brace
matching the opening one at the start of the method.

You find this a lot in C#: where Visual Basic uses some keyword to mark the end of a block of code, C#
simply organizes the block into one compound statement. The if statement in the above samples illus-
trates the same point. In Visual Basic, we need an EndIf statement to mark where the If block ends, if
the If statement is more than one line. In C#, the rule is simply that an if clause always contains exactly
one statement, and the else clause also contains one statement. If we want to put more than one state-
ment into either clause, as is the case in the above example, we use a compound statement.

1183

C# for Visual Basic 6 Developers

557599 AppB_BC02.qxd 4/28/04 10:49 AM Page 1183

Capitalization
One other point you may notice about the syntax is that all the keywords—if, else, int, and so on—in
the C# code are in lowercase.

Unlike Visual Basic, C# is case-sensitive.

In C#, if you write If instead of if, the compiler won’t understand your code. One advantage of being
case-sensitive, however, is that you can have two variables whose names differ only in case, such as
Name and name. We’ll encounter this in our second sample application later in this appendix.

In general, you’ll find that all C# keywords are entirely lowercase.

Methods
Let’s compare the syntax that Visual Basic and C# use to declare the part of the code that handles the
event:

Private Sub cmdShowResults_Click()

and:

private void OnClickShowResults(object sender, System.EventArgs e)

The Visual Basic version declares a sub, whereas the C# version declares a method. In Visual Basic, code
is traditionally grouped into subs and functions, with the concept of a procedure being either.
Additionally, Visual Basic class objects have what are known as methods, which for all practical pur-
poses means the same thing as procedures except that they are part of a class module.

C#, by contrast, only has methods (that’s because everything in C# is part of a class). In C# does not sup-
port the concept of functions and subroutines; these terms don’t even exist in the C# language specifica-
tion. In Visual Basic, the only real difference between a sub and a function is that a sub never returns a
value. In C#, if a method does not need to return a value, it is declared as returning void (as the
OnClickShowResults() method illustrated here).

The syntax for declaring a method is similar in the two languages, at least to the extent that the param-
eters follow the method name in brackets. Note, however, that whereas in Visual Basic we indicated that
we were declaring a sub with the word Sub, there is no corresponding word in the C# version. In C#, the
return type (void in this case), followed by the method name, followed by the opening bracket, is suffi-
cient to tell the compiler that we are declaring a method, since no other construct in C# has this syntax
(arrays in C# are marked with square rather than round brackets so there is no risk of confusion with
arrays).

Like the Visual Basic Sub, the C# method declaration above is preceded by the keyword private. This
has roughly the same meaning as in Visual Basic—it prevents outside code from being able to see the
method. (We’ll examine the notion of outside code shortly.)

There are two other differences to remark on about the method declaration: the C# version takes two
parameters, and it has a different name than the Visual Basic event handler.

1184

Appendix B

557599 AppB_BC02.qxd 4/28/04 10:49 AM Page 1184

We’ll tackle the name first. The name of the event handler in Visual Basic is supplied for you by the
Visual Basic IDE. The reason that Visual Basic knows that the Sub is the event handler for a button click
is because of the name, cmdShowResults_Click. If you renamed the sub, then it wouldn’t get called
when you click the button. However, C# doesn’t use the name in this way. In C#, there is some other
code that tells the compiler which method is the event handler for this event. That means we can give
the handler whatever name we want. However, something starting with On for an event handler is tradi-
tional, and in C#, common practice is to name methods (and for that matter most other items) using
Pascal casing, which means that words are joined together with their first letters capitalized. Using
underscores in names in C# is not recommended, and we’ve chosen a name in accordance with these
guidelines: OnClickShowResults().

Now for the parameters. We won’t worry about explaining the details of these parameters in this
appendix. All you need to know for now is that all event handlers in C# are required to take two param-
eters similar to these, and these parameters can provide some useful extra information about the event
in question (for example, for a mouse move event the parameters might indicate the location of the
mouse pointer).

Variables
The SquareRoot sample can tell us quite a lot about the differences between the variable declarations in
C# and Visual Basic. In the Visual Basic version we declare a floating-point number and set up its value
as follows:

Dim sngNumberInput As Single sngNumberInput = CSng(Me.txtNumber.Text)

The C# version looks like this:

float NumberInput = float.Parse(this.txtNumber.Text);

As you’d expect, the data types in C# aren’t exactly the same as in Visual Basic. float is the C# equiva-
lent to Single. It’s probably easier for us to understand what’s going on if we split up the C# version
into two lines. The following C# code has exactly the same effect as the line above:

float NumberInput; NumberInput = float.Parse(this.txtNumber.Text);

Now we can compare the declaration and initialization of the variable separately.

Declarations
The obvious syntactical difference between C# and VB, as far as variable declarations are concerned, is
that in C#, the data type precedes rather than follows the name of the variable, with no other keywords.
This gives C# declarations a more compact format than their Visual Basic counterparts.

You’ll notice that this idea of a declaration consisting only of a type followed by a name is used else-
where too. Look again at the method declaration in C#:

private void OnClickShowResults(object sender, System.EventArgs e)

The type (void) precedes the name of the method, with no other keywords to indicate what we are
declaring—that’s obvious from the context. The same is also true for the parameters. The types of the

1185

C# for Visual Basic 6 Developers

557599 AppB_BC02.qxd 4/28/04 10:49 AM Page 1185

parameters are object and System.EventArgs. The object type in C# plays a similar role to Object
in Visual Basic—it indicates something for which we are choosing not to specify its type. However, the
C# object type is much more powerful than the Visual Basic Object. In C#, object also replaces VB’s
Variant data type. We’ll look at object later on. We won’t really cover System.EventArgs in any detail
in this appendix. It’s a .NET base class, and it has no equivalent in Visual Basic.

In the case of variables, the declaration syntax used in C# allows you to combine the declaration with the
setting of an initial value for the variable. In the code sample sngNumberInput is initialized to what
looks like a complicated expression, which we will explain shortly. To take two simpler examples:

int X = 10; // int is similar to Long in Visual Basic string
Message = “Hello World”; // string is similar to String in Visual Basic

While we are on the subject, we ought to mention a couple of other points about variables.

No suffixes in C#
Visual Basic allows you to attach suffixes to variables to indicate their data types, with $ for String, %
for Int, and & for Long:

Dim Message$ ‘ will be a string

This syntax is not supported in C#. Variable names may contain only letters, numbers, and the under-
score character, and you must always indicate the data type.

No default values for local variables
In the Visual Basic code sample, the variable sngNumberInput is assigned the default value of 0 when it
is declared. This is actually a waste of processor time since we immediately assign it a new value in the
next statement. C# is a little more performance-conscious and does not bother putting any default values
in local variables when they are declared. Instead, it requires that you always initialize such variables
yourself before you use them. The C# compiler will raise a compilation error if you attempt to read the
value in any local variable before you have set it.

Assigning values to variables
Assigning values to variables in C# is done with the same syntax as in VB. You simply put an = sign after
the variable name, followed by the value you are assigning to it. However, one point to watch out for is
that this is the only syntax used in C#. In some cases in Visual Basic we use Let, while for objects Visual
Basic always uses the Set keyword:

Set MyListBox = new ListBox

C# does not use a separate syntax for assigning to object references. The C# equivalent of the above is:

MyListBox = new ListBox();

Remember that in C#, variables are always assigned using the syntax
<VariableName>=<Expression>;

1186

Appendix B

557599 AppB_BC02.qxd 4/28/04 10:49 AM Page 1186

Classes
Now we come to look at what’s going on in the expression used to initialize the variable
sngNumberInput in the SquareRoot sample. The C# and Visual Basic examples are both doing exactly
the same thing: they grab the text from the txtNumber TextBox control; but the syntax is different:

sngNumberInput = CSng (Me.txtNumber.Text)

and:

float NumberInput = float.Parse(this.txtNumber.Text);

Getting the value out of the TextBox controls is quite similar in both cases. The only difference here is the
syntax: Visual Basic uses the keyword Me while C# uses the keyword this, which has exactly the same
meaning (in fact, in C# you can omit this if you want, just as you can omit Me in Visual Basic). In C# we
could equally well have written:

float NumberInput = float.Parse(txtNumber.Text);

The more interesting part is how the string retrieved from the TextBox control is converted to a float
(or single), because this illustrates a fundamental point of the C# language, which we’ve hinted at ear-
lier: everything in C# is part of a class.

In Visual Basic, the conversion is carried out by a function, CSng. However, C# does not have functions
of the Visual Basic variety. C# is totally object-oriented and will only allow you to declare methods that
are part of a class.

In C#, the conversion from string to float is carried out by the Parse() method. However, because
Parse() is part of a class, it has to be preceded by the name of the class. The class against which we
need to call the Parse() method is float. Yes, I did say that right. Up until now we have treated float
as simply being the C# equivalent to the Visual Basic Single type. However, it is actually a class as well.
In C#, all data types are classes as well, which means even things like int, float, and string have
methods and properties that you can call (although we should point out that int and float are special
types of class known in C# as structs. The difference is not important for our code here, but we will
explain it later).

If you are looking really carefully at the code above, you might notice a slight apparent problem with the
analogy with Visual Basic class modules. In Visual Basic, you call methods by specifying the name of an
object, not the name of the class module, but we’ve called Parse by specifying the name of the class,
float, instead of the name of an object. Parse() is a special type of method known as a static method.
It has no equivalent in Visual Basic, and a static method can be called without creating an instance of a
class. Hence we specify the class name, float, rather than a variable name. By the way, static does
not have the same meaning in C# as it does in Visual Basic. There is no equivalent in C# to the Visual
Basic static variables—there is no need for these in the C# object-oriented programming methodol-
ogy, because you use C# fields in their stead.

Also, to be strictly accurate, we should point out that the name of the class is actually
System.Single, not float. System.Single is one of the .NET base classes, and C# uses the key-
word float to indicate this class.

1187

C# for Visual Basic 6 Developers

557599 AppB_BC02.qxd 4/28/04 10:49 AM Page 1187

If Statements
Next we come to the main part of the event handler—the “If” statement. Recall that the Visual Basic ver-
sion looks like this:

If (sngNumberInput < 0) Then
Me.txtSign.Text = “Negative”
Me.txtResult.Text = CStr(Sqr(-sngNumberInput)) & “ i”

ElseIf (sngNumberInput = 0) Then
txtSign.Text = “Zero”
txtResult.Text = “0”

Else Me.txtSign.Text = “Positive”
Me.txtResult.Text = CStr(Sqr(sngNumberInput))

End If

In the C# version it looks like this:

if (NumberInput < 0)
{

this.txtSign.Text = “Negative”;
this.txtResult.Text = Math.Sqrt(-NumberInput).ToString() + “ i”;

}
else if (NumberInput == 0)
{

txtSign.Text = “Zero”;
txtResult.Text = “0”;

}
else
{

this.txtSign.Text = “Positive”;
this.txtResult.Text = Math.Sqrt(NumberInput).ToString();

}

We have already explained the biggest syntactical difference here: that each part of the if statement in
C# must be a single statement, hence, if we have to conditionally execute more than one statement, we
must combine them into a single block statement. In C#, if there is only one statement to be conditionally
executed, we don’t need to form a block statement. For example, if we want to skip setting the text in the
txtSign TextBox control in the above code we can write:

if (NumberInput < 0)
this.txtResult.Text = Math.Sqrt(-NumberInput) + “ i”;

else if (NumberInput == 0)
txtSign.Text = “Zero”;

else
this.txtResult.Text = Math.Sqrt(NumberInput).ToString();

Other syntax differences worth noting include the following: In C#, the parentheses around the condi-
tion to be tested in an if statement are compulsory. In Visual Basic we could have written:

If sngNumberInput < 0 Then

1188

Appendix B

557599 AppB_BC02.qxd 4/28/04 10:49 AM Page 1188

Trying the same trick in C# would result in a compilation error. In general, C# is much more picky about
the syntax it expects than Visual Basic. Also, notice that when we test whether NumberInput is zero, we
use two equals signs in succession for the comparison:

else if (NumberInput == 0)

In Visual Basic, the symbol = has two purposes: it is used for assigning values to variables and for com-
paring values. C# formally recognizes these as two very different types of operation, and so uses differ-
ent symbols: = for assignment and == for comparison.

There is one other important difference that you should be aware of, because this one can easily catch
you by surprise when making the transition from Visual Basic to C#: else if is two words in C#
whereas it is one word in Visual Basic: ElseIf.

Calculating square roots: Another class method
Given our earlier comments about everything in C# being a member of the class, you won’t be surprised
to learn that C#’s equivalent of the Visual Basic Sqr function, which calculates square roots, is also a
method that is a member of a class. In this case it is the Sqrt() method, which is a static member of
another .NET base class, System.Math, which we can abbreviate to just Math in our code.

Note also that when dealing with the condition of the number input being exactly zero, we don’t specify
the this keyword in the C# code:

txtSign.Text = “Zero”;
txtResult.Text = “0”;

In the corresponding Visual Basic code you don’t specify Me explicitly either. In C#, just as in Visual
Basic, you don’t have to explicitly specify this (Me) unless the context is unclear.

Strings
To display the square root of a negative number, we use string processing:

this.txtResult.Text = Math.Sqrt(-NumberInput).ToString() + “ i”;

Note that in C# concatenation of strings is done using the symbol + rather than &. Note also that you
convert from a float to a String by calling a method on the float object. The method is called
ToString(), and this method is not static, so it is called using the same syntax as in Visual Basic when
you call methods on objects: by prefixing the name of the method with the name of the variable that rep-
resents the object, followed by a dot. One useful thing to remember about C# is that every object (and
hence every variable) inherits the ToString() functionality, and can provide its own custom method.

Extra Code in C#
We now have completed the comparison of the event handler routines in C# and Visual Basic. In the
process, we’ve learned a lot about the syntactical differences between the languages. In fact, we have
learned most of the basic syntax that C# uses to piece statements together. We have also had our first

1189

C# for Visual Basic 6 Developers

557599 AppB_BC02.qxd 4/28/04 10:49 AM Page 1189

brush with the fact that everything in C# is a class. However, if you have downloaded the sample code
for these samples from the Wrox Press Web site (www.wrox.com), and looked at the code, you will have
almost certainly noticed that we have carefully avoided any discussion of the most obvious difference
between the samples: there is a lot more code in the C# sample than simply an event handler. For the
Visual Basic version of the SquareRoot sample, the code for the event handler that we have presented
here represents the total of all the source code in the project that is visible to us. However, in the C# ver-
sion of the project, this event handler is just one method in a large source code file that contains a lot
more code.

The reason why there is so much additional code in the C# project has to do with the fact that the Visual
Basic IDE hides a lot of what’s going on in your program from you. In Visual Basic, all we needed to
write was the event handler, but in fact the sample is doing a lot more. It needs to start up, display the
form on the screen, send information to Windows regarding what it wants to do with events, and shut it
down when you have finished. In Visual Basic, you don’t have access to any of the code that does this.
By contrast, C# takes a completely different approach and leaves all this code in the open. That might
make your source code look more complicated, but it does have the advantage that if the code is avail-
able, then you can edit it, which means you gain much more flexibility in deciding how your application
should behave.

What Happens When You Run a Program
Any program involves a precise sequence of execution. When an application is launched the computer
comes across an instruction that identifies the start of the program. It will then carry on executing the
next instruction, and the next, and the next, and so on. Some of these commands will tell the computer
to jump to a different instruction, depending on the values contained in certain variables, for example.
Very often the computer will jump back and execute the same instructions again. However, there is
always this continuous sequence of executing the next instruction until the computer comes across a
command that tells it to terminate the execution of the code. This linear sequence is true of any program.
Some programs may be multithreaded, in which case there are several sequences of execution (threads).
However, each thread still follows this sequence from an initial instruction through to termination of the
program.

Of course, this sequence is not what you see when you write a Visual Basic executable program. In
Visual Basic, what you write is essentially a set of event handlers or subs, each of which is called when
the user does something. There’s typically no single start to the program, although the Form_Load event
handler comes close to that in concept. Even so, Form_Load is really only another event handler. It just
happens to be the handler for the event that gets raised when the form is loaded, which means it’ll be
the first event that runs. Similarly, if, instead of an executable, you are writing a control or a class object,
you don’t have a start point. You simply write a class and add lots of methods and properties to it. Each
method or property will execute when the client code calls it.

Note also that in Visual Basic, Sub Main does exist, and acts as the entry point to a program, but unlike
the Main() method of C#, SubMain is optional.

In order to see how we can relate the two programming ideas, let’s look at what actually happens when
any Visual Basic application—or for that matter any Windows GUI application, no matter what language
it is written in—executes. This is a bit more restrictive than the applications we mentioned before, because
now we are focusing on Windows GUI applications (in other words, not consoles, services, and so on).

1190

Appendix B

557599 AppB_BC02.qxd 4/28/04 10:49 AM Page 1190

As usual, execution starts at some well-defined point. The commands executed probably involve the cre-
ation of some Windows and controls, and displaying those controls on the screen. At that point, the pro-
gram then does something that is known as entering a message loop. What effectively happens is that the
program puts itself to sleep and tells Windows to wake it up when something interesting happens that it
needs to know about. These “interesting” things are the events that you have written handlers for, and
also a good few events that you haven’t written your own event handlers for, because even if you don’t
write a handler for a particular event, the Visual Basic IDE may quietly supply one for you. A good
example of this is the handlers that deal with resizing a form. You never see the source code for this in
Visual Basic, but a Visual Basic application is still able to respond correctly when the user attempts to
resize the form because the Visual Basic IDE has invisibly added event handlers to your project to cor-
rectly handle this situation.

Whenever an event occurs, Windows wakes up the application and calls the relevant event handler—
that’s when the code that you wrote might start executing. When the event handler subroutine exits, the
application puts itself to sleep again, once again telling Windows to wake it up when another interesting
event happens. Finally, assuming nothing goes wrong, at some point Windows will wake up the applica-
tion and inform it that it needs to shut down. At that point, the application takes any appropriate
action—for example, displaying a message box asking the user if they want to save a file—and then ter-
minates itself. Again, most of the code to do this has been quietly added to your project behind the
scenes by the Visual Basic IDE, and you never get to see it.

Figure B-2 sows the thread of execution in a typical Windows GUI application.

Figure B-2

Create and
display form

Event
Handler

Event
Handler

Event
Handler

Event
Handler

Event
Handler

Delete form

Message Loop

Start Terminate

VB Source
code

1191

C# for Visual Basic 6 Developers

557599 AppB_BC02.qxd 4/28/04 10:49 AM Page 1191

In Figure B-2, the box with a dashed border indicates the part of execution that the Visual Basic IDE lets
you get access to, and for which you can write source code: some of the event handlers. The rest of the
code is inaccessible to you, though you can specify it to some extent through your choice of application
type when you first ask Visual Basic to create a project. Recall that when you create a new project in
Visual Basic, you get a dialog box asking you what type of application you want to create: Standard EXE,
ActiveX EXE, ActiveX DLL, and so on. After you make your selection, the Visual Basic IDE uses your
choice to generate all the appropriate code for the part of the program that is outside the dashed box in
Figure B-2. The diagram shows the situation when you choose to create a Standard EXE project, and will
differ for other types of project (for example, an ActiveX DLL doesn’t have a message loop at all but
relies on clients to call the methods instead), but it should give you a rough idea of what’s going on.

In C# you can view (if not modify) the code that does everything. All the nitty-gritty details of things,
such as what’s going on inside the message loop, are hidden inside various DLLs that Microsoft has
written, but you do get to see the high-level methods that call up the various bits of processing. So, for
example, you have access to the code that starts up the program, the call to a library method that makes
your program enter the message loop and puts it to sleep, and so on. You also get access to the source
code that instantiates all the various controls you place on your form, makes them visible, and sorts out
their initial positions and sizes, and all the rest. You don’t need to write any of this code yourself. When
you use Visual Studio .NET to create a C# project, you will still get a dialog box asking you which type
of project you want to create, and Visual Studio .NET will still write all the background code for you.
The difference is that Visual Studio .NET writes this background code as source C# code, which then
becomes code that you can edit directly.

Doing things this way does, as we’ve remarked, bloat your source code. However, the huge advantage is
that you have much more flexibility in what your program does and how it behaves. It also means that
you can write many more types of project in C#. Whereas in Visual Basic, the only things you can write
are different kinds of form, and COM components, in C# you can write any of the different types of pro-
gram that run on Windows.

The C# Code for the Rest of the Program
In this section, we discuss the rest of the code for the SquareRoot sample. In the process you will learn a
bit more about classes in C#.

The C# SquareRoot sample was created in Visual Studio .NET, and the Visual Basic one was created in
the Visual Basic 6 IDE. However, the code presented here isn’t quite what Visual Studio .NET gener-
ated for us. Apart from adding the event handler, we’ve made a couple of other tweaks to the code in
order to better illustrate the principles of C# programming. However, it will still give you a good idea of
the sort of work that Visual Studio .NET does when it creates a project for you.

The full text of the source code is quite long. We will not present it here; you can find it in the accompa-
nying document, VBToCSharp_CSharpSource.pdf.

Namespaces
The main part of the C# SquareRoot source code begins with a couple of namespace declarations and a
class declaration:

namespace Wrox.ProCSharp.VbToCSharp.SquareRootSample
{

public class SquareRootForm : System.Windows.Forms.Form
{

1192

Appendix B

557599 AppB_BC02.qxd 4/28/04 10:49 AM Page 1192

The SquareRootForm class holds almost all the code with the exception a small amount of code that is
contained in the class MainEntryClass. Remember that it’s easiest here to think of a C# class resem-
bling a Visual Basic class object, with the exception that you can see the source code that begins the dec-
laration of the class. The Visual Basic IDE only gives you a separate window with the contents of the
class in it.

A namespace is something that doesn’t really have an analogy in Visual Basic, and the easiest way to
think of it is as a way of organizing the names of your classes in much the same way as a file system
organizes the names of your files. For example, you almost certainly have a number of files on your hard
drive all called ReadMe.Txt. If that name, ReadMe.Txt, were the only information you had about each
file, then you’d have no way of distinguishing between them all. However, you can distinguish between
them using their full pathnames; for example, on my computer one of them is actually C:\Program
Files\ReadMe.txt and another is G:\Program Files\HTML Help Workshop\ReadMe.txt.

Namespaces work in the same way, but without all the overhead of having an actual file system—
they are basically no more than labels. You don’t have to do anything to create a namespace, other
than declare it in your code in the way we’ve done in our sample above. The code presented above
means that the full name of the class we have defined is not SquareRootForm, but Wrox.ProCSharp
.VbToCSharp.SquareRootSample.SquarRootForm. It is extremely unlikely that anyone else will write a
class with that full name. On the other hand, if we didn’t have the namespace, there would be more risk
of confusion because someone else might conceivably write a class called SquareRootForm.

Avoiding clashes in this way is important in C#, because the .NET environment uses only these names to
identify classes, whereas the ActiveX controls created by Visual Basic used a complex mechanism involv-
ing GUIDs to avoid name clashes. Microsoft has opted for the simpler concept of namespaces because of
concerns that some of the complexities of COM, such as GUIDs, made it unnecessarily difficult for
developers to write good Windows applications.

In C#, although namespaces are not strictly required, it is strongly advised that you place all your C# for
classes in a namespace in order to prevent any possible name clashes with other software. In fact it is
quite rare to see C# code that does not start with a namespace declaration, and namespaces are an excel-
lent method to organize related classes into logical order.

Namespaces can be nested. For example, this namespace code:

namespace Wrox.ProCSharp.VbToCSharp.SquareRootSample
{

public class SquareRootForm : System.Windows.Forms.Form
{

// and so on
}

}

could have been written like this:

namespace Wrox
{

namespace ProCSharp
{

namespace VbToCSharp
{

1193

C# for Visual Basic 6 Developers

557599 AppB_BC02.qxd 4/28/04 10:49 AM Page 1193

namespace SquareRootSample
{

public class SquareRootForm : System.Windows.Forms.Form
{

// and so on
}

}
}

}
}

In this code we have added the closing curly braces just to emphasize that they always have to match
up. Curly braces are used to mark the boundaries of namespaces and classes just as they are used to
mark the boundaries of methods and compound statements.

The using directive
The final part of the code that begins the SquareRoot project consists of using directives:

using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;

namespace Wrox.ProCSharp.VbToCSharp.SquareRootSample
{

These using directives are here to simplify the code. Full names of classes, including the namespace
names, are long. For example, later in this code we will be defining a couple of textboxes. A TextBox con-
trol is represented by the class System.Windows.Forms.TextBox. If we had to write that in our code
every time we wanted to refer to TextBox, our code would look very messy. Instead, the statement using
System.Windows.Forms; instructs the compiler to look in this namespace for any classes that are not in
the current namespace, and for which we have not specified a namespace. Now we can simply write
TextBox whenever we want to refer to that class. It is common to start any C# program with a number of
using directives that bring in all the namespaces we are going to use into the set of namespaces searched
by the compiler. The namespaces specified in the previous code are all namespaces that cover various
parts of the .NET base-class library, and so allow us to conveniently use various .NET base classes.

The class definition: Inheritance
Now we come to the definition of the SquareRootForm class. The definition itself is fairly simple:

public class SquareRootForm : System.Windows.Forms.Form
{

The keyword class tells the compiler that we are about to define a class. The interesting part is the colon
after the name of the class, which is followed by another name, Form. This is the point at which we need
to bring in that other important C# concept that we mentioned earlier: inheritance.

1194

Appendix B

557599 AppB_BC02.qxd 4/28/04 10:49 AM Page 1194

What the previous code does is tell the compiler that the SquareRootForm class inherits from the class
Form (actually System.Windows.Forms.Form). What this means is that the class has not only any
methods, properties, and so on that we define; it also inherits everything that was in Form. Form is an
extremely powerful .NET base class, which gives you all the features of a basic form. It contains methods
that get the form to display itself, and a large number of properties including Height, Width, Desktop
Location, and BackColor (the background color of the form), which control the appearance of the
form on the screen. By inheriting from this class, our own class gets all these features as well, and is
therefore already a fully fledged form. The class you inherit from is known as the base class, and the
new class is known as the derived class.

If you have worked with interfaces before, the concept of inheritance will not be new to you. What we
have here, however, is much more powerful than interface inheritance. When a COM interface inherits
from another interface, it only gets what the interface contains—the names and signatures of the meth-
ods and properties. However, a class contains all the code that implements these methods and so on as
well, just as in Visual Basic a class object does. This means that SquareRootForm gets all the implemen-
tations of just about everything in Form, as well as the method names. This kind of inheritance is known
as implementation inheritance, and is not new to C#: It has been a fundamental concept of classic object-
oriented programming (OOP) for decades. C++ and Java programs, in particular, use this concept exten-
sively, but it was not supported in Visual Basic. (Implementation inheritance does have similarities to
subclassing.) As you get used to writing C# programs, you will find that the entire architecture of a typi-
cal C# program is almost invariably based around implementation inheritance.

But implementation inheritance is even more powerful than that. As we will see later on, when a class
inherits from another class, it doesn’t have to take all the implementations of everything in the base
class. If you want, you can modify the implementations of particular methods and properties using a
technique called overriding. This means that you can create a class that is very similar to an existing class,
but has some differences in how it works or what it does. That makes it very easy for you to reuse code
that other people have written, thereby saving yourself a lot of development time. It is also important to
understand that you don’t need access to the source code of the base class in order to derive from it. For
obvious commercial reasons, Microsoft is keeping the source code of Form to itself. The fact that the
compiled library is available in the form of an assembly is sufficient for us to be able to inherit from the
class, taking those methods we want and overriding those that we don’t want.

Program Entry Point
We will now jump to near the end of the sample code, to examine the main program entry point. That is
the Main() function, reproduced below:

class MainEntryClass
{

/// <summary>
/// The main entry point for the application.
/// </summary>

[STAThread] static void Main()
{

SquareRootForm TheMainForm = new SquareRootForm();
Application.Run(TheMainForm);

}
}

1195

C# for Visual Basic 6 Developers

557599 AppB_BC02.qxd 4/28/04 10:49 AM Page 1195

This doesn’t look at first sight like a very obvious program entry point, but it is. The rule in C# is that
program execution starts at a method called Main(). This method must be defined as a static method in
some class. There can normally be only one Main() method throughout all the classes in the source
code—otherwise the compiler won’t know which one to choose, without further compilation switches.
Main() here is defined as not taking any parameters and returning void (in other words, not returning
anything). This isn’t the only possible signature for the method, but it is the usual one for a Windows
application (command line applications may take parameters; these are any command line arguments
you specify).

Since Main() has to be in a class, we’ve put it in one: a class called MainEntryClass. Although this
class doesn’t contain anything else, it’s legitimate for a class that contains the main entry point to contain
other methods as well. The fact that Main() is a static method is important. Recall that we said earlier
that static methods can be run without actually creating an object of the class first. Since the very first
thing that happens when the program is run is that Main() is called, there aren’t yet any instances of
any classes, hence the entry point has to be static.

Apart from the static keyword, the definition of Main() looks much like the earlier method definition
we examined. However, it is prefixed by the word [STAThread] in square brackets. STAThread is an
example of an attribute—another concept that has no equivalent in Visual Basic source code.

An attribute is something that provides extra information to the compiler about some item in the code,
and always takes the form of a word (possibly with some parameters as well, though not in this case) in
square brackets, immediately before the item to which it applies. This particular attribute tells the com-
piler about the threading model that the code needs to run in. Without going into details, note that writ-
ing [STAThread] in the C# source code has a similar effect to selecting the threading model under
Project Properties in the Visual Basic IDE, although in Visual Basic you can only do this for ActiveX DLL
and ActiveX Control projects.

This comparison shows once again the different philosophy of C# compared to Visual Basic. In Visual
Basic, the threading model is there and needs to be specified, but it is all but hidden by the Visual Basic
IDE, so you can’t get to it in the Visual Basic source code—in Visual Basic you have to access it through
the project settings.

Instantiating Classes
Now let’s examine the code inside the Main() method. The first thing we need to do is create the form,
that is, instantiate a SquareRootForm object. This is dealt with by the first line of code:

SquareRootForm TheMainForm = new SquareRootForm();

We obviously can’t compare this with the corresponding Visual Basic code, since the corresponding
Visual Basic commands aren’t available as source code, but we can do a comparison—if we imagine that
in some Visual Basic code we are going to create a dialog box. In VB, the way you would do that would
look something like this:

Dim SomeDialog As MyDialogClass
Set SomeDialog = New MyDialogClass

1196

Appendix B

557599 AppB_BC02.qxd 4/28/04 10:49 AM Page 1196

In this Visual Basic code, we first declare a variable that is an object reference: SomeDialog refers to a
MyDialogClass instance. Then, we actually instantiate an object using the Visual Basic New keyword,
and set our variable to refer to it.

That’s exactly what is going on in the C# code too: we declare a variable called TheMainForm, which is a
reference to a SquareRootForm object, then we use the C# new keyword to create an instance of
SquareRootForm, and set our variable to refer to it. The main syntactical difference is that C# allows us
to combine both operations into one statement, in the same way that we were previously able to declare
and initialize the NumberInput variable in one go. Note also the parentheses after the new expression.
That is a requirement of C#. When creating objects, you always have to write these brackets in. The rea-
son is that C# treats creating an object a bit like a method call, to the extent that you can even pass
parameters into the call to new, to indicate how you want the new object to be initialized. In this case, we
don’t pass in any parameters, but we still need the parentheses.

C# classes
So far we’ve mentioned that C# classes are similar to class modules in Visual Basic. We’ve already seen
one difference in that C# classes allow static methods. The code for the Main() method above now high-
lights another difference. If we were doing something like this in Visual Basic, we would also need to set
the object created to Nothing when we have finished with it. However, nothing like that appears in our
C# code, because in C# it is not necessary to do this. That’s because C# classes are more efficient and
lightweight than their Visual Basic counterparts. Visual Basic class objects are really COM objects, which
means they include some sophisticated code that checks how many references to the object are being
held, so that each object can destroy itself when it detects it is no longer needed. In Visual Basic, if you
don’t set your object reference to Nothing when you have finished with the object, this is considered
bad practice because it means the object does not know that it is no longer needed, so it can stay in mem-
ory, possibly until the whole process ends.

However, for performance reasons, C# objects don’t perform this kind of checking. Instead, C# makes
use of the .NET garbage collection mechanism. What happens is that, instead of each object checking
whether it should still be alive, every so often the .NET runtime hands control to the garbage collector.
The garbage collector examines the state of memory, uses a very efficient algorithm to identify those
objects that are no longer referenced by your code, and removes them. Because of this mechanism, it is
not considered important that you reset references when you have finished with them—it is normally
sufficient to simply wait until the variable goes out of scope.

If, however, you do want to set reference variables not to refer to anything, then the relevant C# keyword
is null, which is identical to Nothing in Visual Basic. Hence where in Visual Basic you would write:

Set SomeDialog = Nothing

in C# you would write something like:

TheMainForm = null;

Note, however, that this by itself doesn’t achieve much in C# unless the variable TheMainForm still has a
substantial lifetime left, because the object won’t be destroyed until the garbage collector is called up.

1197

C# for Visual Basic 6 Developers

557599 AppB_BC02.qxd 4/28/04 10:49 AM Page 1197

Entering the message loop
We will now consider the final statement in the Main() method:

Application.Run(TheMainForm);

This statement is the one that enters the message loop. What we are actually doing is calling a static
method of the class System.Windows.Forms.Application. The method in question is the Run()
method. This method handles the message loop. It puts the application (or strictly speaking, the thread)
to sleep and requests Windows to wake it up whenever an interesting event occurs. The Run() method
can take one parameter, which is a reference to the form that handles all events. Run() exits when an
event instructing the form to terminate has occurred and been handled.

After the Run() method has exited, there is nothing else to be done, so the Main() method returns. Since
this method was the entry point to the program, when it returns execution of the entire process stops.

One piece of syntax in the above statements that you might find surprising is that we use parentheses
when calling the Run() method, even though we are not using any return value from this method, and
hence we are doing the equivalent of calling a Visual Basic sub. In this situation, Visual Basic does not
require parentheses, but the rule is that in C# you always use parentheses when calling any method.

The SquareRootForm Class
We have now seen how C# enters a message loop, but we have not yet seen the process of displaying
and creating the form itself, and we have also been rather vague about the calling of the event handlers.
We have indicated that Windows calls event handlers, such as our OnClickButtonResults() method.
But how does Windows know that that is the method to be called? We can find the answers to those
questions in the SquareRootForm class definition, and in its base class, Form.

First we note that the SquareRootForm class has quite a number of member fields. (Member field is C#
parlance for a variable that is defined as a member of a class. You can think of it as being like a Visual
Basic variable that has form scope, or alternatively as being like a Visual Basic variable that is defined as
a member of a class module. Each such variable is associated with a particular instance of a class—a par-
ticular object—and stays in scope for as long as its containing object remains alive.)

public class SquareRootForm : System.Windows.Forms.Form
{

private System.Windows.Forms.TextBox txtNumber;
private System.Windows.Forms.TextBox txtSign;
private System.Windows.Forms.TextBox txtResult;
private System.Windows.Forms.Button cmdShowResults;
private System.Windows.Forms.Label label1;
private System.Windows.Forms.Label label2;
private System.Windows.Forms.Label label3;
private System.Windows.Forms.Label label4;

Always use parentheses in C# when calling any method, whether or not you are
going to use any return value.

1198

Appendix B

557599 AppB_BC02.qxd 4/28/04 10:49 AM Page 1198

These fields each correspond to one of the controls. We can see clearly the three TextBox and the Button
controls, as well as the four Label controls, corresponding to the areas of text on the form. We won’t be
doing anything with the labels so we didn’t bother to give them more user-friendly names.

However, each of these variables is just a reference to an object, so the fact that these variables exist
doesn’t imply any instances of these objects exist—the objects have to be instantiated separately. The
process of instantiating these controls is done in a constructor. A constructor in C# is analogous to Visual
Basic subs such as Form_Load, Form_Initialize, and Class_Initialize. It is a special method that
is automatically called whenever an instance of the class is created, and it contains whatever code is
needed to initialize the instance.

We can spot the constructor in the class because a constructor always has the same name and casing as
the class itself. In this case we just look for a method called SquareRootForm:

public SquareRootForm()
{

InitializeComponent();
}

Note that because this is a constructor, not a method, that you can call, it doesn’t have any return type
specified. It does, however, have parentheses after its name just like a method. You can use these paren-
theses to specify parameters to be passed to the constructor (you can pass parameters in the parentheses
after the new clause when creating a variable). The definition of the constructor indicates if any param-
eters are needed to create an instance of the object. However, we don’t have any parameters in this
example; we’ve included them in the Employee code sample later in the appendix.

In this case the constructor just calls a method, InitializeComponent(). This is because of Visual
Studio .NET. Visual Studio .NET has the same set of features as the Visual Basic IDE for manipulating
controls graphically—clicking to place controls on the form and so on. However, because now with C#
the definitions of all the controls are set out in the source code, Visual Studio .NET has to be able to read
the source code to find out what controls are around on your form. It does this by looking for an
InitializeComponent() method, and seeing what controls are instantiated there.

InitializeComponent() is a huge method, so we won’t look at it all, but it starts off like this:

private void InitializeComponent()
{

this.txtNumber = new System.Windows.Forms.TextBox();
this.txtSign = new System.Windows.Forms.TextBox();
this.cmdShowResults = new System.Windows.Forms.Button();
this.label3 = new System.Windows.Forms.Label();
this.label4 = new System.Windows.Forms.Label();
this.label1 = new System.Windows.Forms.Label();
this.label2 = new System.Windows.Forms.Label();
this.txtResult = new System.Windows.Forms.TextBox();

The previous code is a set of calls to actually instantiate all the controls on the form. This snippet doesn’t
really contain any new pieces of C# syntax. The next part of the code starts setting properties on the controls:

//
// txtNumber

1199

C# for Visual Basic 6 Developers

557599 AppB_BC02.qxd 4/28/04 10:49 AM Page 1199

//

this.txtNumber.Location = new System.Drawing.Point(160, 24);
this.txtNumber.Name = “txtNumber”;
this.txtNumber.TabIndex = 0;
this.txtNumber.Text = “”;

//
// txtSign
//

this.txtSign.Enabled = false;
this.txtSign.Location = new System.Drawing.Point(160, 136);
this.txtSign.Name = “txtSign”;
this.txtSign.TabIndex = 1;
this.txtSign.Text = “”;

This code sets up the start positions and initial text of two of the controls, the input TextBox control and
the TextBox control that displays the sign of the number input. One new bit of code is that the location
relative to the top left corner of the screen is specified using a Point. Point is a .NET base class (in fact,
a struct) that stores x and y coordinates. The syntax for the two lines above that set the Location is
instructive. The TextBox.Location property is just a reference to a Point, so in order to set it to a
value we need to create and initialize a Point object that holds the correct coordinates. This is the first
time that we’ve seen a constructor that takes parameters—in this case the horizontal and vertical coordi-
nates of the Point, and hence of the control. If we’d wanted to translate one of these lines into Visual
Basic, assuming we’d defined some Visual Basic class module called Point, and we had a class that had
such a property, the best we would be able to do would look something like this:

Dim Location As Point
Set Location = New Point
Location.X = 160
Location.Y = 24
SomeObject.Location = Location

Compare this to the C# code:

someObject.Location = new System.Drawing.Point(160, 24);

The relative compactness and readability of the equivalent C# statement should be obvious! Now we
will look at the same commands for the button. In this case, we see the same kinds of properties being
set up, but here there is one other thing that needs to be done: we need to tell Windows to call our event
handler when the button is clicked. The line that does this is shown in bold:

this.cmdShowResults.Name = “cmdShowResults”;

this.cmdShowResults.Size = new System.Drawing.Size(88, 23);

this.cmdShowResults.TabIndex = 3;

this.cmdShowResults.Text = “Show Results”;

this.cmdShowResults.Click += new System.EventHandler(this.OnClickShowResults);

1200

Appendix B

557599 AppB_BC02.qxd 4/28/04 10:49 AM Page 1200

What’s going on here is this: The button, which is referred to by the cmdShowResults button object,
contains an event, Click, that will be raised when the user clicks the button. We need to add our event
handler to this event. Now C# doesn’t allow us to pass names of methods around directly; instead we
have to wrap them up into something called a delegate. This is done to ensure type safety (see Chapter
6), and is the reason for the new System.EventHandler() text in the code. Once we’ve wrapped the
name of the event handler up, we add it to the event using an operator +=, which we will discuss next.

Arithmetic assignment operators
The += symbol represents what is known as the addition-assignment operator in C#. It provides a con-
venient shorthand for cases where you want to add some quantity to another quantity. How it works is
this. Say, in Visual Basic you had declared two Integers, A and B, and you were going to write:

B = B + A

In C# the equivalent type is int, and you can write something very similar:

B = B + A;

However, in C#, there is an alternative shorthand for this:

B += A;

+= really means “add the expression on the right to the variable on the left”, and it works for all the
numeric data types, not just int. Not only that but there are other similar operators, *=, /=, and -=
which respectively multiply, divide, and subtract the quantity on the left by the one on the right. So for
example, to divide a number by 2, and assign the result back to B, you’d write:

B /= 2;

C# has other operators that represent bitwise operations, as well as % that takes the remainder on
division—and almost all of these have corresponding operation assignment operators (see Chapter 2).

In the SquareRootForm sample, we have simply applied the addition assignment operator to an event;
the line:

this.cmdShowResults.Click += new System.EventHandler(this.OnClickShowResults);

simply means “add this handler to the event.”

Note that operators like +, -, *, and so on in Visual Basic only have meaning when applied to numeric
data. In C#, however, they can be applied to any type of object.

The previous statement needs to be qualified a bit. In order to be able to apply these operators to other
types of object, you have to first tell the compiler what these operators mean for other types of objects—
a process known as operator overloading. Suppose you want to write a class that represented a mathe-
matical vector. In Visual Basic you write a class module, and then add:

Dim V1 As Vector
Set V1 = New Vector

1201

C# for Visual Basic 6 Developers

557599 AppB_BC02.qxd 4/28/04 10:49 AM Page 1201

In mathematics, it’s possible to add vectors, which is where operator overloading comes in. But Visual
Basic doesn’t support operator overloading, so instead in Visual Basic you’d probably define a method,
Add, on the Vector, so you could do this:

‘ V1, V2, and V3 are Vectors
Set V3 = V1.Add(V2)

In Visual Basic, that’s the best you can do. However, in C#, if you define a Vector class, you can add an
operator overload for + to it. The operator overload is basically a method that has the name operator +,
and which the compiler will call up if it sees + applied to a Vector. That means that in C# you are able
to write:

// V1, V2 and V3 are Vectors
V3 = V1 + V2;

In Chapter 5, we detail the code for overloading such a Vector class, and discuss operator overloading
in more detail.

Obviously you wouldn’t want to define operator overloads for all classes. For most classes that you
write, it wouldn’t make sense to do things like add or multiply objects together. However, for the classes
for which it does make sense to do this, operator overloads can go a long way towards making your
code easier to read. That’s what has happened with events. Because it makes sense to talk about adding
a handler to an event, an operator overload has been supplied to let us do this using the intuitive syntax
using the + (and +=) operators. You can also use – or -= to remove a handler from an event.

Summing up
We’ve really got as far as we can go with the SquareRootForm code samples. There is a lot more C# code
that we haven’t examined in the C# version of this application, but this extra code has largely to do with
setting up the various other controls on the form, and doesn’t introduce any new principles.

Up to now, you’ve got a flavor of the syntax of C#. We’ve seen how it lets you write statements in a way
that is often much shorter than the corresponding Visual Basic code. We have also seen the way that C#
places all the code in the source file, unlike Visual Basic, where much of the background code is hidden
from you—something that makes your code simpler at the cost of reducing your flexibility in the kinds
of applications you can write. We’ve also had our first hints at the concepts behind inheritance.

However, what we have not yet seen is a real example of some code that you can write in C#, where it
would be extremely hard to write Visual Basic code to achieve the same result. We are going to see an
example of this in the next code sample, in which we write a couple of classes that illustrate the kinds of
things we can do with inheritance.

Example: Employees and Managers
For this example, we are going to assume that we are writing an application that does some sort of pro-
cessing on data that pertains to company employees. We are not really going to worry about what sort of
processing this involves—we are more interested in the fact that this means it will be quite useful to
write a C# class (or a Visual Basic class module) that represents employees. We are assuming that this
will form part of a software package that we can sell to companies to help them with their salary pay-
ments and so on.

1202

Appendix B

557599 AppB_BC02.qxd 4/28/04 10:49 AM Page 1202

The Visual Basic Employee Class Module
The following code represents our attempt to code an Employee class module in Visual Basic. The class
module exposes two public properties, EmployeeName and Salary, as well as a public method,
GetMonthlyPayment, that returns the amount the company needs to pay the employee each month.
This isn’t the same as the salary, partly because the salary is assumed to be the salary per year, and
partly because later on we want to allow for the possibility of adding more money to what the company
pays its employees (such as performance-related bonuses):

‘local variable(s) to hold property value(s)

Private mStrEmployeeName As String ‘local copy
Private mCurSalary As Currency ‘local copy

Public Property Let Salary(ByVal curData As Currency)
mCurSalary = curData

End Property

Public Property Get Salary() As Currency
Salary = mCurSalary

End Property

Public Property Get EmployeeName() As String
EmployeeName = mStrEmployeeName

End Property

Public Sub Create(sEmployeeName As String, curSalary As Currency)
mStrEmployeeName = sEmployeeName
mCurSalary = curSalary

End Sub

Public Function GetMonthlyPayment() As Currency
GetMonthlyPayment = mCurSalary/12

End Function

In real life we’d probably be writing something more complex than this, but this class suffices for our
purpose. In fact, we already have a problem with this Visual Basic class module. Most people’s names
do not change very often, which is why we have made the EmployeeName property read-only. That still
requires us to set up the name in the first place. This is done using a Create method, which sets the
name and the salary. That means that the process of creating an employee object looks like this:

Dim Britney As Employee
Set Britney = New Employee
Britney.Create “Britney Spears”, 20000

This is workable but messy. The problem is that we have to write a separate initialization method,
Create, instead, and hope that everyone writing client code will always remember to call it. This
solution is awkward, because it doesn’t make any sense to have an Employee object lying around that
doesn’t have a name and a salary set. However, that is exactly what we have in the above code for the
brief instant between instantiating Britney and initializing the object in the code above. As long as you
always remember to call Create, you won’t run into any problems, but there is a potential source of
bugs here.

1203

C# for Visual Basic 6 Developers

557599 AppB_BC02.qxd 4/28/04 10:49 AM Page 1203

In C# the situation is completely different. In C# we are able to supply parameters to constructors. All
we need to do is make sure that when we define our C# Employee class, the constructor takes the name
and salary as parameters. Then we can write:

Employee Britney = new Employee(“Britney Spears”, 20000.00M);

This is a lot neater and less prone to bugs. Of course, we could overload the constructor to only supply a
name, for example. By the way, note the ‘M’ appended to the salary. This is because the C# equivalent to
the Visual Basic Currency type is called decimal, and ‘M’ appended to a number in C# indicates we
want the number interpreted as a decimal. We don’t have to supply it, but it makes for a useful extra
compile-time check.

The C# Employee class
We can now present our first definition of the C# version of Employee (note that this example only
shows the class definition, not the containing namespace definition):

class Employee
{

private readonly string name;
private decimal salary;

public Employee(string name, decimal salary)
{

this.name = name;
this.salary = salary;

}

public string Name
{

get
{

return name;
}

}

public virtual decimal Salary
{

get
{

return salary;
}
set
{

salary = value;
}

}

public decimal GetMonthlyPayment()
{

return salary/12;

1204

Appendix B

557599 AppB_BC02.qxd 4/28/04 10:49 AM Page 1204

}

public override string ToString()
{

return “Name: “ + name + “, Salary: $” + salary.ToString();
}

}

Working through this code, we first see a couple of private variables, the so-called member fields corre-
sponding to the member variables in the Visual Basic class module. The field name is marked readonly.
Roughly speaking, this ensures that this field must be set when an Employee object is created and can-
not subsequently be modified. In C# it isn’t usual to use Hungarian notation for the names of variables,
so they are called simply name and salary, rather than mStrEmployeeName and mCurSalary.
(Hungarian notation means that we prefix the names of variables with some letters that indicate their
type [mStr, mCur and so on]. This type of notation is not considered as important nowadays because edi-
tors are more sophisticated and can supply automatic information about data types. Hence, the recom-
mendation is not to use Hungarian notation in C# programs.)

Our Employee class also contains a constructor, a couple of properties (Name and Salary), and two
methods (GetMonthlyPayment() and ToString()). We discuss all of these next.

Note that the names of the properties Name and Salary differ only in case from the names of their cor-
responding fields. This isn’t a problem, because C# is case-sensitive. The way we’ve named the proper-
ties and fields here corresponds to the usual convention in C# and shows how we can actually take
advantage of case sensitivity.

The Employee constructor
Following the field declarations in the previous code, we have a “method” that has the same name as the
class, Employee. This tells us that it is a constructor. However, this constructor takes parameters and
does the same thing as the Create method in the Visual Basic version. It uses the parameters to initialize
the member fields:

public Employee(string name, decimal salary)
{

this.name = name;
this.salary = salary;

}

There’s a potential syntax problem, because the obvious names for the parameters are the same as the
names of the fields: name and salary. But we’ve resolved this problem using the this reference to
mark the fields. We could have given the parameters different names instead, but the way we’ve done it
is still clear enough and means that the parameters keep the simple names that correspond to their
meanings. It’s also the conventional way of dealing with this situation in C#.

We can now explain the precise meaning of the readonly qualifier on the name field:

private readonly string name;

1205

C# for Visual Basic 6 Developers

557599 AppB_BC02.qxd 4/28/04 10:49 AM Page 1205

If a field is marked as readonly then the only place in which it may be assigned to is in the constructor
to the class. The compiler will raise an error if it finds any code in which we attempt to modify the value
of a readonly variable anywhere except in a constructor. This provides a very good way of guarantee-
ing that a variable cannot be modified after it has been set. It wouldn’t be possible to do anything like
this in Visual Basic because Visual Basic doesn’t have constructors that take parameters, so class-level
variables in Visual Basic have to be initialized via methods or properties that are called after the object
has been instantiated.

Incidentally, this constructor doesn’t just allow us to supply parameters to initialize an Employee object:
it actually forces us to do so. If we tried to write the following code, it would not compile:

Employee Britney = new Employee(); // will not compile now

The compiler would raise an error because, in C#, a constructor must always be called when a new
object is created. However, we have not supplied any parameters, and the only constructor available
requires two parameters. Therefore, it is simply not possible to create an Employee object without sup-
plying any parameters. This provides a good guarantee against bugs caused by uninitialized Employee
objects!

It is possible to supply more than one constructor to a class so that you get a choice of what sets of
parameters you want to pass in when you create a new object of that class. We’ll see how to do this later
in the chapter. However, for this particular class, our one constructor is quite adequate.

Properties of Employee
We next come to the properties Name and Salary. The C# syntax for declaring a property is very differ-
ent from the corresponding Visual Basic syntax, but the basic principles are unchanged. We need to
define two accessors to respectively get and set the values of the property. In Visual Basic, these are syn-
tactically treated like methods, but in C# we declare the property as a whole, then define the accessors
within the definition of the property:

public decimal Salary
{

get
{

return salary;
}
set
{

salary = value;
}

}

In Visual Basic, the compiler knows that we are defining a property, because we use the keyword
Property. In C# this information is conveyed by the fact that the name of the property is followed
immediately by an opening brace. If we were defining a method, this would be an opening parenthesis
signaling the start of the parameter list; in the case of a field, this would be a semicolon, marking the end
of the definition.

1206

Appendix B

557599 AppB_BC02.qxd 4/28/04 10:49 AM Page 1206

Note also that the definitions of the get and set accessors do not contain any parameter lists. That’s
because we know that Salary is a decimal and that the get accessor will return a decimal and take no
parameters, while the set accessor will take one decimal parameter and return void. For the set
accessor, this parameter is not explicitly declared, but the compiler always interprets the word value as
referring to it.

Once again, the syntax for defining properties shows how C# syntax is more compact, and can save you
a fair bit of typing!

If you want to make a property read-only, you simply omit the set accessor, as we have done for the
Name property:

public string Name
{

get
{

return name;
}

}

Methods of Employee
Our example also includes two methods: GetMonthlySalary() and ToString().

GetMonthlySalary() requires little explanation, since we have covered most of the relevant C# syntax
already. It simply takes the salary and divides it by 12 to convert it from an annual to a monthly salary,
and returns the result:

public decimal GetMonthlyPayment()
{

return salary/12;
}

The only new piece of syntax here is the return statement. In Visual Basic, we specify a return value
from a method by setting a dummy variable that has the same name as the function to the required
value:

GetMonthlyPayment = mCurSalary/12

In C#, we achieve the same result by appending a parameter to a return statement (without parenthe-
ses). return in C# also specifies that we are exiting from the function, so the C# statement:

return salary/12;

is actually equivalent to the following Visual Basic code:

GetMonthlyPayment = mCurSalary/12
Exit Function

1207

C# for Visual Basic 6 Developers

557599 AppB_BC02.qxd 4/28/04 10:49 AM Page 1207

ToString() is slightly more interesting. In most cases, when you write a C# class, it is a good idea to
write a ToString() method that can be used to get a quick view of the contents of an object. As men-
tioned before, ToString() is already available because all classes inherit it from System.Object.
However, the version in System.Object simply displays the name of the class, not any data in the class
instance. Microsoft has already overridden this method for all the numeric data types (int, float, and so
on) to display the actual value of the variable, and it’s quite useful for us to do the same in our classes. If
nothing else, it can be a useful way of seeing the contents of an object when you are debugging:

public override string ToString()
{

return “Name: “ + name + “, Salary: $” + salary.ToString();
}

Our override here simply displays the name and the salary of the employee. One new piece of syntax is
that we have declared the method as override. C# requires that you mark method overrides in this way;
it will raise a compilation error if you don’t. This eliminates the risk of any potential bugs that might lead
you, for example, to override accidentally an existing method by that name without realizing it.

We have now completed writing the Employee class in both Visual Basic and C#, and so far, although
there is a bit of awkwardness about constructing and initializing an Employee instance in the Visual Basic
version, both languages have coped reasonably well with our requirements. However, one of the aims of
this appendix is to show you why C# can be so much more powerful than Visual Basic in some situations.
So it’s about time we started demonstrating some useful C# code where it would be very difficult if not
impossible to achieve the same result using Visual Basic. Let’s start with a static field and property.

Static Members
We have mentioned a few times that in C# classes can have special methods referred to as static meth-
ods, which can be called without instantiating any objects. These methods do not have any counterpart
in VB. In fact, not only methods, but also fields, properties, or any other class member can be static.

To illustrate how static members work and why you would use them, imagine that we would like our
Employee class to support retrieving the name of the company that each employee works for. Now there is
an important difference here between the company name and the employee name, in that each employee
object represents a different employee, and therefore needs to store a different employee’s name. This is the
usual behavior for variables in class modules in Visual Basic, and the default behavior for fields in C#.
However, if your organization has just purchased the software that contains the Employee class, obviously
all of the employees will have the same company name. This means that it would be wasteful to store the
company name separately for each employee. You’d just be duplicating the string unnecessarily. Instead,
what we want is just to store the company name once, and then have every employee object access the
same data. This is how a static field works. Let’s declare a static field, companyName:

class Employee
{

private string name;
private decimal salary;
private static readonly string companyName;

The term static has a very different meaning in C# from its meaning in Visual Basic.

1208

Appendix B

557599 AppB_BC02.qxd 4/28/04 10:49 AM Page 1208

In this code, we have simply declared another field, but by marking it as static we have instructed the
compiler to store this variable only once, no matter how many Employee objects are created. In a real
sense, this static field is associated with the class as a whole, rather than with any one object.

We have also declared this field as read-only. This makes sense because, like the employee’s name, the
company name should not be changed when the program is running.

Of course, merely declaring this field isn’t enough. We also need to make sure it is initialized with the
correct data. Where should we do that? Not in our constructor; the constructor is called every time we
create an Employee object, whereas we only want to initialize companyName once. The answer is that C#
provides another construct for this purpose, known as the static constructor. The static constructor acts
like any other constructor, but it works for the class as a whole, not for any particular object. If you
define a static constructor for a class, then it will be executed just once. As a rule, it will execute before
any client code attempts to access the class, typically when the program first starts up. Let’s add a static
constructor to the Employee class:

static Employee()
{

companyName = “Wrox Press Pop Stars”;
}

As usual, we identify the constructor because it has the same name as the class. This one is also identi-
fied as static, hence it is the static constructor. It is marked neither as public nor as private because
it is called by the .NET runtime, not by any other C# code. So, just for the static constructor, we don’t
need any access modifier.

In our example, we have implemented the static constructor by hard-coding in a company name. More
realistically, we might read a registry entry or a file, or connect to a database to find out the company
name. Incidentally, because the companyName field has been declared as both static and read-only, the
static constructor is the only place in which we can legally assign a value to it. We have one last thing to
do, which is to define a public property that lets us access the company name.

public static string CompanyName
{

get
{

return companyName;
}

}

The CompanyName property has also been declared as static, and we can now see the real significance of
a static method or property: a method or property can be declared as static if it accesses only static fields
and does not access any data that is associated with a particular object.

As we have already seen, the syntax for calling static members of the class from outside the class is
slightly different from that used for other members. Because a static member is associated with the class
rather than with any object, we use the class name rather than the name of a variable to call it:

string Company = Employee.CompanyName;

1209

C# for Visual Basic 6 Developers

557599 AppB_BC02.qxd 4/28/04 10:49 AM Page 1209

The concept of static members is very powerful, and provides a very useful means for a class to imple-
ment any functionality that is the same for every object of that class. The only way that you can achieve
anything like this in Visual Basic is by defining global variables. The disadvantage of global variables is
that they are not associated with any particular class, and this can lead to name conflict issues.

Here are two more situations in which you might use static class members:

❑ You might choose to implement a MaximumLength property for our Employee class, or for that
matter for any other class that contains a name, where you might need to specify the maximum
length of the name.

❑ In C#, most of the numeric data types have static properties that indicate their maximum possi-
ble values. For example, in order to find out the biggest values that can be stored in an int and
a float, you could write:

int MaxIntValue = int.MaxValue;
float MaxFloatValue = float.MaxValue;

Inheritance
In this section we take a closer look at how implementation inheritance works. Suppose that a year after
we have shipped our software package it’s time for the next version. One point that our customers have
commented on is that some of their employees are actually managers, and managers usually get profit-
related bonuses as well as regular salaries. This means that our GetMonthlyPayment() method doesn’t
give the complete information for managers. The practical upshot of this is that there we have to have
some way of dealing with managers, too.

For the purposes of our example we assume that the bonus is some constant figure, that can be specified
when we create a manager. We don’t want to get bogged down in doing profit-related calculations here.

If we were coding in Visual Basic, how would we set about upgrading our software? There are two pos-
sible approaches; both of them have severe disadvantages:

❑ We could write a new class, Manager.

❑ We could modify the Employee class.

Writing a new class is probably the approach that would result in the least amount of work for us, since
we’d probably start by simply copying and pasting all the code for the Employee class module and then
modifying our copy of the code. The trouble is that Employee and Manager have an awful lot of code in
common, such as the code surrounding the Name, CompanyName, and Salary properties. Having the
same code duplicated is dangerous. What happens if, at some point in the future, you need to modify
the code. Some poor developer is going to have to remember to make exactly the same changes to both
classes. That is just asking for bugs to creep in. Another problem is that there are now two unrelated
classes that client code will have to deal with, which is likely to make it harder for the people writing the
code that uses Employee and Manager. (Although you could get around this by wrapping the common
properties into an interface and having both Employee and Manager implement this interface.)

1210

Appendix B

557599 AppB_BC02.qxd 4/28/04 10:49 AM Page 1210

A slightly different alternative is to write a Manager class, and put an Employee object inside it as a
class-scoped variable. This solves the problem of duplicating code, but still leaves us with two separate
objects, as well as an awkward, indirect, syntax for calling employee methods and properties (for exam-
ple, objManager.objEmployee.Name).

If we opt for modifying the Employee class module, then we could, for example, add an extra field, a
Boolean, that indicates whether this Employee is a manager or not. Then, at relevant parts of the code,
we would test this Boolean in an If statement, to check what to do. This solves the problem of having
two unrelated classes. However, it introduces a new difficulty: As mentioned earlier, we decide a year or
so later to add manager support. This means that the Employee class module has presumably been
shipped, tested, fully debugged, and is known to be working correctly. Do we really want to have to
dive in and start pulling working code to bits, with all the associated risk of introducing new bugs?

In short, we have reached a point at which Visual Basic can not offer any satisfactory solutions. Enter C#,
which does offer a way out of this quandary, through inheritance.

As mentioned earlier, inheritance involves adding or replacing features of classes. In our previous exam-
ple, the SquareRootForm class added stuff to the .NET class, System.Windows.Forms.Form. It defined
the controls to go on the SquareRootForm as member fields, and also added an event handler. In the
Employee example we are going to demonstrate both adding and replacing features of a base class. We
will define a Manager class, which is derived from Employee. We will add a field and property that rep-
resent the bonus, and replace the GetMonthlyPayment() method (for completeness, we’ll also replace
ToString() so that it displays the bonus as well as the name and salary). This all means that we will
have a separate class. But we do not need to duplicate any code, nor do we need to make any big
changes to the Employee class either. You might think that we still have a problem of two different
classes—which makes it more difficult to write client code. However, C# provides a solution for this
problem as well.

Inheriting from the Employee Class
Before we define the Manager class we need to make one small change to Employee—we have to declare
the GetMonthlyPayment() method as virtual:

public virtual decimal GetMonthlyPayment()
{

return salary/12;
}

Roughly speaking, this is the C# way of saying that this is a method that in principle can be overridden.

You might think that this means we are changing the base class, which invalidates our argument about
not needing to change the base class. However, adding a virtual keyword isn’t really the sort of major
change that carries a risk of new bugs—with the Visual Basic approach we were going to have to actu-
ally rewrite the implementations of several methods. Besides, usually when you write classes in C#, you
plan in advance for the methods that are suitable candidates for overriding. If this was a real-life exam-
ple, GetMonthlyPayment() would almost certainly have been declared virtual in the first place, so
then we really would have been able to add the Manager class without making any changes to the
Employee class.

1211

C# for Visual Basic 6 Developers

557599 AppB_BC02.qxd 4/28/04 10:49 AM Page 1211

The Manager Class
We can now define the Manager class:

class Manager : Employee
{

private decimal bonus;
public Manager(string name, decimal salary, decimal bonus): base(name, salary)
{

this.bonus = bonus;
}

public Manager(string name, decimal salary): this(name, salary, 100000M)
{
}

public decimal Bonus
{

get
{

return bonus;
}

}

public override string ToString()
{

return base.ToString() + “, bonus: “ + bonus;
}

public override decimal GetMonthlyPayment()
{

return base.GetMonthlyPayment() + bonus/12;
}

}

Besides the near-complete implementation of the Employee class that we have inherited, Manager con-
tains the following members:

❑ A field, bonus, that will be used to store the manager’s bonus, and a corresponding property,
Bonus

❑ The overloaded GetMonthlyPayment() method, as well as a new overload of ToString()

❑ Two constructors

The bonus field and corresponding Bonus property shouldn’t need any further discussion. However, we
will look in detail at the overridden methods and the new constructors, because they illustrate important
C# language features.

1212

Appendix B

557599 AppB_BC02.qxd 4/28/04 10:49 AM Page 1212

Method Overrides
Our override of GetMonthlyPayment() is reasonably simple. Notice that we have marked it with the
keyword override to tell the compiler that we are overriding a base class method, as we did with
Employee.ToString():

public override decimal GetMonthlyPayment()
{

return base.GetMonthlyPayment() + bonus/12;
}

Our override also contains a call to the base-class version of this method. This method uses a new key-
word, base. base works in the same way as our override, except that it indicates that we want to grab a
method, or property, from the definition in the base class. Alternatively, we could have implemented our
override of GetMonthlyPayment() like this:

public override decimal GetMonthlyPayment()
{

return (Salary + bonus)/12;
}

However, we can not use this code:

public override decimal GetMonthlyPayment()
{

return (salary + bonus)/12; // wrong
}

This code looks almost exactly like the previous version, except that we are hitting the salary field
directly instead of going through the Salary property. You might think that this looks like a more effi-
cient solution, because we are saving what is effectively a method call. The trouble is that the compiler
will raise an error because the salary field has been declared as private. That means that nothing out-
side the Employee class is allowed to see this field. Even derived classes are not aware of private fields
in base classes.

If you do want derived classes to be able to see a field, but not unrelated classes, C# provides an alterna-
tive level of protection, protected:

protected decimal salary; // we could have done this

If a member of a class is declared as protected then it is visible only in that class and in derived classes.
However, in general, you are strongly advised to keep all fields private for exactly the same reason that
you are advised to keep variables private in Visual Basic class modules: by hiding the implementation of
a class (or class module) you are making it easier to carry out future maintenance of that class. Usually,
you will use the protected modifier for properties and methods that are intended purely to allow
derived classes access to certain features of the base class definition.

1213

C# for Visual Basic 6 Developers

557599 AppB_BC02.qxd 4/28/04 10:49 AM Page 1213

The Manager Constructors
We need to add at least one constructor to the Manager class for two reasons:

❑ There is now an extra piece of information, the manager’s bonus, which we need to specify
when we create a Manager instance.

❑ Unlike methods, properties, and fields, constructors are not inherited by derived classes.

In fact, we have added two constructors. This is because we have decided to assume that the manager’s
bonus normally defaults to $100,000 if it is not explicitly specified. In Visual Basic we can specify default
parameters to methods, but C# does not allow us to do this directly. Instead, C# offers a more powerful
technique that can achieve the same effect, method overloads. Defining two constructors here will allow us
to illustrate this technique.

The first Manager constructor takes three parameters:

public Manager(string name, decimal salary, decimal bonus) : base(name, salary)
{

this.bonus = bonus;
}

The first thing we notice about this constructor is a call to the base class constructor using a slightly
strange syntax. The syntax is known as a constructor initializer. What happens is that any constructor is
allowed to call one other constructor before it executes. This call is made in a constructor initializer with
the syntax shown above. It is permitted for a constructor to call either another constructor in the same
class, or a constructor in the base class. This might sound restrictive, but it is done for good reasons in
terms of imposing a well-designed architecture on the constructors. These issues are discussed in
Chapter 3. The syntax for the constructor initializer requires a colon, followed by one of the keywords
base or this to specify the class from which we are calling the second constructor, followed by the
parameters we are passing on to the second constructor.

The constructor shown above takes three parameters. However, two of these parameters, name and
salary, are really there in order to initialize base class fields in Employee. These parameters are the
responsibility of the Employee class rather than the Manager class, so what we do is simply pass them
on to the Employee constructor for it to deal with—that’s what the call to base(name, salary)
achieves. And as we saw earlier, the Employee constructor will simply use these parameters to initialize
the name and salary fields. Finally, we take the bonus parameter, which is the responsibility of the
Manager class, and use it to initialize the bonus field. The second Manager constructor that we’ve sup-
plied also uses a constructor initialization list:

public Manager(string name, decimal salary) : this(name, salary, 100000M)
{
}

In this case, what is happening is that we set up the value of the default parameter, and then pass every-
thing on to the three-parameter constructor. The three-parameter constructor, in turn, calls the base class

1214

Appendix B

557599 AppB_BC02.qxd 4/28/04 10:49 AM Page 1214

constructor to deal with the name and salary parameters. You might wonder why we haven’t used the
following alternative way of implementing the two-parameter constructor:

public Manager(string name, decimal salary,) : base(name, salary) // not so good
{

this.bonus = 100000M;
}

The reason is that this involves some potential duplication of code. The two constructors each separately
initialize the bonus field, and this might cause problems in the future in terms of both constructors need-
ing separately to be modified if for example, in some future version of Manager we change how we store
the bonus. In general, in C# just as in any programming language, you should avoid duplicating code if
you can. For this reason, the previous implementation of the two-parameter constructor is preferred.

Method Overloading
The fact that we have supplied two constructors for the Manager class illustrates the principle of method
overloading in C#. Method overloading occurs when a class has more than one method of the same
name, but different numbers of parameters. In the case of method overloading, the same principles
apply as in constructor overloading.

Don’t confuse the terms method overloading and method overriding. Despite the similar names, they are
different, and completely unrelated, concepts!

When the compiler encounters a call to a method that has been overloaded, it examines the parameters
you are attempting to pass in, in order to figure out which method is the one to call. In the case of creat-
ing a Manager object, since one constructor takes three parameters and the other only takes two, the
compiler examines the number of parameters first. Hence if you write:

Manager SomeManager = new Manager(“Name”, 300000.00M);

the compiler will arrange for a Manager object to be instantiated, with the two-parameter constructor
being used, which means that the bonus will be given its default value of 100000M. If, on the other hand,
you write this:

Manager SomeManager = new Manager (“Name”, 300000.00M, 50000.00M);

the compiler will arrange for the three-parameter constructor to be called, so bonus will now be given
the specified value of 50000.00M. If there are several overloads available, but the compiler is unable to
find one that is suitable, it will raise a compilation error. For example, if you wrote:

Manager SomeManager = new Manager (100, 300000.00M, 50000.00M); // wrong

you would get a compilation error because both of the available Manager constructors require a string,
and not a numeric type, as the first parameter. The C# compiler can arrange for some type conversions
between the different numeric types to be done automatically, but it will not convert automatically from
a numeric value to a string.

1215

C# for Visual Basic 6 Developers

557599 AppB_BC02.qxd 4/28/04 10:49 AM Page 1215

Note that C# does not allow methods to take default parameters in the way Visual Basic does. However,
it is very easy to achieve the same effect using method overloads, as we have done in this example. The
usual way is simply to have the overloads with fewer parameters supply default values for the remain-
ing parameters and then call the other overloads.

Using the Employee and Manager Classes
Now that we have completed defining the Employee and Manager classes, we can write some code that
uses them. In fact, if you download the source code for this project from the Wrox Press Web site
(www.wrox.com), you will find that we defined these two classes as part of a standard Windows Forms
project, quite similar to the SquareRoot sample. In this case, however, the main form has only one con-
trol, a list box. We use the constructor of the main form class (MainForm) to instantiate a couple of
instances of Employee and Manager objects, and then display data for these objects in the list box.
Figure B-3 shows the results of this operation.

Figure B-3

The code used to generate these results is this:

public MainForm()
{

InitializeComponent();
Employee Britney = new Employee(“Britney Spears”, 20000.00M);
Employee Elton = new Manager(“Elton John”, 50000.00M);
Manager Ginger = new Manager(“Geri Halliwell”, 50000.00M, 20000.00M);
this.listBox1.Items.Add(“Elton’s name is $” + Elton.Name);
this.listBox1.Items.Add(“Elton’s salary is $” + Elton.Salary);
this.listBox1.Items.Add(“Elton’s bonus is “ + ((Manager)Elton).Bonus);
this.listBox1.Items.Add(“Elton’s monthly payment is $” +

Elton.GetMonthlyPayment());
this.listBox1.Items.Add(“Elton’s company is “ + Employee.CompanyName);
this.listBox1.Items.Add(“Elton.ToString(): “ + Elton.ToString());
this.listBox1.Items.Add(“Britney.ToString(): “ + Britney.ToString());
this.listBox1.Items.Add(“Ginger.ToString(): “ + Ginger.ToString());

}

1216

Appendix B

557599 AppB_BC02.qxd 4/28/04 10:49 AM Page 1216

This code should be self-explanatory, based on the C# that you have learned up to now, apart from one
little oddity—one of the Manager objects, Elton, is being referred to by an Employee reference instead of
a Manager reference. How does this work? Keep reading.

References to Derived Classes
Let’s have a closer look at the Manager class that is referenced by a variable declared as a reference to
Employee:

Employee Elton = new Manager(“Elton John”, 50000.00M);

This is perfectly legal C# syntax. The rule is quite simple: if you declare a reference to a type B, then that ref-
erence is permitted to refer to instances of B or to instances of any class derived from B. This works because
any class derived from B must also implement any methods or properties and so on that B implements. So
in the previous example, we call Elton.Name, Elton.Salary, and Elton.GetMonthlyPayment().The
fact that Employee implements all these members guarantees that any class derived from Employee will
do the same. So it doesn’t matter if a reference points to a derived class—we can still use the reference to
call up any member of the class the reference is defined as and be confident that that method exists in the
derived class.

On the other hand, notice the syntax that we use when we call the Bonus property against Elton:
((Manager)Elton).Bonus. In this case, we need to convert Elton to a Manager reference, because
Bonus is not implemented by Employee. The compiler knows this and would raise a compilation error if
we tried to call Bonus through an Employee reference. That line of code is a shorthand for writing:

Manager ManagerElton = (Manager) Elton;
this.listBox1.Items.Add(“Elton’s bonus is “ + ManagerElton.Bonus);

As in Visual Basic, conversion between data types in C# is known as casting. We can see from the previ-
ous code that the syntax for casting involves placing the name of the destination data type in parenthe-
ses before the name of the variable we are attempting to cast. Of course, the object being referred to must
be of the correct type in the first place. If we wrote:

Manager ManagerBritney = (Manager) Britney;

the code would compile correctly, but when we ran it, we would get an error, because the .NET runtime
would see that Britney is just an Employee instance, not a Manager instance. References are permitted
to refer to instances of derived classes, but not to instances of base classes of their native type. It’s not
permitted for a Manager reference to refer to an Employee object. (We can’t permit it because if we did,
what would happen if we attempted to call the Bonus property through such a reference?)

Because Visual Basic doesn’t support implementation inheritance, there is no direct parallel in Visual
Basic for C#’s support for references referring to objects of derived classes. However, there is some simi-
larity with the fact that in Visual Basic you can declare an interface reference, and then it does not matter
what type of object that interface refers to, as long as the object in question implements that interface. If
we were coding the Employee and Manager classes in Visual Basic, we might as well have done so by
defining an IEmployee interface that both class modules implement, and then access the Employer
features through this interface.

1217

C# for Visual Basic 6 Developers

557599 AppB_BC02.qxd 4/28/04 10:49 AM Page 1217

Arrays of Objects
One important benefit of being able to have references refer to derived class instances is that we can
form arrays of object references, where the different objects in the array might be of different types. This
is analogous to the situation in Visual Basic where we could form arrays of interface references and not
care about the fact that these interface references might be implemented by completely different classes
of objects.

In order to see how C# deals with arrays, we will rewrite the test harness code for the Employee and
Manager classes so that it forms an array of object references. You can download the revised code,
called EmployeeManagerWithArrays, from the Wrox Press Web site (www.wrox.com). The new code
looks like this:

public MainForm()
{

InitializeComponent();

Employee Britney = new Employee(“Britney Spears”, 20000.00M);
Employee Elton = new Manager(“Elton John”, 50000.00M);
Manager Ginger = new Manager(“Geri Halliwell”, 50000.00M, 20000.00M);

Employee [] Employees = new Employee[3];
Employees[0] = Britney;
Employees[1] = Elton;
Employees[2] = Ginger;

for (int I=0 ; I<3 ; I++)
{

this.listBox1.Items.Add(Employees[I].Name);
this.listBox1.Items.Add(Employees[I].ToString());
this.listBox1.Items.Add(“”);

}
}

We simply call up the Name property and the ToString() method of each element of the array. Figure
B-4 shows the results of running this code.

Figure B-4

1218

Appendix B

557599 AppB_BC02.qxd 4/28/04 10:49 AM Page 1218

From Figure B-4 we can see that C# uses square brackets for dealing with arrays. This means that, unlike
in Visual Basic, there is no danger of any confusion about whether we’re talking about an array or a
method or function call. The syntax for declaring an array looks like this:

Employee [] Employees = new Employee[3];

As you can see, we declare an array of variables of a certain type by putting square brackets after the
name of the type. An array in C# always counts as a reference object (even if its elements are simple
types like int or double) so there are actually two stages: declaring the reference, and instantiating the
array. To make this clearer we could have split up the previous line of code like this:

Employee [] Employees;
Employees = new Employee[3];

There is no difference between what we’re doing here and how we instantiate objects, except that we are
using square brackets to indicate that this is an array. Also note that the size of the array is established
when we instantiate the object—the reference itself doesn’t contain details of the size of the array—only
its dimension. The dimension is specified by commas in the array declaration. For example, if we want
to declare a two-dimensional, 3x4 array of doubles, we write this:

double [,] DoubleArray = new double[3,4];

When we have the array, we simply assign values to its elements in the usual way.

In Visual Basic you have the option to change this behavior to element 1 using the Option Base state-
ment. You can also specify lower boundaries for any array. But this feature doesn’t really add any bene-
fits, and it can impact performance, because it means that whenever you access an element in an array in
Visual Basic, the code has to do some extra checking to find out what of the lower bound of that array is
for this collection. C# does not support changing the base of an array in this way.

In the previous code, once we have initialized the elements of the array, we just loop through them. If
the “strange-looking” syntax of the for loop worries you, hang in there—we’ll come back to it shortly.

Note that because the array has been declared as an array of Employee, we can only access those mem-
bers of each object that are defined for the Employee class. If we wanted to access the Bonus property of
any object in the array, we first would have to cast the corresponding reference to a Manager reference,
which would mean checking whether the object is a Manager object. That is not difficult to do, but is
beyond the scope of this appendix.

Although we are using Employee references, we do always pick up the correct version of ToString().
If the object we’re referring to is a Manager object, then, when we call ToString(), the version of
ToString() defined in the Manager class is the one that is executed for that object. That is the beauty
of overriding methods in C#. You can replace some method in the derived class, and know that no mat-
ter through which reference type this object is accessed, you will always run the correct method for that
object.

Note that one difference between C# and Visual Basic is that arrays in C# always
start at element 0.

1219

C# for Visual Basic 6 Developers

557599 AppB_BC02.qxd 4/28/04 10:49 AM Page 1219

The for Loop
Now let’s discuss the for loop, introduced in the previous code snippet. What we have here is the C#
equivalent of this Visual Basic code:

Dim I As Integer
For I = 1 To 3

listBox1.Items.Add “Details of the Employee”
Next

The idea of the For loop in Visual Basic is that you start off by initializing a variable, called the loop con-
trol variable, and each time you go round the loop, you add something to the loop control variable until it
exceeds a final value. This is quite useful, but gives you almost no flexibility in how the loop works.
Although you can change the value of the increment, or even make the increment negative, by using the
Step facility, the loop always works by counting, and the test of whether the loop exits is always
whether the variable has reached a preset minimum or maximum value.

In C# the for loop generalizes this concept. The basic idea of the for loop in C# is this: At the beginning
of the loop you do something, at each step of the loop you do something else in order to move to the
next iteration, and in order to determine when to exit from the loop, you perform some test. The follow-
ing table provides a comparison between the Visual Basic and C# versions of this loop.

Loop Visual Basic C#

At start of loop... Initialize the loop control variable. Do something.

To test whether to exit loop... Check whether the loop control Test some condition.
variable has reached a certain value.

At end of each iteration... Increment the loop control variable. Do something.

This might look a bit vague, but it does give you a lot of flexibility! For example, in C#, instead of adding a
quantity to the loop control variable at each iteration, you might multiply its value by some number. Or
instead of adding on a fixed amount you might add some number that you’ve read in from a file and which
changes with each iteration. The test doesn’t have to be a test of the value of the loop control variable. It
could be a test of whether you have reached the end of the file. What this adds up to is that, by a suitable
choice of the start action, test, and action at the end of each iteration, the for loop can effectively perform the
same task as any of the other loops in Visual Basic (For, For Each, Do, and While). Alternatively the loop
can work in some manner for which there is no simple equivalent in Visual Basic. The C# for loop really
gives you complete freedom to control the loop in whatever manner is appropriate for the task at hand.

We should point out, however, that C# also does support foreach, do, and while loops.

Now let’s look at the syntax. The C# version of the previous for loop looks like this:

for (int I=0 ; I<3 ; I++)
{

this.listBox1.Items.Add(Employees[I].Name);
this.listBox1.Items.Add(Employees[I].ToString());
this.listBox1.Items.Add(“”);

}

1220

Appendix B

557599 AppB_BC02.qxd 4/28/04 10:49 AM Page 1220

As you can see, the for statement itself takes three different items inside its parentheses. These items are
separated by semicolons:

❑ The first item is the action that is performed right at the start of the loop in order to initialize the
loop. In this case we declare and initialize the loop control variable.

❑ The next item is the condition that will be evaluated to determine whether the loop should exit.
In this case our condition is that I must be less than 3. The loop continues as long as this condi-
tion is true and exits as soon as the condition evaluates to false. The condition will be evalu-
ated at the beginning of each iteration, so that if it turns out to be false right at the start, the
statement inside the loop does not get executed at all.

❑ In the third item is the statement that is executed at the end of each iteration of the loop. Visual
Basic loops always work by incrementing some number.

Even though the syntax looks unfamiliar, once you’ve familiarized yourself with it, you can use the for
loop in very powerful ways. For example, if you want to display all the integer powers of 2 that are less
than 4000 in a list box, you can write this:

for (int I = 2 ; I<4000 ; I*=2)
listBox1.Items.Add(I.ToString());

You can achieve the same result in Visual Basic, but it wouldn’t be as easy; for this particular example,
you might want to opt for a while loop in Visual Basic.

Other C# Features
We have now completed examining the code samples. The remainder of his appendix will briefly exam-
ine a couple of features of C# that you need to be aware of when making the transition from Visual Basic
to C#, and which we haven’t yet discussed; in particular some of the C# concepts relating to data types
and operators.

Data Types
As we have indicated, the data types available in C# do differ in detail from those available in Visual
Basic. Furthermore, all C# data types have features that you would normally associate with an object.
For example, every type, even simple types such as int and float, supports the calling of methods.
(Incidentally, this feature does not cause any loss of performance.)

Although the types available in C# are slightly different from Visual Basic types, most of the types that
you are familiar with in Visual Basic do have equivalents in C#. For example, the Visual Basic Double
type translates to double in C#; The C# equivalent of the Date type is the.NET base class, DateTime,
which implements a huge number of methods and properties to allow you to extract or set the date
using different formats.

One exception, however, is Variant, for which there is no equivalent in C#. The Variant type is a very
generic type, which to some extent exists only in order to support scripting languages that are not aware
of any other data types. The philosophy of C#, however, is that the language is strongly typed. The idea is
that if, at each point in the program, you have to indicate the data type you are referring to, at least one

1221

C# for Visual Basic 6 Developers

557599 AppB_BC02.qxd 4/28/04 10:49 AM Page 1221

major source of runtime bugs is eliminated. Because of this, a Variant type isn’t really appropriate to C#.
However, there are still some situations in which you do need to refer to a variable without indicating
what type that variable is, and for those cases C# does have the object type. C#’s object is analogous to
Object in Visual Basic. However, Object specifically refers to a COM object, and therefore can only be
used to refer to objects, which in Visual Basic terms means to reference data types. For example, you can-
not use an object reference to refer to an Integer or to a Single type. In C#, by contrast, an object0
method can be used to refer to any .NET data type, and since all data types are .NET data types, this
means that you can legitimately convert anything to an object, including int, float, and all the prede-
fined data types. To this extent, object in C# does perform a similar role to Variant in Visual Basic.

Value and reference types
In Visual Basic there is a sharp distinction between value types and reference types. Value types include
most of the predefined data types: Integer, Single, Double, and even Variant (though strictly speak-
ing Variant can also contain a reference). Reference types are any object, including class modules that
you define and ActiveX objects. As you will have noticed through the samples in this appendix, C# also
makes the distinction between value and reference types. However, C# is more flexibility to the extent
that it permits you, when defining a class, to specify that that class should be a value type. You do this
by declaring the class as something called a struct. As far as C# is concerned, a struct is basically a special
type of class that is represented as a value rather than a reference. The overhead involved in instantiat-
ing structs and destroying them when we are finished with them is less than that involved when instan-
tiating and destroying classes. However, C# does restrict the features supported by structs. In particular,
you cannot derive classes or other structs from structs. The reasoning here is that structs are intended to
be used for really lightweight, simple objects, for which inheritance isn’t really appropriate. In fact, all
the predefined classes in C#, such as int, long, float, and double are actually .NET structs, which is
why we can call methods such as ToString() against them. The data type string, however, is a refer-
ence type and so is really just a class.

Operators
We need to say a couple of words about operators in C#, because they do differ somewhat from Visual
Basic operators, and this can catch you off guard if you are used to the Visual Basic way of working. In
Visual Basic there are really two types of operator:

❑ The assignment operator, =, which assigns values to variables

❑ All the other operators, such as +, -,*, and /, which each return some value

There is an important distinction here in that none of the operators, apart from =, has any effect in terms
of modifying any value. On the other hand, = assigns a value but does not return anything. There are no
operators that do both.

In C#, this categorization simply does not exist. The rule in C# is that all operators return a value, and
some operators also assign some value to a variable. We have already seen an example of this when we
examined the addition assignment operator, +=:

int A=5, B=15;
A+=B; // performs an arithmetic operation AND assigns result (20) to A

1222

Appendix B

557599 AppB_BC02.qxd 4/28/04 10:49 AM Page 1222

+= returns a value as well as assigning the value. It returns the new value that has been assigned.
Because of this we could actually write:

int A=5, B=15;
int C = (A+=B);

This will have the results that both A and C will be assigned the value 20. The assignment operator, =,
also returns a value. It returns the value that has been assigned to the variable on the left side of the
expression. This means that you can write code like this:

C = (A = B);

This code sets A equal to whatever value is in B, and then sets C to this same value too. You can also
write this statement more simply as:

C = A = B;

A common use of this type of syntax is to evaluate some condition inside an if statement, and simulta-
neously set a variable of type bool (the C# equivalent of Boolean in Visual Basic) to the result of this
condition, so we can reuse this value later:

// assume X and Y are some other variables that have been initialized

bool B;
if (B = (X==Y))

DoSomething();

This code looks daunting at first sight, but it is quite logical. Let’s break it down. The first thing the com-
puter will do is check the condition X==Y. Depending on whether X and Y contain the same data, this
will either return true or false and this value will be assigned to the variable B. However, since the
assignment operator also returns the value that has just been assigned to it, the complete expression B =
(X==Y) will also return this same value (true or false). This return value will then be used by the if
clause to determine whether to execute the conditional DoSomething() statement. The result of this
code is that the condition X==Y is tested to determine whether the conditional statements should be exe-
cuted, and at the same time we have stored the results of this test in the variable B.

The ternary operator
We do not have space in this appendix to go over all the various operators that are available in C#. They
are detailed in Chapter 2 of this book. However, we will mention the ternary operator (also known as the
conditional operator) because it has a very unusual syntax. The ternary operator is formed from the two
symbols ? and :. It takes three parameters and is actually equivalent to an IIf statement in Visual Basic.
It is used syntactically like this:

// B, X and Y are some variables or expressions. B is a Boolean.

B ? X : Y

The way it works is that the first expression (the one before the ? symbol) is evaluated. If it evaluates to
true, then the result of the second expression is returned, but if it evaluates to false then the result of

1223

C# for Visual Basic 6 Developers

557599 AppB_BC02.qxd 4/28/04 10:49 AM Page 1223

the third expression is returned instead. This provides an extremely compact syntax for conditionally
setting the value of variable. For example, we can write:

string animal = (legs==8) ? “octopus” : “dog”;

which yields the same result as:

string animal;
if (legs==8)

animal=”octopus”;
else

animal=”dog”;

With the Visual Basic Iif function, this can be achieved with:

strAnimal = IIf(intLegs = 8, “octopus”, “dog”)

Summary
In this appendix, we have presented a brief introduction to C# through the eyes of a Visual basic program-
mer. We have found quite a few differences in syntax. In general, C# syntax allows most statements to be
expressed in a more compact way. We have also found many similarities between the languages; for exam-
ple in their use of classes (or class modules in VB), value and reference types, and many of the syntactical
structures. However, we have also seen how C# supports many powerful features, particularly those
related to inheritance and classic object-oriented programming that are not available in Visual Basic.

Appendix A of this book contains an introduction to object-oriented programming, which is key to any
serious C# development effort.

Making the transfer from Visual Basic to C# does require a fair bit of learning, but is well worth it,
because the methodology of C# allows you to code not only any application that you could have devel-
oped in Visual Basic, but also a wide range of other applications that would be too difficult, if not impos-
sible, to design in a good, well-structured, and maintainable manner in Visual Basic. With C# you also
get the added bonus of the .NET runtime and all its associated benefits.

1224

Appendix B

557599 AppB_BC02.qxd 4/28/04 10:49 AM Page 1224

C# for Java Developers

At first glance, Java developers might not get particularly excited about C# code, because of the
syntactical similarity between it and Java. However, look more closely and you will see subtle yet
significant differences: features such as operator overloading, indexers, delegates, properties, and
type safe enumerations in C#.

This appendix focuses on applying much-loved Java programming tricks to C# code, highlighting
features that C# adds to the picture, and pointing out tricks that C# cannot do (although you won’t
find many of those). Of course, we assume that as a reader of this appendix, you are a professional
Java developer; so we will not go into too much detail when describing the Java language.

Starting Out
Let’s take a look at the infamous “Hello World!” example in Java:

public class Hello {
public static void main(String args []) {
System.out.println(“Hello world! This is Java Code!”);
}
}

The corresponding C# code for this is as follows:

using System;
public class Hello
{
public static void Main(string [] args)
{
System.Console.WriteLine(“Hello world! This is C# code!”);
}
}

557599 AppC_BC03.qxd 4/28/04 10:49 AM Page 1225

The first thing that you’ll notice is that the two appear to be very similar syntactically and both lan-
guages are case-sensitive. C# is object-oriented like Java, and all functionality must be placed inside a
class (declared by the keyword class). These classes can contain methods, constructors, and fields just
as Java classes can, and a C# class can inherit methods and fields from another class or interface as in
Java. The implementation of classes and methods is similar in both languages.

C# code blocks are enclosed by braces just as in Java. The entry point to a C# application is the static
Main() method, as required by the compiler (similar to Java but note the uppercase “M”). Also note that
only one class in the application can have a Main() method. Similar to Java, the static keyword allows
for the method to be called without creating an instance of the class first. For the Main() method in C#
you have the choice of either a void or int return type. void specifies that the method does not return a
value and int specifies that it returns an integer type.

The using keyword in C# corresponds to the import keyword in Java. Therefore, in the C# code above,
we are essentially importing the C# equivalent of a class package called System. In C#, a class package is
called a namespace, and we will look more closely at these in the next section.

Note that although we have written it with a lowercase s here, in C# the string type can also be written
with a capital S as String. You will also notice that the array rank specifier ([]) has been shifted from in
front of the args variable in the Java example, to between the string type and args variable in the C#
sample. In fact, this specifier can occur before or after the variable in Java. However, in C#, the array
rank specifier must appear before the variable name because an array is actually a type of its own indi-
cated by type []. We’ll discuss arrays in more depth a bit later.

Finally, as you might expect, the names of methods tend to differ between the languages. For example,
in Java we would use System.out.println() to display text in the command console. The equivalent
to this method in C# is System.Console.WriteLine().

Compiling and Running C# Code
In Chapter 2, we noted that like Java code, C# source code is compiled in two stages: first to
Intermediate Language (IL), and then to native code. To run the previous C# code, you need to save it
with an appropriate filename (for example, HelloWorld) and file extension .cs, and then compile it to IL
using the csc command:

csc HelloWorld.cs

The next step is to compile the IL to native code and run the example. To do this, just type the name of
the file, without the extension (as we would with Java code):

HelloWorld
Hello world! This is C# code!

Namespaces
While Java classes reside in logical divisions referred to as packages, C# (and other managed) classes are
grouped together into namespaces. Packages and namespaces differ significantly in their implementation.
A Java class that you want to make part of the com.samples package, for example, must have package
com.samples; as the first line of code in the file. This is, of course, excluding any comments. Any code

1226

Appendix C

557599 AppC_BC03.qxd 4/28/04 10:49 AM Page 1226

within that file automatically becomes a part of the specified package. Also, a Java package name is asso-
ciated with the folder containing the class file in that they must have the same name. The com.samples
package must therefore be in class files that exist in the com/samples folder. Let’s take a look at some
examples of how packages work in Java:

package java2csharp.javasamples;
public class Hello {
public static void main(String args []) {
System.out.println(“Hello world! This is Java Code!”);
}
}

The following list provides examples of how the previous code could be referenced or executed. This list
assumes that the class file has been made available to the JRE:

❑ From the command line:

java java2csharp.javasamples.Hello

❑ As a direct reference in the code:

public class Referencer {
java2csharp.javasamples.Hello myHello = new java2csharp.samples.Hello();

❑ By utilizing the import directive one could omit fully qualified package names, so Referencer
could also be written as:

import java2csharp.javasamples.*;
public class Referencer {
Hello myHello = new Hello();
}

Wrapping a class in a namespace is achieved in C# by using the namespace keyword with an identifier,
and enveloping the target class in brackets. Here is an example:

namespace java2csharp.csharpsamples
{
using System;
public class Hello
{
public static void Main(string [] args)
{
System.Console.WriteLine(“Hello world! This is C# code!”);
}
}
}

As you can see, we delimit layers of namespaces using the . operator, as in Java. Note that C# does not
require an asterisk (*) needed in C#—applying the using directive implicitly imports all elements of the
specified namespace. You will also have noticed the major difference from Java here: the use of name-
space parentheses in which we place classes associated with the namespace. The advantage of using the
parentheses like this is that we then disassociate package names from directory structures: feasibly we

1227

C# for Java Developers

557599 AppC_BC03.qxd 4/28/04 10:49 AM Page 1227

could place a file containing this namespace anywhere within the directory as long as the CLR recog-
nizes it. Therefore, it also enables us to call the file containing these classes anything we wish (it doesn’t
have to be the same name as the class as in Java); we can have more than one public class defined per
file; and we can split the classes defined in this namespace into different files in different parts of the
directory structure, as long as the namespace declaration appears in each of the files.

We can also introduce multiple namespaces in the same file with no restriction. We could, for example,
add the definition of a new class and place it in a new namespace in the same file and still not be outside
the bounds of the language:

namespace java2csharp.csharpsamples
{
using System;
public class Hello
{
public static void Main(string [] args)
{
System.Console.WriteLine(“Hello world! This is C# code!”);
}
}
}

namespace java2csharp.morecsharpsamples
{
using System;
public class AnotherHello
{
public static void Main(string [] args)
{
System.Console.WriteLine(“Hello again! This is more C# code!”);
}
}
}

As we pointed out in the previous section, classes from a particular namespace can be imported into
another namespace with the using keyword. We can see that we import classes from the System name-
space (the top level .NET Base Class namespace) into both namespaces above. We can also import classes
from other namespaces directly into our classes by referring to the imported class using its full name
(namespace included), in a similar way to using direct referencing of classes in Java code.

Namespaces may also be defined within other namespaces. This type of flexibility is impossible in Java
without having to create a subdirectory. We could change the previous example so that the AnotherHello
class is in the java2csharp.csharpsamples.hellosamples namespace:

namespace java2csharp.csharpsamples
{
namespace hellosamples
{
using System;
public class AnotherHello
{
public static void Main(string [] args)

1228

Appendix C

557599 AppC_BC03.qxd 4/28/04 10:49 AM Page 1228

{
System.Console.WriteLine(“Hello again! This is more C# code!”);
}
}
}
}

Java classes are part of a package; all classes created are part of the default package. C# mimics this func-
tionality. Even if you do not declare one, a default namespace is created for you. It is present in every file
and available for use in named namespaces. Just as in Java you cannot change package information, in
C# namespaces cannot be modified either. Packages can span multiple files in the same folder; name-
spaces can span multiple files in any number of folders, and even multiple assemblies (the name given
to code libraries in .NET), as discussed in Chapter 13.

Note that the default accessibility for types inside a namespace is internal. You must specify types as
public if you want them available without full qualification; however, we strongly advise against this
practice. No other access modifiers are allowed. In Java, internal package types may also be marked as
final or abstract or not marked at all (this default access makes them available only to consumers
inside the package). Access modifiers are discussed later in this appendix.

One final feature of namespaces not available to Java packages is that they may be given a using alias.
using aliases make it very easy to qualify an identifier to a namespace or class. The syntax is simple.
Suppose you had a namespace Very.Very.Long.NameSpace.Name. You could define and use a using
alias (here VVLNN) for the namespace as follows:

using VVLNN = Very.Very.Long.Namespace.Name;

Declaring Variables
C# follows a similar scheme of variable declaration to Java, where the declaration consists of a datatype
keyword and followed by the name of the variable to hold that datatype. For example, to declare an
integer (int) variable called myInt, we would use the following code:

int myInt;

Identifiers are the names we give to classes, objects, class members, and variables. Raw keywords, dis-
cussed in the next section, can neither be Java nor C# identifiers; however, in C# you can use keywords
as variable names by prefixing the name with @. Note that this exception is only with keywords and
does not allow the breaking of any other rules. Although identifiers may have letters and numbers, the
first letter of the identifier in both C# and Java must not be a number. Here are some valid and invalid
examples of variable declaration:

int 7x; //invalid, number cannot start identifier
int x7; //valid, number may be part of identifier
int x; //valid
int x$; //invalid, no symbols allowed
int @class; //valid, prefix @ allows it to be used as an identifier
int @7k; //invalid, prefix @ only works for keywords

1229

C# for Java Developers

557599 AppC_BC03.qxd 4/28/04 10:49 AM Page 1229

Variable Naming Conventions
Java uses camel-case notation for methods, properties, and variables, meaning that they are lowercase
for the first letter in the name and capital letter for the first letter of every other word in the name. The
first letter of class and object names in Java are uppercase. The following snippet shows the general syn-
tax most Java programmers use:

int id;
int idName;
int id_name; //practiced also
final int CONSTANT_NAME; //widely adopted
int reallyLongId;
public class ClassName //every first letter capitalized
public interface InterfaceName
public void method(){}
public void myMethodName(){}

Based on the C# library classes, it is safe to make certain assumptions about C# naming conventions. A
documented naming guideline for C# was not provided at the time of this writing. Each first letter of
all method and property identifier names is capitalized, as is each first letter of all class and namespace
names. Interfaces are preceded with an I. Variables are camel-cased, as shown in the following examples:

int id;
int idName;
public class ClassName //every first letter capitalized
public interface IInterfaceName //interface name preceded by I
public void Method(){} // first letter always capitalized
public void MyMethodName(){} // first letter of all other words capitalized

Data Types
Types in Java and C# can be grouped into two main categories: value types and reference types. As you
are probably aware, value type variables store their data on the stack, while reference types store data on
the heap. Let’s start by considering value types.

Value Types
There is only one category of value type in Java; all value types are by default the primitive data types
of the language. C# offers a more robust assortment. Value types can be broken down into three main
categories:

❑ Simple types

❑ Enumeration types

❑ Structures

Let’s take a look at each of these in turn.

1230

Appendix C

557599 AppC_BC03.qxd 4/28/04 10:49 AM Page 1230

Simple types
The C# compiler recognizes a number of the usual predefined datatypes (defined in the System Base
Class namespace), including integer, character, Boolean, and floating point types. Of course, the value
ranges of the indicated types may be different from one language to another. Below we discuss the C#
types and their Java counterparts.

Integer values
C# has eight predefined signed and unsigned integer types (as opposed to just four signed integer types
in Java):

C# Type Description Equivalent in Java

sbyte Signed 8-bit byte

short Signed 16-bit short

int Signed 32-bit int

long Signed 64-bit long

byte 8-bit unsigned integer n/a

ushort 16-bit unsigned integer n/a

uint 32-bit Unsigned integer n/a

ulong 64-bit Unsigned integer n/a

When an integer has no suffix the type to which its value can be bound is evaluated in the order int,
uint, long, ulong, decimal. Integer values may be represented as decimal or hexadecimal literals. In
the following example the result is 52 for both values:

int dec = 52;
int hex = 0x34;
Console.WriteLine(“decimal {0}, hexadecimal {1}”,dec, hex);

Character values
char represents a single two-byte long Unicode character. C# extends the flexibility of character assign-
ment by allowing assignment via the hexadecimal escape sequence prefixed by \x and Unicode repre-
sentation via \u. You will also find that you will not be able to convert characters to integers implicitly.
All other common Java language escape sequences are fully supported.

Boolean values
The bool type, as in Java, is used to represent the values true and false directly, or as the result of an
equation as shown below:

bool first_time = true;
bool second_time = (counter < 0);

1231

C# for Java Developers

557599 AppC_BC03.qxd 4/28/04 10:49 AM Page 1231

Decimal values
C# introduces the decimal type, which is a 128-bit data type that represents values ranging from approxi-
mately 1.0x10-28 to 7.9x1028. They are primarily intended for financial and monetary calculations where
precision is important (for example, in foreign exchange calculations). When assigning the decimal type a
value, m must be appended to the literal value. Otherwise, the compiler treats the value as a double.
Because a double cannot be implicitly converted to a decimal, omitting the m requires an explicit cast:

decimal precise = 1.234m;
decimal precise = (decimal)1.234;

Floating-point values
The following table lists the C# floating type values and their Java equivalents.

C# Type Description Equivalent in Java

Float Signed 32-bit floating point float

double Signed 64-bit floating point double

Floating-point values can either be doubles or floats. A real numeric literal on the right-hand side of an
assignment operator is treated as a double by default. Because there is no implicit conversion from float
to double you may be taken aback when a compiler error occurs. The following example illustrates this
problem:

float f = 5.6;
Console.WriteLine(f);

This example produces the following compiler error message.

Literal of type double cannot be implicitly converted to type ‘float’; use an ‘F’
suffix to create a literal of this type

There are two ways to solve this problem. We could cast our literal to float, but the compiler itself
offers a more reasonable alternative. Using the suffix F tells the compiler this is a literal of type float
and not double:

float f = 5.6F;

Although it is not necessary, you can use a D suffix to signify a double type literal.

Enumeration types
An enumeration is a distinct type consisting of a set of named constants. In Java you can achieve this by
using static final variables. In this sense, the enumerations may actually be part of the class that is
using them. Another alternative is to define the enumeration as an interface. The following example
illustrates this concept:

interface Color {
static int RED = 0;

1232

Appendix C

557599 AppC_BC03.qxd 4/28/04 10:49 AM Page 1232

static int GREEN = 1;
static int BLUE = 2;
}

Of course, the problem with this approach is that it is not type-safe. Any integer read in or calculated can
be used as a color. It is possible, however, to programmatically implement a type-safe enumeration in
Java by utilizing a variation of the Singleton pattern, which limits the class to a predefined number of
instances. The following Java code illustrates how this can be done:

final class Day { // final so it cannot be sub-classed
private String internal;
private Day(String Day) {internal = Day;} // private constructor
public static final Day MONDAY = new Day(“MONDAY”);
public static final Day TUESDAY = new Day(“TUESDAY”);
public static final Day WEDNESDAY = new Day(“WEDNESDAY”);
public static final Day THURDAY = new Day(“THURSDAY”);
public static final Day FRIDAY = new Day(“FRIDAY”);
}

As you can see from the above example, the enumerated constants are not tied to primitive types, but to
object references. Also, because the class is defined as final, it can’t be sub-classed, so no other classes
can be created from it. The constructor is marked as private, so other methods can’t use the class to cre-
ate new objects. The only objects that will ever be created with this class are the static objects the class
creates for itself the first time the class is referenced.

Although the concept is pretty simple, the workaround involves techniques that may not be immedi-
ately apparent to a novice after all, we just want a readily available list of constants. C#, in contrast, pro-
vides inbuilt enumeration support, which also ensures type safety. To declare an enumeration in C# the
enum keyword is used. In its simple form an enum might look like this:

public enum Status
{
Working,
Complete,
BeforeBegin
}

In this example, the first value is 0 and the enum counts upward from there, Complete being 1 and so
on. If for some reason you are interested in having enum represent different values you can do so by
assigning them as follows:

public enum Status
{
Working = 131,
Complete = 129,
BeforeBegin = 132
}

1233

C# for Java Developers

557599 AppC_BC03.qxd 4/28/04 10:49 AM Page 1233

You also have the choice of using a different numerical integral type by inheriting from long, short, or
byte. int is always the default type, as demonstrated in this snippet:

public enum Status : int
{
Working,
Complete,
BeforeBegin
}
public enum SmallStatus : byte
{
Working,
Complete,
BeforeBegin
}
public enum BigStatus : long
{
Working,
Complete,
BeforeBegin
}

It might not be immediately apparent but there is a big difference between these three enumerations,
tied directly to the size of the type they inherit from. The C# byte, for example, can contain one byte of
memory. This means SmallStatus cannot have more than 255 constants; if you want more, set the
value of any of its constants to more than 255. The following listing displays how we can use the
sizeof() operator to identify the differences between the different versions of Status:

int x = sizeof(Status);
int y = sizeof(SmallStatus);
int z = sizeof(BigStatus);
Console.WriteLine(“Regular size:\t{0}\nSmall size:\t{1}\nLarge size:\t{2}”,
x, y, z);

Compiling the listing produces the following results:

Regular size: 4
Small size: 1
Large size: 8

Structures
One of the major differences between a C# structure (identified with the keyword struct) and an object
is that, by default, the struct is passed by value, while an object is passed by reference. There is no ana-
logue in Java to structures. Structures have constructors and, methods; they can have other members
normally associated with a C# class too: indexers (for more on these members see Chapter 4), properties,
operators, and even nested types. Structures can even implement interfaces. By using structs we can cre-
ate types that behave in the same way as, and share similar benefits to, the built-in types. The following
snippet demonstrates how a structure can be used:

public struct EmployeeInfo
{

1234

Appendix C

557599 AppC_BC03.qxd 4/28/04 10:49 AM Page 1234

public string firstName
public string lastName
public string jobTitle
public string dept
public long employeeID
}

Although we could have created a class to hold the same information, using a struct is a little more effi-
cient here because it is easier to create and copy it. The following snippet shows how to copy values
from one struct to another:

EmployeeInfo employee1;
EmployeeInfo employee2;
employee1 = new EmployeeInfo();
employee1.firstName = “Dawn”;
employee1.lastName = “Lane”;
employee1.jobTitle = “Secretary”;
employee1.dept = “Admin”;
employee1.employeeID = 203;
employee2 = employee1;

Structures are often used to tidy up function calls too: we can bundle up related data together in a struct
and then pass the struct as a parameter to the method. However, the following limitations apply to using
structures:

❑ A struct cannot inherit from another struct or from classes.

❑ A struct cannot act as the base for a class.

❑ Although a struct may declare constructors, those constructors must take at least one argument.

❑ The struct members cannot have initializers.

Structs and attributes
Attributes (or compiler directives, discussed in Chapter 10 and Appendix D) can be used with structures
to add more power and flexibility to them. The StructLayout attribute in the System.Runtime.
InteropServices namespace, for example, can be used to define the layout of fields in the struct. It is
possible to use this feature to create a structure similar in functionality to a C/C++ union. A union is a
data type whose members share the same memory block. It can be used to store values of different types
in the same memory block. In the event that one does not know what type the values to be received will
be, a union is a great way to go. Of course there is no actual conversion happening; in fact there are no
underlying checks on the validity of the data. The same bit pattern is simply interpreted in a different
way. The following snippet demonstrates how a union could be created using a struct:

[StructLayout(LayoutKind.Explicit)]
public struct Variant
{
[FieldOffset(0)]public int intVal;
[FieldOffset(0)]public string strinVal;
[FieldOffset(0)]public decimal decVal;
[FieldOffset(0)]public float floatVal;
[FieldOffset(0)]public char charVal;
}

1235

C# for Java Developers

557599 AppC_BC03.qxd 4/28/04 10:49 AM Page 1235

The FieldOffset attribute applied to the fields is used to set the physical location of the specified field.
Setting the starting point of each field to 0 ensures that any data store in one field will overwrite to a cer-
tain extent whatever data may have been stored there. It follows then that the total size of the fields will
be the size of the largest field, in this case the decimal.

Reference Types
All a reference type variable stores is the reference to data that exists on the heap. Only the memory
addresses of the stored objects are kept in the stack. The object type, arrays, and interfaces are all refer-
ence types. Objects, classes, and the relationship between the two do not differ much between Java and
C#. You will also find that interfaces, and how they are used, are not very different in the two languages.
We will look at classes and class inheritance in C# in more depth later in this document. Strings can also
be used the same way in either C# or Java. C# also introduces a new type of reference type called a dele-
gate. Delegates represent a type-safe version of C++ function pointers (references to methods) and are
discussed in Chapter 6.

Arrays and collections
Array syntax in C# is very similar to that used in Java. However, C# supports “jagged” arrays, and adds
multidimensional arrays (as opposed to the arrays of arrays supported by Java):

int[] x = new int[20]; //same as in Java except [] must be next to type
int[,] y = new int[12,3]; //same as int y[][] = new int[12][3];
int[][] z = new int[5][]; //same as int x[][] = new int[5][];

In C#, arrays are actual types, so they must be written syntactically as such. Unlike in Java, you cannot
place the array rank specifier [] before or after the variable; it must come before the variable and after
the data type. Since arrays are types, they have their own methods and properties. For example, we can
get the length of array x using:

int xLength = x.Length;

We can also sort the array using the static Sort() method:

Array.Sort(x);

You should also note that although C# allows us to declare arrays without initializing them, we cannot
leave the determination of the size of an array until runtime. If you need a dynamically sized array, you
must use a System.Collections.ArrayList object (similar to the Java’s Arraylist collection). We
cover C# collection objects in depth in Chapter 9.

Type Conversion and Casting
Type conversion in Java consists of implicit or explicit narrow and wide casting, using the () operator as
needed. It is generally possible to perform similar type conversions in C#. C# also introduces a number
of powerful features built into the language. These include boxing and unboxing.

Because value types are nothing more than memory blocks of a certain size, they are great to use for
speed reasons. Sometimes, however, the convenience of objects is good to have for a value type. Boxing
and unboxing provide a mechanism that forms a binding link between value types and reference types
by allowing them to be converted to and from the object type.

1236

Appendix C

557599 AppC_BC03.qxd 4/28/04 10:49 AM Page 1236

Boxing an object means implicitly converting any value type to type Object. An instance of Object is
created and allocated, and the value in the value type is copied to the new object. Here is an example of
how boxing works in C#:

int x = 10;
Object obj = x;

This type of functionality is not available in Java. The previous code would not compile because primi-
tives cannot be converted to reference types.

Unboxing is simply the casting of the Object type containing the value back to the appropriate value type.
Again, this functionality is not available in Java. We can modify the code above to illustrate this concept.
You will immediately notice that while boxing is an implicit cast, unboxing requires an explicit one:

int x = 10;
Object obj = x;
int y = (int) obj;

Another powerful feature of C# dealing with casting is the ability to define custom conversion operators
for our classes and structs. We deal with this issue in depth in Chapter 5.

Operators
The following table lists the C# operators.

Category Operator

Arithmetic + - * / %

Logical & | ^ ~ && || !

String concatenation +

Increment and decrement ++ —

Bit shifting << >>

Comparison == != < > <= >=

Assignment = += -= *= /= %= &= |= ^= <<= >>=

Member access (for objects and structs) .

Indexing (for arrays and indexers) []

Cast ()

Conditional (the Ternary Operator) ?:

Object Creation new

Type information sizeof (unsafe code only) is typeof as

Overflow exception control checked unchecked

Indirection and Address * -> & (unsafe code only) []

1237

C# for Java Developers

557599 AppC_BC03.qxd 4/28/04 10:49 AM Page 1237

Java developers will immediately spot that C# operators are very similar to Java’s. However, there are a
few significant differences.

To determine whether an object belongs to a given class or any of the parent classes Java uses the
instanceof operator. The C# equivalent of instanceof is the is operator. It returns true if the run-
time type of the given class is compatible with the specified type. Here’s an example of its use:

string y = “a string”;
object x = y;
if(x is System.String)
{
System.Console.WriteLine(“x is a string”);
}

Also, since Java has no value types other than the primitives whose size is always known, there is no
real use for a sizeof operator. In C#, value types range from primitives to structs to enums. As with
Java, the size of the primitives is known. There is a need, however, to know how much space a struct
type or enum type occupies. This is what the sizeof operator is for. The syntax is quite simple:
sizeof(<ValueType>), where <Value Type> is the struct or enum. Note that sizeof may only be
used in an unsafe context. The sizeof operator cannot be overloaded.

The typeof operator is used to get an instance of a type’s System.Type object without having to create
an instance of the type. In Java, every type has a public static class variable that returns a handle to the
Class object associated with that class. The typeof operator provides this type of functionality. Just as
we saw with sizeof, the syntax is very simple. The statement typeof(<Type>) where <Type> is any
user-defined type will return you the type object of that type.

Flow Control and Iteration
Most of the flow control statements are conceptually and syntactically very similar to Java’s. Here’s a
brief summary:

if...else if...else

if(option == 1)
{
//do something
}
else if(option == 2)
{
//do something else
}
else
{
//do this if none of other options are selected
}

1238

Appendix C

557599 AppC_BC03.qxd 4/28/04 10:49 AM Page 1238

switch

switch(option)
{
case 1:
//do something
break;
case 2:
//do something else
break;
default:
break;
}

You should note that the C# version of switch (unlike Java’s) all but prohibits fall-through. All case
clauses must end with a break, unless the case clause is empty. To jump from one case clause to another
you must use a goto statement.

for

for (int i = 0; i <10; i++)
{
// iterates 10 times
}

while

bool condition = false;
while (!condition)
{
// do something that may alter the value of the condition Boolean
}

do...while

bool condition;
do
{
// do something that may alter the value of the condition Boolean
// at least one iteration occurs whatever the initial value of condition
} while (condition);

foreach

C# introduces a foreach statement, used specifically to iterate through, and not change collection or
array entries to get the desired information. Changing the contents might have unpredictable side
effects. The foreach statement usually takes the following form:

foreach (ItemType item in TargetCollection)

1239

C# for Java Developers

557599 AppC_BC03.qxd 4/28/04 10:49 AM Page 1239

ItemType represents the data type stored in the collection or array and TargetCollection represents
the actual array or collection. There are two sets of requirements that a collection you want to iterate
through using the foreach statement must meet. The first set has to do with the composition of the col-
lection itself. They are as follows:

❑ The collection type must be an interface, class, or struct.

❑ The collection type must include a GetEnumerator() method for returning an enumerator
type. An enumerator type is basically an object that allows you to step through a collection item
by item.

The second set of requirements deal with the composition of the enumerator type returned by the
GetEnumerator() method mentioned above. Here is the list of requirements:

❑ The enumerator should provide a Boolean method MoveNext().

❑ MoveNext() should return true if there are more items in the collection.

❑ MoveNext() should step to the next item in the collection at each invocation.

❑ The enumerator type must provide a property named Current that returns an ItemType (or a
type that can be converted to ItemType).

❑ The property accessor Current should return the current element of the collection.

The following snippet of C# code uses foreach to iterate through a Hashtable collection:

Hashtable t = new Hashtable();
t[“a”] = “hello”;
t[“b”] = “world”;
t[“c”] = “of”;
t[“d”] = “c-sharp”;
foreach(DictionaryEntry b in t)
{
Console.WriteLine(b.Value);
}

We talked about the break statement in our discussion of switch; this statement can be used to exit from
any flow control or iterative statement. The continue statement forces the end of the current iteration of
an iterative statement, while return is used in a method to return control to the caller of the method.

Classes
Conceptually, classes in both C# and Java are very similar. A class is the template for an object, which is a
data type that can hold both data and functionality that acts upon that data. Instantiating an object
means creating a specific occurrence of that object, based on the class template. C# classes contain mem-
bers that include methods (including constructors) and fields, like Java classes. However, there are some
important conceptual differences between C# and Java classes, and a few different keywords too (as we
would expect).

1240

Appendix C

557599 AppC_BC03.qxd 4/28/04 10:49 AM Page 1240

Access Modifiers
As with Java, we can add the usual modifiers to the start of the class or member declaration to modify
the behavior of the class or member. The following table list the C# modifiers and their Java equivalents.

Access Modifier Java Equivalent Description

public public No restrictions on access. Members of enum and
interface, as well as namespaces, are public by
default.

private private Accessible only to the declaring class. Members
of class and struct are private by default.

internal n/a Accessible to files in the same assembly.

protected n/a Accessible to the declaring class, and any sub-
class of the declaring class. In C# protected is
more restrictive than in Java. Protected access
will not allow other files in the same assembly
to access the member.

protected internal protected Accessible to assembly files and subclasses of
declaring class.

The private keyword is used to make methods and variables accessible only from within the containing
class. It serves the same function in both languages. The public modifier allows entities outside the
package/namespace to access the members of the class. However, C# and Java differ in the way pro-
tected and default are handled. While in Java, protected makes the method or variable accessible to
classes in the same package or subclasses of the class, in C# protected makes code only visible to that
class and subclasses that inherit from it.

C# also introduces a new access modifier: internal. The internal keyword modifies data members so
that they are visible to all code within the entire component but not clients of that component. The dif-
ference between the no modifier in Java (which signifies an element that is accessible only to elements
within the package) and internal is that internal is accessible to all elements of the assembly, which
can span multiple namespaces.

Class Members
As we have seen throughout this document, the differences in syntax between C# and Java when declar-
ing and referring to classes and their members is minimal. However, there are marked differences in
class member modifier syntax, as explained in the following table.

1241

C# for Java Developers

557599 AppC_BC03.qxd 4/28/04 10:49 AM Page 1241

Member Modifiers Java Equivalent Description

virtual n/a Allows target members to be overridden by an inher-
ited class (the default in Java).

static static Target member marked as static belongs to class
and not instance of class. Hence, there is no need to
instantiate the class in order to gain access to it.

event n/a Used to bind client code to events of the class, the
event modifier allows you to specify a delegate that
will be called when some event in your code occurs.
Note that it is the job of the class programmer to
define when and where the event is raised, and the
job of the subscriber to choose how to handle it.

abstract abstract Indicates that the target member is implicitly virtual
and has no implementation code. The derived class
must provide this implementation and the imple-
mented method must be marked as override.

const final Indicates that the target member cannot be modified.
Java also has a const keyword, which at the time of
this writing is simply a reserved word.

readonly n/a Indicates that the target member can only be assigned
values in its declaration or in the constructor of its
containing class.

extern n/a Indicates that the target member is implemented
externally. This modifier is typically used with the
DllImport attribute.

override n/a Indicates that the target member provides a new imple-
mentation of a member inherited from a base class.

For more information on delegates and events, refer to Chapter 6.

As with Java, defining abstract methods in C# mandates that the class be abstract.

C# does not have a native modifier, and there is also no C# version of transient, volatile, or synchronized
at the time of writing. In Java, using native indicates that the method is implemented in a platform-
dependent language. It requires that the method be abstract since the implementation is to be found
elsewhere. The closest relative to this type of functionality is the extern modifier. Using extern implies
that the code is implemented externally (by some native DLL for example). Unlike Java, however, there
is no need to use the abstract keyword in association with it. In the following snippet, the Flower class
displays an example of how extern can be used:

public class Flower
{
public Flower(){}
public extern int GetColor();
// rest of Flower class definition
}

1242

Appendix C

557599 AppC_BC03.qxd 4/28/04 10:49 AM Page 1242

This doesn’t make much sense without using the DllImport attribute to specify the external implemen-
tation. The following code provides the appropriate modifications, assuming there is a See() function
exported by the User32.dll resource:

public class Flower
{
public Flower(){}
[System.Runtime.InteropServices.DllImport (“User32.dll”)]
public static extern int GetColor();
// rest of Flower class definition
}

Note that we have now marked GetColor() as static. The DllImport attribute requires this of the
methods it is used on.

Passing as reference to methods
Java and C# differ extensively in syntax and ideology regarding the way methods are handled by an
object. For one thing, in C# not all reference data type parameters are passed as references and not all
simple data types have to be passed by value. You have the option to pass arguments by value as an in
parameter (this is the default way parameters are passed) by reference as a ref parameter, or as an out
parameter. This is illustrated by the following code:

public static void Main(string[] args)
{
int a = 10;
Console.WriteLine(a);
AddOne(a);
Console.WriteLine(a);
}
public static void AddOne(int a)
{
a++;
}

This produces the following output in both C# and Java:

10
10

Because a is passed by value, the value that is passed is not tied to the value a in Main(). Consequently,
incrementing a in the Add() method does not affect a in Main(). This is probably not the behavior we
want; we would like the changes made to a to be remembered after the method call. We can do this by
passing by reference instead of by value, like this:

public static void Main(string[] args)
{
int a = 10;
Console.WriteLine(a);
AddOne(ref a);

1243

C# for Java Developers

557599 AppC_BC03.qxd 4/28/04 10:49 AM Page 1243

Console.WriteLine(a);
}
public static void AddOne(ref int a)
{
a++;
}

This produces the following output:

10
11

So, to use a reference parameter, we precede the parameter type with the ref keyword. We can also pass
values back from a method using the out parameter. Note that out parameters do not need to be initial-
ized before they are passed as arguments. The following code displays 100:

public static void Main(string[] args)
{
int a;
Add(out a);
Console.WriteLine(a);
}
public static void Add(out int a)
{
a = 100;
}

Properties
Unlike Java, C# does not use get and set methods to access an object’s internal attributes. Instead it
combines these methods together into another kind of class member called a property. A property con-
tains a get accessor, which allows reading of internal fields of an object, and a set accessor that allows
you to change the value of an internal field. The value keyword represents the new value to the right of
the equals sign at assignment time. Not including the appropriate accessor in the property declaration
will make the property either read-only (no set), or write-only (no get). The following class, Person,
contains a few properties, called Age and Name:

public class Person
{
private int age;
private string name;
public Person(string name)
{
this.name = name;
}
public int Age
{
get
{
return age;
}
set
{

1244

Appendix C

557599 AppC_BC03.qxd 4/28/04 10:49 AM Page 1244

age = value;
}
}
public string Name
{
get
{
return name;
}
}
}

In the previous example, the property Age has a get and set accessor so you can read or write to the
property. Name, however, is created only after you create a new instance of the properties object; after this
you can only read the value of the Name property. Properties are accessed as if they are public fields:

Person john = new Person(“John Smith”);
john.Age = 21;
Console.WriteLine(“My name is {0}, and I am {1} years old.”, john.Name,
john.Age);

The output of the previous code is:

My name is John Smith, and I am 21 years old.

Note that property names must be unique.

Destructors
C# uses destructors in a similar way to C++. They work similarly to finalizers in Java; their syntax, how-
ever, is very different. With destructors, a tilde (~) prefixes the class name:

~Sample()
{
}

A word of advice concerning code in the destructor: the garbage collector in .NET is not invoked imme-
diately after a variable goes out of scope. Indeed, there are certain intervals or memory conditions that
bring the thread to life. Since there is a possibility that it might be triggered in low memory situations,
consider making code in the destructor as short as possible. It is also a good idea to call close() on
resource-intensive objects before destroying the controllers that use them.

Class Inheritance
Class inheritance in C# is also implemented in a very similar way to Java. Both languages are based on
single implementation inheritance (in other words a subclass is only allowed to inherit from one other
class) and multiple interface inheritance (a class can implement as many interfaces as desired).

C# does not have Java’s extends or implements modifiers. To derive from a class or implement an inter-
face in C#, we use the : operator. When a class base list contains a base class and interfaces, the base

1245

C# for Java Developers

557599 AppC_BC03.qxd 4/28/04 10:49 AM Page 1245

class comes first in the list. The interface keyword is used to declare an interface. The following code
shows examples of how to use these concepts:

//declare a parent/base class
class MyBaseClass
{
//class members
}
// declare an interface IFirstInterface
interface IFirstInterface
{
// interface members
}
// declare a subclass of MyBaseClass that inherits from interfaces too
class MySubClass : MyBaseClass, IFirstInterface, ISecondInterface
{
// class members
}

Abstract classes
As with Java, in C# we can use the abstract modifier in a class declaration to indicate that the class
should not (and cannot) be instantiated. Classes derived from abstract classes must implement all the
abstract methods of the class, and the sealed (see below) modifier cannot be applied to these methods.

Preventing inheritance
In C# the sealed modifier is used to prevent accidental inheritance, because a class defined as sealed can
not be inherited from. Declaring a class as final achieves the same goal. Declaring a method as final also
seals it, making it impossible to override. Declaring a variable as final is essentially making it read-only;
however, you can still set a final value to the value of a variable. (This is different from constants, where the
value of constants must be known at compile time so constants may only be set equal to other constants.)

Using base class members and base constructors
The keyword this works the same in Java and C#. In Java the super reference variable is used to
signify the immediate parent class. In C# the equivalent is base. Take a C# class CalculateFor that
provides the ability to work out the value of integer x raised to a particular integer power (for example,
x raised to the power of three is x multiplied by x multiplied by x), given x and the power (provided an
overflow does not occur):

using System;
public class CalculateFor
{
internal int x;
public CalculateFor(int x)
{
this.x = x;
}
public int ToThePower(int power)
{
int total = 1;
for(int i = 0; i < power; i ++)

1246

Appendix C

557599 AppC_BC03.qxd 4/28/04 10:49 AM Page 1246

{
total *= x;
}
return total;
}
}

We could use this class in other code like this, given a value of x of 9 and a value of power of 3:

CalculateFor myNumber = new CalculateFor(9);
int result = myNumber.ToThePower(3);

Let’s introduce a subclass of CalculateFor, ExpCalculateFor, which contains a member floating-
point variable, and the method ToTheExponent() that multiplies the result of ten to a particular power
by that floating point value:

using System;
public class ExpCalculateFor
{
internal float y;
public ExpCalculateFor(float y) : CalculateFor(10)
{
this.y = y;
}
public int ToTheExponent(int power)
{
int total = 1;
for(int i = 0; i < power; i ++)
{
total *= base.x;
}
total *= y;
return total;
}
}

Notice the syntax used when referring to a base constructor in a subclass’s constructor declaration.
Actually we could simplify the ToTheExponent() method to the following, reusing the functionality of
the base class’s ToThePower() method:

public int ToTheExponent(int power)
{
float total = (base.x).(base.ToThePower(power));
total *= y;
return total;
}

Method overriding and hiding
In C#, method overriding is a very explicit procedure. This is quite different from the Java approach,
where overriding is the default behavior when the signature of a super class member is the same as the
signature of its subclass. In C#, to provide method overriding functionality, the modifiers virtual and
override are used in tandem. All methods in the base class that you expect will be overridden must use

1247

C# for Java Developers

557599 AppC_BC03.qxd 4/28/04 10:49 AM Page 1247

the virtual keyword. To actually override them use the override keyword in the child class. The fol-
lowing code uses an example class and subclass to demonstrate the override functionality:

using System;
public class FruitPlant
{
public FruitPlant(){}
public virtual void BearFruit()
{
Console.WriteLine(“Generic fruit plant”);
}
}
class MangoTree : FruitPlant
{
public MangoTree(){}
public MangoTree(){}
public override void BearFruit()
{
Console.WriteLine(“Tree fruit is:->Mango”);
}
}
public class FruitPlantTest
{
public FruitPlantTest(){}
public static void Main(string[] args)
{
FruitPlant p = new FruitPlant();
p.BearFruit();
MangoTree t = new MangoTree();
t.BearFruit();
((FruitPlant)t).BearFruit();
}
}

Compiling and running this code produces the following output:

Generic fruit plant
Tree fruit is:->Mango
Tree fruit is:->Mango

As you can see the most derived Fruit() method is called, irrespective of our use of final cast of the
MangoTree instance to the Plant instance. Indeed, the benefit of using method overriding is that you
are guaranteed that the most derived method will always be called.

Although we cannot override a method in C# unless the method was originally declared as virtual, C#
also introduces a new concept, method hiding. This allows developers to redefine super-class members in
the child class and hide the base class implementation even if the base member is not declared virtual.
C# uses the new modifier to accomplish this.

1248

Appendix C

557599 AppC_BC03.qxd 4/28/04 10:49 AM Page 1248

The benefit of hiding members from the base class rather than overriding them is that you can selec-
tively determine which implementation to use. By modifying the previous code we can see this concept
in action:

public class FruitPlant
{
public FruitPlant(){}
public void BearFruit()
{
Console.WriteLine(“Generic fruit plant”);
}
}
class MangoTree : FruitPlant
{
public MangoTree(){}
new public void BearFruit()
{
Console.WriteLine(“Tree fruit is:->Mango”);
}
}
// then FruitPlantTest implementation

Running this example produces this output:

Generic plant fruit
Tree fruit is:->Mango
Generic plant fruit

In other words, unlike overriding, when hiding methods, the method invoked depends on the object the
method is called on. For the last line of output, we cast the MangoTree instance back to a Plant instance
before calling the BearFruit() method. So the Plant class’s method is called.

You should note that the new modifier can also be used to hide any other type of inherited members
from base class members of a similar signature.

Input and Output
Being able to collect input from the command prompt and display output in the command console is an
integral part of Java’s input/output functionality. Usually in Java one would have to create an instance
of a java.io.BufferedReader object, using the System.in field in order to retrieve an input from the
command prompt. The following code shows a simple Java class, JavaEcho, which takes input from the
console and echoes it back, to illustrate the use of the Java.io package to gather and format input and
output:

import java.io.*;
public class JavaEcho {
public static void main(String[] args)throws IOException {
BufferedReader stdin = new BufferedReader(new InputStreamReader(System.in));
String userInput = stdin.readLine ();
System.out.println (“You said: “ + userInput);
}
}

1249

C# for Java Developers

557599 AppC_BC03.qxd 4/28/04 10:49 AM Page 1249

In C#, the System.Console class provides methods that can provide similar functionality for reading
and writing from and to the command prompt. There is no need for any extra objects; the Console class
provides methods that can read entire lines, read character by character, and even expose the underlying
stream being read from. The members of Console are briefly described in the following tables.

Public Properties Description

Error Gets the system’s standard error output stream as a TextWriter object.

In Gets the system’s standard input stream as a TextReader object.

Out Gets the system’s standard output stream as a TextWriter object.

Public Methods Description

OpenStandardError() Overloaded. Returns the standard error stream as a Stream object.

OpenStandardInput() Overloaded. Returns the standard input stream as a Stream object.

OpenStandardOutput() Overloaded. Returns the standard output stream as a Stream
object.

Read() Reads the next character from the standard input stream.

ReadLine() Reads the next line of characters as a string from Console, which
is set to the system’s standard input stream by default.

SetError() Redirects the Error property to use the specified TextWriter
stream.

SetIn() Redirects the In property to use the specified TextReader stream.

SetOut() Redirects the Out property to use the specified TextWriter
stream.

Write() Overloaded. Writes the specified information to Console.Out.

WriteLine() Overloaded. Writes information followed by a line terminator to
Console.Out.

All of the Console members are static, so you don’t need to (and can’t) instantiate a System.Console.

object.
Using the powerful methods of the Console class we could write an equivalent of the
JavaEcho class
in C# as follows:
class CSEchoer
{
static void Main(string[] args)
{
string userInput = System.Console.ReadLine();
System.Console.WriteLine (“You said : “ + userInput);
}
}

1250

Appendix C

557599 AppC_BC03.qxd 4/28/04 10:49 AM Page 1250

The previous code is much shorter and easier to digest in comparison to its Java counterpart. One useful
thing you’ll get with the Console.WriteLine() static method is the ability to use formatted strings.
The flexibility of formatted strings can be illustrated by writing a simple game where user input is used
to generate a story. Here is the code for this game, EchoGame:

class EchoGame
{
static void Main(string[] args)
{
System.Console.WriteLine(“Name of a country?”);
string userInput1 = System.Console.ReadLine();
System.Console.WriteLine(“Name of a young prince?”);
string userInput2 = System.Console.ReadLine();
System.Console.WriteLine(“What was the prince doing?”);
string userInput3 = System.Console.ReadLine();
System.Console.WriteLine(“What did he find while doing this?”);
string userInput4 = System.Console.ReadLine();
System.Console.WriteLine(“Then what did he do?”);
string userInput5 = System.Console.ReadLine();
System.Console.WriteLine(“Once upon a time in”
+ “ {0}, there was a young prince {1},\n” +
“who while {2}, came across a {3}, and then “
+ “{4} ! “, userInput1, userInput2,
userInput3, userInput4, userInput5);
}
}

The insertion points are replaced by the supplied arguments starting from the index {0}, which corre-
sponds to the leftmost variable (in this case userInput1). You are not limited to supplying only string
variables, nor are you confined to using just variables, or even using variables of the same type. Any
type that the method WriteLine() can display can be supplied as an argument, including string literals
or actual values. There is also no limit to the number of insertion points that can be added to the string,
as long as it is less than the overall number of arguments. Note that omitting insertion points from the
string will cause the variable not to be displayed. You must, however, have an argument for each inser-
tion point you specify whose index in the argument list corresponds to the index of the insertion point.
In the following listing, for example, removing {1} is fine as long as there are still three arguments. In
this case {0} matches up with strA and {2} matches up with strC:

Console.WriteLine(“hello {0} {1} {2}”, strA, strB, strC);

Summary
Microsoft describes C# as a simple, modern language derived from C and C++. Because Java is also a
modernization of C++, much of the syntax and inbuilt features present in C# are also available in Java.

C# uses.NET Framework, and so offers built-in, type-safe, object-oriented code that is interoperable with
any language that supports the Common Type System (CTS). Java does offer interoperability with C and
C++, but it is not type-safe. Moreover, it is highly complex.

1251

C# for Java Developers

557599 AppC_BC03.qxd 4/28/04 10:49 AM Page 1251

C# namespaces provide a much more flexible way of grouping related classes. C# filenames are not
bound to the classes within them as they are in Java, nor are namespace names bound to folders as pack-
age names are in Java. C# also provides a rich set of built-in value types, including type-safe enumera-
tions, structures, and the built-in primitives that offer a robust alternative to Java’s primitives.

C# provides bi-directional conversion between reference and value types called boxing and unboxing.
This functionality is not supported in Java. C# supports the use of classes, complete with fields, con-
structors, and methods, as a template for describing types, and provides the ability to define destructors,
methods called just before the class is garbage collected. C# also provides three approaches to method
parameters—in (default), out, or ref.

C# also introduces the concept of method hiding, as well as supporting explicit overriding with the
virtual and override keywords, and C# provides properties as an alternative to get() and set()
methods as a way to access safely internal fields.

1252

Appendix C

557599 AppC_BC03.qxd 4/28/04 10:49 AM Page 1252

C# for C++ Developers

This appendix is intended for developers who are already familiar with C++ and want to see what
the differences are between C++ and C#. We will survey the C# language, noting specifically those
areas in which it is different from C++. Because the two languages do have a large amount of syn-
tax and methodology in common, advanced C++ programmers may find they can use this
appendix as a shortcut to learning C#.

It should be made clear that C# is a distinct language from C++. Whereas C++ was designed for
general object-oriented programming in the days when the typical computer was a standalone
machine running a command-line-based user interface, C# is designed specifically to work with
.NET and is geared to the modern environment of Windows and mouse-controlled user interfaces,
networks, and the Internet. There is a similarity between the two languages, particularly in syntax,
and this is not surprising since C# was designed as an object-oriented language that took the good
points of earlier object-oriented languages—of which C++ has been arguably the most successful
example—but learned from the poorer design features of these languages

Because of the similarities between the two languages, developers who are fluent in C++ may find
that the easiest way to learn C# is to treat it as C++ with a few differences and learn what those
differences are. This appendix is designed to help you do that.

We will start off with a broad overview, mentioning, in general terms, the main differences between
the two languages, but also indicating what areas they have in common. We follow this by compar-
ing what the standard Hello, World program looks like in each of the two languages. The bulk of the
appendix is dedicated to a topic-by-topic analysis that looks at each of the main language areas and
gives a detailed comparison between C# and C++; inevitably, an appendix of this size cannot be com-
prehensive, but we will cover all the main differences between the languages that you will notice in
the course of everyday programming. It is worth pointing out that C# relies heavily on support from
the .NET base class library in a large number of areas. In this appendix we will largely restrict our
attention to the C# language itself, and not extensively cover the base classes.

For the purposes of comparison, we are taking ANSI C++ as our reference point. Microsoft has added
numerous extensions to C++, and the Windows Visual C++ compiler has a few incompatibilities with

557599 AppD_BC04.qxd 4/28/04 10:51 AM Page 1253

the ANSI standard, which we’ll occasionally point out, but we will not normally use these when comparing
the two languages.

Conventions for This Appendix
Note that in this appendix we adopt an additional convention when displaying code; C# code will
always be displayed with gray shading:

// this is C# code
class MyClass : MyBaseClass
{

If we want to highlight any new or important C# code, it will be displayed in bold:

// this is C# code
class MyClass : MyBaseClass // we’ve already seen this bit
{

int X; // this is interesting

However, any C++ code presented for comparison will be presented like this, without any shading:

// this is C++ code
class CMyClass : public CMyBaseClass
{

In the sample code in this appendix we have also taken account of the most common naming conven-
tions when using the two languages under Windows. Hence class names in the C++ examples begin
with C while the corresponding names in the C# examples do not. Also, Hungarian notation is often
used for variable names in the C++ samples only.

Terminology
You should be aware that a couple of language constructs have a different terminology in C# from that
in C++. Member variables in C++ are known as fields in C# while functions in C++ are known as methods
in C#. In C#, the term function has a more general meaning and refers to any member of a class that con-
tains code. This means that “function” covers methods, properties, constructors, destructors, indexers,
and operator overloads. In C++, “function” and “method” are often used interchangeably in casual
speech, though strictly a C++ method is a virtual member function.

If this all sounds confusing, the following table should help.

Meaning C++ Term C# Term

Variable that is a member of a class Member variable Field

Any item in a class that contains instructions Function (or member function) Function

1254

Appendix D

557599 AppD_BC04.qxd 4/28/04 10:51 AM Page 1254

Meaning C++ Term C# Term

Item in a class that contains instructions and is Function (or member function) Method
callable by name with the syntax DoSomething
(/*parameters*/).

Virtual function that is defined as a member Method Virtual
of a class method

You should also be aware of the differences in terminology listed in the following table.

C++ Term C# Term

Compound statement Block statement

Lvalue Variable expression

In this appendix we will, where possible, use the terminology appropriate to the language we are
discussing.

A Comparison of C# and C++
In this section we’ll briefly summarize the overall differences and similarities between the two
languages.

Differences
The main areas in which C# differs from C++ are as follows:

❑ Compile target—C++ code usually compiles to assembly language. C# by contrast compiles to
intermediate language (IL), which has some similarities to Java byte code. The IL is subsequently
converted to native executable code by a process of Just-In-Time (JIT) compilation. The emitted
IL code is stored in a file or set of files known as an assembly. An assembly essentially forms the
unit in which IL code, along with metadata, is packaged, corresponding to a DLL or executable
file that would be created by a C++ compiler.

❑ Memory management—C# is designed to free the developer from memory management book-
keeping tasks. This means that in C# you do not have to explicitly delete memory that was allo-
cated dynamically on the heap, as you would in C++. Rather, the garbage collector periodically
cleans up memory that is no longer needed. In order to facilitate this, C# does impose certain
restrictions on how you can use variables that are stored on the heap, and is stricter about type
safety than C++.

❑ Pointers—Pointers can be used in C# just as in C++, but only in blocks of code that you have
specifically marked for pointer use. For the most part, C# relies on Visual Basic/Java-style refer-
ences for instances of classes, and the language has been designed in such a way that pointers
are not required nearly as often as they are in C++.

1255

C# for C++ Developers

557599 AppD_BC04.qxd 4/28/04 10:51 AM Page 1255

❑ Operator overloads—C# does not allow you to explicitly overload as many operators as C++.
This is largely because the C# compiler automates this task to some extent by using any avail-
able custom overloads of elementary operators (like =) to work out overloads of combined oper-
ators (+=) automatically.

❑ Library—Both C++ and C# rely on the presence of an extensive library. For ANSI C++ this is the
standard library. C# relies on a set of classes known as the .NET base classes. The .NET base
classes are based on single inheritance, whereas the standard library is based on a mixture of
inheritance and templates. Also, whereas ANSI C++ keeps the library largely separate from the
language itself, the interdependence in C# is much closer, and the implementation of many C#
keywords is directly dependent on particular base classes.

❑ Target environments—C# is specifically designed to target programming needs in GUI-based
environments (not necessarily just Windows, although the language currently only supports
Windows), as well as background services such as Web services. This doesn’t really affect the
language itself, but is reflected in the design of the base class library. C++ by contrast was
designed for more general use in the days when command-line user interfaces were dominant.
Neither C++ nor the standard library include any support for GUI elements. On Windows, C++
developers have had to rely directly or indirectly on the Windows API for this support.

❑ Preprocessor directives—C# has some preprocessor directives, which follow the same overall
syntax as in C++. But in general there are far fewer preprocessor directives in C#, since other C#
language features make these less important.

❑ Enumerators—These are present in C#, but are much more versatile than their C++ equivalents,
since they are syntactically fully fledged structs in their own right, supporting various proper-
ties and methods. Note that this support exists in source code only—when compiled to native
executables, enumerators are still implemented as primitive numeric types, so there is no
performance loss.

❑ Destructors—C# cannot guarantee when class destructors are called. In general, you should not
use the programming paradigm of placing code in C# class destructors, as you can in C++, unless
there are specific external resources to be cleaned up, such as file or database connections. Since
the garbage collector cleans up all dynamically allocated memory, destructors are not so impor-
tant in C# as they are in C++. For cases in which it is important to clean up external resources as
soon as possible, C# implements an alternative mechanism involving the IDisposable interface.

❑ Classes versus structs—C# formalizes the difference between classes (typically used for large
objects with many methods) and structs (typically used for small objects that comprise little
more than collections of variables). Among other differences, classes and structs are stored
differently, and structs do not support inheritance.

Similarities
Areas in which C# and C++ are very similar include:

❑ Syntax—The overall syntax of C# is very similar to that of C++, although there are numerous
minor differences.

❑ Execution flow—C++ and C# both have roughly the same statements to control flow of execu-
tion, and these generally work in the same way in the two languages.

1256

Appendix D

557599 AppD_BC04.qxd 4/28/04 10:51 AM Page 1256

❑ Exceptions—Support for these in C# is essentially the same as in C++, except that C# allows
finally blocks and imposes some restrictions on the type of object that can be thrown.

❑ Inheritance model—Classes are inherited in the same way in C# as in C++. Related concepts
such as abstract classes and virtual functions are implemented in the same way, although there
are some differences in syntax. Also, C# supports only single inheritance of classes, but multiple
interface inheritance. The similarity in class hierarchy incidentally means that C# programs will
normally have a very similar overall architecture to corresponding C++ programs.

❑ Constructors—Constructors work in the same way in C# as in C++, though again there are
some differences in syntax.

New Features
C# introduces a number of new concepts that are not part of the ANSI C++ specification (although most
of these have been introduced by Microsoft as non-standard extensions supported by the Microsoft C++
compiler). These are:

❑ Delegates—C# does not support function pointers. However, a similar effect is achieved by
wrapping references to methods in a special form of class known as a delegate. Delegates can be
passed around between methods and used to call the methods to which they contain references,
in the same way that function pointers can be in C++. What is significant about delegates is that
they incorporate an object reference as well as a method reference. This means that, unlike a
function pointer, a delegate contains sufficient information to call an instance method in a class.

❑ Events—Events are similar to delegates, but are specifically designed to support the callback
model, in which a client notifies a server that it wants to be informed when some action takes
place. C# uses events as a wrapper around Windows messages in the same way that Visual
Basic does.

❑ Properties—This idea, used extensively in Visual Basic and in COM, has been imported into C#.
A property is a method or get/set pair of methods in a class that have been dressed up syntacti-
cally, so to the outside world it looks like a field. Properties allow you to write code like
MyForm.Height = 400 instead of MyForm.SetHeight(400).

❑ Interfaces—An interface can be thought of as an abstract class, whose purpose is to define a set
of methods or properties that classes can agree to implement. The idea originated in COM. C#
interfaces are not the same as COM interfaces; they are simply lists of methods and properties
and such, whereas COM interfaces have other associated features such as GUIDs, but the princi-
ple is very similar. This means that C# formally recognizes the principle of interface inheritance,
whereby a class inherits the definitions of functions, but not any implementations.

❑ Attributes—C# allows you to decorate classes, methods, parameters, and other items in code
with meta-information known as attributes. Attributes can be accessed at runtime and used to
determine the actions taken by your code.

New Base Class Features
The following features are new to C# and have no counterparts in the C++ language. However, support
for these features comes almost entirely from the base classes, with little or no support from the C#

1257

C# for C++ Developers

557599 AppD_BC04.qxd 4/28/04 10:51 AM Page 1257

language syntax itself. Therefore we will not cover them in this appendix. (For more details see Chapters
10 and 15.)

❑ Threading—The C# language includes some support for thread synchronization, via the lock
statement. (C++ has no inbuilt support for threads and you have to call functionality in code
libraries.)

❑ Reflection—C# allows code to obtain information dynamically about the definitions of classes
in compiled assemblies (libraries and executables). You can actually write a program in C# that
displays information about the classes and methods that it is made up from!

Unsupported Features
The following parts of the C++ language do not have any equivalent in C#:

❑ Multiple inheritance of classes—C# classes support multiple inheritance only for interfaces.

❑ Templates—These are not part of the C# language at present, although Microsoft has stated that
it is investigating the possibility of template support for future versions of C#.

The Hello World Example
Writing a Hello World application is far from original, but a direct comparison of Hello World in C++
and C# can be quite instructive for illustrating some of the differences between the two languages. In
this comparison we’ve tried to innovate a bit (and demonstrate more features) by displaying “Hello
World!” both at the command line and in a message box. We’ve also made a slight change to the text of
the message in the C++ version, in a move which we emphasize should be interpreted as a bit of fun
rather than a serious statement.

The C++ version looks like this:

#include <iostream>
#include <Windows.h>
using namespace std;

int main(int argc, char *argv)
{

cout << “Goodbye, World!”;
MessageBox(NULL, “Goodbye, World!”, “”, MB_OK);
return 0;

}

Here’s the C# version:

using System;
using System.Windows.Forms;

namespace Console1
{

class Class1

1258

Appendix D

557599 AppD_BC04.qxd 4/28/04 10:51 AM Page 1258

{
static int Main(string[] args)
{

Console.WriteLine(“Hello, World!”);
MessageBox.Show(“Hello, World!”);
return 0;

}
}

}

Comparing the two programs tells us that the syntax of the two languages is quite similar. In particular,
code blocks are marked off with braces ({ }), and semicolons are used as statement delimiters. Like
C++, C# ignores all excess whitespace between statements. We’ll go through the samples line by line,
examining the features they demonstrate.

#include Statements
The C++ version of Hello World starts with a couple of preprocessor directives to include some header
files:

#include <iostream>
#include <Windows.h>

These are absent from the C# version, something which illustrates an important point about the way that
C# accesses libraries. In C++ we need to include header files in order for the compiler to be able to recog-
nize the relevant symbols in your code. We need to instruct the linker separately to reference the
libraries, achieved by passing command-line parameters to the linker. C# doesn’t really separate compil-
ing and linking in the way that C++ does. In C#, the command-line parameters are all that is required
(and only then if you are accessing anything beyond the basic core library). By themselves, these will
allow the compiler to find all the class definitions; hence explicit references in the source code are unnec-
essary. This is actually a much simpler way of doing it—and indeed once you’ve familiarized yourself
with the C# model, the C++ version, in which everything needs to be referred to twice, starts to look
rather strange and cumbersome.

One other point we should note is that of the two #include statements in the above C++ code, the first
accesses an ANSI standard library (the iostream part of the standard library). The second is a
Windows-specific library, and is referenced in order that we can display the message box. C++ code on
Windows often needs to access the Windows API because the ANSI standard doesn’t have any window-
ing facilities. By contrast, the .NET base classes—in a sense, the C# equivalent of the ANSI standard tem-
plate library—do include windowing facilities, and only the .NET base classes are used here. Our C#
code requires no non-standard features. (Although arguably, this point is balanced by the fact that stan-
dard C# is only available on Windows, at present.)

Although the C# code above happens not to have any #include directives, it’s worth noting that some
preprocessor directives (though not #include) are available in C#, and do retain the # syntax.

Namespaces
The C# Hello World program starts with a namespace declaration, which is scoped by the curly braces to
include the entire program. Namespaces work in exactly the same way in C# as they do in C++, providing

1259

C# for C++ Developers

557599 AppD_BC04.qxd 4/28/04 10:51 AM Page 1259

ways to remove possible ambiguity from the names of symbols in the program. Placing items in a names-
pace is optional in both languages, but in C# the convention is that all items should be in a namespace.
Hence, while it is very common to see C++ code that is not contained in a namespace, it is extremely rare
to see such code in C#.

For the next part of the code, C# and C++ versions are very similar—in both we use the statement using
to indicate the namespace in which any symbols should be searched for. The only difference is a syntac-
tical one: The statement in C# is just using, whereas in C++ it is using namespace.

Many C++ developers will be used to the old C++ library, which meant including the file iostream.h
rather than iostream— in which case the using namespace std statement is unnecessary. The old C++
library is officially deprecated, and the above example demonstrates how you really should be accessing
the iostream library in C++ code.

Entry Point: Main() versus main()
The next items in our Hello World examples are the program entry points. In the C++ case this is a global
function named main(). C# does roughly the same thing, although in C# the name is Main(). However,
whereas in C++ main() is defined outside of any class, the C# version is defined as a static member of a
class. This is because C# requires all functions and variables to be members of a class or struct. C# will not
allow any top-level items in your program except classes and structs. To that extent C# can be regarded as
enforcing stricter object-oriented practices than C++ does. Relying extensively on global and static vari-
ables and functions in C++ code tends to be regarded as poor program design anyway.

Of course, requiring that everything should be a member of a class does lead to the issue of where the
program entry point should be. The answer is that the C# compiler will look for a static member method
called Main().This can be a member of any class in the source code, but only one class should normally
have such a method. (If more than one class defines this method, a compiler switch will need to be used
to indicate to the compiler which of these classes is the program entry point.) Like its C++ counterpart,
Main() can return either a void or an int, though int is the more usual. Also like its C++ equivalent,
Main() takes the same arguments—either the set of any command-line parameters passed to the pro-
gram, as an array of strings, or no parameters. But as you can see from the code, strings are defined in a
slightly more intuitive manner in C# than they are in C++. (In fact, the word string is a keyword in C#,
and it maps to a class defined in the .NET base class library, System.String.) Also, arrays are more
sophisticated in C# than in C++. Each array stores the number of elements it contains as well as the ele-
ments themselves, so there is no need to pass in the number of strings in the array separately in the C#
code, as C++ does via the argc parameter.

Displaying the Message
Finally, we get to the lines that actually write our message—first to the console, then to a message box.
In both cases these lines of code rely on calling up features from the supporting libraries for the two
languages. The classes in the standard library are obviously designed very differently from those in the
.NET base class library, so the details of the method calls in these code samples are different. In the C#
case, both calls are made as calls to static methods on base classes, whereas to display a message box
C++ has to rely on a non-standard Windows API function, MessageBox(), which is not object-oriented.

1260

Appendix D

557599 AppD_BC04.qxd 4/28/04 10:51 AM Page 1260

The base classes are designed to be highly intuitive—arguably more so than the standard library.
Without any knowledge of C#, it’s immediately obvious what Console.WriteLine() does. If you
didn’t already know, you’d have a hard time figuring out what cout << means. But in the commercial
world of programming, being easy to understand is usually worth more than being artistic.

MessageBox.Show() takes fewer parameters than its C++ equivalent in this example, because it is over-
loaded. Other overloads that take additional parameters are available.

Also, one point that could be easy to miss is that the above code demonstrates that C# uses the period, or
full stop, symbol (.) rather than two colons (::) for scope resolution. Console and MessageBox are the
names of classes rather than class instances! In order to access static members of classes, C# always requires
the syntax <ClassName>.<MemberName> whereas C++ gives you a choice between <ClassName>::
<MemberName> and <InstanceName>.<MemberName> (if an instance of the class exists and is in scope).

Topic-by-Topic Comparison
The above example provides an overview of some of the differences you’ll see. For the remainder of this
appendix we will compare the two languages in detail, working systematically through the various
language features of C++ and C#.

Program Architecture
In this section we’ll look in very broad terms at how the features of the two languages affect the overall
architecture of programs.

Program objects
In C++ any program will consist of an entry point (in ANSI C++ this is the main() function, though for
Windows applications this is usually named WinMain()), as well as various classes, structs, and global
variables or functions that are defined outside of any class. Although many developers would regard
good object-oriented design as meaning that as far as possible, the topmost-level items in your code are
objects, C++ does not enforce this. As we’ve just seen, C# does enforce that idea. It lays down a more
exclusively object-oriented paradigm by requiring that everything is a member of a class. In other
words, the only top-level objects in your program are classes (or other items that can be regarded as spe-
cial types of classes: enumerations, delegates, and interfaces). To that extent, you’ll find that your C#
code is forced to be even more object-oriented than would be required in C++.

File structure
In C++ the syntax by which your program is built up is very much based on the file as a unit of source
code. You have, for example, source files (.cpp files) that contain #include preprocessor directives to
include relevant header files. The compilation process involves compiling each source file individually,
after which these objects files are linked to generate the final executable. Although the final executable
does not contain any information about the original source or object files, C++ has been designed in a
way that requires the developer to explicitly code around the chosen source code file structure.

With C#, the compiler takes care of the details of matching up individual source files for you. You can
put your source code either in a single file or in several files, but that’s immaterial for the compiler and

1261

C# for C++ Developers

557599 AppD_BC04.qxd 4/28/04 10:51 AM Page 1261

there’s no need for any file to explicitly refer to other files. In particular, there is no requirement for items
to be defined before they are referenced in any individual file, as there is in C++. The compiler will hap-
pily locate the definition of each item wherever it happens to be. As a side effect of this, there isn’t really
any concept of linking up your own code in C#. The compiler simply compiles all your source files into
an assembly (though you can specify other options such as a module—a unit which will form part of an
assembly). Linking does take place in C#, but this is really confined to linking your code with any exist-
ing library code in assemblies. There is no such thing as a header file in C#.

Program entry point
In standard ANSI C++, the program entry point is by default at a function called main(), which nor-
mally has the signature:

int main(int argc, char *argv)

Where argc indicates the number of arguments passed to the program, and argv is an array of strings
giving these arguments. The first argument is always the command used to run the program itself.
Windows somewhat modifies this. Windows applications traditionally start with an entry point called
WinMain(), and DLLs with DllMain(). These methods also take different sets of parameters.

In C#, the entry point follows similar principles. However, due to the requirement that all C# items are
part of a class, the entry point can no longer be a global function. Instead, the requirement is that one
class must have a static member method called Main(), as we saw earlier.

Language Syntax
C# and C++ share virtually identical syntaxes. Both languages, for example, ignore whitespace between
statements, and use the semicolon to separate statements and braces to block statements together. This
all means that, at first sight, programs written in either language look very much alike. However, note
the following differences:

❑ C++ requires a semicolon after a class definition. C# does not.

❑ C++ permits expressions to be used as statements even if they have no effect, for example: i+1;

In C# this would be flagged as an error.

We should also note that, like C++, C# is case-sensitive. However, because C# is intended to be interop-
erable with Visual Basic .NET (which is case-insensitive), you are strongly advised not to use names that
differ only by case for any items that will be visible to code outside your project (in other words, names
of public members of classes in library code). If you do use public names that differ only by case, you’ll
prevent Visual Basic .NET code from being able to access your classes. (Incidentally if you write any
managed C++ code for the .NET environment, the same advice applies.)

Forward declarations
Forward declarations are neither supported nor required in C#, since the order in which items are
defined in the source files is immaterial. It’s perfectly fine for one item to refer to another item that is

1262

Appendix D

557599 AppD_BC04.qxd 4/28/04 10:51 AM Page 1262

only actually defined later in that file or in a different file—as long as it is defined somewhere. This con-
trasts with C++, in which symbols and so on can only be referred to in a source file if they have already
been declared in the same file or an included file.

No separation of definition and declaration
Something that is related to the lack of forward declarations in C# is that there is never any separation of
declaration and definition of any item in C#. For example, in C++ it’s common to write out a class some-
thing like this in the header file, where only signatures of the member functions are given, and the full
definitions are specified elsewhere:

class CMyClass
{
public:
void MyMethod(); // definition of this function is in the C++ file,
// unless MyMethod() is inline
// etc.

This is not done in C#. The methods are always defined in full in the class definition:

class MyClass
{

public void MyMethod()
{
// implementation here

You might at first sight think that this leads to code that is less easy to read. The beauty of the C++ way
of doing it was, after all, that you could just scan through the header file to see what public functions a
class exposed, without having to see the implementations of those functions. However, this facility is no
longer needed in C#, partly because of modern editors (the Visual Studio .NET editor is a folding editor,
which allows you to collapse method implementations) and partly because C# has a facility to generate
documentation in XML format for your code automatically.

Program Flow
Program flow is similar in C# to C++. In particular, the following statements work in exactly the same
way in C# as they do in C++, and have exactly the same syntax:

❑ for

❑ return

❑ goto

❑ break

❑ continue

There are a couple of syntactical differences for the if, while, do ... while, and switch statements,
and C# provides an additional control flow statement, foreach.

1263

C# for C++ Developers

557599 AppD_BC04.qxd 4/28/04 10:51 AM Page 1263

if...else
The if statement works in exactly the same way and has exactly the same syntax in C# as in C++, apart
from one point. The condition in each if or else clause must evaluate to a bool type. For example,
assuming x is an int, not a bool, the following C++-style code would generate a compilation error in

C#:

if (x)
{

The correct C# syntax is:

if (x != 0)
{

since the != operator returns a bool.

This requirement is a good illustration of how the additional type safety in C# traps errors early.
Runtime errors in C++ caused by writing if (a = b) when you meant to write if (a == b) are common-
place. In C# these errors are caught at compile time.

while and do-while
The while and do-while statements have exactly the same syntax and purpose in C# as they do in C++,
except that the condition expression must evaluate to a bool:

int x;
while (x) { /* statements */ } // wrong
while (x != 0) { /* statements */ } // OK

switch
The switch statement serves the same purpose in C# as it does in C++. It is, however, more powerful in
C#, since you can use a string as the test variable, something that is not possible in C++:

string myString;
// initialize myString
switch (myString)
{

case “Hello”:
// do something
break;

case “Goodbye”:
// etc.

The syntax in C# is slightly different in that each case clause must explicitly exit. It is not permitted for
one case to fall through to another case, unless the first case is empty. If you want to achieve this effect
you’ll need to use the goto statement:

switch (myString)
{

case “Hello”:

1264

Appendix D

557599 AppD_BC04.qxd 4/28/04 10:51 AM Page 1264

// do something;
goto case “Goodbye”; // Will go on to execute the statements
// in the “Goodbye” clause

case “Goodbye”:
// do something else
break;

case “Black”: // OK for this to fall through since it’s empty
case “White”:

// do something else // This is executed if myString contains
// either “Black” or “White”
break;
default:
int j = 3;
break;

}

Microsoft has decided to enforce use of the goto statement in this context, in order to prevent bugs that
would lead to switch statements falling through to the next case clause when the intention was actu-
ally to break.

foreach
C# provides an additional flow control statement, foreach. A foreach loop iterates through all items in
an array or collection without requiring explicit specification of the indices.

A foreach loop on an array might look as follows. In this example we assume that MyArray is an array
of doubles, and we want to output each value to the console window. To do this you would use the fol-
lowing code:

foreach (double someElement in myArray)
{

Console.WriteLine(someElement);
}

Note that in this loop someElement is the name we will assign to the variable used to iterate through the
loop—it is not a keyword.

Alternatively, we could write the above loop as:

foreach (double someElement in myArray)
Console.WriteLine(someElement);

since block statements in C# work in the same way as compound statements in C++.

This loop would have exactly the same effect as:

for (int i=0; i<myArray.Length; i++)
{

Console.WriteLine(myArray[i]);
}

1265

C# for C++ Developers

557599 AppD_BC04.qxd 4/28/04 10:51 AM Page 1265

(We note that the second version also illustrates how to obtain the number of elements in an array in C#!
We’ll cover how to declare an array in C# later in this appendix.)

Note however that, unlike array element access, the foreach loop provides read-only access to its ele-
ments. Hence the following code does not compile:

foreach (double someElement in MyArray)
someElement *= 2; // Wrong _ someElement cannot be assigned to

We mentioned that the foreach loop can be used for arrays or collections. A collection is something that
has no counterpart in C++, although the concept has become common in Windows through its use in
Visual Basic and COM. Essentially, a collection is a class that implements the interface IEnumerable.
Because this involves support from the base classes, we explain collections in Chapter 9.

Variables
Variable definitions follow basically the same pattern in C# as they do in C++:

int nCustomers, Result;
double distanceTravelled;
double height = 3.75;
const decimal balance = 344.56M;

However, as you’d expect, some of the types are different. Also, as remarked earlier, variables may only
be declared locally in a method or as members of a class. C# has no equivalent to global or static (that is
scoped to a file) variables in C++. As noted earlier, variables that are members of a class are called fields
in C#.

Note that C# also distinguishes between data types that are stored on the stack (value data types) and
those that are stored on the heap (reference data types). We’ll examine this issue in more detail later
shortly.

Basic data types
As with C++, C# has a number of predefined data types, and you can define your own types as classes
or structs.

The data types that are predefined in C# differ somewhat from those in C++. The following table shows
the types that are available in C#.

Name Contains Symbol

sbyte Signed 8-bit integer.

byte Unsigned 8-bit integer.

short Signed 16-bit integer.

ushort Unsigned 16-bit integer.

int Signed 32-bit integer.

1266

Appendix D

557599 AppD_BC04.qxd 4/28/04 10:51 AM Page 1266

Name Contains Symbol

uint Unsigned 32-bit integer. U

long Signed 64-bit integer. L

ulong Unsigned 64-bit integer. UL

float Signed 32-bit floating point value. F

double Signed 64-bit floating point value. D

bool True or false.

char 16-bit Unicode character. ‘’

decimal Floating-point number with M
28 significant digits.

string Set of Unicode characters of “”
variable length.

object Used where you choose not to
specify the type. The nearest C++
equivalent is void*, except that
object is not a pointer.

In the above table, the symbol in the third column refers to the letter that can be placed after a number to
indicate its type in situations for which it is desirable to indicate the type explicitly; for example, 28UL
means the number 28 stored as an unsigned long. As with C++, single quotes are used to denote charac-
ters, double quotes for strings. However, in C#, characters are always Unicode characters, and strings are
a defined reference type, not simply an array of characters.

The data types in C# are more tightly defined than they are in C++. For example, in C++, the traditional
expectation was that an int type would occupy 2 bytes (16 bits), but the ANSI C++ definition allowed
this to be platform-dependent. Hence, on Windows, a C++ int occupies 4 bytes, the same as a long.
This obviously causes quite a few compatibility problems when transferring C++ programs between
platforms. On the other hand, in C# each predefined data type (except string and object, obviously!)
has its total storage specified explicitly.

Because the size of each of the primitive types is fixed in C# (a primitive type is any of the above types,
except string and object), there is less need for the sizeof operator, though it does exist in C# but is
only permitted in unsafe code (as described shortly).

Although many C# names are similar to C++ names and there is a fairly obvious intuitive mapping
between many of the corresponding types, some things have changed syntactically. In particular signed
and unsigned are not recognized keywords in C#. In C++ you could use these keywords, as well as
long and short to modify other types (for example, unsigned long, short int). Such modifications
are not permitted in C#, so the above table literally is the complete list of predefined data types.

1267

C# for C++ Developers

557599 AppD_BC04.qxd 4/28/04 10:51 AM Page 1267

Basic data types as objects
Unlike C++ (but like Java), the basic data types in C# can also be treated as objects so that you can call
some methods on them. For example, in C# you can convert an integer to a string like this.

int i = 10;
string y = i.ToString();

// You can even write:
string y = 10.ToString();

The fact that we can treat the basic data types as objects reflects the close association between C# and the
.NET base class library. C# actually compiles the basic data types by mapping each one onto one of the
base classes, for example string maps to System.String, int to System.Int32, and so on. So in a
real sense in C#, everything is an object. However, note that this only applies for syntactical purposes. In
reality, when your code is executed, these types are implemented as the underlying IL types, so there is
no performance loss associated with treating basic types as objects.

We won’t list all the methods available to the basic data types here; you can find detailed information in
the C# SDK documentation. We will however note the following:

❑ All types have a ToString() method. For the basic data types this returns a string representa-
tion of their value.

❑ char has a large number of properties that give information about its contents (IsLetter,
IsNumber, and so on) as well as methods to perform conversions (ToUpper(), ToLower()).

❑ string has a very large number of methods and properties available. We’ll treat strings
separately.

A number of static member methods and properties are also available. These include:

❑ Integer types have MinValue and MaxValue to indicate the minimum and maximum values
that may be contained in the type.

❑ The float and double types also have a property, Epsilon, which indicates the smallest
possible value greater than zero that may be stored.

❑ Separate values, NaN (not a number; that is, undefined), PositiveInfinity, and
NegativeInfinity are defined for float and double. Results of computations will return
these values as appropriate (for example, dividing a positive number by zero returns
PositiveInfinity, while dividing zero by zero returns NaN). These values are available as
static properties.

❑ Many types, including all the numeric types, have a static Parse() method that allows you to
convert from a string: double D = double.Parse(“20.5”).

Note that static methods in C# are called by specifying the name of the type: int.MaxValue and
float.Epsilon.

1268

Appendix D

557599 AppD_BC04.qxd 4/28/04 10:51 AM Page 1268

Casting between the basic data types
Casting is the process of converting a value stored in a variable of one data type to a value of another
data type. In C++ this can be done either implicitly or explicitly:

float f1 = 40.0;
long l1 = f1; // implicit
short s1 = (short) l1; // explicit, old C style
short s2 = short (f1); // explicit, new C++ style

If the cast is specified explicitly, then this means that you have explicitly indicated the name of the desti-
nation data type in your code. C++ allows you to write explicit casts in either of two styles—the old C
style in which the name of the data type was enclosed in brackets, or the new style in which the name of
the variable is enclosed in brackets. Both styles are demonstrated above, and are syntactical prefer-
ences—the choice of style has no effect on the code. In C++ it is legal to convert between any of the basic
data types. However, if there is a risk of a loss of data because the destination data type has a smaller
range than the source data type, then the compiler may issue a warning, depending on your warning
level settings. In the above example, the implicit cast may cause loss of data, which means it will nor-
mally cause the compiler to issue a warning. Explicitly specifying the conversion is really a way of
telling the compiler that you know what you are doing—as a result this will normally suppress any
warnings.

Because C# is designed to be more type-safe than C++, it is less flexible about converting between the
data types. It also formalizes the notion of explicit and implicit casts. Certain conversions are defined as
implicit casts, meaning that you are allowed to perform them using either the implicit or the explicit syn-
tax. Other conversions can only be done using explicit casts, which means the compiler will generate an
error (not a warning, as in C++!) if you try to carry out the cast implicitly.

The rules in C# concerning which of the basic numeric data types can be converted to which other types
are quite logical. Implicit casts are the ones that involve no risk of loss of data—for example, int to long
or float to double. Explicit casts might involve data loss, due to an overflow error, sign error, or loss of
the fractional part of a number (for example, float to int, int to uint, or short to ulong). In addi-
tion, because char is considered somewhat distinct from the other integer types, converting to or from a
char can only be done explicitly.

For example, the following lines all count as valid C# code:

float f1 = 40.0F;
long l1 = (long)f1; // explicit due to possible rounding error
short s1 = (short) l1; // explicit due to possible overflow error
int i1 = s1; // implicit _ no problems
uint i2 = (uint)i1; // explicit due to possible sign error

Note that in C#, explicit casts are always done using the old C-style syntax. The new C++ syntax cannot
be used:

uint i2 = uint(i1); // wrong syntax _ this won’t compile

1269

C# for C++ Developers

557599 AppD_BC04.qxd 4/28/04 10:51 AM Page 1269

Checked casting
C# offers the ability to perform casting and arithmetic operations in a checked context. This means that
the .NET runtime detects any overflows and throws an exception (specifically an OverFlowException)
if an overflow does occur. This feature has no counterpart in C++.

checked
{

int i1 = -3;
uint i2 = (uint)i1;

}

Because of the checked context, the second line will throw an exception. If we had not specified
checked, no exception would be thrown and the variable i2 would contain garbage.

Strings
String handling is far easier in C# than it ever was in C++. This is because of the existence of string as a
basic data type that is recognized by the C# compiler. There is no need to treat strings as arrays of char-
acters in C#.

The closest equivalent to C#’s string data type in C++ is the string class in the standard library.
However, C# string differs from C++ string in the following main ways.

❑ C# string contains Unicode, not ANSI, characters.

❑ C# string has many more methods and properties than the C++ version does.

❑ In C++ the standard library string class is no more than a class supplied by the library,
whereas in C# the language syntax specifically supports the string class as part of the
language.

Escape sequences
C# uses the same method of escaping special characters as C++—a backslash. The following table pro-
vides a complete list of escape sequences.

Escape Sequence Character Name Unicode Encoding

\’ Single quote 0x0027

\” Double quote 0x0022

\\ Backslash 0x005C

\0 Null 0x0000

\a Alert 0x0007

\b Backspace 0x0008

\f Form feed 0x000C

\n Newline 0x000A

1270

Appendix D

557599 AppD_BC04.qxd 4/28/04 10:51 AM Page 1270

Escape Sequence Character Name Unicode Encoding

\r Carriage return 0x000D

\t Horizontal tab 0x0009

\v Vertical tab 0x000B

This basically means that the codes used in C# are the same as those used in C++, except that C# doesn’t
recognize \?.

There are a couple of differences between escape characters in C++ and C#:

❑ The escape sequence \0 is recognized in C#. However, it is not used as string terminator in C#
and so can be embedded in strings. C# strings work by separately storing their lengths so no
character is used as a terminator. Hence C# strings really can contain any Unicode character.

❑ C# has an additional escape sequence \uxxxx (or equivalently \Uxxxx) where xxxx represents
a 4-digit hexadecimal number. \uxxxx represents the Unicode character xxxx, for example
\u0065 represents ‘e’. However, unlike the other escape sequences, \uxxxx can be used in
variable names as well as in character and string constants. For example, the following is valid
C# code:

int r\u0065sult; // has the same effect as int result;
result = 10;

C# also has an alternative method for expressing strings that is more convenient for strings that contain
special characters. Placing an @ symbol in front of the string prevents any characters from being escaped.
These strings are known as verbatim strings. For example, to represent the string C:\Book\Chapter2,
we could write either “C:\\Book\\Chapter2”, or @”C:\Book\Chapter2”. Interestingly, this also
means we can include carriage returns in verbatim strings without escaping them:

string Message = @”This goes on the first line
and this goes on the next line”;

Value types and reference types
C# divides all data types into two types: value types and reference types. This distinction has no equiva-
lent in C++, where variables always implicitly contain values, unless a variable is specifically declared as
a reference to another variable.

In C#, a value type actually contains its value. All the predefined data types in C# are value types, except
for object and string. If you define your own structs or enumerations, these will also be value types.
This means that the simple data types in C# generally work in exactly the same way as in C++ when you
assign values to them:

int i = 10;
long j = i; // creates another copy of the value 10
i = 15; // has no effect on j

1271

C# for C++ Developers

557599 AppD_BC04.qxd 4/28/04 10:51 AM Page 1271

A reference type, as its name implies, contains only a reference to where the data is kept in memory.
Syntactically, this works the same way as references in C++, but in terms of what is actually happening,
C# references are closer to C++ pointers. In C#, object and string are reference types, as are any
classes that you define yourself. C# references can be reassigned to point to different data items, in much
the same way that C++ pointers can. Also, C# references can be assigned the value null to indicate that
they don’t refer to anything. For example, suppose we have a class called MyClass, which has a public
property, Width.

MyClass My1 = new MyClass(); // In C#, new simply calls a constructor.
My1.Width = 20;
MyClass My2 = My1; // My2 now points to the same memory
// location as My1.
My2.Width = 30; // Now My1.Width = 30 too because My1 and My2
// point to the same location.
My2 = null; // Now My2 doesn’t refer to anything.
// My1 still refers to the same object.

It is not possible in C# to declare a particular variable programmatically as a value or as a reference
type—that is determined exclusively by the data type of the variable.

Value and reference types have implications for memory management, since reference types are always
stored on the heap, whereas value types are usually on the stack, unless they are fields in a reference
object in which case they will reside on the heap. This is covered in more detail in the next section, on
memory management.

Initialization of variables
In C++ variables are never initialized unless you explicitly initialize them (or in the case of classes, supply
constructors). If you don’t, the variables will contain whatever random data happened to be in the mem-
ory location at the time—this reflects the emphasis on performance in C++. C# put more emphasis on
avoiding runtime bugs, and is therefore stricter about initializing variables. The rules in C# are as follows:

❑ Variables that are member fields are by default initialized by being zeroed out if you do not
explicitly initialize them. This means that numeric value types will contain zero, bools will con-
tain false, and all reference types (including string and object) will contain the null refer-
ence). Structs will have each of their members zeroed out.

❑ Variables that are local to methods are not initialized by default. However, the compiler will
raise an error if a local variable is used before it is initialized. You can initialize a variable by
calling its default constructor (which zeros out the memory):

// variables that are local to a method
int x1; // At this point x1 contains random data
//int y = x1; // This commented out line would produce a compilation error
// as x1 is used before it is initialized
x1 = new int(); // Now x1 will contain zero and is initialized

1272

Appendix D

557599 AppD_BC04.qxd 4/28/04 10:51 AM Page 1272

Boxing
In some cases you might want to treat a value type as if it were a reference type. This is achieved by a
process known as boxing. Syntactically, this just means casting the variable to an object:

int j = 10;
object boxedJ = (object) j;

Boxing acts like any other cast, but you should be aware that it means that the contents of the variable
will be copied to the heap and a reference created (since the object boxedJ is a reference type).

The common reason for boxing a value is in order to pass it to a method that expects a reference type as
a parameter. You can also unbox a boxed value, simply by casting it back to its original type:

int j = 10;
object boxedJ = (object) j;
int k = (int) boxedJ;

Note that the process of unboxing raises an exception if you attempt to cast to the wrong type and no
cast is available for you to do the conversion.

Memory Management
In C++, variables (including instances of classes or structs) may be stored on the stack or the heap. In
general, a variable is stored on the heap if it, or some containing class, has been allocated with new, and
it is placed on the stack otherwise. This means that through your choice of whether to allocate memory
for a variable dynamically using new, you have complete freedom to choose whether a variable should
be stored on the stack or the heap. (But obviously, due to the way the stack works, data stored on the
stack will only exist as long as the corresponding variable is in scope.)

C# works very differently in this regard. One way to understand the situation in C# is by thinking of two
common scenarios in C++. Look at these two C++ variable declarations:

int j = 30;
CMyClass *pMine = new CMyClass;

Here the contents of j are stored on the stack. This is exactly the situation that exists with C# value
types. Our MyClass instance is, however, stored on the heap, and a pointer to it is on the stack. This is
basically the situation with C# reference types, except that in C# the syntax dresses the pointer up as a
reference. The equivalent in C# is:

int J = 30;
MyClass Mine = new MyClass();

This code has pretty much the same effect in terms of where the objects are stored as does the above C++
code—the difference is that MyClass is syntactically treated as a reference rather than a pointer.

1273

C# for C++ Developers

557599 AppD_BC04.qxd 4/28/04 10:51 AM Page 1273

The big difference between C++ and C# is that C# does not allow you to choose how to allocate memory
for a particular instance. For example, in C++ you could if you wished do this:

int* pj = new int(30);
CMyClass Mine;

This will cause the int type to be allocated on the heap, and the CMyClass instance to be allocated on
the stack. You cannot do this in C# because in C#, an int is a value type, while any class is always a ref-
erence type.

The other difference is that there is no equivalent to the C++ delete operator in C#. Instead, with C# the
.NET garbage collector periodically comes in and scans through the references in your code in order to
identify which areas of the heap are currently in use by your program. It is then automatically able to
remove all the objects that are no longer in use. This technique effectively saves you from having to free
up any memory yourself on the heap.

To summarize, in C# the following are always value types:

❑ All simple predefined types (except object and string)

❑ All structs

❑ All enumerations

The following are always reference types:

❑ object

❑ string

❑ All classes

The new operator
The new operator has a very different meaning in C# compared to C++. In C++, new indicates a request
for memory on the heap. In C#, new simply means that you are calling the constructor of a variable.
However, the action is similar to the extent that if the variable is a reference type, calling its constructor
will implicitly allocate memory for it on the heap. For example, suppose we have a class, MyClass, and a
struct, MyStruct. In accordance with the rules of C#, MyClass instances will always be stored on the
heap and MyStruct instances on the stack.

MyClass Mine; // Just declares a reference. Similar to declaring
// an uninitialized pointer in C++.

Mine = new MyClass(); // Creates an instance of MyClass. Calls no-
// parameter constructor. In the process, allocates
// memory on the heap.

MyStruct Struct; // Creates a MyStruct instance but does not call
// any constructor. Fields in MyStruct will be
// uninitialized.

Struct = new MyStruct(); // Calls constructor, so initializing fields.
// But doesn’t allocate any memory because Struct
// already exists on stack.

1274

Appendix D

557599 AppD_BC04.qxd 4/28/04 10:51 AM Page 1274

It is possible to use new to call the constructor for predefined data types, too:

int x = new int();

This has the same effect as:

int x = 0;

Note that this is not the same as:

int x;

This latter statement leaves x uninitialized (if x is a local variable).

Methods
Methods in C# are defined in the same way as functions in C++, apart from the fact that C# methods
must always be members of a class, and the definition and declaration are always merged in C#:

class MyClass
{

public int MyMethod()
{

// implementation

One restriction, however, is that member methods may not be declared as const in C#. The C++ facility
for methods to be explicitly declared as const (in other words, not modifying their containing class
instance) looked originally like a good compile-time check for bugs, but tended to cause problems in
practice. This was because it’s common for methods that do not alter the public state of the class to alter
the values of private member variables (for example, for variables that are set on first access). It’s not
uncommon in C++ code to use the const_cast operator to circumvent a method that has been declared
as const. In view of these problems, Microsoft decided not to allow const methods in C#.

Method parameters
As in C++, parameters are by default passed to methods by value. If you want to modify this behavior,
you can use the keywords ref to indicate that a parameter is passed by reference, and out to indicate
that it is an output parameter (always passed by reference). If you do this, you need to indicate the fact
both in the method definition and when the method is called:

public void MultiplyByTwo(ref double d, out double square)
{

d *= 2;
square = d * d;

}

// Later on, when calling method:
double value, square;
value = 4.0;
MultiplyByTwo(ref value, out square);

1275

C# for C++ Developers

557599 AppD_BC04.qxd 4/28/04 10:51 AM Page 1275

Passing by reference means that the method can modify the value of the parameter. You might also pass
by reference in order to improve performance when passing large structs, since, just as in C++, passing
by reference means that only the address is copied. Note however, that, if you are passing by reference
for performance reasons, the called method will still be able to modify the value of the parameter—C#
does not permit the const modifier to be attached to parameters in the way that C++ does.

Output parameters work in much the same way as reference parameters, except that they are intended
for cases in which the called method supplies the value of the parameter rather than modifying it. Hence
the requirements when a parameter is initialized are different. C# requires that a ref parameter is initial-
ized before being passed to a method, but requires that an out parameter is initialized within the called
method before being used.

Method overloads
Methods may be overloaded in the same way as in C++. However, C# does not permit default parame-
ters to methods. This must be simulated with overloads:

// In C++, you can do this:
double DoSomething(int someData, bool Condition = true)
{

// etc.

Whereas in C#, you have to do this:

double DoSomething(int someData)
{

DoSomething(someData, true);
}

double DoSomething(int someData, bool condition)
{

// etc.

Properties
Properties have no equivalent in ANSI C++, though they have been introduced as extensions in
Microsoft Visual C++. A property is a method or pair of methods that are dressed syntactically to appear
to calling code as if they were a field. They exist for the situation in which it is more intuitive for a
method to be called with the syntax of a field—an obvious example is the case of a private field that is to
be encapsulated by being wrapped by public accessor methods. Suppose a class has such a field,
length, of type int. In C++ we would encapsulate it with methods GetLength() and SetLength(),
and we would need to access it from outside the class like this:

// MyObject is an instance of the class in question
MyObject.SetLength(10);
int length = MyObject.GetLength();

1276

Appendix D

557599 AppD_BC04.qxd 4/28/04 10:51 AM Page 1276

In C# we could implement these methods instead as get and set accessors of a property named
Length. Then we could write:

// MyObject is an instance of the class in question
MyObject.Length = 10;
int Length = MyObject.Length;

To define these accessors we would define the property like this:

class MyClass
{

private int length;
public int Length
{

get
{

return length;
}
set
{

length = value;
}

}
}

Although here we have implemented the get and set accessors to simply return or set the length field,
we can put any other C# code we want in these accessors, just as we could for a method. For example,
we might add some data validation to the set accessor. Note that the set accessor returns void and takes
an extra implicit parameter, which has the name value.

It is possible to omit either the get or set accessor from the property definition, in which case the corre-
sponding property respectively becomes either write-only or read-only.

Operators
The meanings and syntaxes of operators is much the same in C# as in C++. The following operators by
default have the same meaning and syntax in C# as in C++:

❑ The binary arithmetic operators +, -, *, /, %

❑ The corresponding arithmetic assignment operators +=, -=, *=, /=, %=

❑ The unary operators ++ and — (both prefix and postfix versions)

❑ The comparison operators !=, ==, <, <=, >, >=

❑ The shift operators >> and <<

❑ The logical operators &, |, &&, ||, ~, ^, !

1277

C# for C++ Developers

557599 AppD_BC04.qxd 4/28/04 10:51 AM Page 1277

❑ The assignment operators corresponding to the logical operators: >>=, <<=, &=, |=, ^=

❑ The ternary (conditional) operator ? :

The symbols (), [], and , (comma) also have broadly the same effect in C# as they do in C++.

You’ll need to be careful of the following operators because they work differently in C# from in C++:

❑ Assignment (=), new, this.

Scope resolution in C# is represented by ., not by :: (:: has no meaning in C#). Also, the delete and
delete[] operators do not exist in C#. They are not necessary since the garbage collector automatically
handles cleaning up of memory on the heap. However, C# also supplies three other operators that do
not exist in C++: is, as, and typeof. These operators are related to obtaining type information for an
object or class.

Assignment operator (=)
For simple data types, = simply copies the data. However, when you define your own classes, C++
regards it as largely the responsibility of the developer to indicate the meaning of = for your classes. By
default in C++, = causes a shallow memberwise copy of any variable, class, or struct to be made.
However, programmers overload this operator to carry out more complex assignment operations.

In C#, the rules governing what the assignment operator means are much simpler; it also does not per-
mit you to overload = at all—its meaning is defined implicitly in all situations.

The situation in C# is as follows:

❑ For simple data types, = simply copies the values as in C++.

❑ For structs, = does a shallow copy of the struct—a direct memory copy of the data in the struct
instance. This is similar to its behavior in C++.

❑ For classes, = copies the reference; that is, the address and not the object. This is not the behavior
in C++.

If you want to be able to copy instances of classes, the usual way in C# is to override a method,
MemberwiseCopy(), which all classes in C# by default inherit from the class System.Object, the
grandfather class from which all C# classes implicitly derive.

this
The this operator has the same meaning as in C++, but it is a reference rather than a pointer. For exam-
ple, in C++ you can do this:

this->m_MyField = 10;

However, in C#, you must do this:

this.MyField = 10;

1278

Appendix D

557599 AppD_BC04.qxd 4/28/04 10:51 AM Page 1278

this is used in the same way in C# as in C++. For example, you can pass it as a parameter in method
calls, or use it to make it explicit that you are accessing a member field of a class. In C#, there are a couple
of other situations that syntactically require use of this, which we’ll mention in the section on classes.

new
As mentioned earlier, the new operator has a very different meaning in C#, being interpreted as a con-
structor, to the extent that it forces an object to initialize, rather than as a request for dynamic memory
allocation.

Classes and Structs
In C++, classes and structs are extremely similar. Formally, the only difference is that members of a struct
are by default public, while members of a class are by default private. In practice, however, many pro-
grammers prefer to use structs and classes in different ways, reserving use of structs for data objects,
which contain only member variables (in other words, no member functions or explicit constructors).

C# reflects this traditional difference of usage. In C# a class is a very different type of object from a struct,
so you’ll need to consider carefully whether a given object is best defined as a class or as a struct. The
most important differences between C# classes and C# structs are:

❑ Structs do not support inheritance, other than the fact that they derive from
System.ValueType. It is not possible to inherit from a struct, nor can a struct inherit from
another struct or class.

❑ Structs are value types. Classes are always reference types.

❑ Structs allow you to organize the way that fields are laid out in memory, and to define the
equivalent of C++ unions.

❑ The default (no-parameter) constructor of a struct is always supplied by the compiler and can-
not be replaced.

Because classes and structs are so different in C#, we’ll treat them separately in this appendix.

Classes
Classes in C# by and large follow the same principles as in C++, although there are a few differences in
both features and syntax. We’ll go over the differences between C++ classes and C# classes in this section.

Definition of a class
Classes are defined in C# using what at first sight looks like much the same syntax as in C++:

class MyClass : MyBaseClass
{

private string SomeField;
public int SomeMethod()
{

return 2;
}

}

1279

C# for C++ Developers

557599 AppD_BC04.qxd 4/28/04 10:51 AM Page 1279

Behind this initial similarity, there are numerous differences in the detail:

❑ There is no access modifier on the name of the base class. Inheritance is always public.

❑ A class can only be derived from one base class (although it might also be derived from any
number of interfaces). If no base class is explicitly specified, then the class will automatically be
derived from System.Object, which will give the class all the functionality of
System.Object, the most commonly used of which is ToString().

❑ Each member is explicitly declared with an access modifier. There is no equivalent to the C++
syntax in which one access modifier can be applied to several members:

public: // you can’t use this syntax in C#
int MyMethod();
int MyOtherMethod();

❑ Methods cannot be declared as inline. This is because C# is compiled to IL. Any inlining hap-
pens at the second stage of compilation—when the Just-In-Time (JIT) compiler converts from IL
to native machine code. The JIT compiler has access to all the information in the IL to determine
which methods can suitably be inlined without any need for guidance from the developer in the
source code.

❑ The implementation of methods is always placed with the definition. There is no ability to write
the implementation outside the class, as C++ allows.

❑ Whereas in ANSI C++, the only types of class member are variables, functions, constructors,
destructors, and operator overloads, C# also permits delegates, events, and properties.

❑ The access modifiers public, private, and protected have the same meaning as in C++, but
there are two additional access modifiers available:

❑ internal restricts access to other code within the same assembly.

❑ protected internal restricts access to derived classes that are within the same
assembly.

❑ Initialization of variables is permitted in the class definition in C#.

❑ C++ requires a semicolon after the closing brace at the end of a class definition. This is not
required in C#.

Initialization of member fields
The syntax used to initialize member fields in C# is very different from that in C++, although the end
effect is identical.

Instance members
In C++, instance member fields are usually initialized in the constructor initialization list:

MyClass::MyClass()
: m_MyField(6)
{
// etc.

1280

Appendix D

557599 AppD_BC04.qxd 4/28/04 10:51 AM Page 1280

In C# this syntax is wrong. The only items that can be placed in the constructor initializer (which is the
C# equivalent of the C++ constructor initialization list) is another constructor. Instead, the initialized
value is marked with the definition of the member in the class definition:

class MyClass
{

private int MyField = 6;

Note that in C++, this would be an error because C++ uses roughly this syntax to define pure virtual
functions. In C# this is fine, because C# does not use the =0 syntax for this purpose (it uses the abstract
keyword instead).

Static fields
In C++ static fields are initialized via a separate definition outside the class:

int MyClass::MyStaticField = 6;

Indeed in C++, even if you do not want to initialize a static field, you must include this statement in
order to avoid a link error. By contrast, C# does not expect such a statement, since variables are only
declared in one place in C#:

class MyClass
{

private static int MyStaticField = 6;

Constructors
The syntax for declaring constructors in C# is the same as that for inline constructors defined in the class
definition in C++:

class MyClass
{

public MyClass()
{

// construction code
}

As with C++, you can define as many constructors as you want, provided they take different numbers or
types of parameters. (Note that, as with methods, default parameters are not permitted—you must sim-
ulate this with multiple overloads.)

For derived classes in a hierarchy, constructors work in C# in basically the same way as in C++. By
default, the constructor at the top of the hierarchy (this is always System.Object) is executed first, fol-
lowed in order by constructors down the tree.

1281

C# for C++ Developers

557599 AppD_BC04.qxd 4/28/04 10:51 AM Page 1281

Static constructors
C# also allows the concept of a static constructor, which is executed once only, and can be used to initial-
ize static variables. The concept has no direct equivalent in C++.

class MyClass
{

static MyClass()
{

// static construction code
}

Static constructors are very useful in that they allow static fields to be initialized with values that are
determined at runtime (for example, they can be set to values that are read in from a database). This
kind of effect is possible in C++ but takes a fair amount of work and results in a fairly messy-looking
solution. The most common way would be to have a function that accesses the static member variable,
and implement the function so that it sets the value of the variable the first time it is called.

Note that a static constructor has no access specifier—it is not declared as public, private, or anything
else. An access specifier would be meaningless since the static constructor is only ever called by the
.NET runtime when the class definition is loaded. It cannot be called by any other C# code.

C# does not specify exactly when a static constructor will be executed, except that it will be after any
static fields have been initialized but before any objects of the class are instantiated or static methods on
the class are actually used.

Default constructors
As in C++, C# classes typically have a no-parameter default constructor, which simply calls the no-
parameter constructor of the immediate base class and then initializes all fields to their default parame-
ters. Also as in C++, the compiler will generate this default constructor only, if you have not supplied
any constructors explicitly in your code. If any constructors are present in the class definition, whether
or not a no-parameter constructor is included, then these constructors will be the only ones available.

As in C++ it is possible to prevent instantiation of a class by declaring a private constructor as the only
constructor:

class MyClass
{

private MyClass()
{
}

This also prevents instantiation of any derived classes. However, if a class or any methods in it are
declared abstract this prevents instantiation of that class but not necessarily of any derived classes.

Constructor initialization lists
C# constructors might have something that looks like a C++ constructor initialization list. However, in
C# this list can only contain at most one member and is known as a constructor initializer. The item in the

1282

Appendix D

557599 AppD_BC04.qxd 4/28/04 10:51 AM Page 1282

initializer must either be a constructor of the immediate base class, or another constructor of the same
class. The syntax for these two options uses the keywords base and this, respectively:

class MyClass : MyBaseClass
{

MyClass(int X)
: base(X) // executes the MyBaseClass 1-parameter constructor
{

// other initialization here
}

MyClass()
: this (10) // executes the 1-parameter MyClass constructor
// passing in the value of 10
{

// other initialization here
}

If you do not explicitly supply any constructor initialization list, then the compiler will implicitly supply
one that consists of the item base(). In other words, the default initializer calls the default base class
constructor. This behavior mirrors that of C++.

Unlike C++, you cannot place member variables in a constructor initialization list. However, that is just a
matter of syntax—the C# equivalent is to mark their initial values in the class definition. A more serious
difference is the fact that you can only place one other constructor in the list. This will affect the way you
plan out your constructors, though this is arguably beneficial since it forces you into a well defined and
effective paradigm for arranging your constructors. This paradigm is indicated in the above code: the
constructors all follow a single path for the order in which various constructors are executed.

Destructors
C# implements a very different programming model for destructors compared to C++. This is because
the garbage collection mechanism in C# implies that:

❑ There is less need for destructors, since dynamically allocated memory is removed automati-
cally.

❑ Since it is not possible to predict when the garbage collector will actually destroy a given object,
if you do supply a destructor for a class, it is not possible to predict precisely when that destruc-
tor is executed.

Because memory is cleaned up behind the scenes in C#, you will find that only a small portion of your
classes actually requires destructors. For those that do (this will be classes that maintain external unman-
aged resources such as file and database connections), C# has a two-stage destruction mechanism:

1. The class should derive from the IDisposable interface, and implement the method
Dispose(). Client code should explicitly call this method to indicate it has finished with an
object, and needs to clean up resources. (We’ll cover interfaces later in this appendix.)

2. The class should separately implement a destructor, which is viewed as a reserve mechanism, in
case a client does not call Dispose().

1283

C# for C++ Developers

557599 AppD_BC04.qxd 4/28/04 10:51 AM Page 1283

The usual implementation of Dispose() looks like this:

public void Dispose()
{

Dispose(true);
GC.SuppressFinalize(this);

}

protected virtual void Dispose(bool disposing)
{

if (disposing)
{

// Cleanup of managed resources here
}
// Cleanup of unmanaged resources

}

System.GC is a base class that represents the garbage collector. SuppressFinalize() is a method that
informs the garbage collector that there is no need to call the destructor for the object that it is destroy-
ing. Calling SuppressFinalize() is important, because there is a performance hit if the object has a
destructor that needs to be called while the garbage collector is doing its job; the consequence of this is
that the actual freeing of that object’s managed memory resources will be considerably delayed.

The syntax for the actual destructor is basically the same in C# as in C++. Note that in C# there is no
need to declare the destructor as virtual—the compiler will assume it is. You should also not supply an
access modifier:

class MyClass
{

~MyClass()
{

// clean up resources
}

Although the Dispose() method is normally called explicitly by clients, C# does allow an alternative
syntax that ensures that the compiler will arrange for it to be called. If the variable is declared inside a
using() block, then it will be scoped to the using block and its Dispose() method will be called on
exiting the block:

using (MyClass MyObject = new MyClass())
{

// code
} // MyObject.Dispose() will be implicitly called on leaving this block

Note that the above code will only compile successfully, if MyClass derives from IDisposable and
implements Dispose(). If you don’t want to use the using syntax then you can omit either or both of
the two steps involved in the destructor sequence (implementing Dispose() and implementing a
destructor), but normally you would implement both steps. You can also implement Dispose() without
deriving from IDisposable. However, if you do this again it will not be possible to use the using syn-
tax to have Dispose() automatically called for instances of that class.

1284

Appendix D

557599 AppD_BC04.qxd 4/28/04 10:51 AM Page 1284

Inheritance
Inheritance works in basically the same way in C# as in C++, with the exception that multiple imple-
mentation inheritance is not supported. Microsoft believes that multiple inheritance leads to code that is
less well structured and harder to maintain, and so has made a decision to omit this feature from C#.

class MyClass : MyBaseClass
{

// etc.

In C++, a pointer to a class can also point to an instance of a derived class. (Virtual functions do after all
depend on this fact!) In C#, classes are accessed via references, but the equivalent rule holds. A reference
to a class can refer to instances of that class or to instances of any derived class.

MyBaseClass Mine;
Mine = new MyClass(); //OK if MyClass is derived from MyBaseClass

If you want a reference to be able to refer to anything (the equivalent of void* in C++), you can define it
as object in C#, since C# maps object to the System.Object class (from which all other classes are
derived).

object Mine2 = new MyClass();

Virtual and non-virtual functions
Virtual functions are supported in C# in the same way as in C++. However, there are some syntactical
differences in C# that are designed to eliminate certain potential ambiguities in C++. This means that
certain types of error, which only appear at runtime in C++, will be identified at compile time in C#.

Also note that in C#, classes are always accessed through a reference (equivalent to access through a
pointer in C++).

In C++, if you require a function to be virtual, all you need to do is to specify the virtual keyword in
both the base and derived class. By contrast, in C# you need to declare the function as virtual in the
base class and as override in any derived class versions:

class MyBaseClass
{

public virtual void DoSomething(int X)
{

// etc.
}
// etc.

}

class MyClass : MyBaseClass
{

public override void DoSomething(int X)
{

// etc.
}
// etc.

}

1285

C# for C++ Developers

557599 AppD_BC04.qxd 4/28/04 10:51 AM Page 1285

The point of this syntax is that it makes it explicit to the compiler how you want your function to be
interpreted, and it means that there is no risk of any bugs where, for example, you type in a slightly
incorrect method signature in an override version, and therefore end up defining a new function when
you intended to override an existing one. The compiler will flag an error if a function is marked as an
override and the compiler cannot identify a version of it in any base class.

If the function is not virtual, you can still define versions of that method in the derived class, in which
case the derived class version is said to hide the base class version. In this case, which method gets
called depends solely on the type of the reference used to access the class, just as it depends on the
pointer type used to access a class in C++.

In C# if the version of the function in the derived class hides a corresponding function in the base class,
you can explicitly indicate this with the new keyword:

class MyBaseClass
{

public void DoSomething(int X)
{

// etc.
}
// etc.

}

class MyClass : MyBaseClass
{

public new void DoSomething(int X)
{

// etc.
}
// etc.

}

If you do not mark the new version of the class explicitly as new, the code will still compile but the com-
piler will flag a warning. This warning is intended to guard against any subtle runtime bugs caused by,
for example, writing a new base class, in which a method has been added that happens to have the same
name as an existing method in the derived class.

You can declare abstract functions in C# just as you can in C++ (in C++ these are also termed pure vir-
tual functions). The syntax, however, is different in C#: instead of using =0 at the end of the definition
we use the keyword abstract.

C++:

public:
virtual void DoSomething(int X) = 0;

C#:

public abstract void DoSomething(int X);

1286

Appendix D

557599 AppD_BC04.qxd 4/28/04 10:51 AM Page 1286

As in C++, you can only instantiate a class if it contains no abstract methods itself, and it provides imple-
mentations of any abstract methods that have been defined in any of its base classes.

Structs
The syntax for defining structs in C# follows that for defining classes.

struct MyStruct
{

private SomeField;

public int SomeMethod()
{

return 2;
}

}

Inheritance, and the associated concepts, virtual and abstract functions, are not permitted. Otherwise,
the basic syntax is identical to classes except that the keyword struct replaces class in the definition.

There are, however, a couple of differences between structs and classes when it comes to construction. In
particular, structs always have a default constructor that zeros out all the fields, and this constructor is
still present even if you define other constructors of your own. Also, it is not possible to define a no-
parameter constructor explicitly to replace the default one. You can only define constructors that take
parameters. In this respect, structs in C# differ from their C++ counterparts.

Unlike classes in C#, structs are value types. This means that a statement such as:

MyStruct Mine;

actually creates an instance of MyStruct on the stack, just as the same statement in C++ would.

However, in C#, this instance is uninitialized unless you explicitly call the constructor:

MyStruct Mine = new MyStruct();

If the member fields of MyStruct are all public, you can alternatively initialize it by initializing each
member field separately.

Constants
The C++ keyword const has quite a large variety of uses. For example, you can declare variables as
const, which indicates that their values are usually set at compile time and cannot be modified by any
assignment statement at runtime (although there is a tiny bit of flexibility since the value of a const
member variable can be set in a constructor initialization list, which implies that in this case the value
can be calculated at run time). You can also apply const to pointers and references to prevent those
pointers or references from being used to modify the data to which they point, and you can also use the

1287

C# for C++ Developers

557599 AppD_BC04.qxd 4/28/04 10:51 AM Page 1287

const keyword to modify the definitions of parameters passed to functions. Here, const indicates that
a variable that has been passed by reference or via a pointer should not be modified by the function.
Also, as mentioned earlier, member functions themselves can be declared as const to indicate that they
do not change their containing class instance.

C# also allows use of the const keyword to indicate that a variable cannot be changed. However, use of
const is far more restricted in C# than in C++. In C#, the only use of const is to fix the value of a vari-
able (or of the referent of a reference) at compile time. It cannot be applied to methods or parameters. On
the other hand, C# is more flexible than C++, to the extent that the syntax in C# does allow a little more
flexibility for initializing const fields at runtime than C++ does.

The syntax for declaring constants is very different in C# from C++, so we’ll go over it in some detail.
The C# syntax makes use of two keywords, const and readonly. The const keyword implies that a
value is set at compile time, while readonly implies it is set once at runtime, in a constructor.

Since everything in C# must be a member of a class or struct, there is of course no direct equivalent in C#
to global constants in C++. This functionality must be obtained using either enumerations or static mem-
ber fields of a class.

Constants that are associated with a class (static constants)
The usual way of defining a static constant in C++ is as a static const member of a class. C#
approaches this in broadly the same way, but with a simpler syntax:

C++ syntax:

int CMyClass :: MyConstant = 2;
class CMyClass
{

public:
static const int MyConstant;

C# syntax:

class MyClass
{

public const int MyConstant = 2;

Note that in C# we do not explicitly declare the constant as static—doing so would result in a compila-
tion error. It is, of course, implicitly static, because there is no point storing a constant value more than
once, and hence it must always be accessed as a static field.

int SomeVariable = MyClass.MyConstant;

Things get a bit more interesting when you want your static constant to be initialized with some value
that is calculated at runtime. C++ simply has no facility to allow this. If you want to achieve that effect,
you will have to find some means of initializing the variable the first time it is accessed, which means
you will not be able to declare it as const in the first place. Here C# scores easily over C++, since static
constants initialized at runtime are easy to define in C#. You define the field as readonly, and initialize
it in the static constructor:

1288

Appendix D

557599 AppD_BC04.qxd 4/28/04 10:51 AM Page 1288

class MyClass
{

public static readonly int MyConstant;
static MyClass()
{

// work out and assign the initial value of MyConstant here
}

Instance constants
Constants that are associated with class instances are always initialized with values calculated at run-
time. (If their values were calculated at compile time that would, by definition, make them static.)

In C++, such constants must be initialized in the initialization list of a class constructor. This, to some
extent, restricts your flexibility in calculating the values of these constants since the initial value must be
something that you can write down as an expression in the constructor initialization list.

class CMyClass
{

public:
const int MyConstInst;
CMyClass()
: MyConstInst(45)
{

In C# the principle is similar, but the constant is declared as readonly rather than const. This means
that its value is set in the body of the constructor giving you a bit more flexibility, since you can use any
C# statements in the process of calculating its initial value. (Recall that you cannot set the values of vari-
ables in constructor initializers in C#—you can only call one other constructor.)

class MyClass
{

public readonly int MyConstInst;
MyClass()
{

// work out and initialize MyConstInst here

In C#, if a field is declared as readonly, then it can only be assigned to in a constructor.

Operator Overloading
Operator overloading in C# also shares some similarities with C++. The key difference is that C++
allows the vast majority of its operators to be overloaded. C# has more restrictions. For many compound
operators, C# automatically works out the meaning of the operator from the meanings of the constituent
operators, whereas C++ allows direct overload. For example, in C++, you can overload + and separately
overload +=. In C# you can only overload +. The compiler will always use your overload of + to work
out automatically the meaning of += for that class or struct.

The following operators can be overloaded in C# as well as C++:

❑ The binary arithmetic operators + - * /%

❑ The unary operators ++ and — (prefix version only)

1289

C# for C++ Developers

557599 AppD_BC04.qxd 4/28/04 10:51 AM Page 1289

❑ The comparison operators !=, == <, <=, >, >=

❑ The bitwise operators &, |, ~, ^, !

❑ The Boolean values true and false

The following operators, which are used for overloading in C++, cannot be overloaded in C#:

❑ The arithmetic assignment operators *=, /=, +=, -=, %=. These are worked out by the compiler
from the corresponding arithmetic operator and the assignment operator, which cannot be over-
loaded. The postfix increment operators. These are worked out by the compiler from the overloads
of the corresponding prefix operators. They are implemented by calling the corresponding prefix
operator overload, but returning the original value of the operand instead of the new value.

❑ The bitwise assignment operators &=, |=, ^=, >>=, and <<=.

❑ The Boolean operators &&, ||. These are worked out by the compiler from the corresponding
bitwise operators.

❑ The assignment operator =. The meaning of this operator in C# is fixed.

There is also a restriction that the comparison operators must be overloaded in pairs—in other words, if
you overload == you must overload != and vice versa. Similarly, if you overload one of < or >, you must
overload both operators; likewise for <= and >=. The reason for this is to ensure consistent support for
any database types that might have the value null, and for which therefore, for example, == does not
necessarily have the opposite effect to !=.

After you have established that the operator you want to overload is one that you can overload in C#,
the syntax for actually defining the overload is much easier than the corresponding syntax in C++. The
only points that you need to be careful of in overloading C# operators is that they must always be
declared as static members of a class. This contrasts with C++, which gives you the options to define
your operator as a static member of the class, an instance member of the class but taking one parameter
fewer, or as a function that is not a member of a class at all.

The reason that defining operator overloads is so much simpler in C# has actually got nothing to do with
the operator overloads themselves. It is because of the way that C# memory management naturally
works to help you out. Defining operator overloads in C++ is an area that is filled with traps to catch the
unwary. Consider, for example, an attempt to overload the addition operator for a class in C++. (We’ll
assume for this that CMyClass has a member, x, and adding instances means adding the x members.)
The code might look something like this (assuming the overload is inline):

static CMyClass operator + (const CMyClass &lhs, const CMyClass &rhs)
{

CMyClass Result;
Result.x = lhs.x + rhs.x;
return Result;

}

Note that the parameters are both declared as const and passed by reference, in order to ensure opti-
mum efficiency. This by itself isn’t too bad. However, in this case we need to create a temporary
CMyClass instance inside the operator overload in order to return a result. The final return Result
statement looks innocuous, but it will only compile if an assignment operator is available to copy
Result out of the function, and works in an appropriate way. If you’ve defined your own copy con-
structor for CMyClass, you might also need to define the assignment operator yourself to make sure

1290

Appendix D

557599 AppD_BC04.qxd 4/28/04 10:51 AM Page 1290

assignment behaves appropriately. That in itself is not a trivial task—if you don’t use references correctly
when defining it, it’s very easy to define by accident one that recursively calls itself until you get a stack
overflow! Put bluntly, overloading operators in C++ is not a task for inexperienced programmers! It’s
easy to see why Microsoft decided not to allow certain operators to be overloaded in C#.

In C# the picture is very different. There’s no need to explicitly pass by reference, since C# classes are ref-
erence variables (and for structs, passing by reference tends to degrade rather than help performance),
and returning a value is a breeze. Whether it’s a class or a struct, you simply return the value of the tem-
porary result, and the C# compiler ensures that either the member fields in the result are copied (for
value types) or the address is copied (for reference types). The only disadvantage is you can’t use the
const keyword to get the extra compiler check that makes sure that the operator overload doesn’t mod-
ify the parameters for a class. Also, C# doesn’t give you the inline performance enhancements of C++.

Public static MyClass operator + (MyClass lhs, MyClass rhs)
{

MyClass Result = new MyClass();
Result.x = lhs.x + rhs.x;
return Result;

}

Indexers
C# doesn’t strictly permit [] to be overloaded. However, it does permit you to define something called
an indexer for a class, which gives the same effect.

The syntax for defining an indexer is very similar to that for a property. Suppose that you want to be
able to treat instances of MyClass as an array, where each element is indexed with an int and returns a
long. Then you would write:

class MyClass
{

public long this[int x]
{

get
{

// code to get element
}
set
{

// code to set element. eg. X = value;
}

}
// etc.

The code inside the get block is executed whenever the expression Mine[x] appears on the right-hand
side of an expression (assuming Mine is an instance of MyClass and x is an int), while the set block is
executed whenever Mine[x] appears on the left side of an expression. The set block cannot return any-
thing, and uses the value keyword to indicate the quantity that appears on the right-hand side of the
expression. The get block must return the same data type as that of the indexer.

It is possible to overload indexers to take any data type in the square brackets, or any number of argu-
ments, allowing the effect of multidimensional arrays.

1291

C# for C++ Developers

557599 AppD_BC04.qxd 4/28/04 10:51 AM Page 1291

User-defined casts
Just as for indexers and [], C# does not formally regard () as an operator that can be overloaded.
However, it does permit the definition of user-defined casts, which have the same effect. For example,
suppose you have two classes (or structs) called MySource and MyDest, and you want to define a cast
from MySource to MyDest. The syntax looks like this:

public static implicit operator MyDest (MySource Source)
{

// code to do cast. Must return a MyDest instance
}

The cast must be defined as a static member of either the MyDest or the MySource class. It must also be
declared as either implicit or explicit. If you declare it as implicit, then the cast can be used implic-
itly, like this:

MySource Source = new MySource();
MyDest Dest = Source;

If you declare it as explicit then the cast can only be used explicitly:

MySource Source = new MySource();
MyDest Dest = (MyDest) Source;

You should define implicit casts for conversions that will always work, and explicit casts for conversions
that might fail by losing data or causing an exception to be thrown.

Just as in C++, if the C# compiler is faced with a request to convert between data types for which no
direct cast exists, it will seek to find the best route using the casts it has available. The same issues as in
C++ apply concerning ensuring that your casts are intuitive, and that different routes to achieve any
conversion don’t give incompatible results.

C# does not permit you to define casts between classes that are derived from each other. Such casts are
already available—implicitly from a derived class to a base class and explicitly from a base class to a
derived class.

Note that if you attempt to cast from a base class reference to a derived class reference, and the object in
question is not an instance of the derived class (or anything derived from it), then an exception will be
thrown. In C++, it is not difficult to cast a pointer to an object to the “wrong” class of object. That is sim-
ply not possible in C# using references. For this reason, casting in C# is considered safer than in C++.

// assume MyDerivedClass is derived from MyBaseClass
MyBaseClass MyBase = new MyBaseClass();
MyDerivedClass MyDerived = (MyDerivedClass) MyBase; // this will result
// in an exception being thrown

If you don’t want to try to cast something to a derived class, but don’t want an exception to be thrown,
you can use the as keyword. Using as if the cast fails simply returns null.

// assume MyDerivedClass is derived from MyBaseClass
MyBaseClass MyBase = new MyBaseClass();
MyDerivedClass MyDerived as (MyDerivedClass) MyBase; // this will
// return null

1292

Appendix D

557599 AppD_BC04.qxd 4/28/04 10:51 AM Page 1292

Arrays
Arrays are one area in which a superficial syntax similarity between C++ and C# hides the fact that what
is actually going on behind the scenes is very different in the two languages. In C++, an array is essen-
tially a set of variables packed together in memory and accessed via a pointer. In C#, on the other hand,
an array is an instance of the base class System.Array, and is therefore a full-blown object stored on the
heap under the control of the garbage collector. C# uses a C++-type syntax to access methods on this
class in a way that gives the illusion of accessing arrays. The downside to this approach is that the over-
head for arrays is greater than that for C++ arrays, but the advantage is that C# arrays are more flexible
and easier to code around. As an example, C# arrays all have a property, Length, that gives the number
of elements in the array, saving you from having to store this separately. C# arrays are also much safer to
use—for example, the index bounds checking is performed automatically.

If you do want a simple array with none of the overhead of the System.Array class, it is still possible to
do this in C#, but you’ll need to use pointers and unsafe code blocks.

One-dimensional arrays
For one-dimensional arrays (C# terminology: arrays of rank 1), the syntax to access an array in the two
languages is identical, with square brackets used to indicate elements of arrays. Arrays are also zero-
indexed in both languages.

For example, to multiply each element in an array of floats by 2, you have to use this code:

// array declared as an array of floats
// this code works in C++ and C# without any changes
for (int i=0; i<10; i++)
array[i] *= 2.0f;

As mentioned earlier, however, C# arrays support the property Length, which can be used to find out
how many elements are in it:

// array declared as an array of floats
// this code compiles in C# only
for (int i=0; i<array.Length; i++)

array[i] *= 2.0f;

In C# you can also use the foreach statement to access elements of an array, as discussed earlier.

The syntax for declaring arrays is slightly different in C#, however, since C# arrays are always declared
as reference objects:

double [] array; // Simply declares a reference without actually
// instantiating an array.
array = new double[10]; // Actually instantiates a System.Array object,
// and gives it size 10.

Or combining these statements, we might write:

double [] array = new double[10];

1293

C# for C++ Developers

557599 AppD_BC04.qxd 4/28/04 10:51 AM Page 1293

Notice that the array is only sized with its instance. The declaration of the reference simply uses the
square brackets to indicate that the dimension (rank) of the array is one. In C#, rank is considered part
of the type of the array, whereas the number of elements is not.

The nearest C++ equivalent to the above definition would be

double *pArray = new double[10];

This C++ statement actually gives a fairly close analogy, since both C++ and C# versions are allocated on
the heap. Note that the C++ version is just an area of memory that contains ten doubles, while the C#
version instantiates a full-blown object. The simpler stack version of C++:

double pArray[10];

doesn’t have a C# counterpart that uses actual C# arrays, although the C# stackalloc statement can
achieve the equivalent to this statement using pointers. This is discussed later in the section on unsafe
code.

Arrays in C# can be explicitly initialized when instantiated:

double [] array = new double[10]
{1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0};

A shortened form exists too:

double [] array = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0};

If an array is not explicitly initialized, the default constructor will automatically be called on each of its
elements. (Elements of arrays are formally regarded as member fields of a class.) This behavior is very
different from C++, which does not allow any kind of automatic initialization of arrays allocated with
new on the heap (though C++ does allow this for stack-based arrays).

Multidimensional arrays
C# departs significantly from C++ in multidimensional arrays, since C# supports both rectangular and
jagged arrays.

A rectangular array is a true grid of numbers. In C#, this is indicated by a syntax in which commas sepa-
rate the number of elements in each dimension. Hence, for example, a two-dimensional rectangular
array might be defined like this:

int [,] myArray2d;
myArray2d = new int[2,3] { {1, 0}, {3, 6}, {9, 12} };

The syntax here is a fairly intuitive extension of the syntax for one-dimensional arrays. The initialization
list in the above code could be absent. For example:

int [,,] myArray3d = new int[2,3,2];

1294

Appendix D

557599 AppD_BC04.qxd 4/28/04 10:51 AM Page 1294

This causes the default constructor to be called on each element, initializing each int to zero. In this par-
ticular example, we are illustrating the creation of a three-dimensional array. The total number of ele-
ments in this array is 2×3×2 = 12. A characteristic of rectangular arrays is that each row has the same
number of elements.

Elements of rectangular arrays are accessed using a similar syntax:

int x = myArray3d[1,2,0] + myArray2d[0,1];

C# rectangular arrays have no direct counterpart in C++. C# jagged arrays, however, correspond fairly
directly to multidimensional C++ arrays. For example, if you declare an array like this in C++:

int myCppArray[3][5];

what you are actually declaring is not really a 3×5 array, but an array of arrays—an array of size 3, each
element of which is an array of size 5. This is perhaps clearer if we try to do the same thing dynamically—
you would need to write:

int pMyCppArray = new int[3];
for (int i=0; i<3; i++)

pMyCppArray[i] = new int[5];

It should be clear from this code that now there is no reason for each row to contain the same number of
elements (though it happens to do so in this example). As an example of a jagged array in C++, which
really does have different numbers of elements in each row, you might write:

int pMyCppArray = new int[3];
for (int i=0 ; i<3 ; i++)

pMyCppArray[i] = new int[2*i + 2];

The respective rows of this array have dimensions 2, 4, and 6.

C# achieves the same result in much the same manner, though in the C# case, the syntax indicates the
numbers of dimensions more explicitly:

int [][] myJaggedArray = new int[3][];
for (int i=0; i<3; i++)

myJaggedArray[i] = new int[2*i + 2];

Accessing members of a jagged array follows exactly the same syntax as for C++:

int x = myJaggedArray[1][3];

Here we’ve shown a jagged array with rank 2. Just as in C++, however, you can define a jagged array
with whatever rank you want—you just need to add more square brackets to its definition.

Bounds checking
One area in which the object-oriented nature of C# arrays becomes apparent is bounds checking. If you
ever attempt to access an array element in C# by specifying an index that is not within the array bounds,
this will be detected at runtime, and an IndexOutOfBoundsException error will be thrown. In C++,

1295

C# for C++ Developers

557599 AppD_BC04.qxd 4/28/04 10:51 AM Page 1295

this does not happen, and subtle runtime bugs can result. Once again, C# goes for extra checking against
bugs at the expense of performance. Although you might expect this to result in a loss in performance, it
does have the benefit that the .NET runtime is able to check through code to ensure that it is safe, in the
sense that it will not attempt to access any memory beyond that allocated for its variables. This allows
performance benefits, since different applications can, for example, be run in the same process and we
can still be certain that those applications will be isolated from each other. There are also security bene-
fits, since it is possible to predict more accurately what a given program will or won’t attempt to do.

On the other hand, it’s not uncommon for C++ programmers to use any of the various array wrapper
classes in the standard library or in MFC in preference to raw arrays, in order to gain the same bounds
checking and various other features—although in this case without the performance and security bene-
fits associated with being able to analyze the program before it is executed.

Resizing arrays
C# arrays are dynamic in the sense that you can specify the number of elements in each dimension at
compile time (just as with dynamically allocated arrays in C++). However, it is not possible to resize
them after they have been instantiated. If you need that kind of functionality, you’ll need to look at some
of the other related classes in the System.Collections namespace in the base class library, such as
System.Collections.ArrayList. However, in this regard C# is no different from C++. Raw C++
arrays do not allow resizing, but there are a number of standard library classes available to provide that
feature.

Enumerations
In C#, it is possible to define an enumeration using the same syntax as in C++:

// valid in C++ or C#
enum TypeOfBuilding {Shop, House, OfficeBlock, School};

Note, however, that the trailing semicolon in C# is optional, since an enumeration definition in C# is
effectively a struct definition, and struct definitions do not need trailing semicolons:

// valid in C# only
enum TypeOfBuilding {Shop, House, OfficeBlock, School}

However, in C# the enumeration must be named, whereas in C++, providing a name for the enumera-
tion is optional. Just as in C++, C# numbers the elements of the array upwards from zero, unless you
specify that an element should have a particular value:

enum TypeOfBuilding {Shop, House=5, OfficeBlock, School=10}
// Shop will have value 0, OfficeBlock will have value 6

The way that you access the values of the elements is different in C#, since in C# you must specify the
name of the enumeration:

C++ syntax:

TypeOfBuilding MyHouse = House;

1296

Appendix D

557599 AppD_BC04.qxd 4/28/04 10:51 AM Page 1296

C# syntax:

TypeOfBuilding MyHouse = TypeOfBuilding.House;s

You might regard this as a disadvantage because the syntax is more cumbersome, but this actually
reflects the fact that enumerations are far more powerful in C#. In C#, each enumeration is a fully
fledged struct in its own right (derived from System.Enum), and therefore has certain methods avail-
able. In particular, for any enumerated value, it is possible to do this:

TypeOfBuilding MyHouse = TypeOfBuilding.House;
string Result = MyHouse.ToString(); // Result will contain “House”

This is something that is almost impossible to achieve in C++. You can also go the other way in C#, using
the static Parse() method of the System.Enum class, although the syntax is a little more awkward:

TypeOfBuilding MyHouse = (TypeOfBuilding)Enum.Parse(typeof(TypeOfBuilding),
“House”, true);

Enum.Parse() returns an object reference, and so must be explicitly cast (unboxed) back to the appro-
priate enum type. The first parameter to Parse() is a System.Type object that describes which enumer-
ation the string should represent. The second parameter is the string, and the third parameter indicates
whether the case should be ignored. A second overload omits the third parameter, and does not ignore
the case.

C# also permits you to select the underlying data type used to store an enumerator:

enum TypeOfBuilding : short {Shop, House, OfficeBlock, School};

If you do not specify a type, the compiler will assume a default of int.

Exceptions
Exceptions are used in the same way in C# as in C++, apart from the following two differences:

❑ C# defines the finally block, which contains code that is always executed at the end of the try
block, regardless of whether any exception was thrown. The lack of this feature in C++ has been
a common cause of complaint among C++ developers. The finally block is executed as soon
as control leaves a catch or try block, and typically contains clean-up code for resources allo-
cated in the try block.

❑ In C++ the class thrown in the exception may be any class. C#, however, requires that the excep-
tion be a class derived from System.Exception.

The rules for program flow through try and catch blocks are identical in C++ and C#. The syntax used
is also identical, except for one difference —in C# a catch block that does not specify a variable to
receive the exception object is denoted by the catch statement on its own.

C++ syntax:

catch (...)

1297

C# for C++ Developers

557599 AppD_BC04.qxd 4/28/04 10:51 AM Page 1297

{

C# syntax:

catch
{

In C#, this kind of catch statement can be useful to catch exceptions that are thrown by code written in
other languages (and which therefore might not be derived from System.Exception—the C# compiler
will flag an error if you attempt to define an exception object that isn’t, but that isn’t the case for other
languages!).

The full syntax for try...catch...finally in C# looks like this:

try
{

// normal code
}
catch (MyException e) // MyException derived from System.Exception
{

// error handling code
}

// optionally further catch blocks
finally
{

// clean up code
}

Note that the finally block is optional. It is also permitted to have no catch blocks—in which case the
try...finally construct simply serves as a way of ensuring that the code in the finally block is always
executed when the try block exits. This might be useful if the try block contains several return state-
ments and you want some cleaning up of resources to be done before the method actually returns.

Pointers and Unsafe Code
Pointers can be declared in C# and they are used in much the same way as in C++. However, they can be
declared and used only in an unsafe code block.

You can declare any method as unsafe:

public unsafe void MyMethod()
{

Alternatively, you can declare any class or struct as unsafe:

unsafe class MyClass
{

Declaring a class or struct as unsafe means that all members are regarded as unsafe. You can also declare
any member field (but not local variables) as unsafe, if you have a member field of a pointer type:

private unsafe int* pX;

1298

Appendix D

557599 AppD_BC04.qxd 4/28/04 10:51 AM Page 1298

It is also possible to mark a block statement as unsafe:

unsafe
{

// statements that use pointers
}

The syntax for declaring, accessing, de-referencing, and performing arithmetic operations on pointers is
the same as in C++:

// This code would compile in C++ or C#, and has the same effect in both
// languages
int X = 10, Y = 20;
int *pX = &X;
*pX = 30;
pX = &Y;
++pX; // adds sizeof(int) to pX

Note the following points, however:

❑ In C# it is not permitted to de-reference void* pointers, nor can you perform pointer arithmetic
operations on void* pointers. The void* pointer syntax has been retained for backwards com-
patibility, to call external API functions that are not .NET-aware and which require void* point-
ers as parameters.

❑ Pointers cannot point to reference types (classes or arrays). Nor can they point to structs that
contain embedded reference types as members. This is really an attempt to protect data that is
used by the garbage collector and by the .NET runtime (though in C#, just as in C++, once you
start using pointers you can almost always find a way around any restriction by performing
arithmetic operations on pointers and then de-referencing).

❑ Besides declaring the relevant parts of your code as unsafe, you also need to specify the
/unsafe flag to the compiler when compiling code that contains pointers.

❑ Pointers cannot point to any variables that are embedded in reference data types (for example,
members of classes) unless declared inside a fixed statement.

Fixing data on the heap
It is permitted to assign the address of a value type to a pointer even if that value type is embedded as a
member field in a reference type. However, such a pointer must be declared inside a fixed statement.
The reason for this is that reference types can be moved around on the heap at any time by the garbage
collector. The garbage collector is aware of C# references and can update them as necessary, but it is not
aware of pointers. Hence, if a pointer points to a class member on the heap and the garbage collector
moves the entire class instance, then the pointer will end up pointing to the wrong address. The fixed
statement prevents the garbage collector from moving the specified class instance for the duration of the
fixed block, ensuring the integrity of pointer values:

class MyClass
{

public int X;
// etc.

}

// Elsewhere in your code ...

1299

C# for C++ Developers

557599 AppD_BC04.qxd 4/28/04 10:51 AM Page 1299

MyClass Mine = new MyClass();
// Do processing
fixed(int *pX = Mine.X)
{

// Can use pX in this block.
}

It is possible to nest fixed blocks in order to declare more than one pointer. You can also declare more
than one pointer in a single fixed statement, provided both pointers have the same reference type.

fixed(int *pX = Mine.X, *pX2 = Mine2.X)
{

Declaring arrays on the stack
C# provides an operator called stackalloc, which can be used in conjunction with pointers to declare a
low-overhead array on the stack. The allocated array is not a full C#-style System.Array object, but a
simple array of numbers analogous to a one-dimensional C++ array. The elements of this array are not
initialized and are accessed using the same syntax as in C++ by applying square brackets to the pointer.

The stackalloc operator requires specification of the data type and the number of elements for which
space is required.

C++ syntax:

unsigned long pMyArray[20];

C# syntax:

ulong *pMyArray = stackalloc ulong [20];

Note, however, that although these arrays are exactly analogous, the C# version allows the size to be
determined at runtime:

int X;
// Initialize X
ulong *pMyArray = stackalloc ulong [X];

Interfaces
Interfaces are an aspect of C# with no direct equivalent in ANSI C++, although Microsoft has introduced
interfaces in C++ with a Microsoft-specific keyword. The idea of an interface evolved from COM inter-
faces, which are intended as contracts, indicating which methods and properties an object implements.

An interface in C# is not quite the same as a COM interface, since it does not have an associated GUID,
does not derive from IUnknown, and does not have associated registry entries (although it is possible to
map a C# interface onto a COM interface). A C# interface is simply a set of definitions for functions and

1300

Appendix D

557599 AppD_BC04.qxd 4/28/04 10:51 AM Page 1300

properties. It can be considered as analogous to an abstract class and is defined using a similar syntax to
a class:

interface IMyInterface
{

void MyMethod(int X);
}

You’ll notice, however, the following syntactical differences from a class definition:

❑ The methods do not have access modifiers.

❑ Methods can never be implemented in an interface.

❑ Methods can not be declared as virtual or explicitly as an abstract. The choice of how to imple-
ment methods is the responsibility of any class that implements this interface.

A class implements an interface by deriving from it. Although a class can only be derived from one other
class, it can also derive from as many interfaces as you want. If a class implements an interface, it must
supply implementations of all methods defined by that interface.

class MyClass : MyBaseClass, IMyInterface, IAnotherInterface // etc
{

public virtual void MyMethod(int X)
{

// implementation
}

// etc.

In this example, we’ve chosen to implement MyMethod as a virtual method with public access.

Interfaces can also derive from other interfaces, in which case the derived interface contains its own
methods as well as those of the base interface:

interface IMyInterface : IBaseInterface

You can check that an object implements an interface either by using the is operator or by using the as
operator to cast it to that interface. Alternatively, you can cast it directly, but in that case you’ll get an
exception if the object doesn’t implement the interface, so that approach is only advisable if you know
the cast will succeed. You can use the interface reference so obtained to call methods on that interface
(the implementation being supplied by the class instance):

IMyInterface MyInterface;
MyClass Mine = new MyClass();
MyInterface = Mine as IMyInterface;
if (MyInterface != null)

MyInterface.MyMethod(10);

1301

C# for C++ Developers

557599 AppD_BC04.qxd 4/28/04 10:51 AM Page 1301

The main uses of interfaces are:

❑ For interoperability and backwards compatibility with COM components.

❑ To serve as contracts for other .NET classes. An interface can be used to indicate that a class
implements certain features. For example, the C# foreach loop works internally by checking
that the class to which it is applied implements the IEnumerable interface, and then subse-
quently calling methods that are defined by that interface.

Delegates
A delegate in C# has no direct equivalent in C++, and performs the same task as a C++ function pointer.
The idea of a delegate is that the method pointer is wrapped in a specialized class, along with a reference
to the object against which the method is to be called (for an instance method, or the null reference for a
static method). This means that, unlike a C++ function pointer, a C# delegate contains enough informa-
tion to call an instance method.

Formally, a delegate is a class that is derived from the class System.Delegate. Hence instantiating a
delegate involves two stages: defining this derived class, then declaring a variable of the appropriate
type. The definition of a delegate class includes details of the full signature (including the return type) of
the method that the delegate wraps.

The main use for delegates is for passing around and invoking references to methods. References to
methods cannot be passed around directly, but they can be passed around inside the delegate. The dele-
gate ensures type safety, by preventing a method with the wrong signature from being invoked. The
method contained by the delegate can be invoked by syntactically invoking the delegate. The following
code demonstrates the general principles.

First, we need to define the delegate class:

// Define a delegate class that represents a method that takes an int and
// returns void
delegate void MyOp(int X);

Next, for the purposes of our example we will declare a class that contains the method to be invoked:

// Later _ a class definition
class MyClass
{

void MyMethod(int X)
{

// etc.
}

}

Then, later on, perhaps in the implementation of some other class, we have the method that is to be
passed a method reference via a delegate:

void MethodThatTakesDelegate(MyOp Op)
{

// call the method passing in value 4

1302

Appendix D

557599 AppD_BC04.qxd 4/28/04 10:51 AM Page 1302

Op(4);
}

// etc.

And finally, the code that actually uses the delegate:

MyClass Mine = new MyClass();
// Instantiate a MyOp delegate. Set it to point to the MyMethod method
// of Mine.
MyOp DoIt = new MyOp(Mine.MyMethod);

Once this delegate variable is declared, we can invoke the method via the delegate:

DoIt();

Or pass it to another method:

MethodThatTakesDelegate(DoIt);

In the particular case that a delegate represents a method that returns a void, that delegate is a multicast
delegate and can simultaneously represent more than one method. Invoking the delegate causes all the
methods it represents to be invoked in turn. The + and += operators can be used to add a method to a
delegate, and _ and -= can be used to remove a method that is already in the delegate. Delegates are
explained in more detail in Chapter 6.

Events
Events are specialized forms of delegates that are used to support the callback event notification model.
An event is a delegate that has this signature:

delegate void EventClass(obj Sender, EventArgs e);

This is the signature any event handler that is called back must have. Sender is expected to be a reference
to the object that raised the event, whereas System.EventArgs (or any class derived from EventArgs—
this is also permitted as a parameter) is the class used by the .NET runtime to pass generic information
concerning the details of an event.

The special syntax for declaring an event is this:

public event EventClass OnEvent;

Clients use the += syntax of multicast delegates to inform the event that they wish to be notified:

// EventSource refers to the class instance that contains the event
EventSource.OnEvent += MyHandler;

The event source then simply invokes the event when required, using the same syntax as we demon-
strated above for delegates. Since the event is a multicast delegate, all the event handlers will be called in
the process.

1303

C# for C++ Developers

557599 AppD_BC04.qxd 4/28/04 10:51 AM Page 1303

OnEvent(this, new EventArgs());

Events are explained in more detail in Chapter 6.

Attributes
Attributes are a concept that has no equivalent in ANSI C++, though they are supported by the
Microsoft C++ compiler as a Windows-specific extension. In the C# version, they are .NET classes that
are derived from System.Attribute. They can be applied to various elements in C# code (classes,
enums, methods, parameters, and so on) to generate extra documentation information in the compiled
assembly. In addition, certain attributes are recognized by the C# compiler and will have an effect on the
compiled code. These include:

The following list describes some of the available attributes:

❑ DllImport—Indicates that a method is defined in an external DLL.

❑ StructLayout—Permits the contents of a struct to be laid out in memory. Allows the same
functionality as a C++ union.

❑ Obsolete—Generates a compiler error or warning if this method is used.

❑ Conditional—Forces a conditional compilation. This method and all references to it will be
ignored unless a particular preprocessor symbol is present.

There are a large number of other attributes, and it is also possible to define your own custom ones. Use
of attributes is discussed in Chapters 4 and 5.

The syntax of attributes is that they appear immediately before the object to which they apply, in square
brackets. This is the same syntax as for Microsoft C++ attributes:

[Conditional(“Debug”)]
void DisplayValuesOfImportantVariables()
{

// etc.

Preprocessor Directives
C# supports preprocessor directives in the same way as C++, except that there are far fewer of them. In
particular, C# does not support the commonly used #include of C++. (It’s not needed because C# does
not require forward declarations.)

The syntax for preprocessor directives is the same in C# as in C++. The following table lists the directives
that are supported by C#.

1304

Appendix D

557599 AppD_BC04.qxd 4/28/04 10:51 AM Page 1304

Directive Meaning

#define/#undef Same as C++, except that they must appear at the start of the file,
before C# code.

#if/#elif/#else/#endif Same as C++ #ifdef/#elif/#else/#endif.

#line Same as C++ #line.

#warning/#error Same as C++ #warning/#error.

#region/#endregion Marks off a block of code as a region. Regions are recognized by
certain editors (such as the folding editors of Visual Studio .NET)
and so can be used to improve the layout of code presented to the
user while editing.

Summary
In this appendix, we have had a look at the differences between C++ and C# from the viewpoint of a
developer already familiar with C++.

We have surveyed the C# language, noting specifically those areas in which it is different from C++,
with topic-by-topic comparisons of language syntax, program flow, operators, and the object-oriented
features.

1305

C# for C++ Developers

557599 AppD_BC04.qxd 4/28/04 10:51 AM Page 1305

557599 AppD_BC04.qxd 4/28/04 10:51 AM Page 1306

In
de

x

Index

Page numbers in italic refer to the appendixes, which are posted on www.wrox.com.

SYMBOLS
& (ampersand)

bit-wise operator, 132, 137
logical operator, 132
unary operator, 200
Windows Form label prefix, 589

&= (ampersand, equals sign) assignment operator, 132
&& (ampersands) logical operator, 132
* (asterisk)

arithmetic operator, 132
regular expression special character, 232
Visual Studio .NET autoversioning operator, 378

*= (asterisk, equals sign) assignment operator, 132
*/ (asterisk, slash) comment suffix, 31
@ (at sign) string literal prefix, 46
\ (backslash) escape sequence prefix, 44, 46, 232
\\ (backslashes) escape sequence prefix, 46
| (bar)

bit-wise operator, 132
logical operator, 132

|= (bar, equals sign) assignment operator, 132
|| (bars) logical operator, 132
{ } (brackets, curly) statement block constructor, 31
() (brackets, round)

cast operator, 132
method suffix, 87

[] (brackets, square)
array element index delimiters, 58, 132
reflection attribute delimiters, 260
regular expression alternative character delimiters, 233

^ (caret)
logical operator, 132
regular expression special character, 232

^= (caret, equals sign) assignment operator, 132
: (colon) WriteLine method format specifier prefix,

223
:: (colons) event cancellation string, 184
, (comma)

inheritance list separator, 111
WriteLine method character number prefix, 223

$ (dollar sign) regular expression special character,
232

= (equals sign) assignment operator, 132, 1278
=: (equals sign, colon) assignment operator, 34, 132
== (equals signs) comparison operator, 48, 132, 143,

151, 152
!= (exclamation mark, equals sign) comparison opera-

tor, 132, 151, 152
! (exclamation mark) logical operator, 132
> (greater than sign) comparison operator, 132, 151
>= (greater than sign, equals sign) comparison opera-

tor, 132, 151
> (greater than signs) bit shifting operator, 132
>= (greater than signs, equals sign) assignment oper-

ator, 132
< (less than sign) comparison operator, 132
<= (less than sign, equals sign) comparison operator,

132, 151
<% (less than sign, percent sign) ASP.NET code block

prefix, 876
<< (less than signs) bit shifting operator, 132
<<= (less than signs, equals sign) assignment opera-

tor, 132
- (minus sign) arithmetic operator, 132
-= (minus sign, equals sign) assignment operator, 132
-> (minus sign, greater than sign) indirection operator,

132

41 557599 index.qxd 4/29/04 11:49 AM Page 1307

- - (minus signs) increment operator, 132
(number sign) preprocessor directive prefix, 70
% (percent sign) arithmetic operator, 132
%= (percent sign, equals sign) assignment operator, 132
%> (percent sign, greater than sign) ASP.NET code

block suffix, 876
. (period)

dot notation, 40
member access operator, 132
method calling operator, 1143
namespace separator, 58–59
regular expression special character, 232

+ (plus sign)
arithmetic operator, 132
regular expression special character, 232, 234–235
string concatenation operator, 132

+= (plus sign, equals sign) assignment operator, 132
++ (plus signs) increment operator, 132
?: (question mark, colon) ternary operator, 134
? (question mark) regular expression special character,

232
“ “ (quotation marks, double) string literal delimiters, 46
; (semicolon)

database connection string separator, 689
statement suffix, 31–32

/ (slash) arithmetic operator, 132
/* (slash, asterisk) comment prefix, 31
/= (slash, equals sign) assignment operator, 132
// (slashes) comment prefix, 31
/// (slashes) comment prefix, 68
~ (tilde)

destructor prefix, 194
logical operator, 132

_ (underscore) field name prefix, 76

A
Abort method, 443
AcceptChanges method, 823
AcceptSocket method
QuoteServer class, 1098
TcpListener class, 1083, 1107

AcceptTcpClient method (TcpListener class), 1083
access modifier, 97, 1140–1141, 1158, 1241
AccessDataSourceControl control, 334–335
ACID (atomicity, consistency, isolation, durability), 1009
Action ➪ Add (.NET Framework Configuration tool), 380
action delegate, 174
Action ➪ Properties (Component Services Admin

utility), 1007

ActionCancelEventArgs class, 183–184, 186
ActionEventHandler delegate, 182
Activate method (ServicedComponent class), 1003
Activator class, 472, 473–474, 476, 483
Active Directory

access control list, 839
ADSI, 838, 847–848, 850, 857, 859–860
attribute

GC, storing in, 842
referencing, 855
schema, 839, 843
value, returning, 854–855

authentication, 841, 849, 853
binding, 849–854
cache, 857
currency, 843
DC, 838, 841
domain, 840–841
editing, 845–848
GC, 841–842, 850
hierarchy, 838, 840, 843
Kerberos support, 539
LDAP support, 838, 850
object

collection, 855–856
creating, 857–859
information about, returning, 854
storage, 839, 855–856
user object, 864–868

port configuration, 850
replication, 838, 841, 842–843
schema, 839, 841, 843–845, 856, 864–866
searching, 849, 860–868
security, 839, 842
site, 841
standards supported, 838
updating, 858–859
user interface, 864

Active Directory Domains and Trusts MMC snap-in, 845
Active Directory Service Interfaces. See ADSI
Active Directory Sites and Services MMC snap-in, 845
Active Directory Users and Computers MMC snap-in,

845–846
Active Server Pages. See ASP
Active Template Library. See ATL
ActiveX control, 24, 982–985, 1193
ActiveX Control Importer utility. See aximp utility
ActiveX Data Objects. See ADO
Add ➪ Add Existing Item (Visual Studio .NET), 524

1308

- - (minus signs) increment operator

41 557599 index.qxd 4/29/04 11:49 AM Page 1308

Add method
ControlBindingsCollection class, 753
Controls class, 950
DirectoryEntry class, 857
Hashtable class, 247
HelloCSharp class, 363
HelloMCPP class, 357, 359
HelloVB class, 361
IMath interface, 976
ResultPropertyValueCollection class, 858–859
Rows class, 724, 768
SchemaNameCollection class, 856

Add ➪ New Element (Visual Studio .NET), 767
Add ➪ Project Output (Visual Studio .NET), 558
AddCulturesToTree method, 516–517
AddData method, 923
AddEvent method, 919, 920
AddMessageFilter method (Application class),

575
AddOrderLine method (Order class), 1012, 1020
add.ovf statement, 362
AddProductRow method, 718–719, 768–770
AddRange method (PropertiesToLoad class), 867
AddRef method (IUnknown interface), 967
Add/Remove Programs dialog box, application display

in, 1055
AddResource method (ResourceWriter class), 523
AddressFamily class, 1082
AddToMessage method, 275
AddToOutput method, 270
ADO (ActiveX Data Objects), 686
ADO.NET. See also database

class overview, 686–688
command, executing, 694–698
data binding, 892
disconnected nature of, 688
namespace, 686
tier division of application, 728–729
XML

converting ADO.NET data to XML, 812–820
converting XML to ADO.NET data, 820–822

AdRotator control, 884
ADSI (Active Directory Service Interfaces), 838,

847–848, 850, 857, 859–860
ADSI Edit utility, 845, 846–847
Advise method, 972
ampersand (&)

bit-wise operator, 132, 137
logical operator, 132

unary operator, 200
Windows Form label prefix, 589

ampersand, equals sign (&=) assignment operator, 132
ampersands (&&) logical operator, 132
AnalyzeType method (MainClass class), 270
A.netmodule module, 349
AppDomain class, 342, 343
AppDomainUnloadedException exception, 333
Append method (StringBuilder class), 221, 222
AppendFormat method (StringBuilder class), 222,

225, 226
AppendLiteralString method, 955
Application class
AddMessageFilter method, 575
ASP.NET, Application object, 906–907
CommonAppDataPath property, 575
DoEvents method, 575
EnableVisualStyles method, 575, 605, 606
ExecutablePath property, 575
Exit method, 575, 600
ExitThread method, 575
FlatStyle property, 575
LocalUserAppDataPath property, 575
MessageLoop property, 575
Run method, 574, 1198
StartupPath property, 575

Application_BeginRequest method, 539
ApplicationContext class, 575
ApplicationException class, 278, 296
Application_Start method, 919
AppSupport project, 547
AppSupport.dll file, 556, 559
AppSupportII.dll file, 561
argSample.xml file, 809
arithmetic

addition, 137, 145–146, 147–148, 151
division, 137
modulus, 132
multiplication, 137, 144, 149–150
pointer arithmetic, 203–204
subtraction, 137, 151
Visual Basic 6 arithmetic assignment operator,

1201–1202
array

accessing element within, 58
bound checking, 281, 1295–1296
C++, 1293–1296
data type, 57
DataGrid control, displaying in, 738–739

1309

array

In
de

x

41 557599 index.qxd 4/29/04 11:49 AM Page 1309

array (continued)
declaring without initializing, 58
delegate array, 173, 174–175
dictionary compared, 246
index, 58, 240
initializing, 57
jagged, 212, 1294–1295
Java, 1226, 1236
list, 240–241
memory stack-based, 212–215, 1300
multidimensional, 52, 57, 212, 1294–1295
one-dimensional, 57, 1293–1294
pointer, 202, 214
rectangular, 212
referencing, 57–58
reflection, returning array from, 268, 270, 274
size

returning, 58
specifying, 57, 240, 1296

sorting, 168, 174–177, 521
threading, array processing in, 452–453
Visual Basic 6, 1218–1219
XML serialization, 826, 832, 834

Array

class, 214, 241
namespace, 239

ArrayController object, 452–453
ArrayList class, 240
arrayOfInts array, 54
ASCII class, 1087
ASP (Active Server Pages), 21, 22, 873
ASP.NET

application, 906–907
ASP, relation to, 22, 873
AutoEventWireup attribute, 878
code-behind directive, 22
COM object, using from, 985
database connection, 895
event handling, 878, 879, 882, 899–901, 906–907
function definition, 876
globalization, 539–540
language attribute, 875, 878
localization, 539–540
object model, 878
page, 22
postback, 875, 890
processing, server-side, 875, 878, 881
remote hosting in ASP.NET environment, 494–495
runat attribute, 875, 878, 881
scripting language, declaring, 875

security, role-based, 415
state management, 875, 882
template, 903–906
variable declaration, 876
viewstate field, 875
Visual Studio .NET, developing in, 22, 875–877
Web Form
AdRotator control, 884
Button control, 881–882, 885
Calendar control, 885, 897–899
CheckBox control, 884
CheckBoxList control, 885
CompareValidator control, 887
CustomValidator control, 887
data binding, 892, 894–897, 901–906
DataGrid control, 886, 901–902
DataList control, 886, 904–906
DropDownList control, 884
event handling, 878, 879, 882
HTML server control, 880
HyperLink control, 885
Image control, 884
ImageButton control, 885, 937–938
introduced, 23
Label control, 881, 884, 891
layout, 877
LinkButton control, 885
ListBox control, 884
Literal control, 884
Panel control, 885
PlaceHolder control, 884
posting, 882–883, 890
processing, server-side, 875, 878, 881
RadioButton control, 885
RadioButtonList control, 885
RangeValidator control, 887
RegularExpressionValidator control, 887
Repeater control, 886, 903
RequiredFieldValidator control, 887
server control overview, 880–883
sizing, 92
state management, 882
Table control, 885
TableCell control, 885
TableRow control, 885
TextBox control, 884
user control, 880
validation control, 880, 886–892
ValidationSummary control, 887, 888
Visual Studio .NET, developing in, 334, 875–877

1310

array (continued)

41 557599 index.qxd 4/29/04 11:49 AM Page 1310

Web server control, 883–886
Xml control, 884

Web Matrix Project, 335
.aspx files, 874, 877–878
assembly. See also GAC (global assembly cache); spe-

cific assembly
aliasing, 352
application domain environment, in, 341–344
Authenticode signature, 369
binding flag, 344
certificate, signing with, 430–435
CLS compliance, 364–366
COM, 352, 979–980, 993
configuration file

application configuration, 377, 379–382
assemblyBinding element, 382
assemblyIdentity element, 382
bindingRedirect element, 382
codeBase element, 387–388
dependentAssembly element, 382, 388
machine configuration, 377
probing element, 389–390
publisher policy, 377, 383–385
remoting configuration, 377
runtime configuration, 377, 382, 385–386
security configuration, 377
shared assembly, 377
startup configuration, 376
supportedVersion element, 386
versioning configuration, 377–379

control, placing in, 939–940
CopyLocal property, 373
creating, 350–352, 371–372
culture, 346, 352, 527
deleting, 367
dependency, listing, 380–381
deploying, 18, 341, 376, 556
described, 339–340
directory structure, 387–390
encryption, 370, 372, 374–375, 428
exception thrown by missing, 343
executing, 343
executing assembly, returning, 525
GAC, installing to/uninstalling from, 368, 556
garbage collection, 377
hash code, 349–350
listing, 367, 368
loading/unloading, 271, 342
Main method, 342–343
manifest, 17, 346

metadata, 17–18, 271, 344
module, comparing to, 349
name

collision, 19
returning, 379
strong, 347, 369–371, 372, 428

namespace, 346–347
overwriting, 19
primary interop assembly, 979–980
private, 18, 310, 340–341, 347
probing, 377, 389–390
publisher policy, 377, 383–385
referencing, 341, 343, 346, 373, 375–376
reflection, 267, 271, 274
remoting, 377, 457, 463–464
resource file, adding, 524–525
runtime

application configuration file runtime element, 382
configuration file setup, 377, 385–386
garbage collection, 377
version, specifying, 376, 385–386

satellite assembly, 533, 539, 540
security

configuration file security setup, 377
permission, 346, 388, 397–398, 401–403, 408–409

shared
configuration file, 377
creating, 371–372
GAC role, 19, 341
installing, 373
key, public, 369, 370
name collision, 19
name, strong, 347, 369–371, 372
overwriting, 19
private compared, 340
referencing, 373
versioning, 352, 369, 377–379

side-by-side, 341
version

configuration file setup, 377–379
private assembly, 340–341
redirecting, 382, 388
runtime version, specifying, 376, 385–386
shared assembly, 352, 369, 377–379

viewing, 347–348
zero impact installation, 18

Assembly Cache Viewer, 367–368
Assembly class
FullName property, 379
GetExecutingAssembly method, 525

1311

Assembly class

In
de

x

41 557599 index.qxd 4/29/04 11:49 AM Page 1311

Assembly class (continued)
GetManifestResourceNames method, 525
GetTypes method, 271, 274
Load method, 271
LoadFrom method, 271, 561
Reflection namespace declaration, 537

AssemblyA.exe file, 342, 343
AssemblyInfo.cs file
ApplicationAccessControl attribute, 1004, 1006
ApplicationActivation attribute, 1004, 1006
ApplicationName attribute, 1004, 1006
ASP.NET application, for, 876
AssemblyCompany attribute, 352
AssemblyConfiguration attribute, 352
AssemblyCopyright attribute, 352
AssemblyCulture attribute, 352
AssemblyDefaultAlias attribute, 352
AssemblyDelaySign attribute, 352, 375
AssemblyDescription attribute, 352
AssemblyInformationalVersion attribute, 352
AssemblyKeyFile attribute, 372, 375, 993, 1004,

1012
AssemblyKeyName attribute, 352
AssemblyProduct attribute, 352
AssemblyTitle attribute, 352
AssemblyTrademark attribute, 352
AssemblyVersion attribute, 378
CLSCompliant attribute, 365
Description attribute, 1004
EventTrackingEnabled attribute, 1004
introduced, 311
permission configuration, 408
Visual Studio .NET, generation by, 350–351

asterisk (*)
arithmetic operator, 132
regular expression special character, 232
Visual Studio .NET autoversioning operator, 378

asterisk, equals sign (*=) assignment operator, 132
asterisk, slash (*/) comment suffix, 31
AsyncProcessMessage method (IMessageSink

interface), 476
AsyncProcessMessage method

(SoapClientFormatterSink class), 471
at sign (@) string literal prefix, 46
ATL (Active Template Library), 973
atomicity, consistency, isolation, durability. See ACID
attendeeList control, 894–897
attribute

assembly attribute, returning, 272
C++, 1304

compilation error caused by incorrect, 259, 261
custom, 258–265, 272
instantiating, 261
introduced, 17
parameter, specifying, 261–262
reflection, returning attribute information using, 272,

275
struct, using with, 1235–1236

Attribute class, 259, 272, 275
attributeSchema object, 839
AttributeTargets enumeration, 260
Audit method, 412
AuditClass method, 412, 413
AuthenticateUser method, 925
AuthenticationToken class, 925
Authenticator class
ChangePassword method, 1141, 1143, 1146–1147
constructor, 1173–1174
GetMinPasswordLength method, 1150
IsPasswordCorrect method, 1141, 1146
minPasswordLength field, 1150–1151

Authenticode signature, 369
AutoScrollPosition class, 643
aximp (ActiveX Control Importer) utility, 982

B
backslash (\) escape sequence prefix, 44, 46, 232
backslashes (\\) escape sequence prefix, 46
BankAccounts.cs file, 128
bar (|)

bit-wise operator, 132
logical operator, 132

bar, equals sign (|=) assignment operator, 132
bars (||) logical operator, 132
BaseValidator class, 886
BasicConsoleApp.sln file, 312
Basics namespace, 32
BeginEdit method (DataRow class), 709
BeginGetResponse method (WebRequest class),

1073
BeginInit method
DataGrid class, 737
ISupportInitialize interface, 616–617

BeginInvoke method, 498
Beginning Visual C#, 30
Beginning XML (Wrox Press), 781
BeginTransaction method, 692
binary file, reading/writing, 1041, 1042–1047

1312

Assembly class (continued)

41 557599 index.qxd 4/29/04 11:49 AM Page 1312

Binary namespace, 826
BinaryFormatter class, 470
BinaryReader class, 1041, 1042
BinaryServerFormatterSinkProvider class, 480
BinaryWriter class, 1041–1042
Binding class, 755
BindingFlags class, 344
BindingManagerBase class, 582, 752, 778
BitBlt (bitmap block transfer), 655
block statement, 690–692
BookOfTheDayForm class

constructor, 534
InitializeComponent method, 528, 530
Localizable property, 530–531
SetDateAndNumber method, 529
Show method, 528
TabIndex property, 531
Text property, 531
WelcomeMessage method, 528, 529, 537

BookOfTheDayForm.de.resX file, 532
BookOfTheDayForm.fr.resX file, 532
BookProduct class, 831, 833
booksscript.xsl file, 811
books.xml file, 783–784
BookUtils class, 810
boxing/unboxing, 141–142, 160–161, 1236–1237,

1273
brackets, curly { } statement block constructor, 31
brackets, round ()

cast operator, 132
method suffix, 87

brackets, square []
array element index delimiters, 58, 132
reflection attribute delimiters, 260
regular expression alternative character delimiters, 233

break statement, 55, 328
breakpoint, debugging using, 55, 328, 331–332
Brushes class, 648
BubbleSorter class, 174–177
BufferedReader object, 1249
BufferedStream class, 1042
BusEntity class, 184–185
Button control, 578, 585, 737, 881–882, 885
ButtonBase class, 585
Button_Click method, 180–181
buttonLoadProperties_Click method, 865
byte code marker, 1048

C
C++

array, 1293–1296
attribute, 1304
class, 355–359, 1256, 1257, 1279–1287
compilation, 1255, 1304
constant, 1287–1289
constructor, 1257, 1281–1283
data type, 1266–1270, 1271–1273
delegate, 1302–1303
destructor, 1256, 1283–1284
enumeration, 1256, 1296–1297
escape sequence, 1270–1271
event handling, 1303–1304
exception handling, 1256, 1297–1298
field, 1280–1281
file structure, 1261–1262
flow control, 1256, 1263–1266
forward declaration, 1262–1263
function, 1254, 1255, 1285–1287
include statement, 1259
inheritance, 1257, 1258, 1285
interface, 1300–1302
library, 1256, 1259
main method, 1260, 1262
memory management, 1255, 1273–1275, 1298–1300
message box display, 1260–1261
method, 1260, 1262, 1275–1276, 1302–1303
namespace, 1259–1260
object model, 1253, 1261
operator, 1256, 1277–1279, 1289–1291
preprocessor directive, 1256, 1304–1305
property, 1276–1277
statement, compound, 1255
string handling, 1270
struct, 1256, 1279, 1287
syntax, 1256, 1262–1263
target environment, 1256
template, 1258
terminology, 1254–1255
try catch finally block, 1297–1298
variable, 1254, 1266, 1272
Visual Studio .NET, creating C++ code using, 356

c XML tag, 68
cab files, 551, 557
CalculateDocumentSize method, 667–668
CalculateLineWidths method, 667
Calendar control, 518, 885, 897–899

1313

Calendar control

In
de

x

41 557599 index.qxd 4/29/04 11:49 AM Page 1313

calendar, localizing, 510, 518
Callback method, 498
CallContext class, 506, 507
CallContextData class, 506
camel casing, 76
CanBePooled method (ServicedComponent

class), 1003
CancelEventArgs class, 183
Candidate class, 955, 959, 960–961
CandidateEventArgs class, 960
CanWeFixIt method, 918
CaptureCollection class, 236
caret (^)

logical operator, 132
regular expression special character, 232

caret, equals sign (^=) assignment operator, 132
case sensitivity

C#, 66, 73, 77, 1184
CLS, 12
Java, 1226
Visual Basic .NET, 12, 77
Visual Basic 6, 1184

caspol (Code Access Security Policy) tool, 391,
394–396

casting
C++, 1269–1270
checked operator, 140
classes, between, 155, 158–160
combining casts, 161–165
error handling, 140
explicit, 139–141
Java, 1236–1237
memory pointer, 202–203
overloading, 153
structs, between, 155
syntax, 139, 154
user-defined, 154–158

catch block. See try catch finally block
CComBSTR class, 976
CCOMDemo class, 974, 976, 979
CCOMDemoClass class, 978
CCW (COM Callable Wrapper), 986, 993
Ceiling method (PointF struct), 633
certificate, 429–435, 557. See also encryption
ChangeColorDepth method, 442
ChangePassword method (Authenticator class),

1141, 1143, 1146–1147
channel. See remoting, channel
ChannelDataStore class, 468
ChannelServices class, 458, 470, 471

CheckBox control, 585, 884
CheckBoxList control, 885
checked/unchecked operator, 134–135
CheckState enumerator, 585
chktrust.exe utility, 432
class

abstract, 115, 1165–1169, 1242, 1246
access modifier, 97, 1140–1141, 1158, 1241
ADO.NET, 686–688
base class, 19–20, 32, 286, 1166–1169, 1179
C++, 355–359, 1256, 1257, 1279–1287
channel class, 456, 467
CLS compliance, 354
CLSID, 969, 974, 989, 990
constant association with, 85, 1288–1289
constructor

C#, 86, 95–99, 116–121, 1172–1174
C++, 1257, 1281–1283
initializer, 98–99, 1282–1283
static, 84, 96–98, 1282
Visual Basic 6, 1199

database schema, mapping to, 716
defining

C#, 32, 182, 184–185, 362–364, 1140–1141
C++, 355–359, 1279–1280
Visual Basic .NET, in, 359–362

delegate, relation to, 168, 169, 178
destructor

C#, 193–194, 195–197, 1171–1172
C++, 1256, 1283–1284
Java, 1245

entity class, 1012–1015
event

creating handler class, 182, 184–185
member, as, 85

exception
base class library, thrown by, 286
overview of exception classes, 278–280
user-defined exception class, 290–297

hierarchy, 1159–1161
indexer, 86, 153, 1291
instantiating, 84, 170, 1196–1198
interoperability, 9
Java, 1240, 1241–1243, 1245–1249
marshal-by-reference class, 477
marshal-by-value class, 476
member, 85, 1139, 1161–1164, 1241–1245
module, 1138
name, fully qualified, 32
namespace

1314

calendar, localizing

41 557599 index.qxd 4/29/04 11:49 AM Page 1314

defining within class, 58
returning class namespace, 60

.NET environment, 19–20
object, relation to, 1139
pointer, 202, 206–207, 209–212
remoting channel

class representation, 456, 467
serialization, 470, 476, 480

sealed, 115–116, 1169–1170
SQL class overview, 687
struct versus, 84, 101–102
TCP class overview, 1083
type, returning, 105
unbound, 476
variable, class-level, 37–38
Visual Basic 6, 1178, 1187, 1192–1193, 1196–1198
Web service proxy class, 917
XML class overview, 782–783, 795–797
XPath class overview, 803

class id. See CLSID
Class1.cs file, 308
classSchema object, 839, 843
Clear method (ResultPropertyValueCollection

class), 858
ClearAllFields method, 1039
ClearTextFields method, 518
Client class, 500
Client.exe.config file, 381, 382
ClientSponsor class, 482
ClientValidationFunction function, 887
Close method
Dispose method versus, 196
IResourceReader interface, 541
PCSWebApp3 application, 895
RegistryKey class, 1059
XmlTextWriter class, 801

CLR (Common Language Runtime)
described, 4
interoperability, 5–7, 8–9
memory type safety, 7, 9–10
Object Remoting, 457
permission evaluation, 399, 407
platform independence, 4–5
VES, 393

CLS (Common Language Specification), 12, 353–354,
364–366

CLSID (class id), 969, 974, 989, 990
Club method, 937
CoCreateInstance method, 969, 994

code
block, defining for compilation, 72
distributing

certificate, using, 429–435, 557
strong name, using, 427–429

going to another line, 49, 54–55
group, 392, 393–398, 423–425
mobile, 391
security

code distribution, of, 427–435, 557
code-based, 14
evidence, 392
mobile code, 391
permission, 392, 399–403, 413, 414, 424–425
trust-based, 392
unmanaged code, 419
zone, 393

Code Access Security Policy tool. See caspol tool
code XML tag, 68
code-behind directive, 22
CoIntialize method, 994
ColdCallFileFormatException exception, 290,

294
ColdCallFileReader class, 292, 293, 294, 295
Collect method (GC class), 193
collection

context, 460–462
described, 242–243
enumerator, 242
ICollection interface, 240, 242
IEnumerable interface requirement, 54, 242
iterating through, 54, 243, 1239–1240
Java, 1236
Vector struct, 243–245

Collections namespace, 105, 240
colon (:) WriteLine method format specifier prefix,

223
colons (::) event cancellation string, 184
Color

class, 605, 646
struct, 645

ColorDialog class, 1060
Colors enumeration, 106
Columns collection, 705
COM

ActiveX control, 982–985
ASP.NET, using COM object from, 985
assembly, 352, 979–980, 993
ATL project, creating for COM component, 973

1315

COM

In
de

x

41 557599 index.qxd 4/29/04 11:49 AM Page 1315

COM (continued)
attribute

custom, 975
interop, 989–992

casting, 968
CCW, 986, 993
CLSID, 969, 974, 989, 990
data type, 969, 972–973
Enterprise Services environment, COM+ application in,

1003–1006
error handling, 971
event handling, 972, 980–982, 986, 996
garbage collection, 13, 966–967
GUID, 369, 976, 990
interface, 124, 967–968, 989, 990, 991
interoperability overview, 7, 965–966
language of client, programming for, 353
library application, 1004
marshaling, 972–973
metadata, 966
method binding, 969, 989
.NET client, using COM component from

ActiveX control, 982–985
component configuration, 973–977
connection point, 980–982
RCW, 977–980
registration, 974
threading, 980

.NET component, using from COM client
CCW, 986, 993
client configuration, 993–995, 996–997
connection point, 995–996
interop attribute, 989–992
registration, 992–993
type library, 987–989
Windows Form control, 997–998

object model, 8–9
registry, component registration in, 969, 974, 992–993
server, 973
threading, 933, 969–971, 980

COM Callable Wrapper. See CCW
Combine method (Path class), 1029
ComboBox control, 586
COMClient.cpp file, 993
COMDemo.cpp file, 976, 981
COMDemo.h file, 974, 976, 980
comma (,)

inheritance list separator, 111
WriteLine method character number prefix, 223

Command class
CommandType property, 693
ExecuteNonQuery method, 694–695, 699
ExecuteReader method, 694, 695–696, 701, 702
ExecuteScalar method, 694, 696
ExecuteXmlReader method, 696–698
SQL clause, passing to, 693

CommandType enumeration, 693–694
comment

C#, 31, 68–70
Visual Basic 6, 1182–1183
XML documentation, generating from, 68–70

Commit method (Installer class), 1108
CommitChanges method (DirectoryEntry class),

857, 859, 860
Common Language Runtime. See CLR
Common Language Specification. See CLS
Common namespace, 686, 687
Common Properties of Project ➪ Properties (Visual

Studio .NET), 528
Common Type System. See CTS
Compare method (String class), 218
CompareOrdinal method (String class), 218
CompareValidator control, 887
comparison operation, 132, 137, 142–144, 151–153,

174–175
compilation. See also attribute
Attribute class considerations, 259
batch file, from, 31
C++, 1255, 1304
code block, defining for, 72
conditional, 71, 329
debugging information, inserting during, 328–329, 330
error message, specifying, 72
IL, 4
Java, 1226
JIT, 5, 94
line numbering, 72–73
Main method compilation considerations, 61–62
.NET Framework targeted, 3
out switch, 64
output file, specifying, 64
preprocessor directive, 70–73
reference switch, 64
target switch, 63
Visual Basic .NET, 6
Visual Basic 6, 1179
Visual C++ .NET, 6–7
Visual Studio .NET, 31, 302, 307–308, 326–331
warning text, specifying, 72

CompilerServices namespace, 351

1316

COM (continued)

41 557599 index.qxd 4/29/04 11:49 AM Page 1316

Completed method, 980, 996
Component class, 579
Component Services Admin utility, 1006–1008, 1009
Component.dll file, 344–345
COMWrapper namespace, 978
.config files, 484
Configure method (RemotingConfiguration

class), 489, 490
Connect method (RemotingServices class),

473, 476
Connection class, 541, 1018
Console class
OpenStandardError method, 1250
OpenStandardInput method, 1250
OpenStandardOutput method, 1250
Read method, 1250
ReadLine method, 33, 65, 283, 1250
SetError method, 587, 1250
SetIn method, 1250
SetOut method, 1250
Write method, 52, 65, 1250
WriteLine method, 65–66, 165, 223–224,

1148–1149, 1250–1251
const statement, 1275
constant

advantage of using, 38–39
C++, 1287–1289
class, association with, 85, 1288–1289
declaring, 38, 85
inheritance, 1289
initializing, 38
variable, designating as, 38

Constraint class, 687
Construct method (ServicedComponent class),

1003, 1016–1017
ContainerControl class, 583
Contains method (DirectoryEntry class), 858
context, 460–462, 505–507, 1001
ContextAttribute interface, 461
ContextBoundObject class, 477
ContextDataRow class, 770, 772, 775
ContextMenu class, 595, 596
ContextUtil class, 1011
Continue

ServiceController class method, 1121
statement, 55

control. See also event, control event; specific control
color, 97, 883, 946, 947, 950–951
custom control

assembly, placing in, 939–940
bin directory, placing in, 939

color, 946, 947
composite, 949–951
data binding, 945
debugging, 941
event handling, 947–948, 959–962
Label control, deriving from, 945–946
library, 940–941
nesting, 940
state management, 946–949, 956
tag prefix, 940
user control compared, 939
Visual Studio .NET project, 940–943

data binding
ADO.NET, 892
ASP.NET Web Form control, 892, 894–897, 901–906
attendeeList control, 894–897
Calendar control, 897–899
context, 752–754, 777
currency, 755–757
custom control, 945
DataGrid control, 737–739, 750–751, 777–778,

901–902
described, 750
roomList control, 894–897
TextBox control, 750–751
Windows Form control, 582, 750–757

GAC, placing in, 931
introduced, 951–952
nesting, 940
user control

ASP.NET Web Form, 880
composite, 934
control custom compared, 939
event handling, 936, 938
files created with, 932–933
graphic, associating with, 933
postback, 936
referencing, 934
reusability, 932
state, specifying default, 934
tag name, 934
Visual Studio .NET user control project, 932

Control class
BackColor property, 580
BackGroundImage property, 580
BindingContext property, 582, 752–755
ForeColor property, 580
hierarchy, 582–584, 754
HWnd property, 582
introduced, 579

1317

Control class

In
de

x

41 557599 index.qxd 4/29/04 11:49 AM Page 1317

Control class (continued)
Invalidate method, 582
IsHandleCreated properties, 582
LParam property, 582
MousePosition property, 673
Msg property, 582
PointToClient method, 580
PointToScreen method, 580
RectangleToScreen method, 580
Result property, 582
ScreenToRectangle method, 580
WndProc method, 582
WParam property, 582

ControlBindingsCollection class, 751, 753
ControlBuilder class, 955
Controls class, 950
Convert

class, 283, 285
System class method, 157–158

CopyTo method
DirectoryInfo class, 1028
File class, 1035
FileInfo class, 1028
StringCollection class, 1053

CoUninitialize method, 994
CountryItem class, 590
CountryList class, 590
Create method
DirectoryInfo class, 1028
FileInfo class, 1028
Order class, 1012, 1020
OrderLine class, 1014
WebRequest class, 1071, 1077

CreateChildControls method, 950, 953
CreateCommand method (Connection class), 541,

1018
CreateDataSet method, 748, 750
CreateDomain method (AppDomain class), 343
CreateElement method (XmlDocument class), 800
CreateEventSource method (EventLog class), 1126
CreateFonts method, 665
CreateGraphics method (Form1 class), 626–627
CreateInstance method
Activator class, 472, 473–474, 483
BindingFlags class, 344
COMClient.cpp application, 994

CreateMessageSink method (IChannelSender
interface), 468, 470, 475

CreateSink method
IClientChannelSinkProvider interface, 470
IServerChannelSinkProvider class, 470

CreateSpecificCulture method (CultureInfo
class), 539–540

CreateSubKey method (RegistryKey class), 1058,
1059, 1064

CreateText method (FileInfo class), 1029
CrossContextChannel class, 462
CrossLanguage namespace, 346, 357, 359
cryptography, public key, 370, 374
.cs files, 30
csc command, 31
CSP (Crypto Service Provider), 372
CTS (Common Type System), 10–12, 40–41, 353, 354
culture

assembly, 346, 352, 527
calendar, 518
date format, 512, 515–516
default, specifying, 512–513
introduced, 511
invariant, 512
language, translating automatically based on, 534–539
listing all cultures, 516–520
neutral, 512
number format, 512, 513–515
operating system language, dependent on, 512
resource for, returning, 527
resource reader based on, 540–544
sorting order, 520–522
specific, 511–512, 519
text format, 510–511
threading, 444, 512
user interface, 512

CultureDemoForm class, 516–517
CultureInfo class
Calendar property, 518
CreateSpecificCulture method, 539–540
GetCultures method, 517
IFormatProvider interface implementation by, 514
introduced, 511
IsNeutralCulture property, 518, 519
OptionalCalendars property, 518

Currency struct, 155–156, 161–163, 170–171
currency value, formatting, 66–67, 141–142, 160–161
CurrencyClass class, 209
CurrencyManager class, 753, 755–757
CurrencyStruct struct, 209–210
CurrentAccount class, 129
CurrentAccount.cs file, 130

1318

Control class (continued)

41 557599 index.qxd 4/29/04 11:49 AM Page 1318

CurrentPosition method (XPathNodeIterator
class), 804

Customer class, 190–191, 1153–1154
CustomerRow class, 774–775
CustomValidator control, 887
Cycle method (RainbowLabel class), 947, 949

D
data adapter, 722–723, 724–726, 760
data binding

ADO.NET, 892
ASP.NET Web Form control, 892, 894–897, 901–906
attendeeList control, 894–897
Calendar control, 897–899
context, 752–754, 777
currency, 755–757
custom control, 945
DataGrid control, 737–739, 750–751, 777–778,

901–902
described, 750
roomList control, 894–897
TextBox control, 750–751
Windows Form control, 582, 750–757

data encapsulation, 1151–1152
Data namespace, 686–687, 713
data reader, 701–704
data type

array, 57
blittable/non-blittable, 972–973
C++, 1266–1270, 1271–1273
COM, 969, 972–973
converting between primitive types, 137–142
converting, explicit, 139–141, 154
converting, implicit, 138–139, 154
converting in Java, 1236
converting using as operator, 136
converting using boxing/unboxing, 141–142, 160–161,

1236–1237, 1273
converting using casting

C++, 1269–1270
checked operator, 140
classes, between, 155, 158–160
combining casts, 161–165
error handling, 140
explicit, 139–141
Java, 1236–1237
memory pointer, 202–203
overloading, 153
structs, between, 155

syntax, 139, 154
user-defined, 154–158

converting using Convert class method, 283
converting using platform invoke, 20
converting using ternary operator, 134
CTS, 10–12, 40–41
database column data type support, 706
DataSet class type safety, 757
IL, 9–10
immutable, 219
interoperability, 10
Java, 1230–1236
memory storage, 39, 188–192
object compatibility, checking for, 135–136
predefined, 39–46
reference data type, 39–40, 190–192, 1147–1148,

1222, 1236
reflection, 266–271, 274
safety, 137, 170
size in bytes, returning, 136, 204–205, 210
string, 45–46, 219
strong data typing, 9
value data type, 39–40, 188–189, 1222, 1230–1236
Visual Basic 6, 1221–1222
Web service, available for, 916

database. See also ADO.NET; SQL (Structured Query
Language)

column
copying, 728–729
data type support, 706
DataGrid control column style, 747–750
identity column, 730, 731–732, 762
inserting, 705–707

connection
ASP.NET application, 895
closing, 689–692, 702
Enterprise Services application, 1003, 1016–1019
instance, specifying, 689
OLE DB connection, 702
opening, 689, 702
SQL server, 686, 689, 758
Visual Studio .NET, creating in, 758–759
Web service application, 919, 920–921, 923

constraint, 713–715, 733
data source
DataGrid control, 737, 738–746, 750–757, 777
OLE DB source, 701, 702, 703
updating, 763–764

mapping, 687
naming convention, 732–733

1319

database

In
de

x

41 557599 index.qxd 4/29/04 11:49 AM Page 1319

database (continued)
permission, 399, 400
procedure, stored

calling, 698–701
data adapter, using in, 722–723
naming, 733

query result set, iterating through, 695
reader, 701–704
record

count, returning, 696
deleting, 699
inserting, 700–701
iterating through records, 701
selecting, 701
updating, 698–699, 724–726

relationship
constraint, 713–715, 733
creating, 711–712
key, foreign, 714
key, generating using SQL Server, 730–732
key, primary, 700, 711, 713, 725

resource reader application, 541
row

child row, returning, 709
class containing row definition, 687
copying, 728–729
DataGrid control row color, 748
deleting, 726
editing data in, 709
inserting, 718–720, 724–726, 730–731, 774
parent row, returning, 712
pop-up menu, providing for, 770–778
state flag, 708–709, 724
type, returning, 774
updating, 726
value in, returning, 707–708

schema
class, mapping to, 716
creating, 709–711, 764–770
definition file, 715–721
generating, 709–710, 716–721
introduced, 704–705
Visual Studio .NET environment, 762–763, 764–770

scope, 732
table

copying, 728–729
DataGrid control table style, 747–750
linking, 687, 704, 713, 732
XML schema, creating from, 821, 824

tier division of application, 728–729

transaction
aborting, 1011, 1019
ACID, 1009
automatic, 1001, 1009, 1017
beginning, 692
class overview, 687
committing, 692, 1011
consistent bit, 1010–1011
disabling, 1010
displaying active, 1020
distributed, 1001
done bit, 1010–1011
DTC, 1001
isolation level, 692–693
requiring, 1007, 1010, 1016
result, handling, 1010–1011
rollback, 692, 693, 1001
serializing, 693
success, determining, 1010–1011, 1019

XML
converting ADO.NET data to XML, 812–820
converting XML to ADO.NET data, 820–822
DataSet, populating from, 723
outputting, 726–728

DatabaseResourceManager class, 543, 544
DatabaseResourceReader class, 541–542, 544
DatabaseResourceSet class, 542–543
DataBind method, 896, 902
DataBindingsCollection class, 754
Data-Centric .NET Programming with C# (Wrox Press),

836
DataColumn class, 687, 705–707, 770
DataColumnMapping class, 687
DataGrid control

array, displaying in, 738–739
ASP.NET Web Form, 886, 901–902
BeginInit method, 737
button, 737
creating, 736
data binding, 737–739, 750–751, 777–778, 901–902
data source, 737, 738–746, 750–757, 777
DataMember property, 777–778
DataSet data, displaying in, 743–745, 748
DataTable data, displaying in, 739–740
DataView data, displaying in, 740–743
event handling, 737, 902
hierarchy, 746–750
HitTest method, 778
IList interface data, displaying in, 746
IListSource interface data, displaying in, 746

1320

database (continued)

41 557599 index.qxd 4/29/04 11:49 AM Page 1320

introduced, 705
row color, 748
SetDataBinding method, 737, 738, 777
style, 747–750
TableName property, 747
TableStyles property, 747, 748–749

DataGridColumnStyle class, 747–750
DataGridTableStyle class, 747–750
DataList control, 886, 904–906
DataRelation class, 687
DataRow class
BeginEdit method, 709
EndEdit method, 709
generating, 769–770, 771
GetChildRows method, 709
GetParentRow methods, 712
indexer, 707–708, 726
introduced, 687
Item property, 825
SqlDataAdapter class, accessing from, 707
version value, 707–708

DataRowState enumeration, 708, 729
DataRowView class, 778
DataSet class

copying DataSet object, 728–729
DataGrid control, displaying DataSet data in,

743–745, 748
Fill method, 723, 816
GetChanges method, 729
hierarchy, 704
introduced, 686
Merge method, 729
PCSWebApp3 application, 896
persistence, 723–725
populating DataSet object, 721–723
property, extended, 705
ReadXML method, 723, 820
relationship, establishing using, 711–712
serializing, 767
type safety, 757
Web service application, working with in, 919–923
WriteXml method, 727, 813, 818
XmlDataDocument class, passing DataSet as

parameter to, 816
DataTable class
Columns collection, 705
database table compared, 704
DataGrid control, displaying DataTable data in,

739–740
DiffGram data, reading into, 824–825

generating, 771
introduced, 686
linking DataTable objects, 687, 713
NewRow method, 720, 724, 768
ParentRelations property, 712
procedure, calling from, 700
Rows collection, 705
RowState property, 708–709
schema, 704–705, 709–711, 715–721

DataTableMapping class, 687
datatype statement, 34
DataView class, 740–743
date

calendar
control, 885, 897–899
localizing, 510, 518

culture, 512, 515–516
day of week, calculating, 98
file creation date, reading into field, 100
formatting, 223, 512, 515–516

DateTime class, 98, 100, 515, 516
DateTimeFormatInfo class, 514, 515
DateTimePicker control, 587
DateTimePickerFormat enumeration, 587
DC (device context), 625–626
DC (domain controller), 838, 841
DDX (Dialog Data Exchange), 750
Deactivate method (ServicedComponent class),

1003
deadlock, 450, 451–452
DEBUG preprocessor symbol, 330
Debug ➪ Windows ➪ Breakpoints (Visual Studio .NET),

332
debugging

breakpoint, using, 55, 328, 331–332
compilation, inserting debugging information during,

328–329, 330
control, custom, 941
Enterprise Services application, 1007, 1021
GDI+, 637–638
variable value, watching, 332
Visual Studio .NET debugging features, 302, 328–329,

330, 331–334
define preprocessor directive, 70–71, 1305
delegate

array, 173, 174–175
C++, 1302–1303
class, relation to, 168, 169, 178
defining, 169
described, 167–168, 1257

1321

delegate

In
de

x

41 557599 index.qxd 4/29/04 11:49 AM Page 1321

delegate (continued)
event handling, in, 168, 179, 180–181, 182
instantiating, 170
loop operation involving, 173, 174
multicast, 177–179
syntax, 169
thread, starting, 168
type safety, 170

Delete method
data adapter, of, 726
Directory class, 1035
DirectoryInfo class, 1028
File class, 1035
FileInfo class, 1028

DELETE SQL statement, 694, 699, 724
DeleteCommand class, 724
DeleteSubKey method (RegistryKey class), 1058,

1059
DeleteSubKeyTree method (RegistryKey class),

1059
DeleteValue method (RegistryKey class), 1059
Demand method (FileIOPermission class), 406
Demo.resources file, 523–524
DemoSolution.sln file, 313
Deny method, 411–412
deployment. See also installer

Add/Remove Programs dialog box, application display
in, 1055

assembly, 18, 341, 376, 556
bootstrapper option, 557
cab files, 551, 557
certificate, 429–435, 557
COM+ application in Enterprise Services environment,

1005–1006
compression, 557
copying file set to target computer, via, 547
file type association, establishing, 564
folder on client machine, creating/specifying, 556, 562
launch condition, specifying, 568–569
NTD, 341, 561–562
planning, 545
registry, accessing, 551, 562–563, 568–569
shortcut to application, creating, 556–557, 562
system requirement, 546–547
Visual Studio .NET project

copying, deploying application via, 546, 550
deployment project, 546, 551–552, 553, 556–559
installer project, 551

Web application, 548–549, 551, 559–560

Web site, from, 561
xcopy deployment, 18, 376, 546, 548–549

depthChangeThread class, 443
Deserialize method
IRemotingFormatter interface, 470
XmlSerializer class, 825, 827

Design namespace, 625
destructor

C#, 193–194, 195–197, 1171–1172
C++, 1256, 1283–1284
Java, 1245

device context. See DC
device driver, returning, 1117
Diagnostics namespace, 1126, 1130
Dialog Data Exchange. See DDX
DialogResult enumeration, 600–601
Diamond method, 937
dictionary

adding item, 247, 248
array compared, 246
functionality provided by, 245
hashing algorithm, 247, 248–249, 250, 252–253
Hashtable class, representation in, 247, 469
IDictionary interface, 475
IMessage interface, representation in, 475
key, 246, 247–248, 249
load, 249–250
placing item, 249
removing item, 248
retrieving data from, 247

DictionaryBase class, 247
DiffGram document, 813, 821, 822–825
Dimensions class, 101
directory. See folder
Directory class, 1026, 1027, 1035
DirectoryEntries class, 849, 855–856
DirectoryEntry class
Add method, 857
AuthenticationType property, 853
Children property, 849, 855
CommitChanges method, 857, 859, 860
Contains method, 858
Guid property, 854
introduced, 849
Invoke method, 859
Name property, 854
NativeGuid property, 852
NativeObject property, 860
Parent property, 855

1322

delegate (continued)

41 557599 index.qxd 4/29/04 11:49 AM Page 1322

Password property, 853
Path property, 853, 861
Properties property, 855, 857
RefreshCache method, 857
SchemaClassName property, 854
Username property, 853

DirectoryInfo class, 1026, 1027, 1028, 1034
DirectorySearcher class, 849, 860–863
DirectoryServices namespace, 837, 848–849, 965
DisableCommit method (ContextUtil class), 1011
DisplayData method (TestHarness class), 255
DisplayFile method, 1046, 1052, 1053
DisplayFileInfo method, 1032
DisplayFolderList method, 1034–1035
DisplayNames method, 521
DisplayNumbers method, 444–445, 446
DisplayTypeInfo method (WhatsNewChecker

class), 274
Dispose method
Close method versus, 196
ColdCallFileReader class, 292, 293, 295
Form1 class, 654
IDisposable interface, 110, 124–125, 195–197,

542, 577
Image class, 654
Service1 class, 914

Distributed Transaction Coordinator. See DTC
DN (distinguished name), 850–851
Dns class, 1080–1082
DNS (Domain Name System), 399, 1080–1082
do while statement, 53, 1264
DoActions method (BusEntity class), 185
Document Type Definition. See DTD
documentLines field, 663
DoEvents method (Application class), 575
dollar sign ($) regular expression special character, 232
DOM (Document Object Model), 795–797. See also

XML (Extensible Markup Language)
domain controller. See DC
Domain Name System. See DNS
DomainTest.exe file, 343
DotnetComponent class, 986, 987, 989, 995–996
DoubleOp delegates, 173
Download Assembly Cache, 391, 401
DownloadData method (WebClient class), 1070,

1073
DownloadFile method (WebClient class), 1068
DPtoLP Windows API function, 645
DrawArc method (Graphics class), 650
DrawBezier method (Graphics class), 650

DrawClosedCurve method (Graphics class), 650
DrawCurve method (Graphics class), 650
DrawEllipse method (Graphics class), 627, 650
DrawImage method (Graphics class), 652–653, 655
DrawImageUnscaled method (Graphics class), 652,

655
Drawing

assembly, 523
namespace, 625, 632

Drawing2D namespace, 625, 650
DrawLine method (Graphics class), 650
DrawLines method (Graphics class), 650
DrawPie method (Graphics class), 650
DrawPolygon method (Graphics class), 650
DrawRectangle method (Graphics class), 627, 635,

650
DrawString method (Graphics class), 655,

656–657, 669
DropDownList control, 884
.dsw files, 312
DTC (Distributed Transaction Coordinator), 1001
DTD (Document Type Definition), 791–792. See also

XML (Extensible Markup Language)
DWORD memory block, 201

E
elif preprocessor directive, 71–72, 1305
else

conditional statement, 47
preprocessor directive, 71–72, 1305

else if statement, 47–48
Employee class, 176, 1203–1208, 1210–1211, 1213,

1216–1217
EmployeeData class, 245–246, 247, 251, 253–254
EmployeeID class, 245–246, 247, 251–252, 255
EnableCommit method (ContextUtil class), 1011
EnableVisualStyles method (Application class),

575, 605, 606
encryption. See also security; SSL (Secure Sockets

Layer)
assembly, 370, 372, 374–375, 428
certificate, 429–435, 557
CSP, 372
key

private, 370, 375, 430
public, 370, 374

symmetric, 370
EndEdit method (DataRow class), 709
EndGetResponse method (WebRequest class), 1073

1323

EndGetResponse method (WebRequest class)

In
de

x

41 557599 index.qxd 4/29/04 11:49 AM Page 1323

endif preprocessor directive, 71–72, 1305
EndInit method (ISupportInitialize interface),

616–617
EndInvoke method, 498
EndOfStreamException class, 279
endregion preprocessor directive, 72, 1305
Enterprise Services

business service layer, 1000
client, 1008–1009, 1020–1021
COM+ application in Enterprise Services environment,

1003–1006
component load balancing, 1000
component, queuing, 1002
concurrency, 1007
context, 1001
data service layer, 1000
database connection, 1003, 1016–1019
debugging, 1007, 1021
dump location, specifying, 1007
event handling, 1002, 1004
history, 999–1000
identity, 1007
LCE service, 1002
message queue, 1007, 1015
pooling, 1002, 1003, 1007
presentation service layer, 1000
recycling, 1007
security, 1002, 1007
SOAP access, 1007
transaction

aborting, 1011, 1019
ACID, 1009
automatic, 1001, 1009, 1017
committing, 1011
consistent bit, 1010–1011
disabling, 1010
displaying active, 1020
distributed, 1001
done bit, 1010–1011
DTC, 1001
requiring, 1007, 1010, 1016
result, handling, 1010–1011
rollback, 1001
success, determining, 1010–1011, 1019

EnterpriseServices assembly, 1003
EntryPoint

class, 446
method, 168

Enum class, 56, 57

enumeration. See also specific enumeration
C#, 55–57
C++, 1256, 1296–1297
Java, 1232–1234
string, converting to/from, 56–57

Equals method (Object class), 104, 143, 151,
152, 250

equals sign (=) assignment operator, 132
equals sign, colon (=:) assignment operator, 34, 132
equals signs (==) comparison operator, 48, 132, 143,

151, 152
error handling. See also exception

array out-of-bounds error, 281
cast operation, 140
casting error, 140
COM, 971
compilation error message, specifying, 72
interoperability, 17
.NET environment, 16–17
Visual Basic, 278
Windows Form, 587–588
XML validation error, 792–794

error preprocessor directive, 72, 1305
ErrorProvider Windows Form component, 587–588
escape sequence, 44, 46, 229, 232
Evaluate method (XPathNavigator class), 806
event

ASP.NET event handling, 878, 879, 882, 899–901,
906–907

C++ event handling, 1303–1304
canceling event processing, 182, 183, 184, 185
class

creating handler class, 182, 184–185
member, event as, 85

COM application event handling, 972, 980–982,
986, 996

control event
ActiveX control, 984
Button control, 585, 885
Calendar control, 885, 898
CheckBox control, 884
custom control, 947–948, 959–962
CustomValidator control, 887
DataGrid control, 737, 902
DropDownList control, 884
HyperLink control, 885
ImageButton control, 885
ListBox control, 586
ListView control, 591

1324

endif preprocessor directive

41 557599 index.qxd 4/29/04 11:49 AM Page 1324

Menu control, 596
RadioButton control, 592, 885
RadioButtonList control, 885
Splitter control, 594
StatusBar control, 594
TabControl control, 595
TextBox control, 587, 620–621, 884
user control, 936, 938

delegate, using in event handling, 168, 179, 180–181,
182

file event, 1033, 1036–1037
GDI+

input event, 671–672
paint event, 629, 630, 637–638, 642, 664

keyboard event, 580–581, 672
LCE, 1002
menu, pup-up, 777
mouse event, 180–182, 185, 580–581, 672
parameter, 181, 184
print event, 676, 677–679
raising, 182–184
receiver, 180–182
remoting, 499–505
sender, 180
terminology used in this book, 180
toolbar event, 597–598
value returned by handler, 181
Visual Studio .NET, viewing in, 322
Web service, 918, 927, 928
Windows Form event, 180, 575, 580–582, 585,

599–600
Windows Service

event log, 1103, 1104, 1123–1128
power event, 1105, 1135

XML
serialization event, 828, 830, 832, 833, 834
validation event, 792, 793

EventArgs class, 182–183
EventHandler delegate, 180–181, 776
EventLog class, 1126–1127
EventLogEntry class, 1126
EventLogEntryCollection class, 1126
EventLogInstaller class, 1126
EventLogTraceListener class, 1126, 1129
EventSink class, 503, 504
eventTable object, 898
example XML tag, 68
exception. See also error handling

application exception, 278, 296, 333
assembly not found exception, 343

C++ exception handling, 1256, 1297–1298
class

base class library, exception thrown by, 286
overview of exception classes, 278–280
user-defined, 290–297

ColdCallFileFormatException, 290, 294
end of stream exception, 279
file not found exception, 290, 292
IDisposable interface, deriving exception handler

from, 292–293
overflow exception, 132, 134–135, 279
remoting exception, 481
security exception, 407, 408, 415, 421
stream, reading, 293
system exception, 278
threading exception, 443–444
trapping using try catch finally block

array out-of-bounds error, 281–282
described, 280
inserting multiple catch clauses, 282–286
nesting try block, 287–290
omitting catch clause, 281
omitting finally clause, 281
parameter, passing to catch clause, 284
syntax, 280–281
throw statement, inserting, 281, 282
throwing exception from catch block, 289
throwing exception from finally block, 289
user input error, checking for using, 282

Visual Studio .NET, working with in, 333–334
XPath exception, 803

Exception class
HelpLink property, 286, 287
hierarchy derived from, 278–279
InnerException property, 287, 289
instance, throwing, 284
Message property, 286, 287
Source property, 286
StackTrace property, 287
TargetSite property, 287

exception XML tag, 68
Exchange Server, 837
exclamation mark, equals sign (!=) comparison

operator, 132, 151, 152
exclamation mark (!) logical operator, 132
ExecuteAssembly method (AppDomain class), 343
ExecuteCommand method (ServiceController

class), 1121

1325

ExecuteCommand method (ServiceController class)

In
de

x

41 557599 index.qxd 4/29/04 11:49 AM Page 1325

ExecuteNonQuery method
Command class, 694–695, 699
InsertCommand class, 900
OrderData class, 1018

ExecuteReader method (Command class), 694,
695–696, 701, 702

ExecuteScalar method (Command class), 694, 696
ExecuteXmlReader method (Command class),

696–698
Exit method (Application class), 575, 600
ExitThread method (Application class), 575
expression, regular

capture, 235–236
character

matching, 232–233, 234–235
repeating, 232

escape sequence, 229, 232
group, 234–235, 236
input string, 231
instantiating, 230
match, 231
namespace, 229, 231
pattern, 231
phone number, performing on, 230
quantifier, 232
result, displaying, 233–234
URI, performing on, 235–236
whitespace, matching, 232
word boundary, matching, 230, 232
word, matching, 233

expression statement, 903
Extensible Markup Language. See XML

F
fat-client application, 24
field

C++, 1280–1281
described, 35
instance, 38
naming, 76
primitive, 95
public, 80
readonly, 99–101
scope clash, 37–38
static, 38, 96, 1143–1145, 1208–1209, 1281
struct field, 102
value, default, 34
viewstate field, 875
XML serialization, 826

file. See also stream
binary file, reading/writing, 1041, 1042–1047
browser interface to file system, creating, 1030–1035
C++ file structure, 1261–1262
copying, 1028, 1035–1039
creating, 1028
creation date, reading into field, 100
deleting, 1028, 1035–1039
event handling, 1033, 1036–1037
moving, 1028, 1035–1039
name, changing, 1028
system, 1027–1028
text file

reading, 661–662, 1040, 1048–1050, 1051–1054
writing, 813, 1040, 1047, 1050–1054

time data, changing, 1029
tree view control, creating custom, 611–617
type association, establishing during application

deployment, 564
WebClient class, uploading/downloading using,

1068–1070
File class, 1026, 1027, 1035
File Transfer Protocol. See FTP
FileAccess enumeration, 1042–1043
FileInfo class
CopyTo method, 1028
Create method, 1028
CreateText method, 1029
CreationTime property, 1028
Delete method, 1028
DirectoryName property, 1028, 1035
Exists property, 1028, 1034
Extension property, 1028
FullName property, 1028
GetDirectories method, 1029
GetFiles method, 1029
GetFileSystemInfos method, 1029
instantiating, 1027–1028
LastAccessTime property, 1028
LastWriteTime property, 1028
Length property, 1028
MoveTo method, 1028
Name property, 1028
Open method, 1028, 1043
OpenRead method, 1029, 1043
OpenText method, 1029
OpenWrite method, 1029, 1043
Parent property, 1028
stream creating from FileInfo instance, 1043
TreeView custom control, using in, 612–613

FileMode enumeration, 1042–1043

1326

ExecuteNonQuery method

41 557599 index.qxd 4/29/04 11:49 AM Page 1326

FileNode class, 612–613
FileNodeInfo class, 613
FileNotFound exception, 290, 292
FileShare enumeration, 1042–1043
FileStream class

binary file, reading/writing using, 1042–1047
constructor, 1043
instantiating, 1047
introduced, 293
Read method, 1044
ReadByte method, 1044, 1084
Write method, 1044
WriteByte method, 1044
XML, reading/writing using, 789, 795, 808

FileSystemInfo class, 1026
FileView ➪ TypeLib (Visual Studio .NET), 987
Fill method
DataSet class, 723, 816
PCSWebApp3 application, 896

FillEllipse method (Graphics class), 650
FillPie method (Graphics class), 650
FillRectangle method (Graphics class), 650
FillResult method, 867
Filter method (ContextDataRow class), 772
Finalize method (Object class), 104, 105, 193,

194
finally block. See try catch finally block
Find methods, 234
FindAll method (DirectorySearcher class), 863
FindConnectionPoint method (IConnection-

PointContainer interface), 972
FindOne method (DirectorySearcher class), 863
FindString method (ListControl class), 586
FindStringExact method (ListControl class),

586
FireCompleted method, 981
First.exe file, 31
firstStringMethod delegate, 170
FlatStyle enumeration, 605–606
float class, 1187
folder

browser application, listing in, 1034–1035
content, listing, 1029
copying, 1035–1039
creating, 1028
deleting, 1028, 1035–1039
moving, 1028, 1035–1039
name, changing, 1028
time data, displaying, 1031
tree view custom control, creating, 611–617

FolderNode class, 613–617
FolderTree class, 611–612
font. See text, font
Font class, 658
FontFamily class, 658, 661
FontStyle enumeration, 661
for statement, 51–53, 1220–1221
foreach statement, 54, 243, 1239–1240, 1265–1266
Form class
AutoScrollMinSize property, 640, 651, 668
BackColor property, 645
ControlBox property, 604
DialogResult property, 601, 603
FlatStyle property, 605–606
FormBorderStyle property, 604–605
hierarchy, 583, 599
Icon property, 604
Invalidate method, 666–667, 674
IsMdiContainer property, 607
MaximizeBox property, 604
MdiChildren property, 608, 609
MdiParent property, 607
MinimizeBox property, 604
ShowDialog method, 600, 603–604
ShowInTaskbar property, 600, 605
StartPosition property, 600
TopMost property, 600, 637
Visible property, 599, 601

form language, localizing, 527–533
Format method (String class), 218, 223–225, 228
FormatException class, 285, 286, 294
FormBorderStyle enumeration, 604–605
Form1 class
chooseColorDialog field, 1062
constructor, 320, 577–578
CreateGraphics method, 626–627
Dispose method, 654
downloading, 626
InitializeComponent method, 320–321, 578,

579, 626
ResumeLayout method, 579
Show method, 627
SuspendLayout method, 579

Forms namespace, 574, 582
Forms.dll assembly, 269
FormStartPosition enumeration, 600, 1063
FromArgb method (Color class), 646
FromFile method (Image class), 652
FromKnownColor method (Color class), 605

1327

FromKnownColor method (Color class)

In
de

x

41 557599 index.qxd 4/29/04 11:49 AM Page 1327

FTP (File Transfer Protocol), 1082
function

abstract, 115, 123, 127, 1165–1168
C++, 1254, 1255, 1285–1287
callback, 167
calling, 114–115
class member, as, 85
constructor, relation to, 86
method, relation to, 86
output parameter, 91
overriding, 112
pointer, 167
property, relation to, 86
struct, defining for, 101
virtual, 112, 115, 1285–1287

G
GAC (global assembly cache)

control, placing in, 931
image, native, 366–367
installing/uninstalling assembly, 368, 556
shared assembly, GAC role in, 19, 341
viewing, 367–368

gacutil utility, 368, 376
garbage collection

assembly runtime, 377
code, running from, 13, 193
COM, 13, 966–967
heap, action on, 192–193
introduced, 13–14
LDGC, 481
reference object, 35, 45, 105
remoting, 481
Visual Basic 6, 1197

GC class, 193
GC (global catalog), 841–842, 850
GDI+. See also specific member class

area, measuring, 632–636
BitBlt, 655
brush, 648–649
clipping region, 630–632, 669
color, 627, 645–647
coordinate, 632–636, 644–645, 670–671
DC, 625–626
debugging, 637–638
drawing, 624–629, 638–645, 655–657
event handling

input event, 671–672
paint event, 629, 630, 637–638, 642, 664

GDI, relation to, 623
gradient, 649
hatch, 648–649
image, working with, 652–655
input, 671–675
namespace, 625
painting

calling painting routine directly, 666
DrawString method involvement, 669
event handling, 629, 630, 637–638, 642, 664
Invalidate method, using, 666–667, 674
shape, 629–630

pen, 627–628, 649
printing, 675–680
region, 636
scrolling behavior, 638–644
size of item, calculating, 667–668
text

case, converting, 661–666, 674
drawing, 655–657
font, 657–661
line index, 670–671
reading text file, 661–662

GDI (graphical device interface), 623, 653
Generate method (ResourceWriter class), 523
GenericCustomer class, 117, 118–121
Get

accessor, 93, 94, 1151
HTTP method, 915
OleDbDataReader class Get methods, 703

GetAssemblyFullName method (SharedDemo
class), 379

GetAString delegate, 169, 170, 172
GetAttribute method (XmlTextReader class), 791
GetChanges method (DataSet class), 729
GetChannel method (ChannelServices class), 471
GetChildControlType method (ControlBuilder

class), 955
GetChildRows method (DataRow class), 709
GetConstructor method (Type class), 268
GetConstructors method (Type class), 268
GetCultures method (CultureInfo class), 517
GetCustomAttributes method (Attribute class),

272, 275
GetData method
CallContext class, 506
Web service application, 919, 920

GetDevices method (ServiceController class),
1117

1328

FTP (File Transfer Protocol)

41 557599 index.qxd 4/29/04 11:49 AM Page 1328

GetDirectories method
DirectoryInfo class, 1029
FileInfo class, 1029

GetDirectoryEntry method (SearchResult
class), 863

GetEnumerator method
collection iteration, in, 1240
IEnumerable interface, 242, 244, 245, 542
IResourceReader interface, 541, 542

GetEvent method (Type class), 268
GetEvents method (Type class), 268
GetExecutingAssembly method (Assembly

class), 525
GetField method (Type class), 268
GetFields method (Type class), 268
GetFiles method
DirectoryInfo class, 1029
FileInfo class, 1029

GetFileSystemInfos method
DirectoryInfo class, 1029
FileInfo class, 1029

GetFormat method (IFormatProvider
interface), 514

getFreeDate method, 897, 898
GetHashCode method (Object class), 104, 151, 249,

250, 252–253
GetIDsOfNames method (IDispatch interface),

967–968
GetInterface method (Type class), 268
GetInterfaces method (Type class), 268
GetLength method, 1276
GetLifetimeService method, 481, 482–483
GetManifestResourceNames method (Assembly

class), 525
GetMember method (Type class), 268
GetMembers method (Type class), 268, 270
GetMethod method (Type class), 267
GetMethods method (Type class), 267–268
GetMonthlyPayment method
Employee class, 1211, 1213
Manager class, 1212

GetMonthlySalary method (Employee class), 1207
GetMyRemote method, 478
GetMySerialized method, 478
GetNextTextElement method (StringInfo

class), 511
GetObject method
Activator class, 472, 473–474, 476
ResourceManager class, 526, 530

GetParentRow methods (DataRow class), 712

GetProperties method
Active Directory user class application, 867
Type class, 268

GetQuoteOfTheDay method (SharedDemo class),
371–372

GetRandomQuoteOfTheDay method (QuoteServer
class), 1098

GetRealProxy method (RemotingServices class),
474

GetResponse method (WebRequest class),
1071–1072, 1073, 1077

GetRowType method, 774
GetSchemaProperties method, 866
GetServices method (ServiceController class),

1117
GetServiceTypeName method (ServiceCon-

troller class), 1118, 1120
GetSocketOption method (Socket class), 1088
GetStream method (NetworkStream class), 1083
GetString method (ResourceManager class), 526
GetSubKeyNames method (RegistryKey class),

1059
GetTextElementEnumerator method (StringInfo

class), 511
GetType method (Object class), 104, 105, 266, 271,

1161
GetTypes method (Assembly class), 271, 274
GetValue method (RegistryKey class), 1058, 1059,

1065
GetValueNames method (RegistryKey class), 1059
global assembly cache. See GAC
global catalog. See GC
global.asax file, 539, 876
Global.asax.cs file, 549, 919–920
Global.asax.resx file, 549
globalization, 509, 539–540. See also localization
Globalization namespace, 510
globally unique identifier. See GUID
GoldAccount class, 127
goto statement, 49, 54–55
graphical device interface. See GDI
Graphics class
DrawArc method, 650
DrawBezier method, 650
DrawClosedCurve method, 650
DrawCurve method, 650
DrawEllipse method, 627, 650
DrawImage method, 652–653, 655
DrawImageUnscaled method, 652, 655
DrawLine method, 650

1329

Graphics class

In
de

x

41 557599 index.qxd 4/29/04 11:49 AM Page 1329

Graphics class (continued)
DrawLines method, 650
DrawPie method, 650
DrawPolygon method, 650
DrawRectangle method, 627, 635, 650
DrawString method, 655, 656–657, 669
FillEllipse method, 650
FillPie method, 650
FillRectangle method, 650
introduced, 626
MeasureString method, 667, 668, 674
PageUnit property, 645
Size property, 653
TranslateTransform method, 643

greater than sign (>) comparison operator, 132, 151
greater than sign, equals sign (>=) comparison

operator, 132, 151
greater than signs (>) bit shifting operator, 132
greater than signs, equals sign (>=) assignment

operator, 132
Greeting method, 463, 498, 506–507, 973–974,

976–977
GreetingDelegate delegate, 498
GregorianCalendar class, 518
GregorianCalendarTypes enumeration, 518
Group class, 236
GroupCollection class, 236
GUID (globally unique identifier), 369, 852, 976, 990
guidgen utility, 976

H
HasAttributes method (XmlTextReader class), 788
hash code, 247, 248–249, 250, 252–253, 349–350
Hashtable class
Add method, 247
Count property, 248
dictionary representation in, 247, 469
iterating through Hashtable collection, 1240

HasValue method (XmlTextReader class), 788
HatchBrush class, 648
HatchStyle enumeration, 648
Heart method, 937
Hello

class, 363, 463
method
HelloMCPP class, 357, 359
HelloVB class, 361, 362

HelloClient class, 498

HelloCSharp class, 363
HelloMCPP class, 357, 358, 359
HelloMCPP.dll file, 360
HelloServer.cs file, 468, 482
HelloVB class, 361, 362
HelpProvider Windows Form component, 588–589
HisBaseClass class, 113–114
HitTest method (DataGrid class), 778
HTTP (Hypertext Transfer Protocol)

channel, 466–467, 468
GET method, 915
header, 1071–1072
POST method, 915
remoting using SOAP and HTTP, 456–457, 469, 470,

495–498
request handling, 915–916, 1070, 1071–1072, 1077
SOAP use of, 909, 910–911

HttpApplication class, 906–907
HttpChannel class, 468
HttpWebRequest class, 1071, 1077
HttpWebResponse class, 1071, 1077
Hungarian notation, 75, 126
HWND (Windows handle), 582
HyperLink control, 885
Hypertext Transfer Protocol. See HTTP

I
IADsServiceOperations interface, 859
IADsUser interface, 859, 860
IANA (Internet Assigned Number Authority), 1083
IAsyncResult interface, 1073
IBank interface, 125
IBankAccount interface, 126–128
IChannel interface, 467, 468
IChannelReceiver interface, 468, 470
IChannelSender interface, 468, 470, 475
IClientChannelSinkProvider interface, 470
ICollection interface, 240, 242, 892
IComparer interface, 175
ICompletedEvents interface, 972, 980
IconLocation method, 587
IConnectionPointContainer interface, 972
IContextProperty interface, 461
IContributeXXXSink interface, 461
Identity

interface, 417
SQL statement, 730, 731–732, 762

IDictionary interface, 475

1330

Graphics class (continued)

41 557599 index.qxd 4/29/04 11:49 AM Page 1330

IDispatch interface, 967–968, 977
IDisposable interface
Dispose method, 110, 124–125, 195–197, 542, 577
exception handler, deriving from, 292–293
try catch finally block, inserting in, 195

IEnumerable interface
collection IEnumerable interface requirement, 54, 242
control, binding to, 892
GetEnumerator method, 242, 244, 245, 542
object implementation, querying for, 125
Vector struct, 244

IEnumerator interface
Current property, 242, 243
MoveNext method, 242, 1170, 1171
Reset method, 242, 1170, 1171
VectorEnumerator class implementation of, 245

if

conditional statement, 47–49, 1188–1189, 1264
preprocessor directive, 71–72, 1305

IFormatProvider interface, 225, 513–514, 515
IFormattable interface, 223, 225, 227, 244
IGreeting interface, 1004
IL (intermediate language), 4, 8–10, 12
ilasm utility, 525
ildasm utility, 347–348
ILease interface, 481, 482
IList interface, 746
IListSource interface, 746, 892
ILogicalThreadAffinative interface, 506
Image

class
Dispose method, 654
Drawing assembly, referencing, 523
FromFile method, 652
GAC native image cache, 366–367

control, 884
ImageButton control, 885, 937–938
ImageList Windows Form component, 585, 589,

590–591
Imaging namespace, 625
IMath interface, 976, 986, 988, 994
IMathEvents interface, 995, 996
IMathPtr interface, 994
IMessage interface, 475
IMessageSink interface, 468, 476
IMethodCallMessage interface, 475
IMethodMessage interface, 475
import directive (Java), 1226, 1227
INamingContainer interface, 949, 953

include

C++ include statement, 1259
XML tag, 68

Increment method
PerformanceCounter class, 1133
ProgressBar control, 592

indexer, 86, 153, 1291
IndexOf method (String class), 218
IndexOfAny method (String class), 218
IndexOutOfRangeException class, 284–285, 286
inheritance

C++, 1257, 1258, 1285
constant, 1289
cross-language, 354, 361
implementation inheritance, 109–110, 111–112,

1152, 1195
interface inheritance, 109–110, 123–130, 1152,

1170–1171, 1195
Java, 1245
multiple inheritance, 110, 1161, 1258
polymorphism, 1161–1164
sealing, 115–116, 1169–1170
struct, 103, 110–111
Visual Basic 6, 1178, 1194–1195, 1210–1212
Windows Form, 109–110

Init method, 616
InitalizeComponent method, 1103
InitClass method (ProductDataTable class), 718,

719, 770
InitializeComponent method
BookOfTheDayForm class, 528, 530
Form1 class, 320–321, 578, 579, 626
PCSWebApp3 application, 895, 919
ServiceProcessInstaller class, 1110
SquareRootForm class, 1199–1200
straw poll application, 961
WebForm1 class, 880, 882

InitializeLifetimeService method (Marshal-
ByRefObject class), 484

InitializeTree method, 617
InitilizeComponent class, 617
inlining, 94
Insert

method
IOrderUpdate interface, 1016
OrderData class, 1017
OrderLineData class, 1019
StringBuilder class, 222
Vectors array list, 240

SQL statement, 694, 724, 761, 1018

1331

Insert

In
de

x

41 557599 index.qxd 4/29/04 11:49 AM Page 1331

InsertCommand class, 724, 900
Install method (Installer class), 1108
InstalledFontCollection class, 659, 660
installer

Add/Remove Programs dialog box, application display
in, 1055

bootstrapper option, 557
cab files, 551, 557
compression, 557
deployment project, 553
launch condition, specifying, 568–569
middle-tier application, 551
module, 551
package, building, 552, 557
registry entry, adding, 562–563
release build, 552
rollback option, 550, 566
shortcut to application, creating, 556–557, 562
uninstall option, 550, 555, 558, 566
user interface, 553–555, 564–566
Visual Studio .NET installer project, 551
Web application, 551, 559–560
Windows Installer, 551–552
wizard, creating, 551

Installer class, 1108
installutil utility, 1112–1113, 1127
interceptor, 461
interface. See also specific interface

C++, 1300–1302
COM, 124, 967–968, 989, 990, 991
custom, 967
defining, 125–128
derived, 128–130
dispatch interface, 967–968, 989
dual interface, 968, 988
IL support, 8
inheritance, 109–110, 123–130, 1152, 1170–1171,

1195
naming, 126
referencing, 128
remoting client and server code, separating using, 496

intermediate language. See IL
InternalGetResourceSet method

(ResourceManager class), 543
Internet Assigned Number Authority. See IANA
Internet Protocol address. See IP address
Interop.COMServer.dll file, 978
interoperability, 5–7, 8–9, 10–12, 17, 965–966. See

also COM
InteropServices namespace, 351, 352

IntPtr class, 198
Invalidate method
Control class, 582
Form class, 666–667, 674

Inventory class, 831, 832–834, 835
Invoke method
DirectoryEntry class, 859
IDispatch interface, 967–968
RealProxy class, 474
Type class, 268

IO namespace, 278, 1025, 1031
IOException class, 278
IOrderUpdate interface, 1016
IP (Internet Protocol) address, 1079–1080
IPAddress class, 1080
IPEndPoint class, 1084, 1087
IPHostEntry class, 1080
IRemotingFormatter interface, 470
IResourceReader interface, 527, 541, 542
IResourceWriter interface, 527
IServerChannelSinkProvider class, 470
IsPasswordCorrect method (Authenticator

class), 1141, 1146
ISponsor interface, 480, 482
IsStartElement method (XmlTextReader

class), 788
IsStyleAvailable method (FontFamily

class), 661
IsTransparentProxy method (RemotingServices

class), 474, 478
ISupportErrorInfo interface, 971
ISupportInitialize interface, 616–617
ITransferBankAccount interface, 128–129
IUnknown interface, 967, 968, 977
IWelcome interface, 974, 975, 976, 986, 988
IXPathNavigable interface, 807, 808

J
Java

access modifier, 1241
array, 1226, 1236
case sensitivity, 1226
class, 1240, 1241–1243, 1245–1249
collection, 1236
compilation, 1226
data type, 1230–1236
destructor, 1245
entry point, 1226
enumeration, 1232–1234

1332

InsertCommand class

41 557599 index.qxd 4/29/04 11:49 AM Page 1332

flow control, 1238–1240
import directive, 1226, 1227
inheritance, 1245
input/output, 1249–1251
iteration, 1238–1240
method, 1226, 1242, 1243–1244, 1247–1249
operator, 1237–1238
package, 1226–1229
property, 1244–1245
structure, 1234–1236
variable, 1229–1230

JavaEcho class, 1249
JIT (Just-In-Time) compilation, 5, 94
Join method, 444
JUMP (Java User Migration Path), 315
jumping to another line in program, 49, 54–55

K
Kerberos, 839
keyfile utility, 978
KnownColor enumeration, 605, 646

L
Label control

ASP.NET Web Form, 881, 884, 891
custom control, deriving from, 945–946
Windows Form, 589, 618

LandLineSpyFoundException class, 291, 295–296
language, translating automatically based on culture,

534–539
LastIndexOf method (String class), 218
LastIndexOfAny method (String class), 218
LastModifiedAttribute class, 263, 275
LCE (loosely coupled event), 1002
LDAP (Lightweight Directory Access Protocol), 838, 850
LDGC (Leasing Distributed Garbage Collector), 481
ldstr statement, 362
lease, 481–484
less than sign (<) comparison operator, 132
less than sign, equals sign (<=) comparison operator,

132, 151
less than sign, percent sign (<%) ASP.NET code block

prefix, 876
less than signs (<<) bit shifting operator, 132
less than signs, equals sign (<<=) assignment

operator, 132
Lifetime namespace, 482
LifetimeServices class, 482, 483–484

Lightweight Directory Access Protocol. See LDAP
line preprocessor directive, 72–73, 1305
LinearGradientBrush class, 649
LineIndexToWorldCoordinates method, 670
LinkButton control, 885
Linker ➪ Input (Visual Studio .NET), 356
list XML tag, 68
ListBox control, 586, 884, 1068
listBox1_SelectedIndexChanged method, 814
ListControl class, 586
Listen method (Socket class), 1088
Listener method (QuoteServer class), 1098, 1133
ListItem object, 884, 889–890
ListItemCollection class, 884, 890
Literal control, 884
Load method
Assembly class, 271
XmlDocument class, 814
XslTransform class, 811

LoadBook method, 805
LoadFile method

GDI+ application, 665, 666, 668, 676
TextBox control, 593

LoadFrom method (Assembly class), 271, 561
LoadLibrary method, 340
LoadList method, 790
LoadTree method, 616
.local files, 340
localization

ASP.NET, 539–540
calendar, 510, 518
culture

assembly, 346, 352, 527
calendar, 518
date format, 512, 515–516
default, specifying, 512–513
introduced, 511
invariant, 512
language, translating automatically based on,

534–539
listing all cultures, 516–520
neutral, 512
number format, 512, 513–515
operating system language, dependent on, 512
resource for, returning, 527
resource reader based on, 540–544
sorting order, 520–522
specific, 511–512, 519
text format, 510–511

1333

localization

In
de

x

41 557599 index.qxd 4/29/04 11:49 AM Page 1333

localization, culture (continued)
threading, 444, 512
user interface, 512

described, 509
form language, 527–533
number formatting, 513–515
resource file

accessing, 525–526
assembly, adding to, 524–525
binary, 536–537
creating, 522–524, 531, 532
language translation using, 528–533, 536–538
reader, creating custom, 540–544
XML, 537–538

satellite assembly, 533, 539, 540
sorting, 520–522
Unicode considerations, 510–511

Localization namespace, 528
lock, mutual exclusion, 450
logging

event log access permission, 399
Web application, 560
Windows Service event log, 1103, 1104, 1123–1128

Login method, 926, 928
Login.cs file, 689
LongWorking method, 501, 505
LookUpWhatsNew assembly, 262, 272–273
looping
do while loop, 53, 1264
for loop, 51–53, 1220–1221
foreach loop, 54, 243, 1239–1240, 1265–1266
message loop, 574–575, 1192, 1198
method delegate, loop operation involving, 173, 174
while loop, 53, 1264

loosely coupled event. See LCE
LPtoDP Windows API function, 645

M
Main

method
argument, passing to, 62–63
assembly, 342–343
C++, 1260, 1262
calling, 33, 61, 167
compilation considerations, 61–62
entry point, as, 32–33, 439, 1142
MainClass class, 270
MainEntryPoint class, 1142
multiple, using, 61–62

permission, denying in, 412
Startup class, 607
threading, starting in, 441, 445
ThreadPlayaround class, 445
Visual Studio .NET, created by, 304, 308
WhatsNewChecker class, 274
Windows Form, 574, 605
Windows Service, 1104, 1105

Visual Basic 6 function, 1195–1196
MainClass class, 270
MainEntryClass class, 1196
MainEntryPoint class, 1141–1142, 1145
MainExample.cs file, 62
MainMenu class, 595, 596, 608
makecert utility, 430
managed code, 4–7. See also CLR (Common Language

Runtime)
Manager class, 1210–1211, 1212, 1214–1215,

1216–1217
ManufactureProductDataTable method, 711
map. See dictionary
Marshal class, 978, 979
MarshalByRefObject class, 461, 462–463, 484,

494, 1026
MatchCollection object, 231
Matches method (RegEx class), 231, 236
MathLibrary.cs file, 64–65
MathOperations class, 172, 173, 178
MathTest class, 87–89
MathTest.cs file, 88
Math.xml file, 69
Matrix statement, 144
MDI (Multiple Document Interface), 599, 607–609
MeasureString method (Graphics class), 667,

668, 674
MemberInfo object, 269, 270
MemberwiseClone method (Object class), 104, 105
memory

address
hexadecimal format, displaying in, 208, 212
virtual, 188

allocating, 190–191, 212
application domain environment, in, 14–16
buffer, 1042
C++ memory management, 1255, 1273–1275,

1298–1300
CLR memory type safety, 7, 9–10
data type storage, 39, 188–192
DWORD block, 201

1334

localization (continued)

41 557599 index.qxd 4/29/04 11:49 AM Page 1334

garbage collection
assembly runtime, 377
code, running from, 13, 193
COM, 13, 966–967
heap, action on, 192–193
introduced, 13–14
LDGC, 481
reference object, 35, 45, 105
remoting, 481
Visual Basic 6, 1197

heap, managed, 39, 190–191, 192–193, 1299–1300
location, accessing, 167, 188–189
method, memory implementation of static, 1145–1147
pointer

arithmetic operation on, 203–204
array, declaring pointer to, 202
array syntax, applying to pointer, 214
C++, 1255, 1298–1300
class, 202, 206–207, 209–212
class member, to, 206–207, 209–212
CLR memory type safety considerations, 9
compatibility, backward, 198
declaring, 200–202
function pointer, 167
performance optimization, using for, 198, 212–215
safety, 198–200
stack pointer, 188–189
struct, 205–206, 209–212
syntax, 200
void, 203

process memory access, 14–15
processor, 32-bit, 201
referent, 198
stack

allocating stack memory, 212
array, stack-based, 212–215, 1300
data stored in, 188
heap versus, 191
introduced, 39
overflow, 132, 134–135, 198, 202, 279
pointer, 188–189
variable scope considerations, 188–189

stream, 813, 1040, 1042
string memory allocation, 45–46, 219–221, 222
struct memory allocation, 103
threading, 449
type-safe, 16
virtual, 188

MemoryStream class, 813, 1040

menu
control, 595–596, 608
database row pop-up menu, 770–778
Windows Form, 595–596, 608

Menu class, 595
menuFileExit_Click method, 664
menuFileOpen_Click method, 664
MenuItem class, 595, 596
Merge method (DataSet class), 729
message loop, 574–575, 1192, 1198
MessageBox

class, 269, 1260–1261
Windows API function, 1260

method
abstract, 122, 1166, 1242
C++, 1260, 1262, 1275–1276, 1302–1303
calling, 1143
COM method binding, 969, 989
declaring, 33, 86–87, 95
delegate

array, 173, 174–175
C++, 1302–1303
class, relation to, 168, 169, 178
defining, 169
described, 167–168, 1257
event handling, in, 168, 179, 180–181, 182
instantiating, 170
loop operation involving, 173, 174
multicast, 177–179
syntax, 169
thread, starting, 168
type safety, 170

exiting, 33
hiding, 113–114, 1164–1165, 1248–1249
inheritance, sealing to, 115–116
instance method, 86
invoking, 87–89
Java, 1226, 1242, 1243–1244, 1247–1249
name, CLS compliance, 366
overloading

C#, 91–92, 95, 1148–1150
C++, 1276
Visual Basic 6, 1215–1216

overriding, 45, 1157, 1162, 1213, 1247–1249
parameter, passing to, 89–91, 1243–1244
private, 86
property versus, 80
public, 86
signature, 113, 123, 1164
static method, 86, 1145–1147

1335

method

In
de

x

41 557599 index.qxd 4/29/04 11:49 AM Page 1335

method (continued)
unsafe, marking as, 199, 1298–1299
variable, passing to, 89–90
virtual, 112–113, 1162–1164
Visual Basic 6 subroutine versus, 1184–1185

Microsoft Transaction Server. See MTS
minus sign (-) arithmetic operator, 132
minus sign, equals sign (-=) assignment operator, 132
minus sign, greater than sign (->) indirection

operator, 132
minus signs (—) increment operator, 132
MMC (Microsoft Management Console)

Active Directory Domains and Trusts snap-in, 845
Active Directory Sites and Services snap-in, 845
Active Directory Users and Computers snap-in,

845–846
.NET Framework Configuration snap-in, 380–381,

385, 492
mobile code, 391
module

class module, 1138
creating, 349–350
installer module, 551

Monitor class, 450
Mono project, 5
MoveNext method

collection iteration, in, 1240
IEnumerator interface, 242, 1170, 1171
XPathNodeIterator class, 804, 805

MoveTo method
Directory class, 1035
DirectoryInfo class, 1028
File class, 1035
FileInfo class, 1028
XPathNavigator class, 803

MoveToAttribute method (XPathNavigator
class), 803

MoveToContent method (XmlTextReader class), 789
MoveToFirst method (XPathNavigator class), 803
MoveToFirstAttribute method
XmlTextReader class, 791
XPathNavigator class, 803

MoveToFirstChild method (XPathNavigator
class), 804

MoveToId method (XPathNavigator class), 804
MoveToLast method (XPathNavigator class), 804
MoveToNext method (XPathNavigator class), 804
MoveToNextAttribute method
XmlTextReader class, 791
XPathNavigator class, 803

MoveToParent method (XPathNavigator class), 804
MoveToPrevious method (XPathNavigator class),

804
MoveToRoot method (XPathNavigator class), 804
mscoree.dll file, 993
mscorlib assembly, 455
MSI files, 375
msvcrt.lib file, 356
MSXML parser, 783–786
MTA (multi-threaded apartment), 970–971
MTS (Microsoft Transaction Server), 999
MulticastDelegate class, 178
Multiple Document Interface. See MDI
multitasking, pre-emptive, 441
mutex, 450
mutual exclusion lock, 450
MxDataGrid control, 334
MyClass destructor, 194
MyFirstClass class, 32
MyForm class, 574
mykeypub.snk file, 375
mykey.snk file, 372
mypolicy.config file, 383

N
namespace. See also specific namespace

Active Directory domain namespace, 841
ADO.NET, 686
aliasing, 60–61
assembly namespace, 346–347
C++, 1259–1260
class

defining within namespace, 58
returning class namespace, 60

contiguous, 841
convention, 21, 60, 77, 370
declaring, 32
expression, regular, 229, 231
GDI+ class set, 625
header file, confusion with, 60
Java package compared, 1226–1229
nesting, 58–59
.NET Framework, 21
object, defining within, 60
referencing, 59–60
reflection data type namespace, returning, 266,

268–271
Visual Basic 6, 1192–1194
Windows Form, 574

1336

method (continued)

41 557599 index.qxd 4/29/04 11:49 AM Page 1336

NamespaceExample class, 59, 60
naming convention, 21, 60, 74–79, 732–733, 1230
NativeMethods class, 1104
Navigate method, 984
.NET Admin tool, 380, 388
.NET Framework Configuration MMC snap-in, 380–381,

385, 492
.NET namespace, 456
.NET runtime. See CLR (Common Language Runtime)
.NET Services Installation Tool, 1005
NetComponent class, 986
net.exe utility, 1114–1115
NetworkStream class, 1040, 1083
Nevermore60Customer class, 117–121, 190,

1156–1159, 1161–1165, 1168–1169
New ➪ Project (Visual Studio .NET), 312
new statement, 35, 84, 102, 123, 1274–1275, 1279
newInv object, 833
NewOrder method (OrderControl class), 1015, 1020
NewProductRow method, 768
NewRow method (DataTable class), 720, 724, 768
NewRowFromBuilder method, 720, 774
ngen utility, 366–367
Norm method, 228
NTD (No Touch Deployment), 341, 561–562
number, formatting for culture, 512, 513–515
number sign (#) preprocessor directive prefix, 70
NumberFormatInfo class, 514
NumberTable.cs file, 52–53

O
object

Active Directory
collection, 855–856
creating, 857–859
information about, returning, 854
storage, 839, 855–856
user object, 864–868

application domain-bound object, 477
ASP.NET object model, 878
C++ object model, 1253, 1261
class, relation to, 1139
client-activated

client configuration, 488–489
creating, 473–474
described, 464
leasing mechanism, 482–483
lifetime management, 481
proxy, returning, 472

remoting configuration file, setup in, 485, 486,
488–490

server configuration, 472, 488
COM object model, 8–9
context, 460–462
copying, 105
data binding, object used in, 751
data type compatibility, checking for, 135–136
described, 1138–1139
destructor

C#, 193–194, 195–197, 1171–1172
C++, 1256, 1283–1284
Java, 1245

equality, comparing objects for, 105, 142–144
identity, distributed, 463
IEnumerable interface implementation, querying

for, 125
indexer, 86, 153, 1291
instantiating, 442, 444, 1141–1143
namespace, defining within, 60
proxy object, 474–475
reference object, 35, 45, 105
remote, 458, 462–463, 464, 472–480
serialized, 480
single-call, 464
stateless, 472
string representation, returning, 105–107
thread object

instantiating, 442, 444
referencing, 444

value literal, treating as object, 141
Visual Studio .NET, browsing using, 324–325
well-known, 464, 471, 472, 473, 487–488

Object class
derivation from, 44–45, 103, 104, 1161
Equals method, 104, 143, 151, 152, 250
Finalize method, 104, 105, 193, 194
GetHashCode method, 104, 151, 249, 250, 252–253
GetType method, 104, 105, 266, 271, 1161
MemberwiseClone method, 104, 105
ReferenceEquals method, 104, 142–143, 144
referencing, 112
ToString method, 104, 105–107, 170, 225–226,

227–228
ObjectCollection object, 586
ObjectDisposedException object, 293
ObjRef class, 471
Odbc namespace, 686
ODBCCommand class, 687
ODBCCommandBuilder class, 687

1337

ODBCCommandBuilder class

In
de

x

41 557599 index.qxd 4/29/04 11:49 AM Page 1337

ODBCConnection class, 687
ODBCDataAdapter class, 687
ODBCDataReader class, 687
ODBCParameter class, 687
ODBCTransaction class, 687
OleDb namespace, 686, 965
OleDbCommand class, 687, 701, 702, 900
OleDbCommandBuilder class, 687
OleDbConnection class, 687, 894
OleDbDataAdapter class, 687, 895, 896
OleDbDataReader class, 687, 701, 702, 703
OleDbParameter class, 687
OleDbTransaction class, 687
OnAction method (ActionCancelEventArgs class),

184, 186
OnClick method, 672
OnClickChooseColor method, 1062
OnContinue method, 1105, 1106
OnCustomCommand method, 1105
OnDoubleClick method, 672, 673
OnEntryWritten method, 1129
OnInit method (WebForm1 class), 880
OnKeyDown method, 672
OnKeyPress method, 672
OnKeyUp method, 672
OnMouseDown method, 672, 673
OnMouseHover method, 672
OnMouseMove method, 672
OnMouseUp method, 672
OnPaint method, 629–630, 631–632, 637–638,

641–642, 668–670
OnPause method, 1105, 1106
OnPowerEvent method, 1105, 1135
OnSelectCulture method, 518
OnSelectedIndexChanged method

(ServiceController class), 1120
OnShutdown method, 1106
OnStart method, 1104, 1106
OnStatusChange method, 984
OnStop method, 1105, 1106
OnVoted method, 960
Open method
ColdCallFileReader class, 292, 293
FileInfo class, 1028, 1043
PCSWebApp3 application, 895

OpenFileDialog method, 662, 1044
OpenRead method
FileInfo class, 1029, 1043
WebClient class, 1068

OpenStandardError method (Console class), 1250

OpenStandardInput method (Console class), 1250
OpenStandardOutput method (Console class), 1250
OpenSubKey method (RegistryKey class), 1058,

1059, 1064, 1065
OpenText method (FileInfo class), 1029
OpenWrite method
FileInfo class, 1029, 1043
WebClient class), 1069

operator
addition, 137, 145–146, 147–148, 151
address, 132
as, 136
assignment

C#, 132, 137, 153
C++, 1278
Visual Basic 6, 1222, 1223

bitwise, 132, 137, 153, 200
C++, 1256, 1277–1279, 1289–1291
comparison, 132, 137, 142–144, 151–153
conditional, 132, 134
decrement, 132
division, 137
increment, 132
indexing, 132, 153
indirection, 132
instanceof, 1238
is, 135–136
Java compared, 1237–1238
logical, 132
member access, 132
modulus, 132
multiplication, 137, 144, 149–150
object creation, 132
overflow exception control, 132, 134–135
overloading, 86, 144–153, 218, 1256, 1289–1291
postfix, 133–134
precedence, 137
prefix, 133–134
shortcut list, 133
sizeof, 136, 204–205, 210, 1238
string concatenation, 132
subtraction, 137, 151
ternary, 134, 137, 1223, 1278
type information, 132
typeof, 57, 136, 1238
unary, 137, 153, 200
Visual Basic 6, 1222–1224

Oracle namespace, 686, 687
Order class, 1012, 1015, 1020
OrderControl class, 1011, 1015, 1020

1338

ODBCConnection class

41 557599 index.qxd 4/29/04 11:49 AM Page 1338

OrderData class, 1016–1018
OrderLine class, 1014
OrderLineData class, 1019
overflow checking, 132, 134–135
OverflowException class, 279

P
PadLeft method (String class), 218
PadRight method (String class), 218
Page class, 879
PageCoordinatesToLineIndex method, 674
Page_Load method
PCSWebApp3 application, 895, 896, 897, 901
Web service application, 923, 927
WebForm1 class, 878, 879

PaintEventArgs class, 629, 631
Panel control, 591–592, 885
param XML tag, 68
ParameterTest.cs file, 89–90
paramref XML tag, 68
ParentForm class, 607
Parse method
Enum class, 57
float class, 1187
IPAddress class, 1080

ParseCombiningCharacters method (StringInfo
class), 511

Pascal casing, 76
Path class, 1026, 1029–1030
PathGradientBrush class, 649
Pause method (ServiceController class), 1121
PayAsYouGoCustomer class, 1166–1167
PCSCustomWebControls.dll file, 940, 942
PCSCustomWebControlsTestApp namespace, 943
PCSUserC1 class, 935, 937
PCSUserC1.ascx.cs file, 935
PCSWebApp3.mdb file, 893
pd_PrintPage method, 678
Pens class, 627, 628, 649
people.txt files, 297
percent sign (%) arithmetic operator, 132
percent sign, equals sign (%=) assignment operator, 132
percent sign, greater than sign (%>) ASP.NET code

block suffix, 876
perfmon.exe utility, 1133–1134
PerformanceCounter class, 1130, 1133
PerformanceCounterCategory class, 1130, 1131
PerformanceCounterInstaller class, 1130

period (.)
dot notation, 40
member access operator, 132
method calling operator, 1143
namespace separator, 58–59
regular expression special character, 232

permission. See also security
assembly, 346, 388, 397–398, 401–403, 408–409
AssemblyInfo.cs file configuration, 408
asserting, 412–414
CLR evaluation, 399, 407
code access, 392, 399–403, 413, 414, 424–425
database access, 399, 400
demanding, 406–407
denying, 407, 411–412
directory service, 399
DNS, 399
drive access, 399, 406, 408
environment variable access, 399
event log access, 399
Everything permission, 401, 410
execution, 400
file dialog, 399
file I/O, 399, 406, 413
full, 400, 419
identity, 400, 402, 403
implicit, 410–411
Internet, 401
intranet, 401, 407, 421–422
isolated storage, 399
merging permissions, 402
message queue, 399
minimum, 407
Nothing permission, 400
optional, 407
policy, 423
printing access, 399
publisher identity, 400
reflection access, 399
registry access, 399
requesting, 407–410
security permission, 399, 413
service controller, 400
set, 425–427
site identity, 400
socket permission, 400
SQL client, 400
strong name identity, 400
try catch block, inserting in, 400, 422
union, 402

1339

permission

In
de

x

41 557599 index.qxd 4/29/04 11:49 AM Page 1339

permission (continued)
URL identity, 400
user interface access, 400, 408
Web access, 400
Web application, 560
zone identity, 400

permission XML tag, 68
Permissions namespace, 406
PermissionSet class, 426–427
PhoneCustomer class, 85
piccyBounds array, 653
PictureBox control, 592
PlaceHolder control, 884
platform invoke mechanism, 20, 358
plus sign (+)

arithmetic operator, 132
regular expression special character, 232, 234–235
string concatenation operator, 132

plus sign, equals sign (+=) assignment operator, 132
plus signs (++) increment operator, 132
Point struct, 632–633, 638
pointer. See memory, pointer
PointerPlayaround.cs file, 209
PointerPlayaround2.cs file, 211
PointF struct, 632–633
PointToClient method (Control class), 580
PointToScreen method (Control class), 580
polymorphism, 1161–1164
PopupMenu method, 770, 772
POST HTTP method, 915
pre-emptive multitasking, 441
preprocessor directive, 70–73, 1256, 1304–1305
Principal namespace, 416
Print method (PrintDocument class), 676, 677
PrintDialog class, 675
PrintDocument class, 675, 676, 677
printf

function, 357
method, 358

Printing namespace, 625, 679
PrintPreviewDialog class, 675, 676, 677, 680
procedure, stored, 698–701, 722–723, 733, 760
ProcessAndDisplayNumber method

(MathOperations class), 173–174, 178–179
ProcessNextPerson method

(ColdCallFileReader class), 294
ProCSharp namespace, 59
Product class, 831–832, 833
ProductDataTable class, 717–718, 768, 769–770

ProductRow class, 717, 720, 769–770
Products

class, 827–828, 829–830
method, 718

products.xsd file, 715–716
Product.xsd file, 716–717
Professional ASP.NET 1.1 (Wiley), 880
Professional SQL Server 2000 XML (Wrox Press), 697
Professional XML (Wrox Press), 781
ProgressBar control, 592
Project ➪ Add Reference (Visual Basic .NET), 360
ProjectInstaller class, 567, 1108, 1109, 1127
Properties editor window (Windows Service),

1102–1103
Properties property (IMessage interface), 475
PropertiesToLoad class, 867
property

accessor, 92–93, 1151
C++, 1276–1277
channel property, setting, 469
context property, 461–462
data encapsulation, 1151–1152
defining, 93
deployment project property display, 553–555
function, relation to, 86
inlining, 94
Java, 1244–1245
method versus, 80
read-only, 93–94
static, 96
struct, 101
virtual, 112
Visual Studio .NET, editing using, 322–323
write-only, 93–94

PropertyGrid class, 323
PropertyManager class, 753, 755–757
protocol, pluggable, 1077
publisher policy configuration file, 377, 383–385

Q
QueryInterface method (IUnknown interface), 968
question mark, colon (?:) ternary operator, 134
question mark (?) regular expression special

character, 232
quotation marks, double (“ “) string literal

delimiters, 46
QuoteServer class, 1097–1099, 1133
QuoteService class, 1103–1104, 1105

1340

permission (continued)

41 557599 index.qxd 4/29/04 11:49 AM Page 1340

R
race condition, 450, 452–453
RadioButton control, 592, 885
RadioButtonList control, 885
RainbowLabel class, 945–946, 947
RainbowLabel2 class, 949–951
RangeValidator control, 887
RCW (runtime callable wrapper), 977–980
RDN (relative distinguished name), 851
Read method
BinaryReader class, 1042
Console class, 1250
FileStream class, 1044
XmlTextReader class, 788

ReadByte method (FileStream class), 1044, 1084
ReadChars method (XmlTextReader class), 788
ReadElementString method (XmlTextReader

class), 789–790
ReadFileIntoStringCollection method, 1053
ReadLine method
Console class, 33, 65, 283, 1250
StreamReader class, 1048

ReadQuotes method (QuoteServer class), 1097,
1098

ReadSettings method, 1062, 1063, 1064–1065
ReadStartElement method (XmlTextReader

class), 788
ReadString method (XmlTextReader class), 788
ReadXML method (DataSet class), 723, 820
ReadXmlSchema method, 820–821, 824
RealProxy class, 474, 475
Receive method (UdpClient class), 1086–1087
RecordCall method, 1153, 1155, 1157–1158,

1167–1168
RecordPayment method, 1153
Rectangle

class, 87
struct, 631, 635, 636

RectangleF struct, 632, 635–636, 678
RectangleToScreen method (Control class), 580
Red-Green-Blue color. See RGB color
ReferalChasingOption enumeration, 849
reference

compilation switch, 64
object, 35, 45, 105

Reference.cs file, 917
ReferenceEquals method (Object class), 104,

142–143, 144
Reference.map file, 917

referent, 1147
reflection

array, returning, 268, 270, 274
assembly

metadata for, accessing, 271
referencing, 267

attribute information, returning, 272, 275
data type, 266–271, 274
described, 19, 257
permission, 399
remoting, role in, 458
Type class role in, 266–271
typeof operator, working with, 136

Reflection namespace, 271, 351–352, 537
RefreshCache method (DirectoryEntry class), 857
RefreshQuotes method (QuoteServer class), 1099
RefreshServiceList method

(ServiceController class), 1117
regasm utility, 993
regedit utility, 1055
RegEx

class, 231, 236
method, 230

RegexOptions enumeration, 231
Region

class, 636
preprocessor directive, 72, 1305

RegionDescription field, 700
RegionInfo object, 520
RegionInsert procedure, 700, 725, 730
RegionSelect procedure, 723
Register method (ILease interface), 482
RegisterActivatedServiceType method, 482
RegisterChannel method (ChannelServices

class), 471
RegisterServiceCtrlHandler method, 1104
RegisterServiceCtrlHandlerEx method, 1135
RegisterWellKnownClientType method

(RemotingConfiguration class), 473
RegisterWellKnownServiceType method

(RemotingConfiguration class), 464, 471, 472
registry

access permission, 399
Add/Remove Programs dialog box registry

requirement, 1055
COM component registration, 969, 974, 992–993
deployment, accessing during, 551, 562–563,

568–569
editing, 1055
hierarchy, 1055

1341

registry

In
de

x

41 557599 index.qxd 4/29/04 11:49 AM Page 1341

registry (continued)
hive, 1055–1057, 1064
key, 1056, 1058–1059, 1064
searching, 569
window location, storing in, 1059–1065
Windows Service registry entry, 1095, 1103, 1107–1108

Registry class, 1055, 1057
RegistryKey class, 1055, 1057–1059, 1064, 1065
regsvcs utility, 1005
regular expression. See expression, regular
RegularExpressions namespace, 229, 231
RegularExpressionValidator control, 887
RejectChanges method, 825
relative distinguished name. See RDN
Release method (IUnknown interface), 967
ReleaseComObject method (Marshal class), 979
remarks XML tag, 68
RemoteHello assembly, 463
RemoteObject class, 499, 500, 501
remoting

activator, 458, 465
ASP.NET environment, hosting in, 494–495
assembly configuration, 377, 457, 463–464
asynchronous, 498–499
attribute, directional, 480–481
call context, 505–507
channel

class representation, 456, 467
client channel loading, delaying, 490–491
contexts, in communication between, 462
creating, 467
described, 466
formatter, 458, 460, 470–471
HTTP, 466–467, 468
information about, returning, 467, 468, 471
instantiating, 467
machine.config file, predefined in, 486–487
pluggability, 470
priority, 467, 469
property, setting, 469
proxy messaging to, 465, 475
registering, 464, 471–472
serialization, 470, 476, 480
sink association with, 458
TCP, 456–457, 464–465, 466–467, 468, 469

CLR Object Remoting, 457
configuration files

client configuration, 487–489, 490, 503–504
ClientActivated_Client.config, 488–489
clientactivated.config, 485

ClientActivated_Server.config, 488
formatter configuration, 491–492
leasing configuration, 491
machine.config, 486–487
server configuration, 487, 488, 489–490, 502–503
Wellknown_Client.config, 487–488
wellknown.config, 485
WellknownHttp_Client.config, 488
Wellknown_Server.config, 487

context, 460–462
described, 456
encoding, 457
event handling, 499–505
exception handling, 481
formatter, 458, 460, 470–471, 491–492
garbage collection, 481
interceptor, 461
interface, separating client and server code using, 496
leasing, 481–484, 491
lifetime management, 481–484, 491
listening, 460, 466–467, 468, 470
message, 458
object, client-activated

client configuration, 488–489
creating, 473–474
described, 464
leasing mechanism, 482–483
lifetime management, 481
proxy, returning, 472
remoting configuration file, setup in, 485, 486,

488–490
server configuration, 472, 488

object, remote, 458, 462–463, 464, 472–480
pluggability, 457, 470, 475
proxy, 457, 458–459, 465, 474–475, 478
reflection mechanism role in, 458
security, 480
SingleCall mode, 464, 465, 473
sink

channel association with, 458
creating, 468, 470, 475, 476
described, 458
envoy sink, 459, 476
event sink, 503
object sink, 460, 476
provider, 469, 470
server context sink, 460, 476

SOAP and HTTP, using, 456–457, 469, 470, 495–498
URL, specifying, 472–473
WSDL document, generating, 497

1342

registry (continued)

41 557599 index.qxd 4/29/04 11:49 AM Page 1342

Remoting

assembly, 464, 486
namespace, 455

RemotingConfiguration class
client reading of, 503
Configure method, 489, 490
introduced, 458
RegisterWellKnownClientType method, 473
RegisterWellKnownServiceType method, 464,

471, 472
RemotingException class, 481
RemotingServices class, 473, 474, 476, 478
Remove method
ResultPropertyValueCollection class, 858
StringBuilder class, 222

RemoveAt method
ResultPropertyValueCollection class, 858
Vectors array list, 241

Render method, 945, 946, 951, 954, 957
RenderControl method, 951, 957
Renew method (ILease interface), 481
Repeater control, 886, 903
Replace method
String class, 218, 219–220, 221
StringBuilder class, 222

RequiredFieldValidator control, 887
Reset method (IEnumerator interface), 242,

1170, 1171
ResGen utility, 523, 537
resource file

accessing, 525–526
assembly, adding to, 524–525
binary, 536–537
creating, 522–524, 531, 532
language translation using, 528–533, 536–538
reader, creating custom, 540–544
XML, 537–538

resource reader, 540–544
ResourceGobbler class, 195
ResourceManager class
GetObject method, 526, 530
GetString method, 526
InternalGetResourceSet method, 543
introduced, 525
Resources namespace declaration, 537
ResourceSet returning using, 527

Resources namespace, 527, 537
ResourceSet object, 527, 542
ResourceWriter class, 523

ResultPropertyCollection class, 849, 854,
863, 867

ResultPropertyValueCollection class, 849, 858
Resume method
depthChangeThread class, 443
QuoteServer class, 1099

ResumeLayout method (Form1 class), 579
.resX files, 522
ResXResourceReader class, 527
ResXResourceSet class, 527
ResXResourceWriter class, 527
retrieveButton_Click method, 737
return statement, 33, 55
returns XML tag, 68
RevertAssert method, 413
RevertDeny method, 413
RGB (Red-Green-Blue) color, 645–646
RhsIsGreater class, 176
RichTextBox control, 593, 1047
Rollback method (Installer class), 1108
roomList control, 894–897
Round method (PointF struct), 633
Rows class, 705, 724, 768
Rule enumeration, 715
Run method
Application class, 574, 1198
ServiceBase class, 1104, 1105
TestHarness class, 255

runtime callable wrapper. See RCW

S
SampleClientApp project, 547, 548
SampleClientApp.exe file, 556
SampleWebApp project, 547, 548–549
SampleWebForm.aspx file, 549
SampleWebForm.aspx.resx file, 549
satellite assembly, 533, 539, 540
Save method (XmlDocument class), 801
SaveFile method, 1052
SaverAccount class, 127
SaveSettings method, 1063
SAX (Simple API for XML), 781, 787
sc.exe utility, 1115–1116
schema

Active Directory schema, 839, 841, 843–845, 856,
864–866

database schema
class, mapping to, 716
creating, 709–711, 764–770

1343

schema

In
de

x

41 557599 index.qxd 4/29/04 11:49 AM Page 1343

schema, database schema (continued)
definition file, 715–721
generating, 709–710, 716–721
introduced, 704–705
Visual Studio .NET environment, 762–763, 764–770

XDR schema, 791–792, 794, 821, 826
XML schema

database table, creating from, 821, 824
generating from XDR schema, 826
ignoring, 813
reading, 820–821, 824
validating against, 787, 791–793, 794
writing, 813–814, 823–824
W3C standard, 782

SchemaNameCollection class, 856
SCM (Service Control Manager), 1093–1095, 1098,

1104–1105, 1106
ScreenToRectangle method (Control class), 580
scripting language, 7
ScrollableControl class, 582
ScrollingDataBinding method, 755–756
SDI (Single Document Interface), 599
SearchAll method, 867
SearchResult class, 849, 863
SearchResultCollection object, 849, 863, 867
SearchScope enumeration, 849, 861
Secure Sockets Layer. See SSL
security

activating/deactivating, 423
Active Directory, 839, 842
assembly

configuration file security setup, 377
permission, 346, 388, 397–398, 401–403, 408–409

code
basing security in, 14
distribution, of, 427–435, 557
evidence, 392
group, 392, 393–398, 423–425
mobile code, 391
permission, 392, 399–403, 413, 414, 424–425
trust-based, 392
unmanaged, 419
zone, 393

configuration file, 419–423
declarative, 414–415, 418–419
Download Assembly Cache, 391, 401
Enterprise Services, 1002, 1007
evidence, 392
exception, 407, 408, 415, 421
fine-grained, 839

intranet, 401, 407, 421–422, 435
.NET environment, 14, 405–406
object, serialized, 480
performance versus, 405
policy

code, considerations involving unmanaged, 419
configuration file, managing using, 419–423
enterprise-level, 403–405, 419
machine-level, 403–405, 419
permission management, 423
resetting, 423
user-level, 403–405, 419

process security, 15
remoting, 480
role-based

ASP.NET cookie-authenticated user, 415
declarative, 418–419
described, 14
Passport account, 415
principal, 415–417
Windows account, 415, 416–417

SSL, 436
turning on and off, 423
zone, 393, 400, 435–436

SecurityAction enumeration, 408–409
SecurityException exception, 407, 408
secutil.exe utility, 432
seealso XML tag, 68
Select methods (XPathNavigator class), 804, 805
SELECT SQL statement, 696–697, 702, 722
SelectCommand class, 724
SelectDescendants method, 805
SelectedIndexChanged method, 799
SelectNodes method (XmlDocument class), 799
SelectSingleNode method (XmlDocument class),

799, 814
semicolon (;)

database connection string separator, 689
statement suffix, 31–32

Send method
Socket class, 1098
UdpClient class, 1086–1087

serialization
remoting channel, 470, 476, 480
XML

array, 826, 832, 834
deserializing, 826, 829
event handling, 828, 830, 832, 833, 834
field, 826
namespace, 825

1344

schema, database schema (continued)

41 557599 index.qxd 4/29/04 11:49 AM Page 1344

object graph, 826
source code access, without, 833–836
stream-based object, 827, 828

Serialization namespace, 825, 1025
Serialize method
IRemotingFormatter interface, 470
XmlSerializer class, 825, 827, 835

serialprod1.xml file, 830–831
Server class, 499
Service Control Manager. See SCM
ServiceBase class, 1095, 1104–1106, 1126
ServiceCommandCallback method, 1105
ServiceController class, 1095, 1116–1122
ServiceControllerStatus enumeration, 1118
ServicedComponent class, 1003, 1004, 1016–1017
ServiceInstaller class, 1095, 1108, 1110–1112,

1126
ServiceInstallerDialog class, 1112
ServiceMainCallback method (ServiceBase

class), 1104, 1106
Service1 class, 914
Service1.asmx file, 913–914
Service1.asmx.cs file, 913, 920, 925
Service1.disco file, 917
ServiceProcess namespace, 1095, 1104, 1108, 1135
ServiceProcessInstaller class, 1095, 1108,

1110–1112
Services administration tool, 1092
set accessor, 93–94, 1151
SetAbort method
ContextUtil class, 1011
OrderLineData class, 1019

SetComplete method
ContextUtil class, 1011
OrderLineData class, 1019

SetData method (CallContext class), 506, 507
SetDataBinding method (DataGrid class), 737,

738, 777
SetDateAndNumber method (BookOfTheDayForm

class), 529
SetError method (Console class), 587, 1250
SetHelpKeyword method, 588
SetIcon method, 588
SetIn method (Console class), 1250
SetLength method, 1276
SetLogonInformation method, 865
SetNamingContext method, 865, 866
SetOrderId method (Order class), 1012
SetOut method (Console class), 1250

SetPassword method (IADsUser interface), 859
SetPrincipalPolicy method, 417
setreg.exe utility, 432
SetServiceStatus method (ServiceController

class), 1118, 1119
SetSocketOption method (Socket class), 1088
SetUserProperties method, 865
SetValue method (RegistryKey class), 1058, 1059,

1064, 1065
SharedDemo class, 371–372, 379
SharedDemo.dll file, 373, 375, 384
Sharing namespace, 371, 373
shfusion utility, 367–368
Show method
BookOfTheDayForm class, 528
Form1 class, 627
MainClass class, 270
MessageBox class, 1261
Windows Form, 600

ShowActivatedServiceTypes method, 489
ShowChannelProperties method, 468
ShowDialog method
Form class, 600, 603–604
PrintPreviewDialog class, 676

ShowMessage method, 419
ShowPanels method (StatusBar control), 594
ShowRegionInformation method, 519, 520
ShowSamples method, 519
ShowWellKnownServiceTypes method, 489
side-by-side feature, 340, 341
signcode.exe utility, 430
Simple API for XML. See SAX
Simple Object Access Protocol. See SOAP
Simple TCP/IP Services, 1097
SimpleDelegate namespace, 172–174, 177
Single Document Interface. See SDI
SingleCall mode, 464, 465, 473
single-threaded apartment. See STA
Size struct, 632, 634–635, 638
SizeF struct, 632, 634–635
slash (/) arithmetic operator, 132
slash, asterisk (/*) comment prefix, 31
slash, equals sign (/=) assignment operator, 132
slashes (//) comment prefix, 31
slashes (///) comment prefix, 68
Sleep method (Thread class), 501
.sln files, 312
sn (strong name) utility, 372, 1003
soap namespace, 910

1345

soap namespace

In
de

x

41 557599 index.qxd 4/29/04 11:49 AM Page 1345

SOAP (Simple Object Access Protocol). See also Web
service

body, 910
Enterprise Services application access, 1007
header, 910, 924–929
HTTP, use of, 909, 910–911
length parameter, 910, 911
remoting using SOAP and HTTP, 456–457, 469, 470,

495–498
request handling, 910–911, 912, 915–916
Web service, role in, 909
W3C standard, 782

SoapClientFormatterSink class, 471
SoapFormatter class, 470
SoapServerFormatterSinkProvider class,

469, 470
SoapSuds utility, 496–498
socket

server implementation using Windows Service,
1096–1100

SSL, 436
streaming, 1088

Socket class, 1083, 1088, 1098
Sockets namespace, 1067, 1083
SolidBrush class, 649
Sort method (BubbleSorter class), 174–175
SortDirection enumeration, 849, 863
sorting

array, 168, 174–177, 521
localizing, 520–522

SortOption class, 849
Spade method, 937
Specialized namespace, 1053
Split method (String class), 218
Splitter control, 594
sprintf C function, 1040
SQL (Structured Query Language)

class overview, 687
Command class, passing SQL clause to, 693
command, executing, 694–698
database connection, 686, 689, 703–704
DELETE statement, 694, 699, 724
IDENTITY statement, 730, 731–732, 762
INSERT statement, 694, 724, 761, 1018
SELECT statement, 696–697, 702, 722
Server

connection, 686, 689, 758
Enterprise manager, 731
key, generating using, 730–732

scope, 732
transaction isolation level, 692

UPDATE statement, 694, 698–699, 761
SqlClient namespace, 541, 686
SqlCommand class, 687, 699, 722–723, 725–726,

1018
SqlCommandBuilder class, 687
SqlConnection class, 541, 894
SqlDataAdapter class, 687, 707, 722, 723, 813
SqlDataReader class, 687
SqlDataSourceControl control, 334–335
SqlParameter class, 687
SqlTransaction class, 687
SqlTypes namespace, 686
Sqrt method, 1189
SquareRootForm class, 1193, 1194–1195,

1196–1197, 1198–1202
SSL (Secure Sockets Layer), 436. See also encryption
STA (single-threaded apartment), 574, 970
StackOverflowException class, 279
Start method
QuoteServer class, 1098, 1099
ServiceController class, 1121
TcpListener class, 1083
Thread class, 168, 442, 447

StartListening method (IChannelReceiver
interface), 468

StartServiceCtrlDispatcher method, 1104
Startup class, 607
StatusBar control, 594
StatusEvent delegate, 500–501
StatusEventArgs class, 500
StatusHandler method, 500, 503
stdio.h file, 357
Stop method
QuoteServer class, 1099
ServiceController class, 1121

StopListening method (IChannelReceiver
interface), 468

StoredProc.sql file, 722
StoredProcs.sql file, 698, 730
StrawPoll class, 954–955
StrawPollControlBuilder class, 955
strawPoll1_Voted method, 960
stream

binary, 1041, 1042–1047
buffering, 1042
described, 1040
exception file, 293
memory stream, 813, 1040, 1042

1346

SOAP (Simple Object Access Protocol)

41 557599 index.qxd 4/29/04 11:49 AM Page 1346

reading, 786–787, 813, 1040–1042, 1047–1054,
1068–1070

socket, streaming, 1088
writing, 786–787, 813, 1040–1044, 1047–1054, 1069
XML

memory stream, 813
pull model, 787, 807
push model, 787
reading, 786–787, 813
serializing stream-based object, 827, 828
writing, 786–787, 813
XSLT operation in, 808

StreamReader class, 293, 663, 813, 1040,
1048–1050

StreamWriter class, 813, 1040, 1048, 1050–1051,
1052

string. See text, string
String class
Compare method, 218
CompareOrdinal method, 218
Format method, 218, 223–225, 228
IndexOf method, 218
IndexOfAny method, 218
LastIndexOf method, 218
LastIndexOfAny method, 218
PadLeft method, 218
PadRight method, 218
Replace method, 218, 219–220, 221
Split method, 218
Substring method, 218
ToLower method, 218
ToUpper method, 219, 674
Trim method, 219

StringBuilder class, 219–220, 221, 222, 225, 226
StringCollection class, 1053
StringDictionary class, 247
StringInfo class, 511
StringReader class, 1040
StringWriter class, 1040
strong name utility. See sn utility
struct. See also specific struct

attribute, using with, 1235–1236
C++, 1256, 1279, 1287
class versus, 84, 101–102
constructor, 101, 103–104
declaring, 84
field, 102
function, defining for, 101
inheritance, 103, 110–111
initializing, 103

instantiating, 84
Java structure, 1234–1236
memory allocation, 103
Object class, derivation from, 103
pointer, 205–206, 209–212
property, 101
removing when out of scope, 103
value type, as, 102–103
ValueType class, derivation from, 110–111

Structured Query Language. See SQL
Sub method (IMath interface), 976
submitButton_Click method, 899, 902, 923
Subscriber struct, 58
Substring method (String class), 218
suitList_SelectedIndexChanged method, 936
summary XML tag, 68–69
SupportsWhatsNewAttribute class, 263
SuppressFinalize method (GC class), 193
Suspend method
depthChangeThread class, 443
QuoteServer class, 1099

SuspendLayout method (Form1 class), 579
switch statement, 49–51, 1239, 1264–1265
SynchronizationAttribute class, 462
SyncProcessMessage method (IMessageSink

interface), 476
SyncProcessMessage method (SoapClient

FormatterSink class), 471
System

class, 157–158
namespace, 32

SystemException class, 278

T
TabControl control, 594–595
Table control, 885
TableCell control, 885
TableCellCollection class, 885
TableDirect command, 722
TableRow control, 885
TabPages control, 594–595
TakeAWhile method, 499
target compilation switch, 63
TCP (transmission control protocol)

channel, 456–457, 464–465, 466–467, 468, 469
class overview, 1083
described, 1083
UDP versus, 1086

TcpChannel class, 468

1347

TcpChannel class

In
de

x

41 557599 index.qxd 4/29/04 11:49 AM Page 1347

TcpClient class, 1083, 1084, 1100–1101
TcpClientChannel class, 465, 467
TcpListener class, 1083, 1085, 1098, 1107
TcpReceive class, 1083–1086
TcpSend class, 1083–1086
TcpServerChannel class, 464, 469
template

ASP.NET, 903–906
C# support, 1258

TestHarness class, 254, 255
text. See also expression, regular

case, converting, 218–219, 661–666, 674
culture, formatting for, 510–511
escape sequence, 44, 46, 229, 232, 1270–1271
file, reading, 661–662, 1040
font

family, 657, 659–661
GDI+ application, in, 657–661
listing available fonts, 659–661
sans serif, 658
serif, 658
size, 658
style, 657
True Type, 658

GDI+ application, in
case, converting, 661–666, 674
drawing, 655–657
font, 657–661
line index, 670–671
reading text file, 661–662

sorting, localizing, 520–522
string

appending to, 220, 221, 222
C++ string handling, 1270
comparing strings, 218
concatenating strings, 132, 218
data type, 45–46, 219
dictionary string key, 247
enumeration, converting to/from, 56–57
formatting, 218, 223–229
initializing, 45–46
inserting substring, 222
IP address, converting to/from, 1080
length, maximum, 45–46, 219–221, 222
length, returning, 220
literal, 46
location within, returning, 218
memory allocation, 45–46, 219–221
object string representation, returning, 105–107
padding, 218, 224

removing substring, 222
replacing substring, 218, 219–220, 221
returning substring, 218
splitting, 218
trimming, 219
whitespace, removing, 218, 219

XML text node, 788
Text

class, 221
namespace, 625

TextBox control
ASP.NET Web Form, 884
data binding, 750–751
Windows Form, 578–579, 593, 610, 620–621,

1045–1047
TextBoxBase class, 593
TextLineInformation class, 663–664
thick-client application, 24
this statement, 95, 99, 1278–1279
Thread class
CurrentCulture property, 512, 513, 516, 521, 534
CurrentThread property, 444
CurrentUICulture property, 512, 530, 534
Name property, 442
Sleep method, 501
Start method, 168, 442, 447

ThreadAbortException class, 443
threading

aborting thread, 443–444
array processing, 452–453
COM, 933, 969–971, 980
culture, 444, 512
deadlock, 450, 451–452
described, 439–440
exception handling, 443–444
instantiating thread object, 442, 444
logical thread, 506
memory, 449
MTA, 970–971
multitasking, pre-emptive, 441
mutex, 450
name of thread

assigning, 442
returning, 444

performance considerations, 447
priority, 448–449
race condition, 450, 452–453
referencing thread object, 444
sleeping, 501
STA, 574, 970

1348

TcpClient class

41 557599 index.qxd 4/29/04 11:49 AM Page 1348

starting thread, 168, 441–444, 445–447
suspending/resuming thread, 443
synchronization, 449–453, 462
time slice, 441
variable access, 449–450
Visual Basic 6, 1196
Web application, 1085–1086
Windows account, 416
Windows Form, 574, 575
Windows Service, 1107
worker thread, 442, 445

Threading

class, 442
namespace, 416, 441, 1085

ThreadPlayaround class, 445, 446
ThreadPriority enumeration, 448
ThreadStart delegate, 442
throw statement, 281, 282
tilde (~)

destructor prefix, 194
logical operator, 132

time
current, returning, 98
file time data, changing, 1029
folder time data, displaying, 1031
threading time slice, 441

TimeOfDay enumeration, 56–57
tlbexp utility, 987
tlbimp utility, 978
tmain method, 994
ToInt32 method (Convert class), 283, 285
ToLongDateString method (DateTime class),

515, 516
ToLongTimeString method (DateTime class), 515
ToLower method (String class), 218
Toolbar class, 597
ToolBarAppearance enumeration, 597
ToolbarButton Collection Editor, 597
ToolBarButtonClickEventArgs object, 598
Tools ➪ OLE/COM Object Viewer (Visual Studio

.NET), 987
ToShortDateString method (DateTime class), 515
ToShortTimeString method (DateTime class), 515
ToString method
AddressFamily class, 1082
Currency struct, 165
date formatting using, 515
Employee class, 1207–1208
IFormatProvider interface argument, 225,

513–514, 515

Manager class, 1212
Object class, 104, 105–107, 170, 225–226,

227–228
StringBuilder class, 222

ToUpper method (String class), 219, 674
Trace

class, 1129
preprocessor symbol, 330

TransferTo method, 129
Transform method (XslTransform class), 808, 810
TranslateTransform method (Graphics class), 643
transmission control protocol. See TCP
TreeNode class, 517, 518, 612–613
TreeView class, 517, 518, 611–617
triggerButton_Click method, 882
Trim method (String class), 219
Truncate method (PointF struct), 633
try catch finally block

array out-of-bounds error, trapping using, 281–282
C++, 1297–1298
catch clause

described, 280
inserting multiple, 282–286
omitting, 281
parameter, passing to, 284
throwing exception from catch block, 289

database connection, closing using, 690
destructor, inserting, 194
finally clause

described, 280
omitting, 281
throwing exception from finally block, 289

IDisposable interface, inserting, 195
permission, inserting, 400, 422
syntax, 280–281
throw statement, inserting, 281, 282
try clause

described, 280
exiting try block, 284
nesting, 287–290

user input error, checking for using, 282
TwoLongsOp delegate, 169
Type class
BaseType property, 267
FullName property, 266
GetConstructor method, 268
GetConstructors method, 268
GetEvent method, 268
GetEvents method, 268
GetField method, 268

1349

Type class

In
de

x

41 557599 index.qxd 4/29/04 11:49 AM Page 1349

Type class (continued)
GetFields method, 268
GetInterface method, 268
GetInterfaces method, 268
GetMember method, 268
GetMembers method, 268, 270
GetMethod method, 267
GetMethods method, 267–268
GetProperties method, 268
GetProperty method, 268
instance of class derived from, returning, 105, 266
instantiating, 266
Invoke method, 268
IsAbstract property, 267
IsArray property, 267
IsClass property, 267
IsEnum property, 267
IsInterface property, 267
IsPointer property, 267
IsPrimitive property, 267
IsPublic property, 267
IsSealed property, 267
IsValueType property, 267
Name property, 266
Namespace property, 266
reflection, role in, 266–271
UnderlyingSystemType property, 267

TypeView assembly, 268–271

U
UDP class, 1086–1087
UDP (user datagram protocol), 1086–1087
UdpClient class, 1083, 1086
undef preprocessor directive, 70–71, 1305
underscore (_) field name prefix, 76
UnexpectedException class, 296
Unicode, 510–511, 1048
Uniform Resource Identifier. See URI
Uniform Resource Locator. See URL
Uninstall method (Installer class), 1108
Unmarshal method (RemotingServices class), 476
UnsafeNativeMethods class, 582
Update method

data adapter routine, from, 724
IOrderUpdate interface, 1016

update sequence number. See USN
UPDATE SQL statement, 694, 698–699, 761
UpdateCommand class, 724
UpdateRowSource enumeration, 699, 700

UploadData method (WebClient class), 1070
UploadFile method (WebClient class), 1070
UPN (user principal name), 853
Uri class, 1077–1078
URI (Uniform Resource Identifier), 235–236, 1068,

1077–1078
UriBuilder class, 1077–1078
URL (Uniform Resource Locator), 472–473, 1068
user control

ASP.NET Web Form, 880
composite, 934
control custom compared, 939
event handling, 936, 938
files created with, 932–933
graphic, associating with, 933
postback, 936
referencing, 934
reusability, 932
state, specifying default, 934
tag name, 934
Visual Studio .NET user control project, 932

user datagram protocol. See UDP
user principal name. See UPN
UserControl class, 933
using directive, 32, 59–60, 195–196, 1194, 1226
USN (update sequence number), 842
util.netmodule module, 344

V
ValidationSummary control, 887, 888
value XML tag, 68
ValueType class, 110–111
variable

array, referencing, 57–58
ASP.NET, declaration in, 876
C++, 1254, 1266, 1272
class-level, 37–38
compilation error caused by variable violation, 34, 37
constant, designating as, 38
counter, 51
declaring, 34
environment variable permission, 399
initializing, 34–35
Java, 1229–1230
local, 35–36
method, passing to, 89–90
naming convention, 74–75, 1230
scope, 35–38, 188–189
threading, variable access in, 449–450

1350

Type class (continued)

41 557599 index.qxd 4/29/04 11:49 AM Page 1350

unsafe, marking local variable as, 199–200
user-defined, 1141
value

assigning, 34
comparing values for equality, 48
watching, 332

Visual Basic 6, 1181–1182, 1185, 1197
.vbg files, 312
VBToCSharp_CSharpSource.pdf file, 1192
vcvars32.bat file, 31
Vector

class, 275
struct, 146–150, 152, 223, 227–229, 243–245

VectorClass assembly, 262, 264–265, 274, 275
VectorEnumerator class, 244–245, 275
Vectors array list, 240–241
Vectors3.cs file, 152–153
Vectors2.cs file, 151
VES (Virtual Execution System), 393
View ➪ Detail (Component Services Admin utility), 1009
viewstate field, 875
Visual Basic .NET

case sensitivity, 12, 77
class, creating, 359–362
compilation, 6
error handling, 278
Visual Basic 6, converting application from, 6
Visual Studio .NET, reading Visual Basic project in,

314–315
Visual Basic 6

ActiveX control, 1193
array, 1218–1219
case sensitivity, 1184
class, 1178, 1187, 1192–1193, 1196–1198
commenting code, 1182–1183
compilation, 1179
constructor, 1199
data type, 1221–1222
for loop, 1220–1221
garbage collection, 1197
If statement, 1188–1189
inheritance, 1178, 1194–1195, 1210–1212
Main function, 1195–1196
member, static, 1208–1210
method versus subroutine, 1184–1185
namespace, 1192–1194
.NET base class library, 1179
Object Browser, 325
operator, 1222–1224
program entry point, 1195–1196

program execution, 1178, 1190–1192
syntax, 1182–1184
threading, 1196
variable, 1181–1182, 1185, 1197
Visual Basic .NET, converting application to, 6

Visual C++ .NET, 6–7, 314
Visual J# .NET, 7
Visual Studio .NET

Add Project Output Group dialog box, 558
ASP.NET, developing in, 22, 875–877
AssemblyInfo.cs file generation, 350–351
C++ code, creating using, 356
Class View, 323–324
COM Object Viewer, 987
compilation, 31, 302, 307–308, 326–331
Console Application option, 308–310
Copy Project dialog box, 550
Custom Actions Editor, 566–568
database schema, 762–763, 764–770
debugging features, 302, 328–329, 330, 331–334
Design view, 302, 318–321
editor, folding, 315–318
event, viewing in, 322
Exceptions dialog box, 333–334
File System Editor, 562
File Types Editor, 564
FlowLayout mode, 877
GridLayout mode, 877
IntelliSense feature, 301–302, 318, 611
JUMP, 315
Launch Conditions Editor, 568–569
Linker, 356
Main method created by, 304, 308
MSDN documentation, 302
My Profile option, 306
.NET Framework installed with, 303
New Project dialog box, 306–307, 312–313
Object Browser, 324–325
perfmon profiling tool, 303
Performance Counter Builder, 1130–1131
pin button feature, 326
project

ASP.NET Web application project, 876
Cab Project, 551
compilation option, specifying when creating, 307–308
console project, 308–310
creating, 306–307, 312
custom control project, 940–943
database data, adding, 759–762
Debug configuration, 329

1351

Visual Studio .NET

In
de

x

41 557599 index.qxd 4/29/04 11:49 AM Page 1351

Visual Studio .NET, project (continued)
deploying application via copying, 546, 550
deployment project, 546, 551–552, 553, 556–559
described, 311
editing configuration, 329–331
files created with, 310, 312
installer project, 551
J++ project, reading, 315
Merge Module Project, 551
Release configuration, 329
Setup Wizard Project, 551
solution, adding project to, 312–313
solution versus, 311–312
startup, specifying project to run at, 313–314
type, selecting, 306–308
user control project, 932
Visual Basic project, reading, 314–315
Visual C++ project, reading, 314
Visual Studio 6 project, reading, 314–315
Web service project, 913, 917
Web Setup Project, 551

Properties window, 322–323
RCW, creating using, 978
Registry Editor, 562–563
Server Explorer, 325–326, 758, 1116
Solution Explorer, 311, 524
Solution Property Pages dialog box, 552
Start Page, 305–306
Toolbox, 319
User Interface Editor, 564–566
version

2002/2003 versions compared, 303
upgrading to 2003, 304
Visual Studio 6 project, reading, 314–315

View Designer, 578
View menu, 318
Watch window, 332
Web Form development using, 334, 875–877
Web Matrix feature, 334–335
WinCV utility, 335–336
window, pinning, 326

VoidOperation delegate, 169

W
WaitForStatus method (ServiceController

class), 1122
warning preprocessor directive, 72, 1305
Web Form
AdRotator control, 884
Button control, 881–882, 885

Calendar control, 885, 897–899
CheckBox control, 884
CheckBoxList control, 885
CompareValidator control, 887
CustomValidator control, 887
data binding, 892, 894–897, 901–906
DataGrid control, 886, 901–902
DataList control, 886, 904–906
DropDownList control, 884
event handling, 878, 879, 882
HTML server control, 880
HyperLink control, 885
Image control, 884
ImageButton control, 885, 937–938
introduced, 23
Label control, 881, 884, 891
layout, 877
LinkButton control, 885
ListBox control, 884
Literal control, 884
Panel control, 885
PlaceHolder control, 884
posting, 882–883, 890
processing, server-side, 875, 878, 881
RadioButton control, 885
RadioButtonList control, 885
RangeValidator control, 887
RegularExpressionValidator control, 887
Repeater control, 886, 903
RequiredFieldValidator control, 887
server control overview, 880–883
sizing, 92
state management, 882
Table control, 885
TableCell control, 885
TableRow control, 885
TextBox control, 884
user control, 880
validation control, 880, 886–892
ValidationSummary control, 887, 888
Visual Studio .NET, developing in, 334, 875–877
Web server control, 883–886
Xml control, 884

Web Matrix Project, 335
Web service. See also SOAP (Simple Object Access

Protocol)
authentication, 925–927
consuming, 913, 916–918
data type availability, 916
database connection, 919, 920–921, 923

1352

Visual Studio .NET, project (continued)

41 557599 index.qxd 4/29/04 11:49 AM Page 1352

DataSet, working with, 919–923
event handling, 918, 927, 928
exposing, 913–916
proxy class, 917
referencing, 917–918
SOAP role in, 909
type definition, 911–912
Visual Studio .NET Web service project, 913, 917
WSDL, 497, 911–912, 916

Web Service Description Language. See WSDL
WebClient class, 1068–1070, 1073
Web.config file, 876
WebControl class, 883, 939
WebCustomControl1 class, 941, 944–945
WebForm1 class, 878, 879, 880, 882
WebForm1.aspx file

ASP.NET application, 881, 882–883, 888, 901, 904
control configuration, 934, 936, 941–942
introduced, 876

WebForm1.aspx.cs file, 878–880, 918, 927, 934, 943
WebRequest class, 1070–1073, 1075–1077
WebResponse class, 1070–1073, 1075–1077
Welcome method, 1004–1005
Welcome.de.resx file, 537
WelcomeMessage method (BookOfTheDayForm

class), 528, 529, 537
welcome.txt file, 536
wellknownhttp.config file, 485
WellKnownObjectMode enumeration, 471–472, 473
WhatsNewAttributes assembly, 262, 263–264
WhatsNewChecker class, 274
while statement, 53, 1264
Wiley (Professional ASP.NET 1.1), 880
window location, storing in registry, 1059–1065
Windows Form

application based on, creating, 574–579
application support provided by, 24
border, 604–605
closing, 599, 600, 601
color, 605
component, adding/removing, 577–578
control

ActiveX control, 24, 982–985
attribute list, 610–611
background, loading in, 617
CheckBox, 585
COM client, accessing from, 997–998
ComboBox, 586
creating custom, 610
data binding, 582, 750–757

DateTimePicker, 587
image, 589, 590–591, 617
initializing, 615–617
Intellisence support, 611
Label, 589, 618
ListBox, 586
Panel, 591–592
PictureBox, 592
placing, 580
ProgressBar, 592
RadioButton, 592
RichTextBox, 593, 1047
scrolling behavior, 582, 591
sizing, 580, 589, 592
Splitter, 594
StatusBar, 594
TabControl, 594–595
TabPages, 594–595
TextBox, 578–579, 593, 610, 620–621,

1045–1047
TreeView-based, 611–617
user control, 618–622

destroying, 599, 601
displaying/hiding, 600, 601
error handling, 587–588
ErrorProvider component, 587–588
event handling, 180, 575, 580–582, 585, 599–600
HelpProvider component, 588–589
ImageList component, 585, 589, 590–591
inheritance, 109–110
instantiation, 599–604
layout, 579
loading, 599
location, specifying default, 600
Main method, 574, 605
MDI application, 599, 607–609
menu, 595–596, 608
message filtering, 575
namespace, 574
path, 575
SDI application, 599
sizing, 600
style, visual, 575, 605–606
system menu access, 604
taskbar display, 600, 605
threading, 574, 575
toolbar, 596–598
Windows Form, 574

Windows handle. See HWND
Windows Installer, 551–552

1353

Windows Installer

In
de

x

41 557599 index.qxd 4/29/04 11:49 AM Page 1353

Windows registry. See registry
Windows Resource Localization Editor, 533
Windows Service

client, 1096, 1098, 1100–1102, 1113
command, sending to, 1121
configuration program, 1093, 1095
connection, 1098
control program, 1095, 1116–1122
creating, 1096, 1102
dependent service, returning, 1112, 1118
described, 24, 1091–1092
Designer surface, 1102
device driver, returning, 1117
event log, 1103, 1104, 1123–1128
handler function, 1094
initializing, 1105
installing, 1095, 1107–1113
interactive, 1123
listening, 1098, 1129–1130
logging, 1103
machine running, returning, 1118
Main

function, 1094, 1105
method, 1104, 1105

MMC Services snap-in, 1114
monitoring, 1113–1114, 1130–1135
name, 1103, 1112, 1118
NT kernel requirement, 1092
pausing/resuming, 1099, 1106, 1118, 1121
port setup, 1100
power event, 1105, 1135
project, 1102–1107
Properties editor window, 1102–1103
registry entry, 1095, 1103, 1107–1108
request handling, 1103
returning all services, 1092, 1117
SCM, 1093–1095, 1098, 1104–1105, 1106
service program, 1093
shutting down, 1106, 1118
socket server implementation using, 1096–1100
starting, 1099, 1104, 1106, 1112, 1121
status

setting, 1118, 1119
waiting for, 1122

stopping, 1099, 1106, 1121
threading, 1107
tracing, 1128–1129
type, returning, 1118
user account, 1111
Visual Studio .NET Server Explorer, 325–326, 758, 1116

WindowsIdentity class, 416, 417
WinMain method, 1261, 1262
winres.exe utility, 533
WinServices namespace, 1103
Win32 namespace, 1025
WithoutSchema.xml file, 727
WithSchema.xml file, 727–728
WndProc method (Control class), 582
workerStart method (ThreadPlayaround

class), 446
World Wide Web Consortium. See W3C
WorldYCoordinateToLineIndex method, 669, 670
Write method
BinaryWriter class, 1041–1042
Console class, 52, 65, 1250
FileStream class, 1044
StreamWriter class, 1051

WriteAttributeInfo method, 275
WriteAttributeString method (XmlTextWriter

class), 795
WriteByte method (FileStream class), 1044
WriteCData method (XmlTextWriter class), 795
WriteChars method (XmlTextWriter class), 795
WriteComment method (XmlTextWriter class), 795
WriteContentTo method (XmlDocument class), 801
WriteElementString method (XmlTextWriter

class), 795
WriteEndElement method (XmlTextWriter

class), 795
WriteEntry method (EventLog class), 1126–1127
WriteLine method
Console class, 65–66, 165, 223–224, 1148–1149,

1250–1251
StreamWriter class, 1048

WriteMatches method, 233
WriteStartDocument method (XmlTextWriter

class), 795
WriteStartElement method (XmlTextWriter

class), 795
WriteTo method (XmlDocument class), 801
WriteXml method (DataSet class), 727, 813, 818
WriteXmlSchema method, 814
Wrox Press

Beginning XML, 781
Data-Centric .NET Programming with C#, 836
Professional SQL Server 2000 XML, 697
Professional XML, 781

WSDL (Web Service Description Language), 497,
911–912, 916

1354

Windows registry

41 557599 index.qxd 4/29/04 11:49 AM Page 1354

WSDL.exe file, 917
W3C (World Wide Web Consortium), 782

X
xcopy utility, 18, 376, 546, 548–549
XDR (XM-Data Reduced) schema, 791–792, 794, 821,

826
Xml control, 884
XML (Extensible Markup Language). See also specific

tag
ADO.NET

converting ADO.NET data to XML, 812–820
converting XML to ADO.NET data, 820–822

attribute
iterating through attributes, 791
value, returning, 790–791

CData section, 796
class overview, 782–783, 795–797
comment, generating XML documentation from, 68–70
DataSet class, populating from XML file, 723
DOM, 795–797
DTD, 791–792
element

creating, 800
navigating, 803–804
reading data from, 788–790
selecting, 804

entity, 796, 797
event handling

serialization event, 828, 830, 832, 833, 834
validation event, 792, 793

MSXML parser, 783–786
.NET Framework, role in, 781
node

child, 795
content, returning, 785, 788
count, returning, 804
declaration node, 797
entity reference node, 797
inserting, 799–802, 804
iterating through nodes, 785, 788–789
listing nodes, 796
parent, 795
position, returning, 804
returning, 796
saving, 801
selecting, 799, 804, 805
text node, 788

reading
Command class, using, 696–698
DataSet class, using, 723, 820
DiffGram document, using, 822–825
element data, 788–790
schema, 820–821, 824
stream, 786–787, 813
XmlTextReader class, using, 782, 787–791, 793

resource file, XML, 537–538
SAX, 781, 787
schema

database table, creating from, 821, 824
generating from XDR schema, 826
ignoring, 813
reading, 820–821, 824
validating against, 787, 791–793, 794
writing, 813–814, 823–824
W3C standard, 782

SELECT SQL statement FOR XML clause, 696–697
serialization

array, 826, 832, 834
deserializing, 826, 829
event handling, 828, 830, 832, 833, 834
field, 826
namespace, 825
object graph, 826
source code access, without, 833–836
stream-based object, 827, 828

stream
memory stream, 813
pull model, 787, 807
push model, 787
reading, 786–787, 813
serializing stream-based object, 827, 828
writing, 786–787, 813
XSLT operation in, 808

validating
error handling, 792–794
event handling, 792, 793
schema, against, 787, 791–793, 794
XmlValidatingReader class, using, 791–794

whitespace, 796
writing
DataSet class, using, 727, 813, 818
DiffGram document, using, 822–825
indentation, 785, 795
schema, 813–814, 823–824
stream, to, 786–787, 813
XmlDocument class, using, 801

1355

XML (Extensible Markup Language)

In
de

x

41 557599 index.qxd 4/29/04 11:49 AM Page 1355

XML (Extensible Markup Language), writing
(continued)

XmlTextWriter class, using, 782, 787,
794–795, 801

XmlWriter class, using, 782, 786–787, 810
W3C standards, 782

Xml namespace, 697, 782–783
XML Path Language. See XPath
XmlArray class, 834
XmlArrayAttribute class, 832
XmlArrayItem constructor, 832
XmlArrayItems class, 834
XmlAttribute class, 796
XmlAttributeOverrides class, 833, 834, 835
XmlAttributes class, 833, 834, 835
XmlCDataSection class, 796
XmlCharacterData class, 796
XmlComment class, 796
XmlDataDocument class, 783, 807, 815–816
XmlDeclaration class, 797, 802
XmlDocument class, 783, 796, 797–802, 814–815
XmlDocumentFragment class, 796
XmlDocumentType class, 797
XmlElement class, 797
XmlElementAttribute class, 827, 834, 835
XmlElements collection, 834
XmlEntity class, 796
XmlEntityReferenceNode class, 797
XmlLinkedNode class, 796

XmlNode class, 783, 795
XmlNodeList class, 796
XmlNotation class, 796
XmlProcessingInstruction class, 797
XmlReader class, 782, 786–787, 797, 799
XmlResolver class, 783
XmlRootAttribute class, 827–828
XmlSerializer class, 825, 827, 829, 834–835
XmlSignificantWhitespace class, 796
XmlTextReader class, 782, 787–791, 793
XmlTextWriter class, 782, 787, 794–795, 801
XmlUrlResolver class, 783
XmlValidatingReader class, 791–794
XmlWhitespace class, 796
XmlWriteMode enumeration, 813
XmlWriter class, 782, 786–787, 810
XPath (XML Path Language), 785, 803–807
XPathDocument class, 803, 807, 808, 810
XPathException class, 803
XPathExpression class, 803
XPathNavigator class, 803–804, 805–806
XPathNodeIterator class, 803, 804, 805
XSD files, 715
XSD.EXE utility, 716–721, 826
Xsl namespace, 807
XSLT (XSL Transforms), 782, 802, 807–812
XsltArgumentList object, 808, 809–811
XslTransform class, 808, 810, 811
.xsx files, 765

1356

XML (Extensible Markup Language), writing (continued)

41 557599 index.qxd 4/29/04 11:49 AM Page 1356

	Professional C#
	Cover

	Content
	Introduction
	Part I: The C# Language
	Chapter 1: .NET Architecture
	The Relationship of C# to .NET
	The Common Language Runtime
	Advantages of Managed Code

	A Closer Look at Intermediate Language
	Support for Object Orientation and Interfaces
	Distinct Value and Reference Types
	Strong Data Typing
	Error Handling with Exceptions
	Use of Attributes

	Assemblies
	Private Assemblies
	Shared Assemblies
	Reflection

	.NET Framework Classes
	Namespaces

	Creating .NET Applications Using C#
	Creating ASP.NET Applications
	Creating Windows Forms
	Windows Services

	The Role of C# in the .NET Enterprise Architecture
	Summary

	Chapter 2: C# Basics
	Before We Start
	Our First C# Program
	The Code
	Compiling and Running the Program
	A Closer Look

	Variables
	Initialization of Variables
	Variable Scope
	Constants

	Predefined Data Types
	Value Types and Reference Types
	CTS Types
	Predefined Value Types
	Predefined Reference Types

	Flow Control
	Conditional Statements
	Loops
	Jump Statements

	Enumerations
	Arrays
	Namespaces
	The using Statement
	Namespace Aliases

	The Main() Method
	Multiple Main() Methods
	Passing Arguments to Main()

	More on Compiling C# Files
	Console I/O
	Using Comments
	Internal Comments Within the Source Files
	XML Documentation

	The C# Preprocessor Directives
	#define and #undef
	#if, #elif, #else, and #endif
	#warning and #error
	#region and #endregion
	#line

	C# Programming Guidelines
	Rules for Identifiers
	Usage Conventions

	Summary

	Chapter 3: Objects and Types
	Classes and Structs
	Class Members
	Data Members
	Function Members
	readonly Fields

	Structs
	Structs Are Value Types
	Structs and Inheritance
	Constructors for Structs

	The Object Class
	System.Object Methods
	The ToString() Method

	Summary

	Chapter 4: Inheritance
	Types of Inheritance
	Implementation Versus Interface Inheritance
	Multiple Inheritance
	Structs and Classes

	Implementation Inheritance
	Virtual Methods
	Hiding Methods
	Calling Base Versions of Functions
	Abstract Classes and Functions
	Sealed Classes and Methods
	Constructors of Derived Classes

	Modifiers
	Visibility Modifiers
	Other Modifiers

	Interfaces
	Defining and Implementing Interfaces
	Derived Interfaces

	Summary

	Chapter 5: Operators and Casts
	Operators
	Operator Shortcuts
	The Ternary Operator
	The checked and unchecked Operators
	The is Operator
	The as Operator
	The sizeof Operator
	The typeof Operator
	Operator Precedence

	Type Safety
	Type Conversions
	Boxing and Unboxing

	Comparing Objects for Equality
	Comparing Reference Types for Equality
	The ReferenceEquals() Method
	The virtual Equals() Method
	The static Equals() Method
	Comparison Operator (==)
	Comparing Value Types for Equality

	Operator Overloading
	How Operators Work
	Operator Overloading Example: The Vector Struct
	Which Operators Can You Overload?

	User-Defined Casts
	Implementing User-Defined Casts
	Multiple Casting

	Summary

	Chapter 6: Delegates and Events
	Delegates
	Using Delegates in C#
	SimpleDelegate Example
	BubbleSorter Example
	Multicast Delegates

	Events
	The Receiver's View of Events
	Generating Events

	Summary

	Chapter 7: Memory Management and Pointers
	Memory Management under the Hood
	Value Data Types
	Reference Data Types
	Garbage Collection

	Freeing Unmanaged Resources
	Destructors
	The IDisposable Interface
	Implementing IDisposable and a Destructor

	Unsafe Code
	Pointers
	Pointer Example: PointerPlayaround
	Using Pointers to Optimize Performance

	Summary

	Chapter 8: Strings and Regular Expressions
	System.String
	Building Strings
	Format Strings

	Regular Expressions
	Introduction to Regular Expressions
	The RegularExpressionsPlayaround Example
	Displaying Results
	Matches, Groups, and Captures

	Summary

	Chapter 9: Collections
	Examining Groups of Objects
	Array Lists
	Collections
	Dictionaries

	Summary

	Chapter 10: Reflection
	Custom Attributes
	Writing Custom Attributes
	Custom Attribute Example: WhatsNewAttributes

	Reflection
	The System.Type Class
	The TypeView Example
	The Assembly Class
	Completing the WhatsNewAttributes Sample

	Summary

	Chapter 11: Errors and Exceptions
	Looking into Errors and Exception Handling
	Exception Classes
	Catching Exceptions
	User-Defined Exception Classes

	Summary

	Part II: The .NET Environment
	Chapter 12: Visual Studio .NET
	Working with Visual Studio .NET 2003
	Creating a Project
	Solutions and Projects
	Windows Application Code
	Reading in Visual Studio 6 Projects
	Exploring and Coding a Project
	Building a Project
	Debugging

	Other .NET Tools
	The ASP.NET Web Matrix Project
	WinCV

	Summary

	Chapter 13: Assemblies
	What Are Assemblies?
	The Answer to DLL Hell
	Features of Assemblies
	Application Domains and Assemblies

	Assembly Structure
	Assembly Manifests
	Namespaces, Assemblies, and Components
	Private and Shared Assemblies
	Viewing Assemblies
	Building Assemblies

	Cross-Language Support
	The CTS and the CLS
	Language Independence in Action
	CLS Requirements

	Global Assembly Cache
	Native Image Generator
	Global Assembly Cache Viewer
	Global Assembly Cache Utility (gacutil.exe)

	Creating Shared Assemblies
	Shared Assembly Names
	Creating a Shared Assembly

	Configuration
	Configuration Categories
	Versioning
	Configuring Directories

	Summary

	Chapter 14: .NET Security
	Code Access Security
	Code Groups
	Code Access Permissions and Permissions Sets
	Policy Levels: Machine, User, and Enterprise

	Support for Security in the Framework
	Demanding Permissions
	Requesting Permissions
	Implicit Permission
	Denying Permissions
	Asserting Permissions
	Creating Code Access Permissions
	Declarative Security

	Role-Based Security
	The Principal
	Windows Principal
	Roles
	Declarative Role-Based Security

	Managing Security Policy
	The Security Configuration File
	Managing Code Groups and Permissions
	Turning Security On and Off
	Resetting Security Policy
	Creating a Code Group
	Deleting a Code Group
	Changing a Code Group's Permissions
	Creating and Applying Permissions Sets
	Distributing Code Using a Strong Name
	Distributing Code Using Certificates
	Managing Zones

	Summary

	Chapter 15: Threading
	Threading
	Applications with Multiple Threads
	Manipulating Threads
	The ThreadPlayaround Sample
	Thread Priorities
	Synchronization

	Summary

	Chapter 16: Distributed Applications with .NET Remoting
	What Is .NET Remoting?
	Application Types and Protocols
	CLR Object Remoting

	.NET Remoting Overview
	Contexts
	Activation
	Attributes and Properties
	Communication between Contexts

	Remote Objects, Clients, and Servers
	Remote Objects
	A Simple Server
	A Simple Client

	.NET Remoting Architecture
	Channels
	Formatters
	ChannelServices and RemotingConfiguration
	Object Activation
	Message Sinks
	Passing Objects in Remote Methods
	Lifetime Management

	Miscellaneous .NET Remoting Features
	Configuration Files
	Hosting Applications
	Classes, Interfaces, and SoapSuds
	Asynchronous Remoting
	Remoting and Events
	Call Contexts

	Summary

	Chapter 17: Localization
	Namespace System.Globalization
	Unicode Issues
	Cultures and Regions
	Cultures in Action
	Sorting

	Resources
	Creating Resource Files
	ResGen
	ResourceWriter
	Using Resource Files
	The System.Resources Namespace

	Localization Example Using Visual Studio .NET
	Outsourcing Translations
	Changing the Culture Programmatically
	Using Binary Resource Files
	Using XML Resource Files
	Automatic Fallback for Resources

	Globalization and Localization with ASP.NET
	A Custom Resource Reader
	Creating a DatabaseResourceReader
	Creating a DatabaseResourceSet
	Creating a DatabaseResourceManager
	Client Application for DatabaseResourceReader

	Summary

	Chapter 18: Deployment
	Designing for Deployment
	Deployment Options
	Xcopy
	Copy Project
	Deployment Projects

	Deployment Requirements
	Simple Deployment
	Xcopy
	Xcopy and Web Applications
	Copy Project

	Installer Projects
	What Is Windows Installer?
	Creating Installers
	Advanced Options

	Summary

	Part III: Windows Forms
	Chapter 19: Windows Forms
	Creating a Windows Form Application
	Control Class
	Size and Location
	Appearance
	User Interaction
	Windows Functionality
	Miscellaneous Functionality
	Class Hierarchy

	Standard Controls and Components
	Forms
	Form Class
	Multiple Document Interface (MDI)
	Custom Controls

	Summary

	Chapter 20: Graphics with GDI+
	Understanding Drawing Principles
	GDI and GDI+
	Drawing Shapes
	Painting Shapes Using OnPaint()
	Using the Clipping Region

	Measuring Coordinates and Areas
	Point and PointF
	Size and SizeF
	Rectangle and RectangleF
	Region

	A Note about Debugging
	Drawing Scrollable Windows
	World, Page, and Device Coordinates

	Colors
	Red-Green-Blue (RGB) Values
	The Named Colors
	Graphics Display Modes and the Safety Palette
	The Safety Palette

	Pens and Brushes
	Brushes
	Pens

	Drawing Shapes and Lines
	Displaying Images
	Issues When Manipulating Images

	Drawing Text
	Simple Text Example

	Fonts and Font Families
	Example: Enumerating Font Families
	Editing a Text Document: The CapsEditor Sample
	The Invalidate() Method
	Calculating Item Sizes and Document Size
	OnPaint()
	Coordinate Transforms
	Responding to User Input

	Printing
	Implementing Print and Print Preview

	Summary

	Part IV: Data
	Chapter 21: Data Access with .NET
	ADO.NET Overview
	Namespaces
	Shared Classes
	Database-Specific Classes

	Using Database Connections
	Using Connections Efficiently
	Transactions

	Commands
	Executing Commands
	Calling Stored Procedures

	Fast Data Access: The Data Reader
	Managing Data and Relationships: The DataSet Class
	Data Tables
	Data Columns
	Data Relationships
	Data Constraints

	XML Schemas
	Generating Code with XSD

	Populating a DataSet
	Populating a DataSet Class with a Data Adapter
	Populating a DataSet from XML

	Persisting DataSet Changes
	Updating with Data Adapters
	Writing XML Output

	Working with ADO.NET
	Tiered Development
	Key Generation with SQL Server
	Naming Conventions

	Summary

	Chapter 22: Viewing .NET Data
	The DataGrid Control
	Displaying Tabular Data
	Data Sources
	DataGrid Class Hierarchy

	Data Binding
	Simple Binding
	Data-Binding Objects

	Visual Studio.NET and Data Access
	Creating a Connection
	Selecting Data
	Generating a DataSet
	Updating the Data Source
	Building a Schema
	Other Common Requirements

	Summary

	Chapter 23: Manipulating XML
	XML Standards Support in .NET
	Introducing the System.Xml Namespace
	Using MSXML in .NET
	Using System.Xml Classes
	Reading and Writing Streamed XML
	Using the XmlTextReader Class
	Using the XmlValidatingReader Class
	Using the XmlTextWriter Class

	Using the DOM in .NET
	Using the XmlDocument Class

	Using XPath and XSLT in .NET
	The System.Xml.XPath Namespace
	The System.Xml.Xsl Namespace

	XML and ADO.NET
	Converting ADO.NET Data to XML
	Converting XML to ADO.NET Data
	Reading and Writing a DiffGram

	Serializing Objects in XML
	Serialization without Source Code Access

	Summary

	Chapter 24: Working with Active Directory
	The Architecture of Active Directory
	Features
	Active Directory Concepts
	Characteristics of Active Directory Data
	Schema

	Administration Tools for Active Directory
	Active Directory Users and Computers
	ADSI Edit

	Active Directory Service Interfaces (ADSI)
	Programming Active Directory
	Classes in System.DirectoryServices
	Binding
	Getting Directory Entries
	Object Collections
	Cache
	Creating New Objects
	Updating Directory Entries
	Accessing Native ADSI Objects
	Searching in Active Directory

	Searching for User Objects
	User Interface
	Get the Schema Naming Context
	Get the Property Names of the User Class
	Search for User Objects

	Summary

	Part V: Web Programming
	Chapter 25: ASP.NET Pages
	ASP.NET Introduction
	State Management in ASP.NET

	ASP.NET Web Forms
	ASP.NET Server Controls

	ADO.NET and Data Binding
	Updating the Event-Booking Application
	More on Data Binding

	Application Configuration
	Summary

	Chapter 26: Web Services
	SOAP
	WSDL
	Web Services
	Exposing Web Services
	Consuming Web Services

	Extending the Event-Booking Example
	The Event-Booking Web Service
	The Event-Booking Client

	Exchanging Data Using SOAP Headers
	Summary

	Chapter 27: User Controls and Custom Controls
	User Controls
	A Simple User Control

	Custom Controls
	Custom Control Project Configuration
	Basic Custom Controls
	Creating a Composite Custom Control

	A Straw Poll Control
	The Candidate Controls
	The StrawPoll Control Builder
	Straw Poll Style
	The Straw Poll Control

	Summary

	Part VI: Interop
	Chapter 28: COM Interoperability
	.NET and COM
	Metadata
	Freeing Memory
	Interfaces
	Method Binding
	Data Types
	Registration
	Threading
	Error Handling
	Event Handling

	Marshaling
	Using a COM Component from a .NET Client
	Creating a COM Component
	Creating a Runtime Callable Wrapper
	Threading Issues
	Adding Connection Points
	Using ActiveX Controls in Windows Forms
	Using COM Objects from within ASP.NET

	Using a .NET Component from a COM Client
	COM Callable Wrapper
	Creating a .NET Component
	Creating a Type Library
	COM Interop Attributes
	COM Registration
	Creating a COM Client
	Adding Connection Points
	Creating a Client with a Sink Object
	Running Windows Forms Controls in Internet Explorer

	Summary

	Chapter 29: Enterprise Services
	Overview
	History
	Where to Use Enterprise Services?
	Contexts
	Automatic Transactions
	Distributed Transactions
	Object Pooling
	Role-based Security
	Queued Components
	Loosely Coupled Events

	Creating a Simple COM+ Application
	Class ServicedComponent
	Application Attributes
	Creating the Component

	Deployment
	Automatic Deployment
	Manual Deployment

	Component Services Admin Tool
	Client Application
	Transactions
	ACID Properties
	Transaction Attributes
	Transaction Results
	Sample Application

	Summary

	Part VII: Windows Base Services
	Chapter 30: File and Registry Operations
	Managing the File System
	.NET Classes That Represent Files and Folders
	The Path Class
	Example: A File Browser

	Moving, Copying, and Deleting Files
	Example: FilePropertiesAndMovement

	Reading and Writing to Files
	Streams
	Reading and Writing to Binary Files
	Reading and Writing to Text Files

	Reading and Writing to the Registry
	The Registry
	The .NET Registry Classes
	Example: SelfPlacingWindow

	Summary

	Chapter 31: Accessing the Internet
	The WebClient Class
	Downloading Files
	Basic Web Client Example
	Uploading Files

	WebRequest and WebResponse Classes
	Other WebRequest and WebResponse Features

	Displaying Output as an HTML Page
	The Web Request and Web Response Hierarchy

	Utility Classes
	URIs
	IP Addresses and DNS Names

	Lower-Level Protocols
	Lower-Level Classes

	Summary

	Chapter 32: Windows Services
	What Is a Windows Service?
	Windows Services Architecture
	Service Program
	Service Control Program
	Service Configuration Program

	System.ServiceProcess Namespace
	Creating a Windows Service
	A Class Library Using Sockets
	TcpClient Example
	Windows Service Project
	Threading and Services
	Service Installation
	Installation Program

	Monitoring and Controlling the Service
	MMC Computer Management
	net.exe
	sc.exe
	Visual Studio .NET Server Explorer
	ServiceController Class

	Troubleshooting
	Interactive Services
	Event Logging
	Performance Monitoring

	Power Events
	Summary

	Appendix A: Principles of Object-Oriented Programming
	Appendix B: C# for Visual Basic 6 Developers
	Appendix C: C# for Java Developers
	Appendix D: C# for C++ Developers
	Index
	Team DDU

